
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 945 - 950
July 14-15, 2022 ©2022 Association for Computational Linguistics

connotation_clashers at SemEval-2022 Task 6:
The effect of sentiment analysis on sarcasm detection

Patrick Hantsch and Nadav Chkroun
University of Tübingen

{patrick.hantsch, nadav.chkroun}@student.uni-tuebingen.de

Abstract
We investigated the influence of contradictory
connotations of words or phrases occurring in
sarcastic statements, causing those statements
to convey the opposite of their literal meaning.
Our approach was to perform a sentiment anal-
ysis in order to capture potential opposite sen-
timents within one sentence and use its results
as additional information for a further classi-
fier extracting general text features, testing this
for a Convolutional Neural Network, as well as
for a Support Vector Machine classifier, respec-
tively.

We found that a more complex and sophisti-
cated implementation of the sentiment analysis
than just classifying the sentences as positive
or negative is necessary, since our implemen-
tation showed a worse performance in both ap-
proaches than the respective classifier without
using any sentiment analysis.

1 Introduction

According to Cambridge dictionary, sarcasm is de-
fined as the use of remarks that mean the opposite
of what they say, in order to hurt someone’s feel-
ings or to criticize something in a humorous way.
While detecting sarcasm can be very difficult even
beyond the text level, it is a real challenge to detect
sarcasm in textual data. When having conversa-
tions in person, it is easier for people to detect
sarcasm because they have additional information
in form of the speaker’s emphasis of words, his
facial expressions and body gestures. All of this
information is not available in written language.
Yet, detecting sarcasm from text becomes more and
more important, since everyday life nowadays takes
place on social media platforms to a large extent,
unfortunately including things like hate speech in
order to offend people. Sarcasm is often used as a
tool for that (Frenda, 2018), so operators need ways
to detect and remove offensive material expressed
in a sarcastic way in large amounts of messages
and posts released by millions of people every day.

The shared task (described in Abu Farha et al.,
2022) consisted of three sub tasks:

• Sub task A: Determining if a given input text
is sarcastic or not

• Sub task B: Determining if a given input text
belongs to a ironic speech category and if so,
to which one exactly

• Sub task C: Given two input texts, one be-
ing sarcastic and the other one being its non-
sarcastic rephrase, determining which is the
sarcastic one

We only participated in sub task A of the shared
task. Our strategy was to additionally perform a
sentiment analysis on the given text data, using
the contradictory nature of a sarcastic statement,
between the actual utterance and its true mean-
ing/intent. For example in the sentence "I love how
ill i became last night. . . ", a sentiment analysis
might recognize the clash of connotations between
the positive connotated word "love" and the nega-
tive connotated fact of "being ill". Van Hee et al.
(2018) also mentioned the inversing effect of using
irony (a form of sarcasm) in a sentence on the over-
all sentiment of that sentence and even included
this notion in form of a class called "Verbal irony
by means of a polarity contrast" in one of their sub
tasks of the task they provided for the SemEval
competition in 2018.

In an earlier work described in Poria et al.
(2017) a similar approach to our strategy was used,
combining several Convolutional Neural Networks
(CNNs), pre-trained on recognizing and classifying
sentiment, emotion and personality features respec-
tively, with a Support Vector Machine classifier for
classification only. However, for the best of our
knowledge there was no earlier work investigating
the impact of sentiment analysis on sarcasm detec-
tion for linear models. Inspired by the previously

945



mentioned work, we combined the result of our sen-
timent analysis with all other features subtracted
from the given text and investigated the influence
of sentiment analysis on the final sarcasm detec-
tion for both a linear model, as well as for a Deep
Learning model, also comparing the performance
of both approaches.

2 Training Data

According to sub task A, our system should classify
an input text as either sarcastic, or non-sarcastic.
If, for example, the string "I love how it rains for
the seventh day in a row" was fed as input to our
system, the output would be either "1" (sarcastic),
or “0” (non-sarcastic). As training data, two col-
lections of tweets were given, one in English and
one in Arabic. In table 1 you can see the amount of
sarcastic and non-sarcastic tweets in both datasets.

