
Proceedings of the SIGdial 2022 Conference, pages 91–100
Heriot-Watt University, Edinburgh, UK. 07-09, September, 2022 ©2022 Association for Computational Linguistics

91

Graph Neural Network Policies and Imitation Learning
for Multi-Domain Task-Oriented Dialogues

Thibault Cordier*,1,2, Tanguy Urvoy2, Fabrice Lefèvre1, Lina M. Rojas-Barahona2

1LIA - University of Avignon, Avignon, France
2Orange Labs, Lannion, France

thibault.cordier@alumni.univ-avignon.fr

fabrice.lefevre@univ-avignon.fr

{thibault.cordier, linamaria.rojasbarahona, tanguy.urvoy}@orange.com

Abstract
Task-oriented dialogue systems are designed
to achieve specific goals while conversing with
humans. In practice, they may have to handle
simultaneously several domains and tasks. The
dialogue manager must therefore be able to take
into account domain changes and plan over dif-
ferent domains/tasks in order to deal with multi-
domain dialogues. However, learning with rein-
forcement in such context becomes difficult be-
cause the state-action dimension is larger while
the reward signal remains scarce. Our experi-
mental results suggest that structured policies
based on graph neural networks combined with
different degrees of imitation learning can ef-
fectively handle multi-domain dialogues. The
reported experiments underline the benefit of
structured policies over standard policies.

Introduction

Task-oriented dialogue systems are designed to
achieve specific goals while conversing with hu-
mans. They can help with various tasks in different
domains, such as seeking and booking a restaurant
or a hotel (Zhu et al., 2020). The conversation’s
goal is usually modelled as a slot-filling problem.
The dialogue manager (DM) is the core component
of these systems that chooses the dialogue actions
according to the context. Reinforcement learning
(RL) can be used to model the DM, in which case
the policy is trained to maximize the probability of
satisfying the goal (Gao et al., 2018).

We focus here on the multi-domain multi-task
dialogue problem. In practice, real applications
like personal assistants or chatbots must deal with
multiple tasks: the user may first want to find a
hotel (first task), then book it (second task). More-
over, the tasks may cover several domains: the user
may want to find a hotel (first task, first domain),
book it (second task, first domain), and then find a
restaurant nearby (first task, second domain).

One way of handling this complexity is to rely
on a domain hierarchy which decomposes the

decision-making process; another way is to switch
easily from one domain to another by scaling up
the policy. Although structured dialogue policies
can adapt quickly from a domain to another (Chen
et al., 2020b), covering multiple domains remains
a hard task because it increases the dimensions of
the state and action spaces while the reward signal
remains sparse. A common technique to circum-
vent this reward scarcity is to guide the learning
by injecting some knowledge through a teacher
policy1.

Our main contribution is to study how structured
policies like graph neural networks (GNN) com-
bined with some degree of imitation learning (IL)
can be effective to handle multi-domain dialogues.
We provide large scale experiments in a dedicated
framework (Zhu et al., 2020) in which we analyze
the performance of different types of policies, from
multi-domain policy to generic policy, with differ-
ent levels of imitation learning.

The remainder of this paper is structured as fol-
lows. We present the related work in Section 1.
Section 2 presents our structured policies combined
with imitation learning. The experiments and evalu-
ation are described in Sections 3 and 4 respectively.
Finally, we conclude in Section 5.

1 Related Work

Fundamental hierarchical reinforcement learning
(Dayan and Hinton, 1993; Parr and Russell, 1998;
Sutton et al., 1999; Dietterich, 2000) has inspired
a previous string of works on dialogue manage-
ment (Budzianowski et al., 2017; Casanueva et al.,
2018a,b; Chen et al., 2020b). Recently, the use of
structured hierarchy with GNN (Zhou et al., 2020;
Wu et al., 2020) rather than a set of classical feed-
forward networks (FNN) enables the learning of
non-independent sub-policies (Chen et al., 2018,

1 For deployment the teacher is expected to be a human
expert, however, for experimentation purposes we used the
handcrafted policy as a proxy (Casanueva et al., 2017).

92

(a) Domain-selection module. (b) Domain-specific decision module.

Figure 1: GNN policy for multi-domain dialogues with hierarchical decision making and weight sharing.

