
Proceedings of the SIGdial 2022 Conference, pages 1–13
Heriot-Watt University, Edinburgh, UK. 07-09, September, 2022 ©2022 Association for Computational Linguistics

1

Post-processing Networks: Method for Optimizing Pipeline Task-oriented
Dialogue Systems using Reinforcement Learning

Atsumoto Ohashi Ryuichiro Higashinaka
Graduate School of Informatics, Nagoya University

ohashi.atsumoto.c0@s.mail.nagoya-u.ac.jp
higashinaka@i.nagoya-u.ac.jp

Abstract

Many studies have proposed methods for op-
timizing the dialogue performance of an en-
tire pipeline task-oriented dialogue system by
jointly training modules in the system using re-
inforcement learning. However, these methods
are limited in that they can only be applied to
modules implemented using trainable neural-
based methods. To solve this problem, we pro-
pose a method for optimizing a pipeline system
composed of modules implemented with arbi-
trary methods for dialogue performance. With
our method, neural-based components called
post-processing networks (PPNs) are installed
inside such a system to post-process the output
of each module. All PPNs are updated to im-
prove the overall dialogue performance of the
system by using reinforcement learning, not
necessitating each module to be differentiable.
Through dialogue simulation and human evalu-
ation on the MultiWOZ dataset, we show that
our method can improve the dialogue perfor-
mance of pipeline systems consisting of various
modules1.

1 Introduction

Task-oriented dialogue systems can be classified
into two categories: pipeline systems, in which
multiple modules take on a sequential structure,
and neural-based end-to-end systems (Chen et al.,
2017; Gao et al., 2018; Zhang et al., 2020b).

A typical pipeline system consists of four mod-
ules (Zhang et al., 2020b): natural language under-
standing (NLU), dialogue state tracking (DST), Pol-
icy, and natural language generation (NLG). Each
module can be implemented individually using var-
ious methods (e.g., rule-based and neural-based)
(Ultes et al., 2017; Zhu et al., 2020). In a pipeline
system, the inputs and outputs of each module are
explicit, making it easy for humans to interpret.

1Our code is publicly available at https://github.
com/nu-dialogue/post-processing-networks

RewardNLU DST Policy NLG

(a) Diagram of conventional method. Modules are fine-tuned
using RL.

NLU DST Policy NLGPPN PPN PPN Reward

(b) Diagram of proposed method. Each PPN that post-
processes output of each module is optimized using RL.

Figure 1: Comparison of conventional and proposed
methods

However, since each module is processed sequen-
tially, errors in the preceding module can easily
propagate to the following ones, and the perfor-
mance of the entire system cannot be optimized
(Tseng et al., 2021). This results in low dialogue
performance of the entire system (Takanobu et al.,
2020).

In contrast, neural-based methods can optimize
entire neural-based end-to-end systems, which al-
lows for less error propagation than pipeline sys-
tems and high dialogue performance (Dinan et al.,
2019; Gunasekara et al., 2020). The drawback of
these methods is the large amount of annotation
data required to train systems (Zhao and Eskenazi,
2016). Compared with pipeline systems, neural-
based end-to-end systems are also less interpretable
and more difficult to adjust or add functions.

To marry the benefits of both pipeline and end-
to-end systems, methods (Liu et al., 2018; Mehri
et al., 2019; Lee et al., 2021; Lin et al., 2021) have
been proposed for optimizing an entire pipeline
system in an end-to-end fashion by using reinforce-
ment learning (RL) (Figure 1(a)). These methods
are powerful because they jointly train and fine-
tune neural-based implementations of the modules,
such as NLU, Policy, and NLG, by using RL. How-
ever, these methods may not always be applicable
because there may be situations in which modules
can only be implemented with rules or the modules’
internals cannot be accessed, such as with a Web

https://github.com/nu-dialogue/post-processing-networks
https://github.com/nu-dialogue/post-processing-networks

2

API.
With this background, we propose a method for

optimizing an entire pipeline system composed of
modules implemented in arbitrary methods. We
specifically focus on modules that output fixed
sets of classes (i.e., NLU, DST, and Policy) and
install neural-based components (post-processing
networks; PPNs) in the system to post-process the
outputs of these modules, as shown in Figure 1(b).
Each PPN modifies the output of each module by
adding or removing information as necessary to
facilitate connections to subsequent modules, re-
sulting in a better flow of the entire pipeline. To
enable the appropriate post-processing for the en-
tire system, each PPN uses the states of all modules
in the system when executing post-processing. The
post-processing of each PPN is optimized using RL
so that the system can improve its dialogue perfor-
mance, e.g., task success. A major advantage of
our method is that each module does not need to
be trainable since PPNs are trained instead.

To evaluate the effectiveness of our method, we
applied PPNs to pipeline systems consisting of
modules implemented with various methods (e.g.,
rule-based and neural-based) on the basis of the
MultiWOZ dataset (Budzianowski et al., 2018) and
conducted experiments by using dialogue simula-
tion and human participants. The contributions of
this study are as follows.

• We propose a method of improving the dia-
logue performance of a pipeline task-oriented
dialogue system by post-processing outputs of
modules. Focusing on NLU, DST, and Policy,
our method can be applied to various pipeline
systems because PPNs do not depend on the
implementation method of each module or a
combination of modules.

• Dialogue simulation experiments have shown
that our method can improve the dialogue per-
formance of pipeline systems consisting of
various combinations of modules. Additional
analysis and human evaluation experiments
also verified the effectiveness of the proposed
method.

2 Related Work

Our study is related to optimizing an entire dia-
logue system with a modular architecture. Wen
et al. (2017) proposed a method for implement-
ing all the functions of NLU, DST, Policy, and

NLG modules by using neural networks, enabling
the entire system to be trained. Lei et al. (2018)
incorporated both a decoder for generating belief
states (i.e., DST module) and a response-generation
decoder (i.e., NLG module) into a sequence-to-
sequence model (Sutskever et al., 2014). Zhang
et al. (2020a) also proposed a method for jointly
optimizing a system that includes three decoders
that respectively execute the functions of DST, Pol-
icy, and NLG. Liang et al. (2020) extended the
method of Lei et al. (2018) by jointly optimiz-
ing four decoders that generate user dialogue acts
(DAs), belief states, system DAs, and system re-
sponses. However, these systems are trained in a
supervised manner and require large amounts of
data (Liu et al., 2017).