English Arabic
total amount of tweets 3468 3102
sarcastic 867 745
non-sarcastic 2601 2357

Table 1: Amount of sarcastic and non-sarcastic tweets
in training data

3 System Overview and Experimental
Setup

Both approaches we decided to test for solving the
task were implemented in Python 3.8. In terms of
sentiment analysis we decided to focus on English,
for which we tested each of those approaches both
combined with a sentiment analysis and without it.
The predictions contained in our official submis-
sion were created by our Deep Learning model not
being combined with sentiment analysis, for both
English and Arabic.

3.1 Official Submission
We chose to build a CNN as a Deep Learning
Model for sarcasm detection. CNNs are several
layers of convolutions with non-linear activation
functions like ReLU (Brownlee, 2019) or tanh ap-
plied to the results.

3.1.1 Preprocessing
All tweets were split into a sarcastic and a non-
sarcastic tweet collection. We used the tokenizer
class from Keras library (Chollet et al., 2015),
which allows vectorization of a text corpus, by

turning each text into a sequence of integers, while
calculating the maximum number of words to keep
based on their frequency. In addition, we split the
training data into training set (80%) and validation
set (20%) for hyperparameter optimization. We
were setting each tweet a length, and padding or
truncating it, based on the length of 100 words,
respectively.

3.1.2 Training
In our model, we converted words to vocabulary
indices. We did not use pre-trained embeddings.
Instead, the embedding was done by the embedding
layer of our model. In total, 6 layers were used,
which are described in table 2.

name of layer parameters
vocab_size=8879,

embedding embedding_dim=32,
input_length=100

filters=128,
convolution 1D kernel_size=3,

activation= “relu”
pooling 1D -

Dense units=100
activation=“relu”

Dense units=32
activation=“relu”

Dense units=1
activation=“sigmoid”

Table 2: Description of the model’s architecture

We compiled the model using the Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
of 0.01. The loss function for the optimizer was
Binary Cross Entropy, which compares each of the
predicted probabilities to the actual class labels
which can be either 0 or 1. For the tuning, random
search was used to find the optimal hyperparame-
ters. This method sets up a grid of hyperparameter
values and selects random combinations. We tuned
the parameters with the respective values as shown
in table 3.

In total, 5 different hyperparameter settings were
tried by our random search.

3.1.3 Evaluation
According to the official metrics, which was F1-
score for the sarcastic class, our CNN trained on
the English data scored 0.2024, unweighted mean
precision being 0.5016 and unweighted mean re-
call being 0.5029. All in all, our CNN achieved a

946



Description Name Values
learning rate of
the optimization
algorithm

learning_rate 0.01, 0.001,
0.0001

length of the
convolution
window

kernel_size 3, 5

size of the dense
layer

units 32-128
(interval: 16)

number of
convolution
units

filters 32-256
(interval: 32)

Table 3: Hyperparameters and values to which the ran-
dom search was applied

bad rank (37/43). The CNN trained on the Arabic
training data achieved a F1-score of 0.3013, a un-
weighted mean precision score of 0.5647 and the
unweighted mean recall was 0.5954. It ranked 23rd
of 32 total submissions.

3.2 CNN Influenced by Sentiment Analysis

The preprocessing used for the CNN we combined
with the sentiment analysis is the same as for the
CNN which created our official submission.

3.2.1 Sentiment Analysis & Transfer Learning
We implemented sentiment analysis for sarcasm de-
tection, used as a "transfer learning" method. The
sentiment analysis assigns each tweet a label of ei-
ther being "positive" or "negative". The sentiment
analysis dataset we used was the IMDB movie re-
view sentiment classification dataset of Keras. It
consists of 25000 movie reviews, labeled as 1 ("pos-
itive") or 0 ("negative"). We split it into a training
set consisting of 20000 of the reviews and a test set
containing 5000 reviews.