2020a). These works adopted the Domain Indepen-
dent Parametrisation (DIP) that standardizes the
slots representation into a common feature space
to eliminate the domain dependence. It allows poli-
cies to deal with different slots in the same way. It
is therefore possible to build policies that handle a
variable number of slots and that transfer to differ-
ent domains on similar tasks (Wang et al., 2015).

Our contribution differs from Chen et al. (2020b)
on three points: first we perform our experiments
on CONVLAB (Zhu et al., 2020) which is a ded-
icated multi-domain framework; second, the dia-
logue state tracker (DST) output is not discarded
when activating the domain; third, we adapt the
GNN structure to each domain by keeping the rel-
evant nodes while sharing the edge’s weights.

The reward sparsity can be bypassed by guiding
the learning through the injection of some knowl-
edge via a teacher policy. This approach, called
imitation learning (IL) (Hussein et al., 2017), can
be declined from pure behaviour cloning (BC)
where the agent only learns to mimic its teacher to
pure reinforcement learning (RL) where no hint
is provided (Shah et al., 2016; Hester et al., 2018;
Gordon-Hall et al., 2020; Cordier et al., 2020).

2 Extended GNN Policies with Imitation

We adopt the multi-task setting as presented in
CONVLAB, in which a single dialogue can have
the following tasks: (i) find, in which the system
requests information in order to query a database
and make an offer; (ii) book, in which the system
requests information in order to book the item. A
single dialogue can also contain multiple domains
such as hotel, restaurant, attraction, train, etc.

Our method, illustrated in Figure 1, is designed
to adapt: (i) at the domain-level (i.e. be scalable
to changes in the number of slots), and (ii) at the
multi-domain-level (i.e. be scalable to changes of
domain). For each dialogue turn, it works as fol-
low: first, the DST module chooses which domain
to activate. Then, the multi-domain belief state
(and action space) is projected into the active do-
main (i.e only the DIP nodes corresponding to the
active domain are kept) as shown in Figure 1a. Af-
terwards, we apply the GNN message passing as
Chen et al. (2020b) but only among the domain
specific DIP nodes in the decision making module
(Figure 1b).

GNN Policies The GNN structure we consider
is a fully connected graph in which the nodes are
extracted from the DIP. We distinguish two types
of nodes: the slot nodes representing the parametri-
sation of each slot (denoted as S-NODE) and the
general node representing the parametrisation of
the domain (as I-NODE for slot-Independent node).
This yields three types of edges: I2S (for I-NODE

to S-NODE), S2I and S2S. This abstract structure
is a way of modelling the relations between slots
as well as exploiting symmetries based on weight
sharing (Figure 1b).

Imitation Learning In addition to the structured
architecture, we use some level of IL to guide the
agent’s exploration. In our experiments, we used
CONVLAB’s handcrafted policy as a teacher (or or-
acle)1, but other policies could be used as well. Be-
haviour cloning (BC) is a pure supervised learning
method that tries to mimic the teacher policy. Its
loss function is the cross-entropy loss as in a classi-

93

(a) Pure ACER (b) Pure BC

(c) ACER with ILfOD. (d) ACER with ILfOS.

Figure 2: Distribution via boxplot of the performance of the proposed approaches on CONVLAB, with 10 different
initializations and without pre-training. The coloured area represents the interquartile Q1-Q3 of the distribution, the
middle line represents its median (Q2) and the points are outliers.

fication problem. Imitation Learning From Oracle
Demonstrations (ILFOD) is a RL method which
allows the agent to play oracle actions as demon-
strations and to inject them in its replay buffer. In
our experiments, we kept half of the agent’s own
actions in the buffer along with those generated
by the oracle. Imitation Learning From Oracle
Supervision (ILFOS) is the combination of super-
vised and reinforcement learning when the agent
learns with a supervised loss, namely the margin
loss (Hester et al., 2018).

3 Experiments

We performed an ablation study: (i) by progres-
sively extending the baseline to our proposed
GNNs and (ii) by guiding the exploration with IL.
All the experiments were restarted 10 times with
random initialisations and the results evaluated on
500 dialogues were averaged. Each learning trajec-
tory was kept up to 10,000 dialogues with a step of
1,000 dialogues in order to analyse the variability
and stability of the methods.