Our study is related to improving the dialogue
performance of a pipeline system by using RL.
Zhao and Eskenazi (2016) and Li et al. (2017)
implemented DST and Policy in a neural model
and used the Deep Q Network (Mnih et al., 2013)
algorithm to optimize the system to achieve ro-
bustness against errors that occur in interactions.
Liu et al. (2018) proposed a Policy-learning op-
timization method for real users by combining
supervised learning, imitation learning, and RL.
Mehri et al. (2019) proposed a method for training
a response-generation model by using RL while
using the hidden states of the learned NLU, Pol-
icy, and NLG. Methods have been proposed (Lee
et al., 2021; Lin et al., 2021) for building a pipeline
system with individually trained modules and fine-
tuning specific modules by using RL, which signifi-
cantly improved the performance of the overall sys-
tem. These methods are powerful because they can
fine-tune a system directly through RL. However,
they can only be applied to systems consisting of
specific differentiable modules implemented using
neural-based methods, not to systems consisting
of non-differentiable modules. Our method is in-
dependent of the module-implementation method,
trainability of each module in pipeline systems, and
combination of modules.

3 Proposed Method

We developed our method to improve the dialogue
performance of an entire pipeline system by op-
timizing the output of each module through post-
processing. Post-processing means modifying the
output by adding or removing information from
the actual output of the module. With our method,

3

Figure 2: Architecture of our proposed method. Output of each module is post-processed by subsequent PPN. Each
PPN has InAdapter to convert output label o of module into multi-binary vector v, MLP to post-process multi-binary
vector into v′ on basis of v and state sAll of all modules, and OutAdapter to restore v′ to output label o′.

InAdapter

Output vocabulary

� �������	�
���
��

� �������	�
���

��

� �������	�
��������

� ������
�	�
��������

⁝ ⁝

�
���������

�

�

�

�

⁝

�

Output

Vector

Copy original values
Intent Value

�������	�
���
��
 �
�

�������	�
�������� �	���

MLP

Vector
OutAdapter

Output vocabulary

� �������	�
���
��

� �������	�
���

��

� �������	�
��������

� ������
�	�
��������

⁝ ⁝

�
���������

Output

�
�

Intent Value

�������	�
���
��
 �
�

������
�	�
��������

�

�

�

�

⁝

��
�

Figure 3: Procedure in which InAdapter converts output
label o into vector v and OutAdapter restores vector v′

into output label o′ by using output vocabulary (in this
case, output labels are DAs of NLU). Value information,
which cannot be encoded in v, is copied directly from o
when creating o′.

each PPN needs to execute post-processing appro-
priate for all modules so that the entire system can
improve overall dialogue performance. With this in
mind, each PPN post-processes the target module’s
output while using the latest states of all modules
in the system. Basically, each module’s state is the
latest output of each module. However, if a module
can provide information that represents its state in
more detail than the module’s output, the PPN also
uses that information (see Section 3.1). Figure 2
shows the architecture of PPNs applied to a pipeline
system consisting of Module1, ..., Modulen.

3.1 Post-processing Algorithm
The following equations describe the steps in which
PPNi post-processes the output oti of Modulei at
turn t, as in Figure 2.

oti, s
t
i = Modulei(o

′t
i−1) (1)

vti = InAdapteri(o
t
i) (2)

stAll = [st1; ...; s
t
i; s

t−1
i+1; ...; s

t−1
n] (3)

v′ti = MLPi([v
t
i ; s

t
All]) (4)

o′ti = OutAdapteri(v
′t
i) (5)

As in a general pipeline system, Modulei first re-
ceives the output o′ti−1 of the preceding Modulei−1

and outputs oti as the result of its processing (Eq.
(1)) (e.g., for the NLU module, it receives the user’s
utterance as input and outputs the user’s DAs). At
the same time, Modulei outputs its additional in-
formation sti obtained in the processing, which is
related to the state of Modulei (Eq. (1)). Basi-
cally, sti is the same as oti. However, if Modulei
can provide more detailed information about its
state obtained in the processing (e.g., for the NLU
module, it typically outputs confidence scores of
predicted user’s DAs), Modulei outputs that infor-
mation as sti.

Next, oti is input to PPNi. In PPNi, InAdapteri
creates a multi-binary vector vti , which is a vec-
tor representation of oti (Eq. (2)). The left half
of Figure 3 shows a concrete example of an In-
Adapter converting a module output into a multi-
binary vector. The InAdapteri is created by hand-
crafted rules using the output vocabulary set of
Modulei. At the same time as creating vti , s

t
All =

[st1; ...; s
t
i; s

t−1
i+1; ...; s

t−1
n], which is a concatenation

of the latest states of Module1, ..., Modulen, are
also created (Eq. (3)). Note that st−1 is used for
states of Modulei+1, ..., Modulen because modules
after Modulei have not produced their states in turn
t.

The vti and stAll created thus far are combined
and input to multi-layer perceptron (MLP) MLPi,
which outputs a multi-binary vector v′ti (Eq. (4)).
The dimensions of v′ti are the same as the vocab-
ulary size of Modulei. At this point, the changes
in the original vectors vt and v′t become the re-
sult of post-processing. That is, the dimension, the
value in vti of which is 1 and value in v′ti of which
is 0, is the information deleted by MLPi, and the
reverse is the information added by MLPi. Finally,
OutAdapteri converts v′ti into o′ti , the output label
representation of Modulei. Some of the value in-
formation is directly copied from oti when creating

4

o′ti since these values are not given by v′ti . If there
is no need to fill in the value, it is left empty. The
right half of Figure 3 shows a concrete example
of an OutAdapter converting a multi-binary vector
into a label representation of a module’s vocabu-
lary. As with InAdapteri, OutAdapteri is created
by hand-crafted rules using the output vocabulary
set of Modulei.

At runtime, in the initial turn, the states of some
modules that have never processed yet are initial-
ized with zero vector (i.e., s0 = 0). In the subse-
quent turn t, as mentioned above, PPNi uses the
preceding modules’ states [st1, ..., s

t
i] and the suc-

ceeding modules’ states [st−1
i+1, ..., s

t−1
n].

With our method, the MLPs of all PPNs are op-
timized jointly by using RL via interaction with
users (see Section 3.3). To apply PPNs to a system,
we only need the vocabulary set of each module to
implement an InAdapter and OutAdapter for con-
version. Therefore, our method can be applied to
both differentiable and non-differentiable imple-
mentations of the modules. Since we want first to
verify the idea of PPNs, we only used MLPs and
focused on NLU, DST, and Policy in this study.
Once the verification is complete, we aim to apply
PPNs to more complex modules, such as NLG.

3.2 Pre-training with Imitation Learning

It is not easy to optimize an MLP from scratch by
using RL. Many studies have shown that model per-
formance can be improved by imitation learning,
which is a scheme for learning to imitate the behav-
ior of experts before RL is conducted (Argall et al.,
2009; Rajeswaran et al., 2017). We considered
the actual output oi of Modulei to be the behavior
of the expert for PPNi and conducted supervised
learning so that PPNi copies ot before RL. This
should allow each PPN to focus only on “how to
modify the module’s output o” during RL.

