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Abstract

Described are our two entries "emukans" and
"guntis" for the definition modeling track of
CODWOE SemEval-2022 Task 1. Our ap-
proach is based on careful scaling of a GRU re-
current neural network, which exhibits double
descent of errors, corresponding to significant
improvements also per human judgement. Our
results are in the middle of the ranking table
per official automatic metrics.

1 Introduction

The definition modeling track of SemEval-2022
Task 1: CODWOE - COmparing Dictionaries
and WOrd Embeddings (Mickus et al., 2022)
challenged participants to generate dictionary
glosses from individual word embedding vectors.
This paper describes two CODWOE submissions,
"emukans" and "guntis", where the first focuses
on the automatic CODWOE scores, but the second
attempts to gauge the relationships between scaling
laws, the automated metrics, and human evaluation.
Our submissions achieved competitive results (see
Figure 3) on the MoverScore official metric - scor-
ing 1st for French, 2nd for Spanish, and 3rd for
Russian.

Our approach was to apply classical recur-
rent networks, such as Long Short-term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and
Gated Recurrent Units (GRU) (Cho et al., 2014),
to definition modeling and investigate how model
scaling impacts performance. The scaling effect
is well investigated for transformers, but not so
much for RNNs. Recently, the main focus in deep
learning has skewed from searching for new model
architectures to investigating how various factors
impact the training process and overall system per-
formance (Nakkiran et al., 2019; Kaplan et al.,
2020; Gordon et al., 2021). The main factors are:
the amount of data, the amount of compute, and
the size of the model (parameter count). In the

competition the data amount is fixed and no use of
external data is permitted, thus we investigate how
scaling model size and training time impacts train-
ing progress and model performance for recurrent
models.

In our experiments we did observe deep double
descent effects: epoch-wise double descent with
respect to both cross-entropy loss and prediction
accuracy on a validation data set, more pronounced
with increasing model size.

We also investigated the automatic metrics used
for evaluating submissions and their correlation
with human evaluation, focusing primarily on the
MoverScore metric (Wei Zhao, 2019). MoverScore
does correlate with human evaluation, but not nec-
essarily very strong, at least for this dataset. We
find that the double descent effect seen with re-
spect to prediction accuracy can also be observed
for MoverScore.

2 Background

The CODWOE shared task invites participants to
compare two types of semantic descriptions: dictio-
nary glosses and word embedding representations.
The task consists of 2 subtracks: definition model-
ing and reverse dictionary. In definition modeling
participants have to generate glosses from word
embedding representations. The reverse dictionary
task is the inverse: reconstruct a word embedding
from the corresponding gloss. Considering results
achieved by the baseline models provided by the
organisers, we decided to participate only in the
definition modeling track, as it seems the more
challenging task, with more room for potential im-
provement.

For the definition modeling track, inputs are 256-
dimensional embedding vectors and outputs are
plain text. Data is provided for 5 languages: En-
glish, French, Spanish, Italian and Russian. Every
language is scored separately. We submitted for all
5 languages. The provided word embedding vec-
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tors are of 3 types: CHAR, SGNS, and ELECTRA.

3 System overview

For the definition modeling task, we used classi-
cal recurrent networks, experimenting with both
LSTM and GRU architectures. We added an initial
fully connected input layer to scale a given word
embedding vector to higher dimensions. We used
the ADAM optimizer (Kingma and Ba, 2014) in
the training process. The learning rate was set in
the range ∈ [1e-5, 3e-5, 1e-4]. A linear learning
rate decay schedule with warm-up over 0.01 was
used. No preprocessing was applied to training
data. The code is available on GitHub 1

The very first step is creating a tokenizer and
building its vocabulary. We use SentencePiece to-
kenization (Kudo and Richardson, 2018), trained
on the training dataset only. We carried out experi-
ments across a range of vocabulary sizes.

We used a classical approach and a decoder only
part of standard seq2seq (sequence to sequence)
recurrent neural network models without attention.
The GRU/LSTM state vector is initialized from
the given defmod embedding vector. In our case,
we use a single word embedding vector type. For
the first time step we pass a single <seq> token
to model as input. The model outputs a single
predicted token and a new state vector. To avoid
exploding gradients, the outputs of the model are
normalized. The token selected by the model is
appended to the generated gloss, and is also used
as input to the model for the next time step. This
process is repeated until reaching the iteration limit.

At every time step, the model can make mis-
takes. If the initial part of the input sequence fed to
a seq2seq model is bad, most likely the subsequent
output sequence will also be wrong. To mitigate
this accumulation of errors and speed up the train-
ing process, we use the teacher forcing technique
(Williams and Zipser, 1989). With teacher forcing,
the model is trained by supplying input tokens from
the target sequence of the dataset and using the net-
work’s one-step-ahead predictions to do multi-step
sampling. We also tried a more advanced teacher
forcing technique: scheduled sampling (Duckworth
et al., 2020), where input sequence tokens are given
ground-truth values only with some probability.
Unfortunately, scheduled sampling did not give
good results - the loss plot was very noisy. It is
likely that the CODWOE definition modeling task

1https://github.com/emukans/codwoe

itself is a very hard task with too much variability
relative to the amount of provided training data;
scheduled sampling might be better suited for lan-
guage model fine-tuning when the model weights
are pretrained on a large corpus and already corre-
late fairly well with natural language syntax and
semantics.