Models The baseline is ACER which is a so-
phisticated actor-critic method (Wang et al., 2016).
After an ablation study, we progressively added

some notion of hierarchy to FNNs to approximate
the structure of GNNs. FNN is a feed-forward
neural network with DIP parametrisation. Thus,
the agent actions are single-actions. FNN-REF
is a FNN with the native parametrisation (no DIP)
with multiple-actions of CONVLAB2. HFNN is a
hierarchical policy with domain-selection module
and based on FNNs for each domain. HGNN is a
hierarchical policy with domain-selection module
and based on GNNs. UHGNN is a HGNN with a
unique GNN for all domains.

Metrics We evaluate the performance of the poli-
cies for all tasks. For the find task, we use the
precision, the recall and the F-score metrics: the
inform rates. For the book task, we use the accu-
racy metric namely the book rate. The dialogue is
marked as successful if and only if both inform’s
recall and book rate are 1. The dialogue is consid-
ered completed if it is successful from the user’s
point of view (i.e a dialogue can be completed with-
out being successful if the information provided is
not the one objectively expected by the simulator).

2The native parametrisation manually groups multi-actions
based on MULTIWOZ (Budzianowski et al., 2018).

94

Configuration Avg Turn Inform (%) Book Complete Success
NLU Policy NLG (succ/all) Prec. / Rec. / F1 Rate (%) Rate (%) Rate (%)

- HDC - 10.6/10.6 87.2 / 98.6 / 90.9 98.6 97.9 - 97.3 -
- ACGOS (ours) - 13.1/13.2 94.8 / 99.0 / 96.1 98.7 98.2 (+0.3) 97.0 (-0.3)

BERT HDC T 11.4/12.0 82.8 / 94.1 / 86.2 91.5 92.7 - 83.8 -
BERT HDC† T 11.6/12.3 79.7 / 92.6 / 83.5 91.1 90.5 (-2.2) 81.3 (-2.5)
BERT MLE† T 12.1/24.1 62.8 / 69.8 / 62.9 17.6 42.7 (-50.0) 35.9 (-47.9)
BERT PG† T 11.0/25.3 57.4 / 63.7 / 56.9 17.4 37.4 (-55.3) 31.7 (-52.1)
BERT GDPL† T 11.5/21.3 64.5 / 73.8 / 65.6 20.1 49.4 (-43.3) 38.4 (-45.4)
BERT PPO† T 13.1/17.8 69.4 / 85.8 / 74.1 86.6 75.5 (-17.2) 71.7 (-12.1)
BERT ACGOS (ours) T 14.0/14.8 88.8 / 92.6 / 89.5 86.6 89.1 (-3.6) 81.7 (-2.1)

Table 1: Dialogue system evaluation with simulated users. T means template-based NLG. Configurations without
NLU and NLG modules pass directly the dialogue act. Configurations with ACGOS and HDC policies are
evaluated on a single run with 1,000 dialogues. Configurations with † are taken from the GitHub of CONVLAB.
PPO in CONVLAB used behaviour cloning as the pre-trained weights (see for more details).

4 Evaluation

We evaluate the dialogue manager and the dialogue
system both with simulated users.

Dialogue Manager We performed an ablation
study based on ACER as reported in Figure 2. First,
all RL variants of ACER (Figure 2a) have diffi-
culties to learn without supervision in contrast to
BC variants (Figure 2b). In particular, we see that
hierarchical decision making networks (HFNN in
green), graph neural network (HGNN in red) and
generic policy (UHGNN in purple) drastically im-
prove the performance compared to FNNs. Sim-
ilarly, using IL like ILFOD (Figure 2c) and IL-
FOS (Figure 2d) notably improves the performance.
Therefore, learning generic GNNs allows collab-
orative gradient update and efficient learning on
multi-domain dialogues. Conversely, we observe
that hierarchical decision making with HFNNs
does not systematically guarantee any improve-
ment. These results suggest that GNNS are use-
ful for learning dialogue policies on multi-domain
which can be transferred during learning across
domains on-the-fly to improve performance. Fi-
nally, regarding ILFOD variants (Figure 2c), we
can observe that all architectures are affected by
a large variability. This shows that multi-domain
dialogue management is difficult despite the use of
demonstrations and that learning with reward is not
sufficient to robustly succeed.

