
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 1501 - 1510
July 14-15, 2022 ©2022 Association for Computational Linguistics

Infrrd.ai at SemEval-2022 Task 11: A system for named entity recognition
using data augmentation, transformer-based sequence labeling model, and

EnsembleCRF
JiangLong He, Akshay Uppal, Mamatha N,

Shiv Vignesh, Deepak Kumar, Aditya Kumar Sarda
Infrrd.ai

{jianglong,akshayuppal,mamathan}@infrrd.ai
{shivvignesh,deepakumar,adityasarda}@infrrd.ai

Abstract

In low-resource languages, the amount of train-
ing data is limited. Hence, the model has to
perform well in unseen sentences and syntax on
which the model has not trained. We propose a
method that addresses the problem through an
encoder and an ensemble of language models.
A language-specific language model performed
poorly when compared to a multilingual lan-
guage model. So, the multilingual language
model checkpoint is fine-tuned to a specific lan-
guage. A novel approach of one hot encoder
is introduced between the model outputs and
the CRF to combine the results in an ensemble
format. Our team, Infrrd.ai, competed in the
MultiCoNER competition. The results are en-
couraging where the team is positioned within
the top 10 positions. There is less than a 4%
percent difference from the third position in
most of the tracks that we participated in. The
proposed method shows that the ensemble of
models with a multilingual language model as
the base with the help of an encoder performs
better than a single language-specific model.

1 Introduction

In conll-2003 (Sang and De Meulder, 2003), a
shared task was conducted to identify the named
entities such as person (PER), location (LOC), orga-
nization (ORG), and miscellaneous (MISC). Over
a period of time, there was an improvement in the
developed systems (Marrero et al., 2009) which
resulted in an improved performance that resulted
in an increased number of entities. The named en-
tities which needed to be identified and extracted
were now six. They are person (PER), location
(LOC), organization (ORG), group (GRP), prod-
uct (PROD), and creative work (CW). Some of
these named entities are created by coining a new
word that may be non-existent or a combination
of existing words in the entire corpus of words in
a language. People are most likely interested in
coining a new term from the list of words to have

an identity tag of a location, an event, or similar
concepts. The newly coined words become novel
or emerging entities in the list of entities (Derczyn-
ski et al., 2017). These words form a most part
of ambiguous words, where the word belongs to a
particular entity or not, and is difficult to judge. For
example, Microsoft is an organization, Windows
is a product, and Microsoft Windows is a software
product. Apart from this, creating a non-existent
word as an entity is an expression of the creativity
of the creator which belongs to the creative word
entities. A competition was conducted in WNUT
2017 to identify the novel and emerging entities
that look for unseen entities as described earlier
(Derczynski et al., 2017). These types of entities
are complex enough that even a person may miss
the context of the entity and represent them differ-
ently.

The MultiCoNER competition brings in the ad-
ditional dimension of complexity of low resources
(Malmasi et al., 2022a,b). In a low resource lan-
guage, the amount of training data available is lim-
ited within which the model has to learn to dis-
criminate between the entities and identify them
correctly. The model is exposed in this scenario
to understand the unseen word that was not part
of the training data and doesn’t have annotated in-
formation to predict. Hence, the development of a
model to examine the competition test data is more
challenging than ever.

Our contributions and observations are summa-
rized as follows:

• We explore various word-level data augmen-
tation strategies such as LwTR, SR, MR,
SiS, and bert-based token augmentation to
improve the dataset size when training the
transformer-based sequence labeling models.
It is shown that the data augmentation in-
creases the model generalization on the test
set.
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• Performing transfer learning using a multi-
lingual sequence labeling model as an initial-
izer improves the performance on language-
specific tracks.

• Introduced the ensemble learning model, ‘En-
sembleCRF,’ that solves the IOB scheme con-
straint when using majority voting. By learn-
ing to optimally combine the model predic-
tions, EnsembleCRF also learns to avoid mis-
takes made by single sequence labeling mod-
els.