With our method, a pipeline system consisting
of Module1,..., Modulen first executes dialogue ses-
sions for sampling training data. In each dialogue,
we sample the [sAll, v] of each module for all turns.
At this stage, no PPNs execute post-processing,
and no MLPs are used. When training MLPs by
imitation learning, supervised learning is carried
out using the sampled data. We train all MLPs to
execute a multi-labeling task in which the input
is [v; sAll] and the output label is v. Binary cross-
entropy is used to update the MLP to minimize the
difference between v and v′ = MLP([v; sAll]).

3.3 Optimization with Reinforcement
Learning

The goal with PPNs is to improve dialogue per-
formance (e.g., task success) by each PPN post-
processing the output of each module. Therefore,
the MLP of each PPN needs to be optimized us-
ing RL for maximizing the rewards related to dia-
logue performance. We use proximal policy opti-
mization (PPO) (Schulman et al., 2017) as the RL
algorithm, which is a stable and straightforward
policy-gradient-based RL algorithm.

The following steps show the learning algorithm
of a PPN for each iteration:

Step. 1 The pipeline system with PPNs interacts
with a user. Each PPN post-processes and
samples the stAll, v

t, v′t, and reward rt of each
MLP in turn t. The sampled (stAll, v

t, v′t, rt)
are added to the post-processing history
(called trajectory) of each PPN. As an rt, we
give the same value to all PPNs. These tri-
als are repeated until the trajectory reaches a
predetermined size (called horizon).

Step. 2 The PPN to be updated in this iteration
is selected on the basis of the PPN-selection
strategy, which is a rule for selecting PPNs to
be updated in each iteration. We have three
strategies described in the next paragraph.

Step. 3 The MLPs of the PPNs selected in Step. 2
are updated using the PPO algorithm. Each
MLP is updated for multiple epochs using the
trajectory sampled in Step. 1 as training data.

Since it is not apparent which modules’ PPN
should be updated and in what order, we prepared
the following three PPN-selection strategies: ALL
(select all PPNs in every iteration), RANDOM (ran-
domly select one or more PPNs in each iteration),
and ROTATION (select one PPN at each iteration in
order). In the following experiments, we examined
which strategy is the best.

4 Experiments

To confirm the effectiveness of our method, we
applied PPNs to several different pipeline systems
and evaluated dialogue performance using dialogue
simulation. We also carried out a human evalua-
tion.

5

4.1 Dataset

We evaluated PPNs using modules and a user simu-
lator implemented using the MultiWOZ dataset
(Budzianowski et al., 2018), which is a task-
oriented dialogue dataset between a clerk and
tourist at an information center. MultiWOZ con-
tains 10,438 dialogues; one to three domains (seven
domains in total in the dataset) appear simultane-
ously in each dialogue.

4.2 Platform and User Simulator

ConvLab-22 (Zhu et al., 2020) is a platform for
multi-domain dialogue systems, which provides
pre-implemented models of each module in the
pipeline system and tools for end-to-end evaluation
of the dialogue system.

We used the user simulator implemented in
ConvLab-2. The simulator interacts with the di-
alogue system in natural language on the basis of
the user goal given for each dialogue session. The
simulator consists of a BERT (Devlin et al., 2019)-
based NLU (Chen et al., 2019), an agenda-based
Policy (Schatzmann et al., 2007), and a template-
based NLG. The agenda-based Policy models a
user’s behavior in MultiWOZ by using a stack-like
agenda created using hand-crafted rules. A user
goal for each dialogue is randomly generated: the
domains are randomly selected from one to three
domains (out of all seven domains) on the basis
of the domains’ frequency in MultiWOZ; the slots
are also randomly selected on the basis of the slots’
frequency in MultiWOZ.

4.3 Evaluation Metrics

In evaluating each dialogue, we used the number
of turns3 (Turn) to measure the efficiency of com-
pleting each dialogue; the smaller the Turn is, the
better the system performance. We also measured
whether the system responds to the requested slot
by the user without excess or deficiency (Inform
F1) and whether the entity presented by the system
met the condition of the user goal (Match Rate).
We also used Task Success as a result of Match
Rate and Inform Recall being equal to 1 within 20
turns. The above four metrics are the major ones
for dialogue evaluation and have been used in many
studies using ConvLab-2 (Li et al., 2020; Takanobu
et al., 2020; Hou et al., 2021).

2https://github.com/thu-coai/ConvLab-2
3One user utterance and its system response form one turn.

4.4 Implementation

4.4.1 System Configurations
To select the modules that make up a pipeline sys-
tem, we referred to Takanobu et al. (2020), who
developed and evaluated various combinations of
modules using ConvLab-2. For the models of each
module (NLU, DST, Policy, and NLG), we in-
cluded both classical rule-based and recent neural-
based models. Note that, since this study focused
on whether PPNs can be used to optimize pipeline
systems consisting of non-trainable modules, we
did not update modules even if the modules may
be trainable. Each of the models4 we prepared are
as follows.

NLU We used BERT NLU (Chen et al., 2019) for
the NLU module. This model estimates DAs by tag-
ging which domain-intent-slot each token in a user
utterance represents by using a pre-trained BERT
(Devlin et al., 2019). The InAdapter/OutAdapter
are created using the DA set defined in BERT NLU
(see Figure 3 for an illustration of an InAdapter-
processing example by using a DA set). We used
the estimated probabilities of each DA as BERT
NLU’s state s.

DST We used two models for the DST module:
Rule DST (Zhu et al., 2020) and TRADE (Wu
et al., 2019). Rule DST updates the dialogue state
consisting of belief state, database search results,
current user DAs, and previous system DAs at each
turn by directly using the DAs estimated by the
NLU. On the contrary, TRADE is a neural-based
model that directly extracts slot-value pairs and
generates belief states using the dialogue history as
input. For DST modules, a belief state is subject
to post-processing. Therefore, we created an In-
Adapter/OutAdapter on the basis of the slot types
defined in the belief state on ConvLab-2. As states
of Rule DST and TRADE, an entire dialogue state
is converted into a multi-binary vector by using a
vectorizer implemented in ConvLab-2.