Dialogue System We evaluate the policy learning
algorithms in the entire dialogue pipeline, in partic-
ular our best DM policy ACER-ILFOS-UHGNN
under a shorter name ACGOS. The results of

our experimentation are presented in Table 1. We
observe that the performance of our approach is
closed to the handcrafted policy (the teacher) when
directly passing the dialogue acts (97.3 vs. 97.0). It
is also closed to the handcrafted policy when using
BERT NLU (Devlin et al., 2018) and template-
based NLG (83.8 vs. 81.7). It is much better com-
pared to the baselines with a significant difference
(e.g. with 81.7 for ACGOS vs. 71.7 for pre-trained
PPO). These results highlight the benefit of struc-
tured policies against standard policies.

5 Conclusion

We studied structured policies like GNN combined
with some imitation learning that effectively handle
multi-domain dialogues. The results of our large-
scale experiments on CONVLAB confirm that an
actor-critic based policy with a GNN structure can
solve multi-domain multi-task dialogue problems.
Finally, we evaluated our best policy (ACGOS) in
a complete dialogue system with simulated users.
It overcomes the baselines and it is comparable to
the handcrafted policy.

A limitation of current policies in CONVLAB,
including ours, is that the robustness to noisy inputs
is not specifically addressed as it had been done
in PyDial (Ultes et al., 2017). It could be also
interesting to study the impact of incorporating real
human feed-backs and demonstrations instead of a
handcrafted teacher.

The GNN structured policies combined with
imitation learning avoid sparsity, while being data
efficient, stable and adaptable. They are relevant
for covering multi-domain task dialogue problems.

https://github.com/thu-coai/ConvLab-2/tree/ad32b76022fa29cbc2f24cbefbb855b60492985e
https://github.com/thu-coai/ConvLab-2/issues/54

95

References
Greg Brockman, Vicki Cheung, Ludwig Pettersson,

Jonas Schneider, John Schulman, Jie Tang, and Woj-
ciech Zaremba. 2016. Openai gym. arXiv preprint
arXiv:1606.01540.

Paweł Budzianowski, Stefan Ultes, Pei-Hao Su, Nikola
Mrkšić, Tsung-Hsien Wen, Inigo Casanueva, Lina
Rojas-Barahona, and Milica Gašić. 2017. Sub-
domain modelling for dialogue management with
hierarchical reinforcement learning. arXiv preprint
arXiv:1706.06210.

Pawel Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasic. 2018. Multiwoz-a large-
scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. In EMNLP.

Iñigo Casanueva, Paweł Budzianowski, Pei-Hao Su, Ste-
fan Ultes, Lina M Rojas Barahona, Bo-Hsiang Tseng,
and Milica Gasic. 2018a. Feudal reinforcement learn-
ing for dialogue management in large domains. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 714–719.

Iñigo Casanueva, Paweł Budzianowski, Stefan Ultes,
Florian Kreyssig, Bo-Hsiang Tseng, Yen-Chen Wu,
and Milica Gasic. 2018b. Feudal dialogue manage-
ment with jointly learned feature extractors. In Pro-
ceedings of the 19th Annual SIGdial Meeting on Dis-
course and Dialogue, pages 332–337.

Iñigo Casanueva, Paweł Budzianowski, Pei-Hao Su,
Nikola Mrkšić, Tsung-Hsien Wen, Stefan Ultes, Lina
Rojas-Barahona, Steve Young, and Milica Gašić.
2017. A Benchmarking Environment for Reinforce-
ment Learning Based Task Oriented Dialogue Man-
agement. arXiv:1711.11023 [cs, stat]. ArXiv:
1711.11023.

Lu Chen, Bowen Tan, Sishan Long, and Kai Yu. 2018.
Structured dialogue policy with graph neural net-
works. In Proceedings of the 27th International Con-
ference on Computational Linguistics, pages 1257–
1268.

Zhi Chen, Lu Chen, Xiaoyuan Liu, and Kai Yu.
2020a. Distributed structured actor-critic reinforce-
ment learning for universal dialogue management.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 28:2400–2411.

Zhi Chen, Xiaoyuan Liu, Lu Chen, and Kai Yu. 2020b.
Structured hierarchical dialogue policy with graph
neural networks. arXiv preprint arXiv:2009.10355.