2 Related Work

The transformer-based language models fared bet-
ter in the identification and extraction of entities
from a given text. Since there is a necessity for
a large amount of training data which provides
a much-needed boost in accuracy. Sometimes, a
model trained on a huge data in one or more lan-
guages is used in another or different language.
These types of models are commonly known as
cross-lingual language model (Conneau and Lam-
ple, 2019) or multilingual language model (Con-
neau et al., 2019). A fine-tuned language model
has a better performance compared to a multilin-
gual language model. But, the multilingual lan-
guage model is more adaptable across different
languages, which is not available for a fine-tuned
language model. The researchers started explor-
ing the amount of data required to train a language
model. In some cases, the amount of data available
in a language with annotation is very limited. These
languages are termed low-resource languages. Due
to this limitation, the model may not be aware
of the complete set of words in the low-resource
languages. Here, we are exploring to understand
the performance of a transformer-based language
model in low-resource constraints. The challenges
involved in recognizing complex entities in low-
resource environments (Meng et al., 2021; Fetahu
et al., 2021) have led to the creation of the compe-
tition data (Malmasi et al., 2022a,b).

In low-resource scenarios, different approaches
have been adapted to overcome the constraints. The
available fine-tuned transformer-based model such
as BERT is bootstrapped to improve the accuracy
of NER (Yu et al., 2020). A prompt-guided atten-
tion layer is used as part of a transformer model by
creating a semantic-aware answer space for tuning
the model for further betterment (Chen et al., 2021).
Sentence reconstruction approach to enhance low

resource sequence tagging by utilizing the knowl-
edge of high resource data (Perl et al., 2020). A
common approach used on low resource languages
is to use cross-lingual transfer learning, where a
model trained on high resource language is used as
the reference. An active learning mechanism was
used to improve the performance of NER (Chaud-
hary et al., 2019). A teacher-student knowledge
transfer model technique has shown to give effec-
tive results on low resource NER tasks (Izsak et al.,
2019). An unsupervised cross-language transfer
learning method where the encoders trained on the
source and target language together using adver-
sarial learning followed by augmented fine-tuning
technique (Bari et al., 2020).

3 Methodology

Individual pre-trained models were used to evaluate
the training and the dev set. Based on the empirical
results, we decided to train a baseline language
with multiple languages for 20 epochs and then
perform transfer learning to train the monolingual
models.

3.1 Main architecture

The training set with the following split, 151470
train + 8800 dev + 16830 test sentences, is to-
kenized and fed to the model xlm-roberta-large
to generate the baseline multilingual checkpoint.
The embeddings of the transformer model are then
passed through the dropout layers. We have three
types of dropouts in the mix as shown in Figure
1. The standard dropout with the probability of
0.3, the word dropout with the probability of 0.05,
and finally the locked dropout with the probability
of 0.5 were used. These embeddings are then lin-
early reprojected into a vector of size 1024. The
reprojected vector is passed through a BiLSTM
layer with 256 nodes, which generates a vector of
size 512. This output vector is then passed through
a CRF layer to generate the class label with IOB
sequence tags.

The model is trained for 20 epochs to obtain the
starting checkpoint for all the monolingual models.
The performance of the monolingual models got a
significant boost with cross-language training. We
tried to train the last, the last two, the last three, and
the last four layers of the transformer but did not get
a significant boost while training more layers, so
for the final step of training, we resorted to training
the last layer of the transformer.
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Figure 1: The architecture of the multilingual model was
developed to train the training set of the competition
data.

The generated baseline multilingual checkpoint
is loaded and fed with the augmented dataset for
each monolingual task to obtain the respective lan-
guage models. We have used different augmenta-
tion techniques described in the Training and Eval-
uation section. All the sentences provided by the
competition organizers were used to generate the
augmented data.

3.2 Ensemble architecture

A simple ensemble strategy of Majority Voting is
developed. Given a set of M sequence labeling
models denoted as C = {c1, c2, ..., cM} and an
input sentence denoted as S = {w1, w2, ..., wn},
where each w is a word from S. Each model from C
will output a sequence of predictions for each word
w in sentence S. Let Os

ci = {Oci
w1
, Oci

w2
, ..., Oci

wn
}

denote the prediction output of model Ci on sen-
tence S. Oci

wj
denotes the prediction of model Ci

on word wj in IOB format. The set of outputs for
all models in C on sentence S will be denoted as

OS = {Os
c1 , O

s
c2 , ..., O

s
cM

} (1)