Policy We used four models for the Policy mod-
ule: Rule Policy (Zhu et al., 2020), MLE Pol-
icy, PPO Policy (Schulman et al., 2017), and
LaRL Policy (Zhao et al., 2019). Rule Policy is a
model based on hand-crafted rules. MLE Policy
is a model trained on state-action pairs in Multi-
WOZ using supervised learning. PPO Policy is

4For models, we used the best ones provided by ConvLab-
2 as of October 20, 2021

https://github.com/thu-coai/ConvLab-2

6

Module Models |s| |v|
NLU BERT 175 175
DST Rule, TRADE 340 24

Policy Rule, MLE, PPO 209 209
LaRL 0 0

NLG Template, SC-LSTM 0 0

Table 1: Dimensions |s| of state s output from each
module and |v| of vector v processed by PPN of each
module. Number of output vocabularies defined for
each module and |v| are equal.

a fine-tuned model based on MLE Policy using
the PPO RL algorithm. Unlike the other Policy
models, LaRL Policy is an LSTM-based model
trained to directly generate system utterances in-
stead of system DAs by using RL. We created an
InAdapter/OutAdapter using the DA set defined in
each model. For states of MLE Policy and PPO Pol-
icy, we used the estimated probability of each DA.
For Rule Policy’s state, we used a binary vector
representation of DAs. Since the output of LaRL
is a natural language, it was not subject to post-
processing in this study.

NLG We used two models for the NLG module:
Template NLG and SC-LSTM (Wen et al., 2015).
Template NLG creates system responses by insert-
ing values into templates of utterances manually
created in advance for each DA. SC-LSTM is an
LSTM-based model that generates utterances on
the basis of DAs. For the same reason as for LaRL
Policy, we did not implement PPNs for Template
NLG and SC-LSTM in these experiments.

Table 1 shows the dimensions of each module’s
state s described above and the number of dimen-
sions of the multi-binary vector o of each PPN (i.e.,
the vocabulary of each module). Note that for the
DST modules, the dimensions of s and v are dif-
ferent. This is because s is a vector representation
of a dialogue state, which includes a belief state,
database search results, user’s DAs, etc., and v is a
vector representation of a belief state only.

4.4.2 Training
Throughout all experiments, the data used for imita-
tion learning of each pipeline system was sampled
by simulating 10,000 turns, corresponding to ap-
proximately 1,000 dialogue sessions. In RL for
each system, we trained 200 iterations, where one
iteration consists of approximately 100 dialogue
sessions. Following Takanobu et al. (2019), we
gave a reward of −1 for each turn, and when the

PPN-selection
strategy Success Inform Match Turn

ALL 64.2 71.9 76.6 9.20
RANDOM 66.1 71.5 78.7 8.61
ROTATION 60.4 70.5 73.2 9.10

Table 2: Performance after PPN training with each PPN-
selection strategy

task was a success, we gave the maximum number
of turns × 2 at the end of the dialogue session, i.e.,
40 in our case. See Section A.1 of the appendix for
more training details.

To test each system, we ran 1,000 dialogues us-
ing a system that achieved the best Task Success
during the RL training. Throughout all experi-
ments, we trained with five different random seeds
and reported the average of their scores as the final
performance.

4.5 Experimental Procedure
We conducted four experiments. The first exper-
iment was conducted to determine which of the
PPN-selection strategies (see Section 3.3) is appro-
priate. We used a combination of BERT NLU, Rule
DST, MLE Policy, and Template NLG as the sys-
tem configuration. The reasons for using this com-
bination are that (1) the Task Success of a system
composed of this module combination is around
50%. Therefore, it would be easy to understand the
impact of the PPNs, and (2) MLE Policy is used as
the initial weight in many RL methods (Takanobu
et al., 2019; Li et al., 2020), making it a reasonable
starting point for RL. The second experiment was
conducted to verify whether the PPNs work for any
combination of modules; we combined some of the
modules described in Section 4.4.1 to build pipeline
systems and applied PPNs. The third experiment
was conducted to investigate the contribution of the
PPN of each module and sAll to the overall perfor-
mance of the system. The final experiment was a
human evaluation; we examined whether the pro-
posed method is effective not only for a simulator
but also for humans.

4.6 Comparison of
Post-processing-network-selection
Strategies

Figure 4 shows the learning process in the three
PPN-selection strategies. Task Success and Inform
F1 at 50 iterations show that ALL reached the high-
est score about 100 iterations earlier than RAN-
DOM and ROTATION. This is a reasonable result

7

0 50 100 150
Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Su

cc
es

s R
at

e
Task Success

ALL
RANDOM
ROTATION

0 50 100 150
Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F1
 S

co
re

Inform F1

ALL
RANDOM
ROTATION

0 50 100 150
Iteration

4

6

8

10

12

14

Av
er

ag
e

Tu
rn

Turn

ALL
RANDOM
ROTATION

Figure 4: Scores of each evaluation metric in learning process with three PPN-selection strategies

System Model Combination w/ PPN Task Success Inform F1 Match Rate TurnNLU DST Policy NLG

SYS-RUL BERT Rule Rule Template 84.1 87.4 90.2 5.92
✓ 84.0 86.3 92.4 6.33

SYS-MLE BERT Rule MLE Template 43.3 62.4 27.8 9.03
✓ 66.1 71.5 78.7 8.61

SYS-PPO BERT Rule PPO Template 54.9 65.5 55.2 8.41
✓ 68.8 72.1 77.8 8.37

SYS-SCL BERT Rule Rule SC-LSTM 38.3 57.5 56.7 13.53
✓ 44.2 71.7 71.8 11.04

SYS-TRA TRADE Rule Template 19.0 45.6 36.4 12.08
✓ 18.8 49.2 31.6 12.14

SYS-LAR BERT Rule LaRL 21.6 44.9 27.6 13.24
✓ 23.9 50.9 34.1 12.77

Table 3: Combination of models for each pipeline system and scores before and after applying PPNs to each system.
‘w/ PPN’ indicates whether PPNs are applied to the system. Scores that have been improved using PPNs are in bold.

since the number of updates for each MLP in ALL
was up to four times that for the other strategies.
However, it was unstable after 50 iterations, and
the scores of Task Success, Inform F1, and Turn all
worsened as the learning process progressed. This
is probably because the gradients of each MLP
were calculated simultaneously in the PPO update
algorithm, which caused each MLP to update in a
different gradient direction, making it difficult for
each MLP to coordinate with one another.

Although the learning speed of ROTATION and
RANDOM was slow, all metrics consistently im-
proved. Turn and Inform F1 also showed stable im-
provements compared with ALL. For RANDOM
and ROTATION, each MLP computed its gradient
after the other MLPs computed and updated their
gradients one by one, which probably prevented
significant discrepancies among MLPs and stabi-
lized learning.

Table 2 shows the final performance of each strat-
egy. RANDOM outperformed ALL in all the final
scores, and ROTATION was inferior to ALL in
Task Success, Inform F1, and Match Rate. Since
the learning was stable and the final performance
was generally better than the other strategies, we

decided to use RANDOM in the following experi-
ments.

4.7 Comparison of Model Combinations
We built six pipeline systems with different model
combinations. Table 3 summarizes the compari-
son of the scores when PPNs were applied to each
system. For a fair comparison, systems without
PPNs were also evaluated on the average scores5

of 1,000 dialogues conducted with five different
random seeds.