First, we trained our CNN model on the training
set for sentiment analysis. We saved the weights
and then trained the model on the sarcasm detection
training set that we created previously. It is impor-
tant to note that the sentiment analysis scores were
used in a way that although the model labeled each
sentence as a float number between 0 to 1. The
final labels (0 or 1) were given to each sentence
according to its proximity to 0.5.

3.2.2 Training
In order to get a more fine-tuned model for the com-
bination with the sentiment analysis, we changed
the model’s architecture. The reason for this

change is a result that another random search,
which we conducted after we applied the trans-
fer learning, picked for our combined model. The
same hyperparameters and values were tested as in
our first random search described in section 3.1.2.
We changed the hyperparameters accordingly, lead-
ing to the architecture depicted in table 4.

name of layer parameters
vocab_size=88584,

embedding embedding_dim=32,
input_length=100

filters=128,
convolution 1D kernel_size=3,

activation=“relu”
kernel_regularizer=l2(0.001)

dropout rate=0.1
filters=128,

convolution 1D kernel_size=3,
activation=“relu”

kernel_regularizer=l2(0.001)
dropout rate=0.1

pooling 1D -
dropout rate=0.1

units=32
Dense activation=“relu”

kernel_regularizer=l2(0.001)
dropout rate=0.1

units=1
Dense activation=“sigmoid”

kernel_regularizer=l2(0.001)

Table 4: Description of the model’s architecture for the
transfer learning

3.2.3 Evaluation
Our CNN which was influenced by the sentiment
analysis performed worse than the CNN on its own.
The F1 score on the sarcastic class was 0.1679. Un-
weighted mean precision was 0.5109, unweighted
mean recall 0.5117.

3.3 Comparing Results of both CNN’s

Comparing the scores of both the CNNs shows that
the CNN augmented by the sentiment analysis per-
formed worse than the CNN on its own, as shown
in table 5.

3.4 Linear Model Approach

In the following subsections we discuss our linear
model based approach. The preprocessing steps, as

947



model f1-score precision
(unweighted

mean)

recall
(unweighted

mean)
CNN without

transfer learning of 0.2024 0.5016 0.5029
sentiment analysis

CNN including

transfer learning of 0.1679 0.5109 0.5117
sentiment analysis

Table 5: Both CNN model’s scores on the English test
set

well as the implementation of sentiment analysis
differ from what we did in our Deep Learning based
approach.

3.4.1 Preprocessing
One challenge we were confronted with was a huge
amount of data imbalance. The English data con-
sisted of only 25% sarcastic tweets, the Arabic
data also of around 24%, while the rest of the data
was non-sarcastic, respectively. To account for this
in our linear model approach, in each language re-
spectively, first, all tweets were split into a sarcastic
and a non-sarcastic tweet collection. After shuf-
fling both collections, we chose 867 tweets each,
i.e all sarcastic tweets were used, for the further
training process. We put 694 tweets each (80%)
into the training set, while keeping the other 173
tweets (20%) of each category as held-out data for
testing. This way, we had a guaranteed sarcastic/
non-sarcastic ratio of 50% each to avoid bias due
to the previously mentioned imbalance. After shuf-
fling both the training set and the test set again, we
obtained our final datasets.

3.4.2 Feature Extraction
We extracted the features from our training data by
using a simple count vectorizer, while applying tf-
idf weighting, both as implemented in scikit-learn
(Pedregosa et al., 2011). The vectorizer consid-
ered word n-grams from unigrams up to 4-grams.
This feature extraction process was used in the grid
search we performed for choosing a linear classi-
fier as described in section 3.4.3, as well as for
training both with and without sentiment analysis,
described in section 3.4.5.