Thibault Cordier, Tanguy Urvoy, Lina M Rojas-
Barahona, and Fabrice Lefèvre. 2020. Diluted near-
optimal expert demonstrations for guiding dialogue
stochastic policy optimisation. In Human in the loop
dialogue systems Workshop at 34th Conference on
Neural Information Processing Systems.

Peter Dayan and Geoffrey E Hinton. 1993. Feudal rein-
forcement learning. In Advances in neural informa-
tion processing systems, pages 271—-278.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Thomas G Dietterich. 2000. Hierarchical reinforcement
learning with the maxq value function decomposition.
Journal of artificial intelligence research, 13:227–
303.

Jianfeng Gao, Michel Galley, and Lihong Li. 2018. Neu-
ral approaches to conversational ai. In The 41st In-
ternational ACM SIGIR Conference on Research &
Development in Information Retrieval, pages 1371–
1374.

Gabriel Gordon-Hall, Philip Gorinski, and Shay B Co-
hen. 2020. Learning dialog policies from weak
demonstrations. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1394–1405.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc
Lanctot, Tom Schaul, Bilal Piot, Dan Horgan, John
Quan, Andrew Sendonaris, Ian Osband, et al. 2018.
Deep q-learning from demonstrations. In Thirty-
second AAAI conference on artificial intelligence.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan,
and Chrisina Jayne. 2017. Imitation learning: A sur-
vey of learning methods. ACM Computing Surveys
(CSUR), 50(2):1–35.

Ronald Parr and Stuart Russell. 1998. Reinforcement
learning with hierarchies of machines. Advances in
neural information processing systems, pages 1043–
1049.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In Advances in Neural Information Process-
ing Systems 32, pages 8024–8035. Curran Associates,
Inc.

Pararth Shah, Dilek Hakkani-Tur, and Larry Heck. 2016.
Interactive reinforcement learning for task-oriented
dialogue management.

Richard S Sutton, Doina Precup, and Satinder Singh.
1999. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning.
Artificial intelligence, 112(1-2):181–211.

Stefan Ultes, Lina M Rojas Barahona, Pei-Hao Su,
David Vandyke, Dongho Kim, Iñigo Casanueva,
Paweł Budzianowski, Nikola Mrkšić, Tsung-Hsien

http://arxiv.org/abs/1711.11023
http://arxiv.org/abs/1711.11023
http://arxiv.org/abs/1711.11023
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

96

Wen, and Milica Gasic. 2017. Pydial: A multi-
domain statistical dialogue system toolkit. In Pro-
ceedings of ACL 2017, System Demonstrations, pages
73–78.

Zhuoran Wang, Tsung-Hsien Wen, Pei-Hao Su, and Yan-
nis Stylianou. 2015. Learning domain-independent
dialogue policies via ontology parameterisation. In
Proceedings of the 16th Annual Meeting of the Spe-
cial Interest Group on Discourse and Dialogue, pages
412–416.

Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr
Mnih, Remi Munos, Koray Kavukcuoglu, and Nando
de Freitas. 2016. Sample efficient actor-critic with
experience replay. arXiv preprint arXiv:1611.01224.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and S Yu Philip. 2020. A com-
prehensive survey on graph neural networks. IEEE
transactions on neural networks and learning sys-
tems, 32(1):4–24.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan
Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. 2020. Graph
neural networks: A review of methods and applica-
tions. AI Open, 1:57–81.

Qi Zhu, Zheng Zhang, Yan Fang, Xiang Li, Ryuichi
Takanobu, Jinchao Li, Baolin Peng, Jianfeng Gao,
Xiaoyan Zhu, and Minlie Huang. 2020. Convlab-
2: An open-source toolkit for building, evaluating,
and diagnosing dialogue systems. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations,
pages 142–149.

A Appendix

A.1 Domains

Domain # constraint slots # request slots

CONVLAB find/book search

Restaurant 4/3 5
Attraction 3/- 7
Hotel 7/3 5
Taxi 4/- 2
Train 5/1 5
Hospital 1/- 3
Police -/- 3

Table 2: Domains Description of CONVLAB framework

Belief State The belief state representation is de-
terministic. As shown in Figure 3, there is no un-
certainty (all values are either 0’s or 1’s).

