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Abstract

In this task, we identify a challenge that is re-
flective of linguistic and cognitive competen-
cies that humans have when speaking and rea-
soning. Particularly, given the intuition that
textual and visual information mutually inform
each other for semantic reasoning, we formu-
late a Competence-based Question Answering
challenge, designed to involve rich semantic
annotation and aligned text-video objects. The
task is to answer questions from a collection of
English language cooking recipes and videos,
where each question belongs to a “question fam-
ily” reflecting a specific reasoning competence.
The data and task result is publicly available. 1

1 Introduction

One of the fundamental goals of Artificial Intel-
ligence (AI) has been to create systems that in-
teract with human users fluently and intelligently,
by demonstrating inferencing and reasoning capa-
bilities that would be expected of a human part-
ner. This includes a growing interest in posing
larger challenges to end-to-end systems employing
architectures with deep neural networks (DNNs)
(Ribeiro et al., 2020; Prabhumoye et al., 2020;
Rogers et al., 2021; Minaee et al., 2021). Here
we argue that we should start focusing on linguistic
competencies, and not just on Question Answer-
ing (QA) skills or “challenge checklisting”. There
are some moves in this direction already (John-
son et al., 2017), but there is still no generally ac-
cepted distinction in current Natural Language Pro-
cessing (NLP) between challenge-based tasks and
competence-based performance (Bentivogli et al.,
2017). Analogous to human cognitive competen-
cies, there is both a methodological and modeling
advantage to focusing a system’s performance on

1https://competitions.codalab.org/
competitions/34056

competence-based learning rather than a narrowly
defined task or challenge checklist.

First we define competence-based knowledge,
and then the questions that can be generated from
such knowledge. While Chomsky (1965)’s dis-
tinction between competence and performance
has long been debated in linguistics, the term
competence-based has been applied to a number
of different concepts in both the science of learn-
ing and educational communities (Bechtel et al.,
1999; Voorhees, 2001; Chyung et al., 2006; Platan-
ios et al., 2019; Hsiao et al., 2020). The common
core to both is a concept capturing a coherent set of
abilities that an individual has in a specific domain
(Doignon and Falmagne, 1985; Heller et al., 2013).

Here we focus on lexical competence as de-
ployed in both single and multiple sentence com-
position (Pustejovsky, 1995; Marconi, 1997; Geer-
aerts, 2009; Asher, 2011). A competence-based
question will query competence-based knowledge
structures. For this task, lexical competence will
involve the following:

• Understanding implicit arguments that are not
present (due to syntactic ellipsis or semantic de-
faulting or shadowing), and being able to use
this (missing) information to formulate knowl-
edge about the event or situation (Malmaud et al.,
2014; Kiddon et al., 2015);

• Understanding the dynamics of the text or nar-
rative and how events can change an object or
contribute to new properties (and subsequent de-
scriptions) of objects in the text (Tandon et al.,
2018; Das et al., 2018; Brown et al., 2018).

It is clearly the case that these two phenomena re-
quire non-extractive QA capabilities of some sort.
We describe our dataset, Recipe-to-Video Ques-
tions (R2VQ), and summarize the procedures im-
plemented by task participants for answering such
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questions in the remainder of the paper.

2 Overview

2.1 Summary of the task

The task is structured as QA pairs, querying how
well a system understands the semantics of English
language recipes.

We hope that this task will help move NLP sys-
tem design and evaluation towards the construction
of meaning representations involving linguistic and
multimodal situated grounding. In the present con-
text, this involves identifying cooking entities and
activities from recipe text, as well as linking them
to videos of related recipes, entities, and activities.

Participants are provided with a multimodal
training set, and are asked to provide answers to
unseen queries. These questions can be answered
using a unimodal dataset of text recipes and associ-
ated annotations. Participants are also encouraged
to explore the full multimodal training set with
additional cooking videos to potentially improve
the results from the unimodal models. Following
SemEval guidelines, the R2VQ dataset is publicly
available2 in CONLL-U format, with annotations
encoded in plain text files.