Table 3 shows that Task Success improved for
most of the systems. In addition, all systems im-
proved in Inform F1 or Match Rate. These results
indicate that post-processing with PPNs can im-
prove the dialogue performance of a pipeline sys-
tem without touching the module internals. How-
ever, neither Task Success nor Turn improved for
SYS-RUL and SYS-TRA. The common feature
of these two systems is that they use Rule Policy
and Template NLG. These modules are carefully
designed by hand and originally have high accu-

5Although we used the latest models implemented in
ConvLab-2, we could not reproduce the scores reported
in https://github.com/thu-coai/ConvLab-2#
end-to-end-performance-on-multiwoz

https://github.com/thu-coai/ConvLab-2#end-to-end-performance-on-multiwoz
https://github.com/thu-coai/ConvLab-2#end-to-end-performance-on-multiwoz

8

System w/ sAll Success Inform Match Turn
SYS-MLE 43.3 62.4 27.8 9.03
+PPNNLU 59.6 73.1 65.8 9.59
+PPNDST 46.7 65.1 36.7 9.41
+PPNPolicy 59.9 67.3 67.9 9.20
+PPNAll 59.7 68.0 69.9 9.84
+PPNNLU ✓ 62.2 72.1 64.0 9.36
+PPNDST ✓ 47.9 66.1 40.2 9.21
+PPNPolicy ✓ 65.8 67.6 76.9 8.56
+PPNAll ✓ 66.1 71.5 78.7 8.61
+Fine-tuned Policy 71.9 74.3 80.4 7.88

Table 4: Impact analysis of PPNs. Subscripts (i.e., NLU,
DST, Policy, and All) indicate that PPN was applied
to that one specific module or all modules. ‘w/ sAll’
indicates whether sAll was used. Row of Fine-tuned
Policy shows scores when SYS-MLE’s Policy was fine-
tuned using RL.

racy, leading to little room for improvement in this
configuration.

In general, there were large differences in per-
formance among the systems regardless of whether
PPN was used. As mentioned above, this is due
to the performance differences among the modules
comprising the systems. For example, SYS-RUL
is considered to have significantly higher perfor-
mance than the other systems due to the use of
elaborately designed rules and templates.

4.8 Impact of Post-processing Networks

We investigated the impact of each module’s PPN
and sAll. We used SYS-MLE as a base configura-
tion for this experiment since its performance was
most improved with our method (see Table 3); we
considered it appropriate to measure the impact of
PPNs. In Table 4, the results of applying PPNs to
only one of the NLU, DST, and Policy are shown,
as well as the results of applying PPNs without
using sAll. The system performance consistently
improved when only a single module’s PPN was ap-
plied. In particular, +PPNPolicy achieved the best
performance (Task Success improved by more than
20%), indicating that the PPN of Policy contributed
the most to dialogue performance. When sAll was
not used, most of the scores decreased. This indi-
cates that each PPN can execute post-processing
more appropriately by using the states of all mod-
ules in the system.

To confirm the degree of performance improve-
ment achieved with the PPNs, the method of fine-
tuning the modules by using RL was used as the
upper bound of post-processing. Only the Policy
module was fine-tuned, as is common with conven-
tional methods (Liu et al., 2018; Lin et al., 2021).

System Success Turn Und. App. Sat.
SYS-MLE 39.0 11.0 2.93 3.12 2.46
+PPNNLU 53.7 11.1 3.10 3.37 2.93
+PPNDST 60.0 10.4 3.30 3.43 3.28∗

+PPNPolicy 62.5∗ 8.20∗ 2.93 3.03 3.00
+PPNAll 57.5 9.00 2.83 3.00 2.95

Table 5: Results of human evaluation for each system
configuration. Asterisks indicate statistically significant
differences (p < 0.05) over SYS-MLE.

The bottom row of Table 4 shows the results when
the Policy of SYS-MLE was fine-tuned by PPO
(Schulman et al., 2017) (see Section A.2 of the
appendix for training details). The difference be-
tween +PPNAll and +Fine-tuned Policy is small
with 5.8%. This is a promising result considering
that our proposed method does not touch on the
internal architecture of Policy.

4.9 Human Evaluation

Five systems (SYS-MLE and four systems with
our proposed method, i.e., +PPNNLU, +PPNDST,
+PPNPolicy, and +PPNAll) in Table 4 were used
for the human evaluation. Not that sAll was used
in all four systems. About forty Amazon Mechani-
cal Turk (AMT) crowd workers were recruited to
interact with each of the five systems and judged
on Task Success. As in the simulation experiments
(see Section 4.2), user goals were randomly gener-
ated for each dialogue. After the interaction, the
workers also evaluated the system’s ability to under-
stand the language (Und.), accuracy of the system’s
responses (App.), and overall satisfaction with the
interaction (Sat.) on a 5-point Likert scale. See
Section B of the appendix for the procedures taken
by the workers.

Table 5 shows the results. All four systems
with our proposed method performed better than
SYS-MLE, which is similar to the result in Table
4. Wilcoxon rank-sum tests were conducted us-
ing the top score in each evaluation metric and
the score of SYS-MLE, and statistically significant
differences were confirmed for Task Success and
Turn in +PPNPolicy and interaction satisfaction
in +PPNDST. In contrast, there were no signifi-
cant differences in scores for language understand-
ing and responses’ appropriateness. This is proba-
bly because RL was conducted with rewards that
only relied on Task Success and Turn. The perfor-
mance of +PPNNLU did not improve as much as
in Table 4. A possible reason is the overfitting of
+PPNNLU with the user simulator. The same over-

9

fitting might have occurred in the NLU’s PPN in
+PPNAll, which resulted in a smaller improvement
in scores of +PPNAll.

We also investigated how PPNs executed post-
processing by analyzing the actual dialogue logs
collected in this experiment. A specific case study
is described in Section C of the appendix. Gener-
ally, in the dialogue of +PPNPolicy, we observed
that PPNPolicy added necessary DAs when the
original Policy failed to output them.

5 Conclusions and Future Work

We proposed a method for optimizing pipeline
dialogue systems with post-processing networks
(PPNs). Through dialogue simulation and human
evaluation experiments on the MultiWOZ dataset,
we showed that the proposed method is effective
for a pipeline system consisting of modules with
various models.

For future work, we plan to design more sophis-
ticated rewards in RL such as module-specific re-
wards. We also plan to extend PPNs to handle
natural language generation by implementing them
using Transformer-based models. We are also con-
sidering to apply PPNs to modules dealing with
speech recognition and multi-modal processing.