State Space The input to the dialogue manager is
the belief state which is a dictionary of all tractable
information (slot-value pairs, history, dialogue ac-
tions of system and user, etc.). This is called the
master state space. And, due to its large size, the
representation is projected into the summary state
space by a process called value abstraction (Wang
et al., 2015). Finally, it must be vectorised in order
to be interpretable by neural networks.

Action Space The dialogue manager’s output is
a probabilistic distribution over all possible actions.
To reduce the complexity of the learning problem,
master actions, which are valued dialogue acts such
as INFORM(date = ’2022-01-15’), are abstracted
into summary actions like INFORM(date), the value
abstraction module being in charge of restoring the
relevant values in the context. On CONVLAB the
policy may activate several actions simultaneously
(called multiple-actions).

Domain Independent Parametrisation (or
DIP) (Wang et al., 2015) standardises the slots
representation into a common feature space to
eliminate the domain dependence. In particular,
the DIP state and action representations are not
reduced to a flat vector but to a set of sub-vectors:
one corresponding to the domain parametrisation
(called slot-independent representation), the others
to the slots parametrisation (called slot-dependent
representations).

97

Component / Description

Beliefs

constraint slot beliefs: {binfd,s ∈ Vs, ∀s ∈
Sinf
d , ∀d ∈ D} The goal constraints belief for

each informable slot. This is either an assignment
of a value from the ontology which the user has
specified as a constraint, or has a special value
— either dontcare which means the user has no
preference, or none which means the user is yet
to specify a valid goal for this slot. To be ex-
act, for each domain, the constraint slot dictionary
separates slots with respect to the task i.e we dis-
tinguish the find slot dictionary and the book slot
dictionary.
request slot beliefs: {breqd,s ∈ B, ∀s ∈ Sreq

d , ∀d ∈
D}: A set of requested slots, i.e. those slots whose
values have been requested by the user, and should
be informed by the system.

Features

terminated: f1 ∈ B: A boolean showing that the
user wants to end the call.
booked: f2 ∈ VDB(d): The name of the last venue
offered by the system to the user with respect to
the constraint slots with additional information like
reference. To be exact, this feature is located in
the book slot dictionary.
degree pointer: f3 ∈ B6: The vector counting the
number of entities count matching with constraint
slots in acceptance list: [count==0, count==1,
count==2, count==3, count==4, count>=5].

System Acts

system acts: asys ∈ list(Asys): The list of the
last system actions.

User Acts

user acts: auser ∈ list(Auser): The list of the last
user actions.

Table 3: Belief State Template in CONVLAB framework

Figure 3: Transformation from initial state to DIP state
representation (it works similarly for actions).

A.2 State and Action Representations
We propose to formally present the state represen-
tations used in our experiments. For details about
our notations, see Table 3.

Flat state representation in CONVLAB

ϕ(x) =
(⊕

s∈Sinf

binfs

)
⊕ auser ⊕ asys ⊕ [f1]⊕ f2 ⊕ f3

where x is the initial state, ϕ(x) is the full state
parametrisation, Sinf is the set of informable slots,
binfs is the one-encoding vector of the informable
slot s, auser and asys are the one-encoding vec-
tors of previous user and system actions, f1 is the
boolean "terminated dialogue", f2 is the boolean
"booked offer" with respect to each domain, f3 is
the one-encoding vector of the matching entities
count with respect to each domain and ⊕ is the
vector concatenation operator.

DIP state representation
Slot independent parametrisation:

ϕd(x) = auser|g ⊕ asys|g ⊕ [f1, f2|d, f3|d]

where x is the initial state, ϕd(x) is the active
domain state parametrisation, auser|g and asys|g
are the one-encoding vectors of previous general
user and system actions, f1 is the boolean "termi-
nated dialogue", f2|d is the boolean "booked offer"
with respect to the active domain, f3|d is the one-
encoding vector of the matching entities count with
respect to the active domain and ⊕ is the vector
concatenation operator.