The Majority Voting strategy takes all model’s
predictions of word wj and outputs the most fre-

Figure 2: The architecture of EnsembleCRF model.
Given a sentence as input, each of the sequence labeling
models will output the name entity prediction in IOB
format. One hot encoder combines them to generate en-
semble output from a Conditional Random Field model.

quent prediction as to the final prediction for wj .
An obvious issue with Majority Voting is the IOB
scheme constraint. The final ensemble result is not
guaranteed to be passing all the constraints where
(I) tag must follow and (B) tag and the entity of
neighbor (B) and (I) tag must be the same. We
introduce an ensemble learning approach via se-
quence labeling called ‘EnsembleCRF’ as shown
in Figure 2.

The model outputs are stacked together and
passed through a one-hot encoder, three linear lay-
ers, and CRF. The CRF layer is trained to optimally
combine the model predictions to form a new set
of predictions. The addition of the three linear lay-
ers helped in the performance improvement. The
EnsembleCRF model is of the form

Cen = EnsembleCRF (C = {c1, c2, ..., cM},
Den = {X,Y })

(2)
Den is the ensemble learning dataset composed

of X and Y . X = {Os1 , Os2 , ..., Osk} is created
by using model set C and set of input sentences
{S} = {S1, S2, ..., Sk} with size K. Each element
of X is defined as equation (1). Y is the ground
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Table 1: The language models used for different languages with the strategies adapted and the hyperparameters used
for training the model. The last column shows the macro-averaged F1 score on the competition test set.

Model Language BiLSTM CRF Transfer External Aug. Train Learning F1-
No Model Learning Dataset Data with Dev Rate score

English
1 roberta-large Y Y N N Y N 3e-3 0.7072
2 roberta-large Y Y N N Y Y 3e-3 0.715
3 xlm-roberta-large Y Y Y N Y N 1e-3 0.739
4 xlm-roberta-large Y Y Y Y Y Y 3e-3 0.7273

Spanish
1 xlm-roberta-large + flair-es Y Y N N N N 1e-3 0.6031
2 xlm-roberta-large Y Y N N N N 3e-3 0.6505
3 mbert-uncased Y N N N N N 3e-3 0.6724
4 xlm-roberta-large Y Y Y N Ya Y 3e-3 0.738

Dutch
1 dutchembedding + Y Y Y N N N 3e-3 0.7603

xlm-roberta-base
2 xlm-roberta-large Y Y Y N N Y 3e-3 0.7603
3 xlm-roberta-base Y Y Y N Y Y 3e-3 0.7246

Korean
1 xlm-roberta-base N N N N N N 3e-3 0.6315
2 xlm-roberta-base Y Y N N N N 3e-3 0.6481
3 xlm-roberta-base Y Y Y N Y N 3e-3 0.6407
4 xlm-roberta-large Y Y Y N N Y 3e-3 0.6729
5 xlm-roberta-large Y Y Y N Y Y 3e-3 0.6688

German
1 germanembedding + Y Y Y N N N 3e-3 0.7683

xlm-roberta-base
2 xlm-roberta-large Y Y Y N N Y 3e-3 0.7446
3 xlm-roberta-base Y Y Y N Y Y 3e-3 0.7402

aadditionally translated sentences are used

truth entity label in IOB format. During the train-
ing phase for some models in set C, we included
both provided training and dev datasets. Thus, we
choose to perform the ensemble learning using an
augmented dev set created using the data augmen-
tation strategies explained in Section 4. Since the
second layer classifier is a CRF layer, we solved
the problem of breaking the IOB constraints. By
learning to optimally combine the model predic-
tions, EnsembleCRF also learns to avoid mistakes
made by single sequence labeling models.

We experimented with creating Den with not
only the augmented dev dataset but also the aug-
mented training dataset. However, we found that
there is no positive correlation between the number
of models in C and the macro-averaged F1 score
on the test dataset. Treating every possible com-
bination of set C as a hyperparameter to optimize
will yield the optimal result.

4 Training and Evaluation

We have used the flair framework (Akbik et al.,
2019) which uses pytorch and huggingface trans-
formers to build and experiment with our ap-
proaches. The roberta transformer model was used
as the base model. However, for some monolingual
language training, we stacked a language-specific
embedding layer provided by flair. For Dutch, Ger-

man, and Spanish, flair language-specific embed-
dings were prepended before transformer embed-
ding for experimentation.