3.4.3 Model Choice
For the linear model approach we chose three dif-
ferent linear models and performed a grid search on
them, trying to optimize F1-score for the sarcastic

class on a held-out dataset (20% of all training data,
see Section 3.4.1), to find the best hyperparameter
settings for fitting on our training data. The three
models chosen were a Naive Bayes Classifier, a
Support Vector Machine model and a Random For-
est classifier. The following hyperparameters of the
respective models were included in the grid search:

• For Naive Bayes Classifier:

Description Name Values
Parameter for
add-k smoothing

alpha 0.1, 1.0, 2.0, 5.0,
10.0, 20.0, 50.0,
100.0

• For Support Vector Machine

Description Name Values
Probability estimates
for classification

probability True, False

Kernel type kernel linear, poly,
rbf, sigmoid

Kernel coefficient gamma scale, auto
Degree of the
polynomial kernel
function

degree 0-6
(interval: 1)

• For Random Forest Classifier:

Description Name Values
Number of
decision trees in
the forest

n_estimators 10, 20,
50, 100,
200, 300,
400, 500

Minimum number
of samples needed
to split a node
(make a decision)

min_samples_split 3, 5, 10,
20, 30, 50

Maximum depth
of a tree

max_depth None, 3,
5, 15, 25,
50, 100

Maximum number
of features
considered when
looking for each
split

max_features 3, 5, 10,
20

The F1-score of the sarcastic class was calcu-
lated using cross-validation. Features of the used

948



training data during the grid search were extracted
as described in section 3.4.2. Both the grid search
and the classifiers were implemented via scikit-
learn. We chose the classifier which achieved the
highest F1-score for the sarcastic class with its
best hyperparameter settings respectively, obtained
from the previously mentioned grid search. This
classifier was the Naive Bayes Classifier. However,
after making predictions on the organizer‘s test
data, we decided to finally use the Support Vector
Machine model, since almost all test instances were
classified sarcastic by the Naive Bayes Classifier,
while the predictions made by the Support Vector
Machine model were mixed and seemed more rea-
sonable. The best hyperparameter setting found
for the Support Vector Machine classifier were its
default values for all possible hyperparameters, as
defined in scikit-learn.

3.4.4 Sentiment Analysis
To implement the sentiment analysis for English
we used a pre-trained model from the Flair NLP
library (Akbik et al., 2019). Flair is a NLP frame-
work providing a lot of different models for several
common NLP tasks, including sentiment analysis.
We can feed an input text to the pre-trained Flair
model to get a classification for the text being posi-
tive or negative, as well as a score indicating how
confident the model was about the classification
between 0.5 and 1.0.

Our idea for how to use this result to help us
solve the task at hand was to feed each input sen-
tence into the Flair model and obtain a sentiment
prediction, "positive" or "negative", together with
the model’s confidence score. We then assign one
of six categories to the respective sentence. We
created three categories, each resembling a certain
range of the model’s confidence score for both the
positive and negative class. Thus, we obtained the
following six categories:

confidence
score

classified
"positive"

classified
"negative"

> 0.95 very positive very negative
0.75 - 0.95 quite positive quite negative
< 0.75 rather positive rather negative

Depending on the sentence’s category we then
created a one-hot encoded vector. For example, if
a sentence would be categorized as very positive,
the respective vector would be "[1 0 0 0 0 0]", with
each integer resembling one of the categories and

its value showing if it is the sentence’s category (1)
or not (0).

Applying this to each input sentence results in
a matrix, which we attached in the training pro-
cess (see section 3.4.5) to the feature matrix that
was created by our feature extraction described in
section 3.4.2.

3.4.5 Training
For training in both cases (with and without senti-
ment analysis), we preprocessed our training data
as described in section 3.4.1 and obtained our fea-
ture matrix as described in section 3.4.2.

For training with sentiment analysis, we attached
the sentiment matrix, obtained in the process de-
scribed in section 3.4.4, horizontally. That means
the first row of the sentiment matrix was appended
to the first row of the feature matrix etc. such
that the final matrix resembles all input sentences
of the training set (rows) with all extracted fea-
tures, including the result of our sentiment analysis
(columns).

To get our final predictions we fit our Support
Vector Machine classifier on our respective feature
matrix, depending on training with or without sen-
timent analysis.