2.2 Impact of the task

When we apply our existing knowledge to new
situations, we demonstrate a kind of understand-
ing of how the knowledge (through tasks) is ap-
plied. When viewed over a conceptual domain, this
constitutes what we will refer to as a competence,
and the corresponding challenge can be called a
competence-based challenge. Competence-based
evaluations can be seen as a new approach for de-
signing NLP challenges, in order to better charac-
terize the underlying operational knowledge that
a system has for a conceptual domain, rather than
focusing on individual tasks.

3 Related Work

NLP challenges have helped drive progress in the
field recently. These challenges in part have been
framed as specific tasks, and advances are largely
driven by leaderboards on benchmark datasets or
model comparison on individual datasets. Common
benchmarks such as GLUE (Wang et al., 2018)
and SuperGLUE (Wang et al., 2019) have been

2https://competitions.codalab.org/
competitions/34056#participate

used widely. They contain several language under-
standing tasks such as Winograd Natural Language
Inference (WNLI) (Levesque et al., 2011) as an
inference task, and Winograd Schema Challenge
(WSC) (Levesque et al., 2011) as a coreference res-
olution task. A survey (Rogers et al., 2021) showed
the recent trend to measure various machine rea-
soning capabilities using different designs of QA
tasks.

While all the tasks aim to advance the research
towards corresponding NLP challenges, whether
these reflect human competencies remains a ques-
tion, especially in recent years with the success of
transformers (Devlin et al., 2019; Yang et al., 2019;
Liu et al., 2019). Many top-ranked NLP models
that have shown better performance than humans
on benchmarks may have come from overfitting
to the dataset rather than addressing the challenge
(Rogers, 2019). Current pre-training paradigms
may also tune models towards capturing merely
statistical patterns, so datasets should be designed
to align the model’s ability with human expecta-
tions (Linzen, 2020). Sugawara et al. (2020) found
that most of the questions from common QA and
reading comprehension datasets can be correctly
answered by models without complex reasoning.

Recent work has been trying to identify and eval-
uate the tasks that are reflective of human linguistic
and reasoning competencies. For example, Kim
and Linzen (2020) proposed a semantic parsing
dataset that evaluates the human-like compositional
generalization of models. Ribeiro et al. (2020) de-
signed three test types that can be used to test var-
ious linguistic capabilities of NLP models. More
closely related to our work, QA-SRL (He et al.,
2015) use predicate-argument structure to repre-
sent QA pairs. SynQG (Dhole and Manning, 2021)
and RoleQ (Pyatkin et al., 2021) try to incorporate
existing semantic annotations to generate compre-
hension questions.

4 Task Description

We formulate the task as competence-based QA,
designed to involve rich semantic annotation and
aligned text-video objects. The goal of this task is
to answer questions from a collection of cooking
recipes and images. Each question belongs to a
“question family” that characterizes a specific rea-
soning competence to be tested. These competen-
cies include abilities such as spatial and temporal
reasoning, semantic role assignment, and object
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Recipe Title: Appelkoek Passage: Peel and cut apples into eighths (wedges). Sift together flour,
baking powder and salt with 4 tablespoons of the sugar. Cut in butter. Combine egg and milk and
add to flour mixture. Turn batter into greased 8 inch square cake pan. Press apple wedges partly into
batter. Combine remaining 2 tbsp sugar and cinnamon. Sprinkle over apple. Bake at 425 degF for
25 to 30 minutes.
IMPLICIT How do you cut apples into wedges? - by using a knife
ELISION What should be sprinkled over apple wedges? - cinnamon sugar
LOC. CHANGE Where was the batter when you press apple wedges? - in the pan
OBJ. LIFESPAN What’s in the appelkoek? - apples
SRL-TIME For how long should you bake appelkoek? - 20 to 35 minutes
SRL-VALUE How do you bake appelkoek? - bake at 425 degF

Table 1: Example competence-based questions. Color-coded text spans represent how information has been collected
and generated in the questions.

cardinality and counting.
We adopt the concept of “question families” as

outlined in the CLEVR dataset (Johnson et al.,
2017). While some question families (e.g., inte-
ger comparison, counting) naturally transfer over
from the Visual Question Answering (VQA) do-
main (Antol et al., 2015; Zhu et al., 2016), other
concepts such as ellipsis and object lifespan must
be employed to cover the full extent of compe-
tency within procedural texts. On the basis of the
aforementioned competencies, we categorize the
questions into five question families. Table 1 shows
the definition of each question family as well as
sample questions.