We experimented with two different initial
checkpoints loaded to train the transformer model.
One checkpoint was from the huggingface library
(hug), for both roberta-base and roberta-large. The
other was to load the xlm-roberta model trained
on the competition dataset as the initial checkpoint
for the training of monolingual tasks. However,
the models trained with the initial checkpoint from
xlm-roberta performed better due to the transfer
of knowledge from the multilingual checkpoint to
the monolingual checkpoint. The language models
used in the experiment for different languages with
hyperparameters and macro averaged F1-score on
the competition test set are tabulated in Tables 1
and 2.

4.1 Competition Data

The dataset provided by the competition organizers
had 15300 train sentences and 800 dev sentences
for each language. However, the entity distribution
per language varied (Malmasi et al., 2022a,b). The
number of sentences used for training is very less
when compared to the number of sentences for
testing, which provides the low-resource constraint
designed by the competition organizers.
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Table 2: The language models used for different languages with the strategies adapted and the hyperparameters used
for training the model. The last column shows the macro-averaged F1 score on the competition test set (cont.).

Model Language BiLSTM CRF Transfer External Aug. Train Learning F1
No Model Learning Dataset Data with Dev Rate score

Chinese
1 bert-base-chinese Y Y N N N Y 3e-5 0.6468
2 bert-base-chinese N N N N N N 3e-3 0.608
3 yechen/ Y Y N N N Y 1e-3 0.6237

bert-large-chinese
4 hfl/ Y Y N N N Y 1e-3 0.617

chinese-roberta-wwm-ext
5 xlm-roberta-large Y Y Y N N Y 3e-3 0.645

Hindi
1 monsoon-nlp/hindi-bert Y Y N N N N 3e-3 0.501
2 mbert-cased Y Y N N N N 3e-3 0.493
3 neuralspace-reverie/ Y Y N N N N 3e-2 0.4846

indic-transformers-hi-bert
4 indic-distilbert Y Y N N N N 3e-2 0.5087
5 flax-community/roberta-hindi Y Y N N N N 3e-3 0.2448

roberta-hindi
Bangla

1 indic-distilbert Y Y N N N N 1e-3 0.4121
2 xlm-roberta-large Y Y N N N N 3e-3 0.5915
3 xlm-roberta-large Y Y Y N N N 3e-3 0.6019

Multilingual
1 xlm-roberta-large N N N N N N 3e-3 0.6648
2 xlm-roberta-large Y Y N N N N 3e-3 0.6829
3 xllm-roberta-large Y Y N N N Y 3e-3 0.6924
4 xlm-roberta-large Y Y N N Y Y 3e-3 0.6704

4.2 Data Augmentation

Transformer-based language models require huge
amounts of data to produce a good performance,
but this requires a lot of labeled data. In the real
world, such large labeled datasets are not avail-
able easily, especially in some specific domains.
We need expert knowledge to annotate the data,
which is time-consuming. However, we made use
of simple data augmentation techniques for token-
level (Dai and Adel, 2020). Here, the method
concentrates on expanding the training data using
smaller training sets and applying transformations
to the training instances without changing their la-
bels. We made use of all the techniques (Dai and
Adel, 2020) namely Label-wise token replacement
(LwTR), Synonym replacement (SR), Mention re-
placement (MR), Shuffle within segments (SiS), as
well as the mixture of all the techniques to augment
the training and development datasets. This pro-
duced improvement for a few of the languages even
over strong baselines, where no augmentation was
used. Although there is no clear single winner, ap-
plying all augmentation techniques outperformed
single augmentation techniques on an average. We
have tabulated the results and their explanation in
Section 5.

We also made use of other open-source datasets
(Samal, 2021) which were related to different do-
mains like history, political parties, and particularly

different from the competition training datasets
in context. In addition to this, we made use of
nlpaug (Ma, 2019) to generate the synthetic data
without manual effort. A bert-based model was
used to augment the original sentences which were
later processed to match the number of token labels.
These external datasets did not provide improve-
ments to the performance of the baseline model.