After each training epoch, the model is evaluated
on a validation dataset using the same cross-entropy
loss function as used for training. We also use an ac-
curacy metric for evaluating model performance, as
it correlates with perplexity and human judgement
for large language models. The accuracy is calcu-
lated by dividing the count of correctly predicted
tokens (under teacher-forcing) by the number of
total tokens.

For "emukans" submissions, model training is
stopped using early stopping (Prechelt, 2012) based
on the accuracy score for the validation data, while
"guntis" submissions were intentionally trained
long past the overfitting point to observe scaling
and double descent effects.

4 Experimental setup

For our experiments, we have 5 Tesla v100 16GB
GPUs provided by our institute. During the compe-
tition, our focus was on exploring different training
effects and model tuning. Most of the experiments
were focused on primary factors of "scaling laws":
model size and the amount of compute (training
epochs).

For simplicity and consistency of presentation,
in most of the following tables and figures (all ex-
cept for Figure 3) we report experimental perfor-
mance evaluated against a trial dataset provided by
the CODWOE organizers, which consists of only
200 glosses. Apart from the automatic metrics,
our focus was on (informal) manual evaluation of
generated glosses.

4.1 Vocabulary size

The vocabulary of distinct tokens available for use
by an NLP model is generally built during a data
preparation stage, and the size of this vocabulary is
a key factor in model performance. Therefore we
started our experiments by tuning the size of the
vocabulary.

We build our token vocabulary from the train-
ing dataset only. Taking into account the relatively
small training dataset - only 43k glosses and 18k
unique words, we reasoned that the token vocabu-
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Vocab
size MoverScore S-BLEU L-BLEU

250 0.09702 0.02504 0.02508
500 0.10662 0.02452 0.02455
800 0.11754 0.02469 0.02470
1500 0.13045 0.02726 0.02726
3000 0.13379 0.02679 0.02681
5000 0.13625 0.02593 0.02596
15000 0.09638 0.02053 0.02056

Table 1: Influence of vocabulary size on the automatic
metrics

lary size should be fairly small. Therefore we set
our hypothesis as the following:

Hypothesis 1 (H1): Optimal vocabulary size is
around 10% of the unique word tokens.

During initial training experiments, we noticed a
tendency of the model to repeat the same gloss for
many different word embeddings. We speculate
that repeating such ’most popular’ glosses might
give the model higher chances of matching fre-
quently occurring words or phrases in the dataset.

In the vocabulary size optimization experiment,
we used the GRU model with 2 layers, hidden di-
mension 768, and 30 tokens limit during training.
Table 1 summarizes our results on the trial set. We
selected vocabulary size 1500 as it has the highest
BLEU scores, relatively good MoverScore and the
most promising glosses during manual evaluation.
1500 tokens are 8.3%, the result is close to 10%,
confirming hypothesis 1 experimentally.

4.2 Model size scaling
Recent trends in deep learning suggest that bigger
models increase performance on most tasks (Brown
et al., 2020; Rae et al., 2021). However, the focus in
these cited papers is given to Transformer (Vaswani
et al., 2017), Convolutional (ConvNets) or Resid-
ual networks (ResNets). Classical recurrent neural
networks (RNN) such as GRU or LSTM have been
left out of the mainstream investigation of scaling
effects. In the following experiments, we show that
scaling RNNs also gives similar positive effects
as for other network architectures. Our approach
could be formulated with the following hypothesis:

Hypothesis 2 (H2): Scaling RNNs in depth or
width improves their performance.

We summarize our experiments in tables 2, 3
and 4. The results tentatively confirm hypothesis

Layers MoverScore S-BLEU L-BLEU

1 0.11458 0.02564 0.02561
2 0.11312 0.02427 0.02426
4 0.12454 0.02548 0.02548

Table 2: Scaling GRU model layers with fixed hidden
size: 3072 dim.

Hidden MoverScore S-BLEU L-BLEU

512 0.10851 0.02439 0.02437
1024 0.10880 0.02342 0.02341
3072 0.11312 0.02427 0.02426
4096 0.11071 0.02453 0.02450

Table 3: Scaling hidden dimensions for 2 layer GRU
model.

2. We observe that no matter how one scales the
model, in width (higher hidden dimension) or depth
(more layers), the performance does increase in
both cases. Of course, these results are only for
relatively small models fitting into our compute
capacity (trained using a single Nvidia V100 GPU).