The question families are defined as follows:

• Cardinality: covers concepts of integer compari-
son and counting.

• Elision: deals with identifying arguments (ingre-
dients in most cases) that are omitted from a text,
but can be understood from context.

• Implicit: covers both implicit tools and habitats
introduced in the text. This is distinct from eli-
sion, as these are not solved merely through con-
textual clues. Instead, they require general com-
petence; applying world knowledge of an action
and its requirements to a novel situation.

• Obj. Lifespan: covers different states of an object
in a cooking event.

• Semantic Role Labeling (SRL) covers semantic
roles that are modifiers to a cooking event.

5 Data and Resources

The textual component of our dataset consists of
a collection of English language recipes sourced
from two open-source recipe wikis, Recipe Fan-

dom3 and Foodista4, and is labeled according
to three distinct annotation layers: (i) Cooking
Role Labeling (CRL), (ii) Semantic Role Labeling
(SRL), and (iii) aligned key frames image triples
taken from creative commons cooking videos
downloaded from YouTube.

Compared to text of news or narratives, proce-
dural text such as recipes and user manuals tend to
be task-oriented, and the main content is split into
steps that describe small goals to accomplish the
final task. We believe such texts are a good fit for
our task, as it involves the understanding of how
to reach the goal locally for each step, as well as
how each step contributes to the final task globally.
Further, the step-wise progression inherent in the
goal-oriented narrative contributes both an interpre-
tative dynamics as well as contextualized elision of
arguments.

5.1 Train/Dev/Test Datasets

There are 1, 000 recipes released as part of the task
(800 for training and 100 each for validation and
testing). Table 2 shows the basic statistics of the
dataset. We exclude any “less informative” recipe
that has less than 4 sentences from our dataset. For
each recipe, there are an average of 35 questions
(5 from each question family). Each recipe is also
paired with an additional set of 10 “unanswerable”
questions (answers that cannot be found in a given
recipe) as negative samples.

5.2 Cooking Role Labeling

Cooking Role Labeling (CRL) is a domain-specific
dependency relation annotation for the cooking do-
main. CRL is done via a two-phase annotation.
First, to identify mentions of cooking events and

3https://recipes.fandom.com/
4http://foodista.com/

1246

https://recipes.fandom.com/
http://foodista.com/


Train Dev Test
# of recipes 800 100 100
Avg. # of sentences per recipe 8 7.9 7.8
Max. # of sentences 26 16 31
Min. # of sentences 4 4 4
Avg. sentence length per recipe 12.5 13.4 12.5
Max. sentence length 32 25 19
Min. sentence length 6 6 7

Table 2: Statistics of the train, dev and test subsets of
the R2VQ dataset.

Figure 1: Docanno environment for event and entity
annotation.

entities and put labels on them, and then to estab-
lish relations between those mentions.

Each step in a given recipe is annotated for
cooking-related events and the associated entities
(ingredients and props such as tools, containers,
and habitats). The ingredients can be either labeled
as explicit (those listed in the ingredients section
of the recipe) or implicit (intermediate outputs of
applying a cooking action to a set of explicit ingre-
dients).

We post-process the data by running the Stanza
pipeline (Qi et al., 2020) on the raw text of each
recipe to get tokenization and other basic linguis-
tic features including word lemmas, part-of-speech
tags. We took a semi-automated approach to per-
forming the span-level entity annotations. First,
using a small labeled dataset as seed training data,
we trained a character-level named entity recogni-
tion (NER) model using Flair embeddings (Akbik
et al., 2019) to pre-annotate the recipe text. We then
validated the model predictions using the Docanno
annotation tool (Nakayama et al., 2018) to create
our gold set of event and entity mentions. Figure 1
shows an example from the Docanno environment,
with annotations for Event, Implicit Ingredient, and
Habitat.

For the next phase of annotation, we developed
Deep Event & Entity Palette or DEEP, a specialized
annotation environment to manually annotate cook-
ing role relations. Annotators start from documents
that are already annotated with span-level entity
tagging from Docanno. The primary job of annota-
tors is to draw links between entities (coreference)
or between an entity and an event (participant).
DEEP provides an intuitive and easy interface for

pairwise linking annotation, as well as a holistic
view of the document-level context using color cod-
ing of tokens related to the selected events or enti-
ties, as shown in Figure 2. All annotation is done at
document-level, namely, annotators can create long
distance links. For example, a food entity from a
previous step can be linked to an event in the next
step even if the direct object of the event is omitted
on surface (or “hidden”). And finally, DEEP also
provides an interface to add such hidden entities
with a free-text identifier and immediately link it
to an event.

