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Abstract
Systematic literature reviews in the biomedi-
cal space are often expensive to conduct. Au-
tomation through machine learning and large
language models could improve the accuracy
and research outcomes from such reviews. In
this study, we evaluate a pre-trained LongT5
model on the MSLR22: Multi-Document Sum-
marization for Literature Reviews Shared Task
datasets. We weren’t able to make any improve-
ments on the dataset benchmark, but we do es-
tablish some evidence that current summariza-
tion metrics are insufficient in measuring sum-
marization accuracy. A multi-document sum-
marization web tool was also built to demon-
strate the viability of summarization models
for future investigators: https://ben-yu.
github.io/summarizer

1 Introduction

With recent advances in natural language process-
ing and deep learning, large language models are
now capable of generating summaries of large vol-
umes of documents that are arguably human read-
able and logically consistent. With the growing
amount of research being published, it has become
increasingly difficult to process all the available re-
search and literature in any particular field of study.
This has become exceedingly important within the
biomedical field as the community has learned
with the global COVID-19 pandemic. Speed of re-
search directly impacts patient outcomes and how
fast medical practitioners can respond to a con-
stantly changing health landscape. The MSLR22:
Multi-Document Summarization for Literature Re-
views shared task proposes a challenging research
problem that pushes current state of the art multi-
document summarization models to generalize over
two different datasets: MS^2 Dataset (DeYoung
et al., 2021) and Cochrane Dataset (Wallace et al.,
2020) We will evaluate in this research study if
pre-trained summarization models can successfully
solve the proposed task.

2 Related Work

Recent studies in document summarization have
mostly focused on Transformer-based models, but
applied to the biomedical context either through
transfer learning or fine-turning on a specific
biomedical dataset (Wang et al., 2021). BioBERT-
Sum is a recent example of using such pre-training
methodologies, which used a pre-trained model as
an encoder and fine-tuned on a specific task (Du
et al., 2020). (Moradi and Samwald, 2019) inno-
vated in this space by applying hierarchical cluster-
ing to group contextual embeddings of sentences to
select the most informative sentences from a given
group to generate summaries. (Sotudeh et al., 2020)
also recently proposed a mechanism to leverage do-
main knowledge and embed it into their SciBERT-
based clinical abstractive summarization model.

Scaling such transformer models to longer input
sizes has been difficult since the attention layers get
exponentially larger and become computationally
infeasible to train. Recent advances in model ar-
chitecture like PEGASUS (Zhang et al., 2019) and
Longformer (Beltagy et al., 2020) have introduced
different ways around this by introducing sparse
attention mechanisms like local attention which re-
places the full-attention mechanism with a sparse
sliding window. Researchers at Google were able
to innovate on these findings further by combin-
ing pre-training strategies from PEGASUS along
with a new sparse attention mechanism called Tran-
sient Global which mimics ETC’s local/global at-
tention mechanism and achieve state of the art per-
formance on multiple summarization benchmarks.
(Guo et al., 2021)

3 Data Analysis

3.1 MS^2 Dataset

The MS^2 dataset consists of 470k studies mapped
to 20k reviews from PubMed (DeYoung et al.,
2021). The dataset was further augmented with
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PICO span labels and evidence inference classes.
The goal for this dataset is to generate an accurate
summary given a set of multiple review abstracts.

To understand the relative difficulty of this sum-
marization task, we measured text similarity be-
tween abstracts and their target summaries based
on Term Frequency–Inverse Document Frequency
(TF-IDF) and Jaccard similarity.

Figure 1: Distribution of MS^2 distances from abstract
to target summary

The mean cosine difference was 0.4 and Jacard
distance was 0.1. This indicates there was no sub-
stantial overlap between the target summaries and
their source reviews.

3.2 Cochrane Dataset

This was a smaller dataset of 4.5K reviews col-
lected from Cochrane systematic reviews (Wallace
et al., 2020). This dataset was cleaner than the
MS^2 dataset, but substantially smaller. The re-
views on average included 10 trials each and the
average abstract length of included trials was 245
words. We use the authors’ conclusions subsec-
tion of the systematic review abstract as our target
summary (75 words on average).

We also did a similar measurement of cosine and
Jaccard distances for the Cochrane dataset:

Figure 2: Distribution of Cochrane review distances
from abstract to target summary

Similar to the MS^2 dataset, the cosine and Jac-
card distances were normally distributed and had

roughly the same average difference from their
target review. This seemed to indicate that both
datasets were similarly difficult and have roughly
the same level of sentence overlap.