Acknowledgments

This work was supported by JSPS KAKENHI
Grant Number 19H05692. We used the compu-
tational resource of the supercomputer “Flow” at
Information Technology Center, Nagoya Univer-
sity. We thank Yuya Chiba and Yuiko Tsunomori
for their helpful comments and feedback. Thanks
also go to Ao Guo for his advice on the human
evaluation experiment.

References
Brenna D. Argall, Sonia Chernova, Manuela Veloso,

and Brett Browning. 2009. A survey of robot learn-
ing from demonstration. Robotics and Autonomous
Systems, pages 469–483.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. MultiWOZ - A
Large-Scale Multi-Domain Wizard-of-Oz Dataset for
Task-Oriented Dialogue Modelling. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 5016–5026.

Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang
Tang. 2017. A survey on dialogue systems: Recent

advances and new frontiers. ACM SIGKDD Explo-
rations Newsletter, pages 25–35.

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. BERT
for Joint Intent Classification and Slot Filling. arXiv
preprint arXiv:1902.10909.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 4171–4186.

Emily Dinan, Varvara Logacheva, Valentin Malykh,
Alexander Miller, Kurt Shuster, Jack Urbanek,
Douwe Kiela, Arthur Szlam, Iulian Serban, Ryan
Lowe, Shrimai Prabhumoye, Alan W. Black, Alexan-
der Rudnicky, Jason Williams, Joelle Pineau, Mikhail
Burtsev, and Jason Weston. 2019. The Second Con-
versational Intelligence Challenge (ConvAI2). arXiv
preprint arXiv:1902.00098.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar,
Dimitris Tsipras, Firdaus Janoos, Larry Rudolph, and
Aleksander Madry. 2020. Implementation Matters in
Deep Policy Gradients: A Case Study on PPO and
TPRO. arXiv preprint arXiv:2005.12729.

Jianfeng Gao, Michel Galley, and Lihong Li. 2018. Neu-
ral Approaches to Conversational AI. In Proceedings
of the 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval,
pages 1371–1374.

Chulaka Gunasekara, Seokhwan Kim, Luis Fernando
D’Haro, Abhinav Rastogi, Yun-Nung Chen, Mi-
hail Eric, Behnam Hedayatnia, Karthik Gopalakrish-
nan, Yang Liu, Chao-Wei Huang, Dilek Hakkani-
Tür, Jinchao Li, Qi Zhu, Lingxiao Luo, Lars Li-
den, Kaili Huang, Shahin Shayandeh, Runze Liang,
Baolin Peng, Zheng Zhang, Swadheen Shukla, Min-
lie Huang, Jianfeng Gao, Shikib Mehri, Yulan Feng,
Carla Gordon, Seyed Hossein Alavi, David Traum,
Maxine Eskenazi, Ahmad Beirami, Cho Eunjoon,
Paul A. Crook, Ankita De, Alborz Geramifard,
Satwik Kottur, Seungwhan Moon, Shivani Poddar,
and Rajen Subba. 2020. Overview of the Ninth Di-
alog System Technology Challenge: DSTC9. arXiv
preprint arXiv:2011.06486.

Zhengxu Hou, Bang Liu, Ruihui Zhao, Zijing Ou, Yafei
Liu, Xi Chen, and Yefeng Zheng. 2021. Imperfect
also Deserves Reward: Multi-Level and Sequential
Reward Modeling for Better Dialog Management.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2993–3001.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980.

https://doi.org/10.1016/j.robot.2008.10.024
https://doi.org/10.1016/j.robot.2008.10.024
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.naacl-main.238
https://doi.org/10.18653/v1/2021.naacl-main.238
https://doi.org/10.18653/v1/2021.naacl-main.238

10

Hwaran Lee, Seokhwan Jo, Hyungjun Kim, Sangkeun
Jung, and Tae-Yoon Kim. 2021. SUMBT+LaRL:
Effective Multi-Domain End-to-End Neural Task-
Oriented Dialog System. IEEE Access, pages
116133–116146.

Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun Ren,
Xiangnan He, and Dawei Yin. 2018. Sequicity: Sim-
plifying Task-oriented Dialogue Systems with Single
Sequence-to-Sequence Architectures. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics, pages 1437–1447.

Xiujun Li, Yun-Nung Chen, Lihong Li, Jianfeng Gao,
and Asli Celikyilmaz. 2017. End-to-End Task-
Completion Neural Dialogue Systems. In Proceed-
ings of the Eighth International Joint Conference on
Natural Language Processing, pages 733–743.

Ziming Li, Sungjin Lee, Baolin Peng, Jinchao Li, Ju-
lia Kiseleva, Maarten de Rijke, Shahin Shayandeh,
and Jianfeng Gao. 2020. Guided Dialogue Policy
Learning without Adversarial Learning in the Loop.
In Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 2308–2317.

Weixin Liang, Youzhi Tian, Chengcai Chen, and Zhou
Yu. 2020. MOSS: End-to-End Dialog System Frame-
work with Modular Supervision. In Proceedings of
the AAAI Conference on Artificial Intelligence, pages
8327–8335.

Zichuan Lin, Jing Huang, Bowen Zhou, Xiaodong He,
and Tengyu Ma. 2021. Joint System-Wise Opti-
mization for Pipeline Goal-Oriented Dialog System.
arXiv preprint arXiv:2106.04835.

Bing Liu, Gokhan Tur, Dilek Hakkani-Tur, Pararth Shah,
and Larry Heck. 2017. End-to-End Optimization of
Task-Oriented Dialogue Model with Deep Reinforce-
ment Learning. arXiv preprint arXiv:1711.10712.

Bing Liu, Gokhan Tür, Dilek Hakkani-Tür, Pararth
Shah, and Larry Heck. 2018. Dialogue Learning
with Human Teaching and Feedback in End-to-End
Trainable Task-Oriented Dialogue Systems. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
2060–2069.

Shikib Mehri, Tejas Srinivasan, and Maxine Eskenazi.
2019. Structured Fusion Networks for Dialog. In
Proceedings of the 20th Annual SIGdial Meeting on
Discourse and Dialogue, pages 165–177.

Volodymyr Mnih, Koray Kavukcuoglu, David Sil-
ver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. 2013. Playing Atari
with Deep Reinforcement Learning. arXiv preprint
arXiv:1312.5602.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta,
Giulia Vezzani, John Schulman, Emanuel Todorov,
and Sergey Levine. 2017. Learning Complex
Dexterous Manipulation with Deep Reinforcement

Learning and Demonstrations. arXiv preprint
arXiv:1709.10087.

Jost Schatzmann, Blaise Thomson, Karl Weilhammer,
Hui Ye, and Steve Young. 2007. Agenda-Based User
Simulation for Bootstrapping a POMDP Dialogue
System. In Proceedings of Human Language Tech-
nologies 2007: The Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics, pages 149–152.