5 Discussion and Results

The training strategies for all the tracks fall into
these categories namely external dataset, data aug-
mentations, model architecture searching, transfer
learning, and ensemble learning as described in
Sections 3 and 4. We used a gazetteer as the last
option, which didn’t improve the performance.

5.1 English
We trained 12 models using a combination of data
augmentation, transfer learning, ensemble learn-
ing, and model architecture search. Out of the 12
trained models, we observed that using a multilin-
gual model checkpoint for transfer learning on En-
glish data gives better performance on the dev set.
We also observed that adding BiLSTM and CRF
layer gives slightly better performance than using
the linear layer as the classifier. Data augmentation
didn’t show any difference in the performance on
the dev set but the model trained using data aug-
mentation performs better in the test set evaluation.
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Table 3: The macro-averaged F1 score for English lan-
guage sentences.

Position Team Name Macro-averaged
F1 score

1 DAMO-NLP 0.9122
2 USTC-NELSLIP 0.8547
3 PAI 0.7837
4 ML-HUB 0.7814
5 RACAI 0.7578
6 Infrrd.ai 0.7471
7 EURECOM 0.7457
8 Sliced 0.7454
9 MaChAmp 0.7448
10 Raccoons 0.7418
11 YNUNLP 0.7317
12 LMN 0.725
13 brotherhood 0.7235
14 L3i 0.7196
15 Multilinguals 0.7174
16 KDDIE 0.7173
17 MarSan_AI 0.7145
18 Cardiff NLP 0.7094
19 Lone Wolf 0.6977
20 MIDAS 0.6962
21 UC3M-PUCPR 0.6924
22 CSECU-DSG 0.6924
23 Sartipi-Sedighin 0.6751
24 Enigma 0.6719
25 DANGNT-SGU 0.6689
26 AaltoNLP 0.6685
27 SPDB Innovation 0.6511

Lab
28 silpa_nlp 0.6342
29 BaselineExtending- 0.6324

Pokemons
30 MultiCoNER Baseline 0.612
31 AutoNER 0.5572

The final model is an EnsembleCRF model trained
with 4 Sequence Labeling models. There was a
drop in the F1 score when all 12 models were used.
So, we eventually kept the 2 models trained with
the dev set and for the rest 10 models, we picked
the best 2 models on the dev set. For all models
in Table 1, we set the maximum epoch to be 100
with a mini-batch size of 50. We used stochastic
gradient descent as the optimizer. We skipped the
warmup learning rate as it did not show any im-
provement on the macro-averaged F1 score of the
dev dataset. We observed the training to terminate
in around the 15th to 20th epoch. For the Ensem-
bleCRF model, we used Adam optimizer with a
learning rate of 1e-3 and a weight decay of 0.01.
We set the model to train for a maximum of 100
epochs with a mini-batch size of 126. The results
of the proposed method for the English language
are tabulated in Table 3.

Table 4: The macro-averaged F1 score for Spanish lan-
guage sentences.

Position Team Name Macro-averaged
F1 score

1 DAMO-NLP 0.8994
2 USTC-NELSLIP 0.8544
3 RACAI 0.7562
4 Infrrd.ai 0.7526
5 MaChAmp 0.752
6 Sliced 0.7511
7 YNUNLP 0.7317
8 brotherhood 0.7069
9 L3i 0.6893
10 PA Ph&Tech 0.6893
11 MarSan_AI 0.683
12 SPDB Innovation 0.6731

Lab
13 CSECU-DSG 0.6562
14 EURECOM 0.6277
15 Multilinguals 0.612
16 Sartipi-Sedighin 0.607
17 BaselineExtending- 0.6008

Pokemons
18 MultiCoNER Baseline 0.574
19 UC3M-PUCPR 0.5679

Table 5: The macro-averaged F1 score for Dutch lan-
guage sentences.