98

Slot dependent parametrisation:

∀si ∈ Sd, ϕsi(x) = auser|si ⊕ asys|si
⊕
[
1(∃ v ∈ Vsi/{none}, b∗si [v] = 1)

]
(2a)

⊕
[
1(si ∈ Sinf

d)
]

(2b)

⊕
[
1(si ∈ Sreq

d)
]

(2c)

where x is the initial state, ϕsi(x) is the slot
parametrisation of the ith slot, Sd is the set of slots
of the active domain, auser|si and asys|si are the
one-encoding vectors of previous user and system
actions of the ith slot, (2a) is the indicator of known
value, (2b) is the indicator of informable slot and
(2c) is the indicator of requestable slot and ⊕ is the
vector concatenation operator.

A.3 Implementation Details

Imitation learning The used oracle is the hand-
crafted agent proposed by each framework. When
we use ILFOD or ILFOS methods, 50% of the
time the oracle trajectories is used. When we use
ILFOS, we call also in 100% of the time the oracle
which gives us the best expert action as supervision
and a margin penalty µ = log(2) (Hester et al.,
2018).

Reinforcement learning Our policy algorithm is
an off-policy learning that uses experience replay
(all data are stored in buffers) without priority i.e
without importance sampling. The exploitation-
exploration procedure is achieved by Boltzmann
sampling with a fixed temperature τ = 1.

Metrics and Rewards Inform recall evaluates
whether all the requested information has been in-
formed when inform precision evaluates whether
only the requested information has been informed.
Book rate assesses whether the offered entity
meets all the constraints specified in the user goal.
The system is guided by the rewards as follows. If
all domains are solved (a domain is solved if all
related tasks are solved), it gains 40 points. If the
current active domain is solved, it gains 5 points.
Otherwise, it is penalised by 1 point.

Model setup for neural network architectures
Our FNN models have two hidden layers, both
with 128 neurons. Our GNN models have one first
hidden layer with 32 neurons for each node (two in
all: S-NODE and I-NODE). Then the second hidden
layer is composed of 32 neurons for each relation
(three in all: S2S, S2I and I2S). The size of the

tested networks are of the order of magnitude of
10 000 to more than 100 000 parameters.

For learning stage, we use a learning rate
lr = 10−3, a dropout rate dr = 0.1 and a batch
size bs = 64. Each loss function has a weight
of λQ = 0.5, λπ = 1., λIL = 1. and λent = 0.01
respectively. The learning frequency is one iter-
ation after each episode (finished dialogue) with
only one gradient iteration.

Used packages for the experiment We used
the dialogue system frameworks named CON-
VLAB (Zhu et al., 2020). For the implementation
of neural networks, we used PYTORCH (Paszke
et al., 2019) in our dialogue systems. We also used
another toolkit for reinforcement learning research
named OPENAI GYM (Brockman et al., 2016).

A.4 Supplementary Results
We propose to present supplementary results of
our ablation study. We show the distribution (via
boxplot) of different measures with 10 different ini-
tialisations and without pre-training. In particular,
Figure 4 presents the distribution of inform recall,
Figure 5 the distribution of book rate, Figure 6 the
distribution of success rate and Figure 7 the distri-
bution of cumulative rewards. We precise that the
coloured area represents the interquartile Q1-Q3
of the distribution, the middle line represents its
median (Q2) and the points are outliers.

99

(a) Recall Average - UHGNN models

(b) Recall Average - HGNN models

(c) Recall Average - HFNN models

(d) Recall Average - FNN models with DIP
parametrization

(e) Recall Average - FNN models with native
parametrization

Figure 4: Summary of performance - Task find

(a) Book Rate - UHGNN models

(b) Book Rate - HGNN models

(c) Book Rate - HFNN models

(d) Book Rate - FNN models with DIP parametriza-
tion

(e) Book Rate - FNN models with native parametriza-
tion

Figure 5: Summary of performance - Task book

100

(a) Success Rate - UHGNN models

(b) Success Rate - HGNN models

(c) Success Rate - HFNN models

(d) Success Rate - FNN models with DIP
parametrization

(e) Success Rate - FNN models with native
parametrization

Figure 6: Summary of performance - Global task (Task
find and/or Task book)

(a) Cumulative rewards - UHGNN models

(b) Cumulative rewards - HGNN models

(c) Cumulative rewards - HFNN models

(d) Cumulative rewards - FNN models with DIP
parametrization

(e) Cumulative rewards - FNN models with native
parametrization

Figure 7: Summary of performance - Cumulative re-
wards