4 Experiments

The original goal of this study was to experiment
with two different approaches to the MSLR22
Shared Task:

1. Fine-tune LongT5 models with both datasets

2. Evaluate existing LongT5 language models
on similar datasets like PubMed (Cohan et al.,
2018)

We selected the LongT5 model due to its pur-
ported state of the art performance numbers and
its ability to scale its input size to up to 16384 to-
kens. We leveraged several cloud providers such
as Google Cloud and AWS Sagemaker along with
HuggingFace’s transformers library for model fine
tuning (Wolf et al., 2019). We also experimented
with HuggingFace’s AutoTrain framework to au-
tomatically search for the correct hyperparameters
for training. All we had to provide was an initial
training and validation datasets, and AutoTrain au-
tomated the model training and tuning process. To
allow the model to train on multiple documents at
once, we pre-processed the training data such that
all review abstracts with the same Review ID were
appended into a single input string. The single in-
put would then be fed into our model of choice after
doing some minimal input validation like checking
if the input isn’t more than our maximum token
length of 16384. We immediately hit several limita-
tions with cloud training including not having suf-
ficient spend to qualify using larger GPU instances
for training. HuggingFace’s AutoTrain framework
also never successfully completed and would often
timeout after several days of training. We also at-
tempted to fine tune our models locally, but we only
had access to a single RTX 3080 10GB GPU which
couldn’t even fit the model and dataset even with
a batch size of 1. Our conclusion from this experi-
ence has demonstrated how the trend towards larger
language models might risk increasingly making
this type of research inaccessible to hobbyists and
practitioners. State-of-the-art model performance
will likely only be achieved by researchers with
access to compute power and capital unless we pri-
oritize research into reduce model size and resource
utilization.



190

- Training Training Target Test
Characters 1745.81 435.60 1746.66
Words 299.88 68.53 301.42
Sentences 11.2 2.74 11.17

Table 1: MS^2 Dataset Properties

- Training Training Target Test
Characters 1526.79 489.8 1510.42
Words 224.3 72.2 221.14
Sentences 10.2 3.4 10.09

Table 2: Cochrane Dataset Properties

Figure 3: HuggingFace AutoTrain on LongT5

For our second approach, rather than fine-tuning
a base model, we wanted to evaluate if a model
that was pre-trained on a similar dataset would still
be able to solve this summarization task without
any fine-tuning. We found a pre-trained LongT5
model on the PubMed dataset that was trained for
around 3k steps (Stancl, 2022). We believed the
fine-tuning should be transferable to these datasets
as they largely cover the same type of biomedical
content and the MS^2 dataset also gets its train-
ing data from PubMed. We leveraged Hugging-
Face’s Inference API for model evaluation against
the MSLR22 datasets. This also restricted our abil-
ity to fine-tune the output size which probably also
hindered our performance.

To aid in the model development process and
also as a validation that these summarization mod-
els have a practical use, we created an online tool
that allows anyone to invoke the models for any 6
paper abstracts. The tool can be found at: https:
//ben-yu.github.io/summarizer

Figure 4: Multi-Document Summarization Tool with
HuggingFace Inference API

5 Discussion

Unsurprisingly the pre-trained models were unable
to exceed the dataset benchmarks on the shared
task. One key failing came from our inability to
configure target generation length using Hugging-
Face’s Accelerated Inference Text2Text Generation
API. On the MS^2 Dataset our outputs only had
an average sentence length of 1.1 and character
count of 87.97, which significantly deviated from
our target length of 2.74 sentences and 435.6 char-
acters. This likely due to the out-of-the-box model
not properly generalising over the entire PubMed
dataset as the model was also only trained for about
3k steps and further training steps would have im-
proved it’s performance. The Rouge-L scores were
particularly indicative, scoring sometimes up to
50% worse than the benchmarks. Increasing our
model output length would have likely dramati-
cally improved our Rouge scores. Our model didn’t
score that poorly in terms of a delta EI on the MS^2
dataset with only a 0.06 difference from the Long-
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Model R-1 R-2 R-L EI↓ F1 BERT
BART Benchmark 0.2626 0.0770 0.1950 0.4509 0.4142 0.8636
Longformer Benchmark 0.2637 0.0795 0.1961 0.4621 0.4118 0.8666
LongT5 - Pubmed 0.1200 0.0133 0.0961 0.5280 0.3433 0.8276

Table 3: Model performance on MS^2 Dataset

Model R-1 R-2 R-L EI↓ F1 BERT
BART Benchmark 0.2397 0.0671 0.1760 0.2081 0.3348 0.8632
Longformer Benchmark 0.2387 0.0655 0.1755 0.2345 0.3316 0.8641
LongT5 - Pubmed 0.1130 0.0154 0.0903 0.4671 0.2873 0.7863

Table 4: Model performance on Cochrane Dataset

former benchmark. This could be an indicator that
delta EI is a flawed metric that doesn’t adequately
capture the factual correctness of a summary. Re-
cent work by (Otmakhova et al., 2022) evaluated
Longformer and BART models along similar met-
rics and showed that both models failed to pick
up and aggregate important details when manually
evaluated against with expert human evaluators.
Stronger metrics will likely be required in the fu-
ture if there is to be significant progress in this
domain.

We also found that experimenting with language
models and training these large language models
can be extremely cost prohibitive and potentially
inaccessible to hobbyists and novice machine learn-
ing practitioners. These models are getting increas-
ingly large and can’t be built unless one has access
to sufficient GPU-computing or cloud resources.
Training these models can take upwards of 48 hours
and there is no guarantee that your model is improv-
ing or converging at a reasonable rate.

6 Conclusion

We weren’t able to improve upon existing bench-
marks for either the MS^2 or Cochrane datasets.
We did show there is a need for stronger summa-
rization metrics that can capture different linguistic
dimensions such as factual correctness and read-
ability. The summaries from our pre-trained model
were significantly shorter than the target summaries
and often factually incorrect upon manual inspec-
tion, but this couldn’t directly be inferred from
our model scores outside of comparing it to task
benchmarks.
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