Position Team Name Macro-averaged
F1 score

1 DAMO-NLP 0.905
2 USTC-NELSLIP 0.8767
3 RACAI 0.7841
4 Sliced 0.7766
5 MaChAmp 0.7699
6 Infrrd.ai 0.764
7 YNUNLP 0.7582
8 brotherhood 0.7304
9 PA Ph&Tech 0.7205
10 MarSan_AI 0.7113
11 L3i 0.7096
12 CSECU-DSG 0.6794
13 EURECOM 0.667
14 BaselineExtending- 0.6325

Pokemons
15 MultiCoNER Baseline 0.616
16 Sartipi-Sedighin 0.5837

5.2 Spanish

Since Spanish and English languages have a lexical
similarity of about 30–50%, we tried translating
the English dataset to Spanish and included it in the
model training. Unfortunately, the translation ex-
periment did not help in improving the performance
of the model. The final model for the Spanish lan-
guage included all the 4 techniques of token-level
augmented data (Dai and Adel, 2020) along with
train and dev datasets. We added up augmented
datasets to our training pipeline to provide more
exposure and to increase the diversity of available
data. We used stochastic gradient descent as the op-
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timizer and trained for about 20 epochs after which
the performance turned out to be constant. The
results on the test set are tabulated in Table 4.

5.3 Dutch

All the strategies with a language-specific embed-
ding layer were used for experimentation namely
roberta-base, roberta-large, and xlm-roberta-large
models. The final model is an ensemble CRF model
trained with 2 sequence labeling models, an xlm-
roberta trained on the Dutch dataset and an xlm-
roberta trained on the multilingual dataset. We
trained the Dutch model on both the train and dev
datasets provided by the competition organizers. A
test set is created by splitting the (train and dev)
dataset internally while training. The model was
trained for 20 epochs. The generated predictions
on the test set are propagated through an Ensemble-
CRF model to ensure consistency in labeling and
to improve the labeling accuracy. The results are
tabulated in Table 5.

5.4 Korean

We trained 6 models using a combination of strate-
gies as mentioned in Sections 3 and 4. The final
model is an xlm-roberta-large followed by a BiL-
STM and CRF while using the multilingual model
as an initial checkpoint. The Korean model was
trained with the training and dev set provided for
30 epochs with a learning rate of 1e-3 and a weight
decay of 0.10. Monte Carlo Dropout (MCD) en-
semble (Gal and Ghahramani, 2016) was also used

Table 6: The macro-averaged F1 score for Korean lan-
guage sentences.

Position Team Name Macro-averaged
F1 score

1 DAMO-NLP 0.8859
2 USTC-NELSLIP 0.8636
3 RACAI 0.7174
4 CMB AI Lab 0.707
5 Sliced 0.7066
6 YNUNLP 0.7033
7 C-3PO 0.6749
8 UA-KO 0.6749
9 brotherhood 0.6741
10 Infrrd.ai 0.6729
11 MaChAmp 0.6545
12 EURECOM 0.6496
13 L3i 0.6268
14 MarSan_AI 0.6226
15 CSECU-DSG 0.6205
16 AaltoNLP 0.6182
17 BaselineExtending- 0.5895

Pokemons
18 MultiCoNER Baseline 0.546

Table 7: The macro-averaged F1 score for German lan-
guage sentences.

Position Team Name Macro-averaged
F1 score

1 DAMO-NLP 0.9065
2 USTC-NELSLIP 0.8905
3 RACAI 0.7939
4 Sliced 0.789
5 MaChAmp 0.7838
6 YNUNLP 0.7732
7 L3i 0.7723
8 ML-HUB 0.7614
9 brotherhood 0.7594
10 Infrrd.ai 0.759
11 EURECOM 0.7443
12 MarSan_AI 0.7312
13 CSECU-DSG 0.7249
14 AaltoNLP 0.7137
15 PA Ph&Tech 0.6675
16 BaselineExtending- 0.6659

Pokemons
17 MultiCoNER Baseline 0.634

for Korean as an ensemble strategy, 15 different in-
ferences were done with varying architecture with
a dropout of 0.3 and a majority voting strategy was
used for the final submission. Upon analysis, the
best performing model and the entire 15 model en-
semble had similar performances. We could poten-
tially cherry-pick models from all the 15 possible
candidates to improve the scores but time being
a limiting factor, it was dropped. The results are
tabulated in Table 6.

5.5 German

The German language embedding layer was used
with roberta-base, roberta-large, and xlm-roberta
models, and all the strategies were evaluated. The
submitted model is an ensemble CRF model trained
with 2 sequence labeling models, an xlm-roberta
trained on the German dataset and an xlm-roberta
trained on the multilingual dataset. We trained the
German model on both the train and dev datasets
provided by the competition organizers. A test set
is created by splitting the (train and dev) dataset
internally while training. The model was trained
for 20 epochs. The generated predictions on the test
set are propagated through an EnsembleCRF model
to ensure consistency in labeling and to improve
the labeling accuracy. The results are tabulated in
Table 7.