More specifically, event-entity links can be one
of several possible link tags, which can be made
between explicit spans of text or between an event
and a hidden entity that does not explicitly appear
in the recipe text. These relations are:

• Ingredient: identifies the food material that
participates in cooking events.

• Result: identifies entities produced as the out-
put of an event.

• Tool: relates objects with the events they are
used in. Tools may appear in the text (“Cut the
pear with a sharp knife”), or they may be hid-
den (“Cut an apple” requires an unmentioned
knife).

• Habitat: links events with the objects in
which they take place. Habitats may appear in
the text (“Bake in a preheated oven”), or they
may be hidden (“Saute the onion” requires an
unmentioned pan).

Table 3 shows the statistics of cooking role an-
notation on the dataset. EVENT should always be
explicit, while the other cooking roles can be either
explicit text spans or hidden entities. We hired 8
student annotators for the CRL annotation work.
All annotators were students at Brandeis University,
ranging from undergraduate to master’s level.

5.3 Semantic Role Labeling
Aside from the above-described annotation layer,
which is tailored to highlight domain-specific
events and entities, each step in the recipes fea-
tured in R2VQ is automatically tagged and manu-
ally validated according to the predicates and con-
stituents identified at the Semantic Role Labeling
(SRL) level, i.e., the task of identifying and label-
ing predicate-argument structures within a sentence
(Gildea and Jurafsky, 2002). More specifically,
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Figure 2: DEEP environment for CRL entity linking.

Train Dev Test
Avg. # of entities per recipe Exp. Hidden Exp. Hidden Exp. Hidden
EVENT 14.0 N/A 13.6 N/A 13.3 N/A
INGREDIENT 13.0 6.9 14.0 10.8 12.5 8.6
RESULT 0.2 1.5 0.2 1.4 0.3 1.7
TOOL 0.6 2.1 0.7 2.2 0.6 2.0
HABITAT 2.8 4.8 2.5 6.2 2.5 4.0

Table 3: Statistics of cooking role annotation on R2VQ.

each recipe step is semantically enriched by (i)
identifying all its predicates, i.e., those words or
multi-word expressions that denote an event or an
action, (ii) assigning the most appropriate sense
label to each identified predicate according to a pre-
defined inventory, (iii) detecting all the arguments,
i.e., the parts of the text that are semantically re-
lated to each predicate, and (iv) choosing the most
fitting semantic role for each predicate-argument
pair. Let’s consider the example “John bakes pota-
toes”. In this case, SRL consists of (i) identifying
“bake” as a predicate, that is, something that de-
notes an action or an event; (ii) disambiguating
the predicate, that is, assigning the most appropri-
ate sense for “bakes” in this context; (iii) identify-
ing the arguments of each predicate, that is, those
parts of the text, “John” and “potatoes” that are
semantically linked to “bakes”; and (iv) assigning
a semantic role to each predicate-argument pair,
e.g., “John” is the Agent of the predicate “bakes”,
whereas “potatoes” is the Patient.

In SRL, there are two main annotation for-
malisms for tagging arguments: span-based and
dependency-based. We adopted the former; the

core and only difference between the two lies in
the fact that, in the span-based SRL, semantic role
labels are applied to the whole span of a given ar-
gument, whereas, in dependency-based SRL, the
label is only applied to the argument’s head (e.g.,
we label “the broccoli” and not “the”).

The SRL task is often tied to a linguistic re-
source, which defines the inventory of predicate
senses and semantic roles. For this task, we chose
VerbAtlas5 (Di Fabio et al., 2019) as our inven-
tory of predicate senses and semantic roles given
its high coverage in terms of verbal lexicon6, the
informativeness of its human-readable roles (e.g.,
Agent, Patient, Instrument), and its mapping to the
PropBank frame inventory (Palmer et al., 2005)
and to the BabelNet multilingual knowledge base
(Navigli and Ponzetto, 2012; Navigli et al., 2021).