John Schulman, Philipp Moritz, Sergey Levine, Michael
Jordan, and Pieter Abbeel. 2015. High-Dimensional
Continuous Control Using Generalized Advantage
Estimation. arXiv preprint arXiv:1506.02438.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proximal
Policy Optimization Algorithms. arXiv preprint
arXiv:1707.06347.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of Advances in neural information
processing systems, pages 3104–3112.

Ryuichi Takanobu, Hanlin Zhu, and Minlie Huang.
2019. Guided Dialog Policy Learning: Reward Esti-
mation for Multi-Domain Task-Oriented Dialog. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing, pages 100–110.

Ryuichi Takanobu, Qi Zhu, Jinchao Li, Baolin Peng,
Jianfeng Gao, and Minlie Huang. 2020. Is Your Goal-
Oriented Dialog Model Performing Really Well? Em-
pirical Analysis of System-wise Evaluation. In Pro-
ceedings of the 21st Annual Meeting of the Special
Interest Group on Discourse and Dialogue, pages
297–310.

Bo-Hsiang Tseng, Yinpei Dai, Florian Kreyssig, and
Bill Byrne. 2021. Transferable Dialogue Systems
and User Simulators. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, pages 152–
166.

Stefan Ultes, Lina M. Rojas-Barahona, Pei-Hao Su,
David Vandyke, Dongho Kim, Iñigo Casanueva,
Paweł Budzianowski, Nikola Mrkšić, Tsung-Hsien
Wen, Milica Gašić, and Steve Young. 2017. PyDial:
A Multi-domain Statistical Dialogue System Toolkit.
In Proceedings of ACL 2017, System Demonstrations,
pages 73–78.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically Conditioned LSTM-based Natural Lan-
guage Generation for Spoken Dialogue Systems. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
1711–1721.

https://doi.org/10.1109/ACCESS.2021.3105461
https://doi.org/10.1109/ACCESS.2021.3105461
https://doi.org/10.1109/ACCESS.2021.3105461
https://doi.org/10.18653/v1/P18-1133
https://doi.org/10.18653/v1/P18-1133
https://doi.org/10.18653/v1/P18-1133
https://aclanthology.org/I17-1074
https://aclanthology.org/I17-1074
https://doi.org/10.18653/v1/2020.findings-emnlp.209
https://doi.org/10.18653/v1/2020.findings-emnlp.209
https://ojs.aaai.org/index.php/AAAI/article/view/6349
https://ojs.aaai.org/index.php/AAAI/article/view/6349
https://doi.org/10.18653/v1/N18-1187
https://doi.org/10.18653/v1/N18-1187
https://doi.org/10.18653/v1/N18-1187
https://doi.org/10.18653/v1/W19-5921
https://aclanthology.org/N07-2038
https://aclanthology.org/N07-2038
https://aclanthology.org/N07-2038
https://doi.org/10.18653/v1/D19-1010
https://doi.org/10.18653/v1/D19-1010
https://aclanthology.org/2020.sigdial-1.37
https://aclanthology.org/2020.sigdial-1.37
https://aclanthology.org/2020.sigdial-1.37
https://doi.org/10.18653/v1/2021.acl-long.13
https://doi.org/10.18653/v1/2021.acl-long.13
https://aclanthology.org/P17-4013
https://aclanthology.org/P17-4013
https://doi.org/10.18653/v1/D15-1199
https://doi.org/10.18653/v1/D15-1199

11

Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić, Mil-
ica Gašić, Lina M. Rojas-Barahona, Pei-Hao Su, Ste-
fan Ultes, and Steve Young. 2017. A Network-based
End-to-End Trainable Task-oriented Dialogue Sys-
tem. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics, pages 438–449.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-Asl,
Caiming Xiong, Richard Socher, and Pascale Fung.
2019. Transferable Multi-Domain State Generator
for Task-Oriented Dialogue Systems. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 808–819.

Yichi Zhang, Zhijian Ou, and Zhou Yu. 2020a. Task-
Oriented Dialog Systems That Consider Multiple
Appropriate Responses under the Same Context. In
Proceedings of the AAAI Conference on Artificial
Intelligence, pages 9604–9611.

Zheng Zhang, Ryuichi Takanobu, Qi Zhu, MinLie
Huang, and XiaoYan Zhu. 2020b. Recent advances
and challenges in task-oriented dialog systems. Sci-
ence China Technological Sciences, pages 1–17.

Tiancheng Zhao and Maxine Eskenazi. 2016. Towards
End-to-End Learning for Dialog State Tracking and
Management using Deep Reinforcement Learning.
In Proceedings of the 17th Annual Meeting of the
Special Interest Group on Discourse and Dialogue,
pages 1–10.

Tiancheng Zhao, Kaige Xie, and Maxine Eskenazi.
2019. Rethinking Action Spaces for Reinforcement
Learning in End-to-end Dialog Agents with Latent
Variable Models. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1208–1218.

Qi Zhu, Zheng Zhang, Yan Fang, Xiang Li, Ryuichi
Takanobu, Jinchao Li, Baolin Peng, Jianfeng Gao,
Xiaoyan Zhu, and Minlie Huang. 2020. ConvLab-2:
An Open-Source Toolkit for Building, Evaluating,
and Diagnosing Dialogue Systems. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations,
pages 142–149.

https://aclanthology.org/E17-1042
https://aclanthology.org/E17-1042
https://aclanthology.org/E17-1042
https://doi.org/10.18653/v1/P19-1078
https://doi.org/10.18653/v1/P19-1078
https://doi.org/10.1609/aaai.v34i05.6507
https://doi.org/10.1609/aaai.v34i05.6507
https://doi.org/10.1609/aaai.v34i05.6507
https://doi.org/10.18653/v1/W16-3601
https://doi.org/10.18653/v1/W16-3601
https://doi.org/10.18653/v1/W16-3601
https://doi.org/10.18653/v1/N19-1123
https://doi.org/10.18653/v1/N19-1123
https://doi.org/10.18653/v1/N19-1123
https://doi.org/10.18653/v1/2020.acl-demos.19
https://doi.org/10.18653/v1/2020.acl-demos.19
https://doi.org/10.18653/v1/2020.acl-demos.19

12

A Training Details

A.1 Training Post-processing Networks

Model All MLPs of the PPNs for all modules
are implemented in three layers: one input layer,
one hidden layer, and one output layer, and the
dimensionality of the hidden layer is 128 for all
layers. The number of dimensions of the input and
output layers are |o|+ |sAll| and |oi|, respectively.
The activation functions are all ReLUs.