4.3 Double descent

Classical machine learning theory says that increas-
ing the model size or training time beyond some
optimum, while keeping the amount of data con-
stant, will eventually lead to the model overfitting.
(i.e., bigger models would give worse performance
than optimally sized smaller models). Recently, a
new effect was discovered (Nakkiran et al., 2019)
which contradicts, or amends, this traditional wis-
dom. The double descent effect states that increas-
ing the model size (i.e., model-wise double de-
scent) or compute resources invested into training
(i.e., epoch-wise double descent) indeed leads to
overfitting at first, but further increasing the size of
the model or the training time can, at some critical
point, reverse the trend, so that performance starts
increasing again.

During our model scaling experiments we aimed

Hidden MoverScore S-BLEU L-BLEU

1024 0.07284 0.02018 0.02014
2048 0.11915 0.02430 0.02427
3072 0.12454 0.02548 0.02548

Table 4: Scaling hidden dimensions for 4 layer GRU
model.
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Figure 1: Accuracy: Correctly predicted word tokens, assuming that all previous word tokens were correct. The
scores are calculated on the development (validation) dataset. In all cases, the hidden layer size is 3072 dim.

Figure 2: Automatic metric change during the 4-layer
model training. The scores are calculated on the trial
dataset.

to replicate the double descent effect and bring the
model quality to a new level after initial overfit-
ting. Since our compute resources were limited
and we could not scale our model size endlessly,
we investigate the following hypothesis:

Hypothesis 3 (H3): Training the GRU model
longer leads to an epoch-wise double descent ef-
fect.

For our experiments, besides automatic evalua-
tion metrics for the defmod task we introduced also
an accuracy score.

Definition 1 (Accuracy): Percent of correctly pre-
dicted tokens when all previous input tokens are
correct.

In figure 1 are 3 plots for 1-, 2- and 4-layer GRU

models. The 4-layer model shows a clear epoch-
wise double descent effect. We can also observe
that, as previously demonstrated for other kinds of
models, the effect occurs only when the model size
is big enough relative to the training set. The 1-
and 2-layer models are apparently too small for this
training set and the task complexity.

Figure 2 is for the same 4-layer model, but in
this case plotting scores on the metrics used for
the CODWOE defmod task. We can see some
correlation with the accuracy plot in figure 1, but
these metrics seem to be less sensitive overall.

In the table 5 we illustrate the continuing gloss
quality improvement according to human judge-
ment after the first accuracy spike in the automatic
metrics (epoch 5). Glosses become semantically
closer to the original word. Hence, we conclude
that hypothesis 3 is empirically confirmed.

5 Results

Our team "emukans" and "guntis" placed in the
middle of the final ranking table. However, if we in-
spect the scores in figure 3, we see that our solution
(a green line) does outperform others in some met-
rics for some languages (i.e., top score for French,
2nd for Spanish, 3rd for Russian).

Analysing our submission results, we noticed
that MoverScore can give even negative scores and
is quite variable from one example to another. The
score is generally very low if the generated gloss
length differs substantially (either too long or too
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Word Ground-truth Epoch Predicted MoverScore

scraggy Lean or thin, scrawny. 5 A slightly used to slightly. 0.11885
193 Adorned with one or more

gauntlets
0.06659

315 Ase, slender, thin . 0.12597
coal A glowing or charred piece of

coal, wood, or other solid fuel.
5 slightly; to slightly. 0.00863

193 A blust or furnished vehicle . 0.17182
315 supply with energy, especially of

a person’s size.
0.10929

beautiful Pleasant; clear. 5 having been (a person); to sug-
gest or despons.

0.11287

193 sufficient attention or thought,
especially concerning the avoid-
ance of harm.

0.03470

315 suitable or proper; extraordinary;
epic.

0.19444

thirsty Craving something. 5 having been used to suggest or
slightly.

0.04727

193 Causing by a sensation of alco-
hol or narcotics.

-0.02330

315 Causing by anger or excitement. 0.05691

Table 5: The evolution of gloss prediction during training. N.B. The word in column one is informational only, it
was not available in the train/dev datasets and was not used during training nor prediction.

Figure 3: Best MoverScore results for all participants in
all languages.

short) from the length of the ground-truth gloss,
irrespective of whether a human can perceive some
semantic alignment between the two.

Analysing the available data, we see that many of
the glosses are relatively short: up to 20 tokens (but
there are also very long examples). We conjecture
that one strategy for increasing MoverScore might

be to simply limit all generated glosses to 20 tokens
or less.

6 Conclusion

In this competition, we tried a classical recurrent
neural network approach for the CODWOE defini-
tion modeling task, and obtained positive results.

Several topics require deeper investigation. A
good metric for automatically measuring how se-
mantically close are two sentences is still an un-
solved problem. MoverScore is still too far from
human judgement. Taking into account even the
best scores for the definition modeling task, the
task is still in very early stages, and models that are
trained only on the provided data cannot generate
any practically useful outputs. This could possibly
be addressed with much larger training datasets, or
by allowing the use of external data (or of large
pretrained language models). In general, it seems
that a word semantic could not be represented us-
ing a single vector. The task requires more context
to capture the semantics. Maybe the task could be
changed to generating a gloss for a set of synonyms
or semantically close words.
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