The annotation process for the SRL layer fea-
tured three distinct stages. In detail, we first em-
ployed the Stanza toolkit (Qi et al., 2020) to per-
form PoS tagging over the R2VQ corpus so as to

5VerbAtlas is freely available for research purposes at
http://verbatlas.org/.

6VerbAtlas covers all the verbal senses defined in WordNet,
and clusters them into predicate frames.
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identify verbal predicates, and proceeded to man-
ually include predicates that were not discovered
automatically (e.g., season was often incorrectly
labeled as a noun), as well as fixing instances er-
roneously labeled as predicates (such as adjectival
or prenominal predicates, as well as predicates ap-
pearing within ill-formed sentences).7 Secondly,
we employed a state-of-the-art system (Conia and
Navigli, 2020) to automatically label recipes in a
span-based fashion, concurrently assigning VerbAt-
las frames and arguments to recipes, and manually
validating the whole corpus once more in order to
verify the automatically-generated outputs, fixing
errors and inconsistencies.8

We used BabelNet 5.0 as the inventory to vali-
date predicates, first picking the most suitable word
sense to disambiguate a given verb, and then se-
lecting the relative frame in VerbAtlas according
to its original mapping. As our final step, we in-
structed annotators to manually tag as many argu-
ments as possible for each predicate (adding ar-
guments where needed and removing additional
arguments such as Negation in the process), first,
referring to the predicates’ prototypical arguments
according to VerbAtlas, and then, providing ad-
ditional arguments. We used VerbNet (Schuler,
2006) argument descriptions and examples along
with in-house argument descriptions for ambigu-
ous argument assignments (e.g., “in the oven” in
“Jennifer baked the potatoes IN THE OVEN” is not
a Agent, but rather an Instrument with respect to to
the predicate “bake”).

With respect to the SRL layer annotators, in or-
der to make use of the Mechanical Turk platform
already employed in the context of the aligned im-
age frame annotation, we initially devised HITs for
both predicate sense disambiguation and argument
labeling. Though, independently of the rates and
templates employed, we kept collecting low-quality
or suboptimal data, likely, due to the background
knowledge needed to perform such tasks in an ade-
quate fashion. In light of this, after several attempts,
we eventually decided to have one in-house anno-
tator with extensive experience in SRL validate the
whole corpus at all stages required, and asked a
second annotator to review the validation instances,

7We also labeled word forms with typos in the original
recipes as predicates (e.g. prehet as preheat). Additionally,
we labeled as multi-word predicates those predicates whose
form was featured as a compound in BabelNet.

8See Appendix A for details about the SRL annotations’
format.

Figure 3: An aligned CRL-Image Frame annotation.

seeking agreement in case of discrepancies. As
an additional step to ensure data quality, a third,
external annotator was assigned with the task of
reviewing recipes in order to look for potential for-
matting issues.9

5.4 Aligned Image Frame Annotation

Accompanying each recipe is a series of images
extracted from YouTube videos that are associated
with a particular event in the recipe. We pulled the
images from a set of YouTube videos that were
selected by querying YouTube for recipe titles.
For each recipe title, we downloaded 5 Creative
Commons licensed videos. These videos were in-
dexed by generating an embedding using the Ten-
sorflow implementation of the S3D Text-Video
model trained on HowTo100M using MIL-NCE
(Miech et al., 2020, 2019). For each cooking event
in the recipes, the 5 closest clips as scored by L2
distance were selected from the YouTube videos
we downloaded. We showed the annotators the
first, middle and last frame from each 4 second clip
alongside a list of the CRL representations of the
events in the recipe. We asked the annotators to
rank the match of the image and the cooking event
as a good match, a partial match, or not a match.
The Swipe Labeler (Peterson Jenessa, 2021) tool
was used to conduct the annotation. The tool was
modified to included the recipe event text, with the
full recipe displayed and the current step in bold
text. An example of the frame annotation is shown
in Figure 4.