5.6 Chinese

The amount of work carried out on the Chinese
dataset is limited due to time limitations. Most of
the experiments were limited to model architecture
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Table 8: The macro-averaged F1 score for Chinese lan-
guage sentences.

Position Team Name Macro-averaged
F1 score

1 USTC-NELSLIP 0.8169
2 CASIA 0.797
3 OPDAI 0.7954
4 DAMO-NLP 0.7806
5 NetEase.AI 0.7777
6 CMB AI Lab 0.7636
7 NCUEE-NLP 0.7418
8 QTrade AI 0.74
9 CSECU-DSG 0.6722
10 Multilinguals 0.6695
11 L3i 0.6691
12 Sliced 0.6521
13 Infrrd.ai 0.6468
14 MaChAmp 0.6381
15 EURECOM 0.634
16 RACAI 0.627
17 YNUNLP 0.6138
18 brotherhood 0.6086
19 MarSan_AI 0.5664
20 SPDB Innovation 0.5574

Lab
21 BaselineExtending- 0.528

Pokemons
22 MultiCoNER Baseline 0.511

searching and transfer learning. We tried various
pre-trained Chinese language models that include
pre-trained Chinese language models trained on
other NER datasets. The best architecture observed
is a Chinese BERT model followed by BiLSTM
and CRF. Our final model was set to train for a
maximum of 50 epochs with a mini-batch size of
24. We use AdamW optimizer (Loshchilov and
Hutter, 2017) with a weight decay rate of 0.01. We
also used Warmup Learning Rate Scheduler with
10% total training steps as a linear warmup period
and rest steps with linear decay. The training ter-
minates at the 24th epoch due to an early stopping
mechanism. Our final model with the proposed
method was trained for 24 epochs, and the results
are tabulated in 8.

5.7 Hindi

We tried various Hindi language-based transformer-
word-embeddings to include in the flair framework.
Word-embeddings like hindi-bert from monsoon-
nlp, multilingual-bert-cased, hindi-bert, and distil-
bert of indic transformers were evaluated on the
dev set. But none of these outperformed our pro-
posed architecture model. We also tried adding
language-specific embeddings which would usu-
ally help the model better understand the data. But
this did not improve our baseline model perfor-
mance. Hence, we did not include any additional

Table 9: The macro-averaged F1 score for Hindi lan-
guage sentences.

Position Team Name Macro-averaged
F1 score

1 DAMO-NLP 0.8623
2 USTC-NELSLIP 0.8464
3 RACAI 0.6808
4 Sliced 0.67
5 NetEase.AI 0.6663
6 Infrrd.ai 0.6572
7 brotherhood 0.6423
8 YNUNLP 0.6339
9 OPDAI 0.6294
10 MaChAmp 0.6173
11 CSECU-DSG 0.5768
12 MarSan_AI 0.5631
13 EURECOM 0.5278
14 silpa_nlp 0.5149
15 BaselineExtending- 0.499

Pokemons
16 L3i 0.4973
17 Enigma 0.4862
18 MultiCoNER Baseline 0.469

Table 10: The macro-averaged F1 score for Bangla
language sentences.

Position Team Name Macro-averaged
F1 score

1 USTC-NELSLIP 0.8424
2 DAMO-NLP 0.8351
3 NetEase.AI 0.7088
4 RACAI 0.6628
5 Infrrd.ai 0.6399
6 YNUNLP 0.638
7 Sliced 0.6305
8 Team Atreides 0.5975
9 brotherhood 0.5863
10 MaChAmp 0.5646
11 MarSan_AI 0.5422
12 EURECOM 0.5257
13 AaltoNLP 0.5179
14 silpa_nlp 0.5139
15 CSECU-DSG 0.5055
16 BaselineExtending- 0.4507

Pokemons
17 L3i 0.4481
18 Enigma 0.4268
19 MultiCoNER Baseline 0.391

language-specific embeddings. Our final model is
xlm-roberta, which was trained using multilingual
train and dev datasets. The model was trained for
30 epochs, and the results are tabulated in Table 9.