Imitation Learning The sampled data of 10,000
turns were split as training : validation = 8 : 2.
All MLPs were trained on a batch size of 32 for 20
epochs using the Adam optimizer (Kingma and Ba,
2014) with a learning rate of 1e-3. The weights at
the epoch with the highest accuracy for validation
were used for the following RL.

Reinforcement Learning The hyperparameters
shown in Table 6 were determined with reference
to the implementation of PPO in ConvLab-2. We
used Generalized Advantage Estimation (Schul-
man et al., 2015). Referring to Engstrom et al.
(2020), the learning rate was annealed linearly in
accordance with the current iteration. The compu-
tational resource used was a single NVIDIA Tesla
V100 SXM2 GPU with 32GB RAM. In training,
the trajectory was sampled in parallel by eight pro-
cesses, and it took 5 to 17 hours, depending on the
system, to complete the training of 200 iterations.

A.2 Fine-tuning of Policy

The MLE Policy of SYS-MLE in Section 4.8 was
fine-tuned with PPO using the same user simula-
tor used for training PPNs. The hyperparameters
used for training were the same as those used in
ConvLab-2, as shown in Table 6. To evaluate the
fine-tuned Policy, training and testing (consisting
of 1,000 dialogue sessions) were conducted with
five random seeds.

Hyperparameters PPN Fine-tuned Policy
Number of iterations 200 200
Batch size 1024 1024
Epoch 5 5
Mini batch size 32 32
Discount factor γ 0.99 0.99
GAE factor λ 0.95 0.95

Optimizer policy net Adam RMSprop
value net Adam

Learning rate policy net 1e-4 1e-4
value net 5e-5

Table 6: Hyperparameter settings in PPO

B Details of Human Evaluation

Referring to Takanobu et al. (2020), we designed
the following experimental procedure. First, each
worker is presented with an instruction for a ran-
domly generated user goal. Next, the user interacts
with one of the five systems in Table 5 for up to 20
turns. Workers determine whether the interaction
succeeded or failed within 20 turns; after 20 turns,
the interaction is automatically marked as failed.
To ensure the quality of the workers, several qualifi-
cations were set; the eligible workers should (1) re-
side in an English-speaking country, (2) have a task
accomplishment number on AMT greater than 10,
(3) have a task-approval rate greater than 90%, and
(4) correctly answer all the common sense ques-
tions (total of five questions) we designed. The
time limit for the task was 10 minutes, and the re-
ward was $1.7. To account for workers who may
cancel the task amid the dialogue session, more
than 40 workers were recruited for each system. At
the end, 41 workers for SYS-MLE and +PPNNLU

and 40 workers for +PPNDST, +PPNPolicy, and
+PPNAll participated in the experiment.

C Case Study

Tables 7 and 8 show the user goal and exam-
ple of a dialogue session between a worker and
+PPNPolicy, respectively, in the human evaluation
experiment. Table 8 also includes the outputs of the
system’s Policy and the post-processing result of
PPNs. In S1, the original MLE Policy did not gen-
erate any DAs. At this time, PPNPolicy generated
additional DAs informing the user that “free park-
ing is available at the hotel found in the database”
and asked if there was anything else the user needs.
In S2, the user requested a reservation, but MLE
Policy could not make the reservation. In contrast,
PPNPolicy successfully made the reservation and
provided a booking reference number.

Domain Task Slot

Hotel

Info Area = West
Parking = Yes

Book
Day = Sunday
Time = 11:00
People = 1

Restaurant

Fail Info Area = West
Food = Mediterranean

Info Area = West
Food = Thai

Reqt Postcode
Address

Table 7: User goal used in Table 8

13

U1 I need a hotel in the west with free parking for 7 people on saturday for 3 nights

S1 Policy outputs:

PPNPolicy outputs: Inform-Hotel-Parking-yes, reqmore-general

System response: It offers free parking . Is there anything else I can help you with today ?

U2 can i book a room for 7 people for 3 nights on Saturday

S2 Policy outputs: reqmore-general-none

PPNPolicy outputs: Book-Booking-Ref-00000017, reqmore-general

System response: Here is the booking information : Booking was successful . Reference number is : 00000017. You

are welcome . Is there anything else I can help you with today ?

U3 I need a mediterranean restaurant in the west

S3 Policy outputs: NoOffer-Restaurant-Area-west, NoOffer-Restaurant-Food-Mediterranean, NoOffer-Restaurant,

Request-Restaurant-Food

PPNPolicy outputs: Inform-Taxi-Car-ford, NoOffer-Restaurant-Food-Mediterranean, NoOffer-Restaurant, Request-

Restaurant-Food

System response: A ford is booked for you . There are no mediterranean restaurants unfortunately . No , I ' m sorry .

The search did n't pull up any matches . What type of food would you like ?

U4 I need a thai restaurant in the west

S4 Policy outputs: Inform-Restaurant-Name-sala thong, Inform-Restaurant-Area-west, Inform-Restaurant-Food-thai,

Inform-Restaurant-Price-expensive, Inform-Booking

PPNPolicy outputs: Inform-Restaurant-Name-sala thong, Inform-Restaurant-Area-west, Inform-Restaurant-Food-thai,

Inform-Restaurant-Price-expensive, Inform-Hotel-Internet-yes, Inform-Booking

System response: How does the sala thong sound ? It is in the west area . That is a thai restaurant . They are

expensive. The place provides free wifi . Would you like for me to try and make a reservation ?

U5 Yes

S5 Policy outputs: Inform-Booking, Request-Booking-Day, Request-Booking-People, Request-Booking-Time,

reqmore-general

PPNPolicy outputs: Inform-Hospital-Phone-01223216297, Inform-Booking, Request-Booking-Day, Request-

Booking-People, Request-Booking-Time, reqmore-general

System response: The phone is 01223216297 . Would you like me to book it ? What day would you like that

reservation ? How many people will be with you ? What time would you like me to make your reservation ? You are

welcome . Is there anything else I can help you with today ?

U6 yes. what is the address?

S6 Policy outputs: Request-Booking-Day, Request-Booking-Time, reqmore-general

PPNPolicy outputs: Inform-Hotel-Addr-144 thornton road, Inform-Hotel-Post-cb30nd, Book-Booking-Ref-00000017,

Request-Booking-Day, Request-Booking-People, reqmore-general

System response: They are located at 144 thornton road. The postal code for that hotel is cb30nd . Here is the

booking information : Booking was successful . Reference number is : 00000017. What day would you like your

booking for ? How many people will be with you ? Is there anything else I can help you with today ?

U7 No

S7 Policy outputs: reqmore-general

PPNPolicy outputs: reqmore-general

System response: Did you need any further assistance today ?

U8 Success

Table 8: Example of dialogue history between worker and +PPNPolicy in human evaluation experiment. DAs
appropriately added by PPNPolicy are in blue, and those inappropriately added are in red.