Due to complex combinations of ingredients in
many of the recipes and the limitation of consider-
ing only Creative Commons videos, many events
did not match with any of the detected segments.
Partial matches were included in order to increase
the total number of events represented. Importantly,
the action represented in the image clips does nec-

9All annotators employed in the SRL layer have effective
operational proficiency in English and received a wage in line
with their country of residence. Annotation has been carried
out by means of user-friendly shared worksheets.
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Figure 4: Swipe Labeler Annotation Tool

essarily include the exact same ingredients of as
those used in the recipe. The videos were chosen
based on the similarity of the cooking event de-
scribed in the sentence. In total, 1927 events were
matched with images across 655 recipes.

5.5 Generating Competence-based Questions

We first design text templates for each type of ques-
tion. Then we generate QA pairs by populating
the templates in a cloze test style with the data an-
notated in CRL. Table 4 shows the text templates
for two types of questions we want to use for the
QA task. ELISION identifies arguments (ingredi-
ents in most cases) that are omitted from a text, but
can be understood from context. IMPLICIT covers
both implicit tools and habitats introduced in the
text. This is distinct from ELISION, as these are not
solved merely through contextual clues. Each text
template has several slots that can be filled with
corresponding entities from CRL.

To increase the variety of questions, we also in-
clude adjunct slots into the templates. As shown in
Table 4, adjunct slots include tool or habitat phrases
and SRL modifiers. SRL modifiers are any seman-
tic roles that are not claimed by CRL entities such
as TIME and VALUE. For example, one ELISION

question can be as short as What should be cut? or
What should be cut on the board with a knife into
eighths? with all the adjunct slots. We argue that it
is helpful to generate questions more challenging to
the systems. Adding more adjunct slots completes
the context for the question, but also introduces
unseen context if the slots contain hidden entities.

These slotted templates are further processed
to improve the readability of generated questions.
We change word inflections and insert articles
and agreements. For the templates with [habi-

tat phrase] and [tool phrase] slots, we fill those
with corresponding LOCATION or INSTRUMENT
spans from SRL. If a slot is filled with a hidden
entity that has no associated semantic roles, we run
a BERT-based model (Devlin et al., 2019) to get the
most likely preposition given the sentence as con-
text through the masked language modeling task.
SRL modifiers are populated in the same order as
they were in the original sentence.

5.6 Details of copyright

All recipes are distributed under Creative Com-
mons license. The YouTube videos queried were
limited to Creative Commons videos only. No per-
sonally identifying information is included in either
the text or visual components of the dataset.

6 Participation

We discuss the baseline system and the systems
from participants in this section.

6.1 Evaluation Metrics

All systems are asked to provide answers to the
open-ended questions based on the textual and vi-
sual information encoded in the dataset. The re-
sults are evaluated using exact match (EM) and
token-level F1 score (F1) following Rajpurkar et al.
(2018).

6.2 Baselines

To build a model that is reflective of the nature of
the abstractive question answering task and benefits
from the aligned key frames to the text, we adopt a
vision-and-language text genertation model as the
baseline for our task. We build the baseline with
the model framework that is proposed by Cho et al.
(2021). They propose the model VL-T5 based on
T5 text generation model (Raffel et al., 2020) by
extending the original T5 text encoder to a multi-
modal encoder that can take both textual and visual
embeddings as the input.

Following closely the VL-T5 work (Cho et al.,
2021), we prepare the key frames as model input
by encoding them into visual embeddings using
Faster-R-CNN. We prepare the text input by ap-
pending the task-specific prefix to the question
and context text: "question: {question str}
context: {recipe str}". The recipe str is
the concatenation of the text of all cooking steps
from the recipe the question is generated from. We
fine-tune the VL-T5 model for our QA task on the
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QUESTION TYPE TEXT TEMPLATE QUESTION-ANSWER PAIR

Elision What should be verb [habitat phrase] [tool phrase]
[modifiers]? — ingredient obj

What should be cut on the board with a knife into
eighths? — apples

Implicit
What do you use to verb obj [habitat phrase] [mod-
ifiers]? — tool

What do you use to sauté the onions [in the pan]? —
spatula

Where do you verb obj [tool phrase] [modifiers]?
— habitat phrase

Where do you arrange the slices [into rounds]? —
in the casserole

Table 4: Text templates and example of generated questions. The squared brackets ([...]) in the templates indicates
adjunct slots.

training set, and run the fine-tuned model on the
test set. As a comparison, we also fine-tuned the
T5 model with text input only. Baseline results
are shown in Table 5 along with other results from
participants.