5.8 Bangla

It was a challenging task to find good embeddings
to represent the Bangla language. We performed a
few experiments by including Bangla Indic trans-
former word embeddings in the flair framework.
Similar to the Hindi language, even this embedding
did not perform better than our proposed method.
We also tried adding language-specific embeddings
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Table 11: The macro-averaged F1 score for multiple
language sentences.

Position Team Name Macro-averaged
F1 score

1 DAMO-NLP 0.8531
2 USTC-NELSLIP 0.853
3 QTrade AI 0.7766
4 SeqL 0.7549
5 CMB AI Lab 0.7369
6 UM6P-CS 0.7249
7 RACAI 0.721
8 Cardiff NLP 0.7165
9 Sliced 0.7107
10 IIE_KDSEC 0.7089
11 BaselineExtending- 0.7069

Pokemons
12 OPDAI 0.6948
13 brotherhood 0.6942
14 MarSan_AI 0.6928
15 Infrrd.ai 0.6924
16 HaveNoIdea 0.6879
17 EURECOM 0.6808
18 MaChAmp 0.6768
19 YNUNLP 0.6685
20 DSUG 0.6522
21 UPB 0.6473
22 CSECU-DSG 0.644
23 NSU-AI 0.6423
24 SPDB Innovation 0.6322

Lab
25 L3i 0.6123
26 MultiCoNER Baseline 0.541
27 HaveNoIdea 0.5403

which would usually help the model better under-
stand the data. But this did not improve our base-
line model performance. Hence, we did not include
any additional language-specific embeddings. Our
final model is xlm-roberta, which was trained using
multilingual train and dev datasets. The model was
trained for 40 epochs, and the results are tabulated
in Table 10.

5.9 Multilingual

The multilingual task was challenging in itself and
our choice of framework made it even harder since
we did not have a multi gpu support to conduct all
the experiments. The experiments conducted are
bucketed mainly into three parts, the architecture
search, the data strategy, and the ensemble strategy.
After experimenting with various architectures and
embeddings, we resorted to xlm-roberta-large for
the task. The data strategy was tricky consider-
ing all the languages. Open source datasets and
translation APIs didn’t provide improvements.

We decided to train a stable model and use it
as an initial checkpoint for all the other languages.
The model was trained for 30 epochs with a learn-
ing rate of 1e-3. The final model is xlm-roberta-

large followed by a BiLSTM and CRF trained with
the entire corpus of train and dev set. Various at-
tempts were made to include the above-mentioned
data augmentation techniques but due to the huge
model and data along with limited time and re-
sources, we could only do very limited experiments
for this model. We tried with the MCD ensemble
and took 15 inferences through the varying architec-
tures and used the majority voting strategy to obtain
the final submissions. The single best-performing
model was at par with the MCD ensemble with
majority voting. The results for multiple language
sentences are tabulated in Table 11.

6 Conclusion

The recognition of entities from multiple languages
with low resources is more complex. The problem
lies with the ambiguous entities formed by newly
coined words. The syntax of grammar in the sen-
tences was not followed to capture the context be-
tween the words. We tried a single multilingual
transformer approach, which didn’t provide much-
expected results. We had used gazetteers for all the
languages sourced from the training and wiki data.
Both of them didn’t produce improvements over
the model results.

We trained a multilingual transformer model and
performed transfer learning to the individual lan-
guages. Since there were multiple languages in the
task. We performed unique experiments on one
language and then adapted it to the others based on
the performance. In the discussion section, the ap-
proaches used for experiments are covered and vary
for the individual languages. Overall, we created an
ensemble of different models which resulted in im-
provements over the single model. The ensemble
architecture covered different types of transformer-
based language models. The results reached closer
to the top positions with this approach. We also ob-
served that the data augmentation used to improve
the performance for a few languages and drop in the
performance for the other languages. Our results
are above 15% on an average in the participated
sub-tasks over the MultiCoNER Baseline results.

We would like to explore the multilingual T5
transformer model, which couldn’t be covered dur-
ing the competition. We would like to explore
different augmentation techniques with external
data, which couldn’t be completed due to time con-
straints.
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