3.4.6 Results
The linear model trained without the input of our
sentiment analysis scored 0.2738 according to the
official metrics, which was F1-score for the sar-
castic class. The model trained with the input of
the sentiment analysis scored only 0.2721, so the
model influenced by the sentiment analysis per-
formed slightly worse.

model f1-score precision
(unweighted

mean)

recall
(unweighted

mean)
SVM with

sentiment analysis 0.2721 0.5318 0.564
SVM without

sentiment analysis 0.2738 0.5336 0.5673

Table 6: Scores of the linear model with and without
sentiment analysis for the English test set

4 Conclusions

The Support Vector Machine model (SVM) per-
formed better than the CNN both when sentiment
analysis was included, as well as on its own. The
SVM without sentiment analysis also showed the

949



highest F1 score of all four tested models. How-
ever, in general our results show that our ways of
implementing sentiment analysis even had a neg-
ative impact on the classification for sarcasm on
both systems.

One reason for the bad performance of the senti-
ment analysis could have been that we performed
the sentiment analysis on the input sentences as
a whole for both training and classifying. In or-
der to recognize a contradiction within one sen-
tence, as explained in Section 1, improvements
might be achieved if the sentence is split in sev-
eral sub parts and sentiment analysis is performed
on those parts. This way, positive and negative
classifications with high confidence scores might
be observed, clearly indicating the aforementioned
clash of connotations. Potential challenges that
could come up in that case are to determine where
to split the sentences exactly, or deciding which
parts of even the sub parts the sentiment analysis
should be performed on, since not all word types
convey sentiment (e.g. stop words could be consid-
ered neutral). To account for this, alternatively to
our approaches, a sentiment lexicon could be used
to calculate scores on sub parts of sentences.

Even without splitting the input sentences, we
could have implemented our idea better for both ap-
proaches. For example, for the Deep Learning ap-
proach, sentiment analysis datasets might be more
useful, if their genre is the same or closer to our
training data. An additional way to adjust our im-
plementation for this approach would be to shift
our decision boundary, classifying sentences con-
tradictory, if output values of the sigmoid function
between for example 0.35 and 0.65 can be observed,
since clearly positive and negative sub parts might
lead to a rather neutral sentiment in total.

Similarly, for the linear model approach we
could have weighted the "rather positive" and the
"rather negative" category as more important, com-
pared to the more extreme categories.

Acknowledgements

We would like to thank Çağrı Çöltekin for his ad-
vice and support while creating this work. We
would also like to thank everyone who reviewed an
earlier version of this paper and provided helpful
comments and suggestions for improvement.

References
Ibrahim Abu Farha, Silviu Oprea, Steven Wilson, and

Walid Magdy. 2022. SemEval-2022 Task 6: iSar-
casmEval, Intended Sarcasm Detection in English
and Arabic. In Proceedings of the 16th International
Workshop on Semantic Evaluation (SemEval-2022).
Association for Computational Linguistics.

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif
Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
Flair: An easy-to-use framework for state-of-the-art
in natural language processing. In NAACL 2019,
2019 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics (Demonstrations), pages 54–59.

Jason Brownlee. 2019. A gentle introduc-
tion to the rectified linear unit (relu).
https://machinelearningmastery.
com/rectified-linear-activation-
function-for-deep-learning-neural-
networks/.

François Chollet et al. 2015. Keras. https://
keras.io.

Simona Frenda. 2018. The role of sarcasm in hate
speech. pages 14–16.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2018. Semeval-2018 task 3: Irony detection in en-
glish tweets. In Proceedings of the 12th International
Workshop on Semantic Evaluation (SemEval-2018).
Association for Computational Linguistics.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. International
Conference on Learning Representations.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Soujanya Poria, Erik Cambria, Devamanyu Hazarika,
and Prateek Vij. 2017. A deeper look into sarcastic
tweets using deep convolutional neural networks.

Cambridge University Press. 2022. Cambridge dictio-
nary.

950

https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://keras.io
https://keras.io
https://sentic.net/sarcasm-detection-with-deep-convolutional-neural-networks.pdf
https://sentic.net/sarcasm-detection-with-deep-convolutional-neural-networks.pdf
https://dictionary.cambridge.org/dictionary/english/sarcasm
https://dictionary.cambridge.org/dictionary/english/sarcasm