EM F1 Key Frames?
SRPOL 92.53 94.34
ITNLP&QMUL 91.33 94.23
PINGAN AI 78.21 82.62
Slug 69.49 77.37
BASELINE (VL-T5) 69.37 77.77 ✔

BASELINE (T5) 65.34 75.22
ych 10.23 10.23
UoR 5.90 15.78 ✔

CLT6 0.0 0.0

Table 5: Task results from participant teams and the
baseline. The ranking is based on EM score. The last
column indicates whether the system uses key frames
for training.

6.3 Description of team submissions
We collect successful submissions from 8 partic-
ipating teams (including the baseline), as well as
one participating team that did not submit predic-
tions that passed our automated evaluation script.
The results and final ranking are shown in Table 5.
We summarize their work below:

• SRPOL: This system attains the highest
scores in this task by adopting a hybrid ap-
proach. The system includes a rule-based sys-
tem for intent identification and finding N/A
questions. It also applies a transformer-based
model ELECTRA for generating extractive
answers.

• ITNLP&QMUL: This system attains the sec-
ond highest scores in this task. The system
adapts a T5 model to the task by altering the
input to include semantic and cooking role
labels that are provided in the data.

• PINGAN AI: This system attains the third
highest scores in this task. The system uses

the BERT model as the backbone, and en-
hances the model by incorporating additional
knowledge about cooking entities and part-
of-speech tags in the format of plain text and
embeddings.

• Slug: Semantic labels were preprocessed us-
ing BERT and handmade rules, with hidden
roles infused into the recipe. A task-finetuned
T5 model was then used for question answer-
ing.

• UoR: The only submission that exploited the
visual information provided in the dataset,
this system used an Inception V3 model (pre-
trained on ImageNet), to extract image fea-
tures that were used to train an image caption-
ing model on the MS-COCO dataset. These
captions were included alongside the recipe
text in a Retrieval-Augmented Generation
model for question answering.

7 Discussion

In this paper we have described the new task of
Competence-based Multimodal Question Answer-
ing. In this task, we extended the traditional ques-
tion answering by providing text-visual aligned
data as the context, and asking questions that re-
flects reasoning competences over the question con-
text. To create the dataset for our task, we proposed
and applied a rich annotation of semantic role la-
bels, cooking role labels and aligned video key
frames to a set of cooking recipes.

A criticism of the approach we adopted to cre-
ate annotated dataset is that the video key frames
are not well aligned with the text, thus making it
difficult to include those into the modeling train-
ing. Although with the full awareness of this, video
annotation and alignment remains a very difficult
task. Copyright issues also make it challenging for
us to get enough video sources to work with. Fu-
ture work to improve the key frame annotation may
include utilizing entity recognition so that more ac-
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curate alignment to text can be made. We will also
consider reusing the key frames and adding static
images to represent similar events from different
recipes to increase the coverage of annotation. An-
other criticism of the data is the semantic ambiguity
and loose definition of certain questions. For exam-
ple, the same How-to question can have multiple
reasonable answers, but only one is considered as
the gold answer. Although this is the semantic am-
biguity as it is, we intend to improve it by replacing
the question phrase “How to ...” to more specific
phrase like “What tool ...” based on the answer it
is inquiring about.

An analysis of the systems that participated in
our task showed the major improvement over the
evaluation scores is achieved by making the hidden
information appear on the surface. In general, two
approaches are proven to be useful for this purpose
by the participating systems. One is to train an end-
to-end system to generate text that contains CRL-
SRL annotation, so that the hidden information is
expressed explicitly in the generated text. Then
an extractive QA system can be adopted to iden-
tify text spans as answers. The second approach
involves rules and heuristics to identify question
intents, and get auxiliary knowledge. Intent identifi-
cation can help classify questions into different cat-
egories. Each question category is associated with
a rather fixed set of answer templates and possible
entity types to be filled in. Auxiliary knowledge
is generated by associating specific entities with
their co-referred mentions or result ingredients (e.g.
“small balls” to “flour mixture”).

The analysis of the results from participating sys-
tems also reveals some interesting characteristics
about the dataset and is useful for future task design.
Despite the error rate of the top-performing sys-
tems such as SRPOL and ITNLP&QMUL is only
8%, the cardinality questions and How-to questions
solely contribute the majority of the errors. As it is
mentioned above, the innate ambiguity of How-to
questions makes it difficult for both humans and
systems to get a single correct answer. The poor
performance on cardinality questions shows that
the “counting reasoning” remains a big challenge
to current transformer-based systems. In the R2VQ
dataset specifically, the mentions of the entity in-
volved a cardinality question can scatter over the
whole recipe, which requires a larger context to
answer such questions. Due to nature of “constant
ingredient transformation” in cooking recipes, the

mentions of the same entity could vary in our defi-
nition. For example, in the appelkoek recipe (Table
1), apples, peeled apples, apple wedges, apples
with batter all refer to the same entity Apple. This
characteristic of cardinality questions also hinders
the systems from counting the mentions of the en-
tity properly.

The human benchmark created by the SRPOL
team provides useful insights on our future QA task
design. They asked six linguists to answer 2, 000
questions selected randomly from the validation
set. By examining the manual annotation on the
questions, they found that although 73% of the an-
notated QA pairs have the same meaning as the
gold answers, the EM score is quite low. This re-
veals the fact that traditional QA metrics that focus
on string match might be too strict in our task. For
example, from the analysis of the human bench-
mark, for the question What’s in the mixture?, both
the gold answer the egg and mixture and the human
answer the butter, sugar, tangerine zest, vanilla,
baking powder, salt and egg can be considered cor-
rect. Other metrics like BERTScore (Zhang et al.,
2019) might be a good compliment to account for
the syntactic and semantic variance between the
model inference and the gold answer.

8 Conclusion

In this paper we described SemEval-2022 Task 9:
R2VQ – Competence-based Multimodal Question
Answering. The task is to answer questions from
a collection of cooking recipes and videos, where
each question belongs to a “question family” re-
flecting a specific reasoning competence. We de-
veloped a new dataset of cooking recipes with rich
annotation for cooking roles, semantic roles and
aligned video key frames. We collected 8 result
submissions and analyzed the participating systems
by highlighting and summarizing their findings to
help future research pertaining the topic of our task.
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A Reading SRL Annotations in R2VQ

Predicate frames. Each predicate is labeled ac-
cording to its VerbAtlas sense/frame. A value of “ ”
means that the corresponding word is not a predi-
cate.

In the example below, there is only one predicate,
“Cut” with the corresponding sense/frame “CUT”
in position 1.

1 Cut [...] CUT B-V
2 the [...] B-Patient
3 broccoli [...] I-Patient
4 into [...] B-Result
5 flowerets [...] I-Result
6 . [...]

Semantic roles. For each predicate, we provide
its semantic roles in BIO format (B - Beginning, I
- Inside, O - Outside). Note that, for this dataset,
we only use B and I to indicate the first token of
a span and the rest of the tokens in the same span,
respectively. In the example above, “the broccoli”
is a Patient of the predicate CUT, with the token
“the” as the Beginning of the span (B-Patient) and
the token “broccoli” as the Inside of the span (I-
Patient). Note that the predicate that refers to a
specific column of semantic roles is always labeled
with the notation B-V. Should the predicate consist
of a multi-word expression, the other tokens apart
from the first are labeled as I-V:

Should the multi-word expression be made of
non-adjacent words, tokens apart from the first are
instead labeled as D-V:

In the case of multiple predicates in the same sen-
tence, there will be multiple semantic role columns,
one for each predicate. For example, if there are
two predicates in the sentence, one column will
indicate the semantic roles for the first predicate,

1 Deep [...] COOK B-V
2 - [...] I-V
3 fry [...] I-V
4 till [...] B-Result
5 crispy [...] I-Result
6 & [...] I-Result
7 golden [...] I-Result
8 brown [...] I-Result

1 Bring [...] CHANGE APP./STATE B-V
2 the [...] B-Patient
3 water [...] I-Patient
4 to [...] D-V
5 boil [...] D-V
6 . [...]

and the following will show the semantic roles for
the second predicate.

1 Reduce [...] REDUCE D. B-V
2 heat [...] B-Attr.
3 , [...]
4 and [...]
5 simmer [...] COOK B-V
6 for [...] B-Time
7 1 [...] I-Time
8 hour [...] I-Time
9 . [...]
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