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Abstract

Pre-trained language models have brought sig-
nificant improvements in performance in a
variety of natural language processing tasks.
Most existing models performing state-of-the-
art results have shown their approaches in the
separate perspectives of data processing, pre-
training tasks, neural network modeling, or
fine-tuning. In this paper, we demonstrate how
the approaches affect performance individually,
and that the language model performs the best
results on a specific question answering task
when those approaches are jointly considered
in pre-training models. In particular, we pro-
pose an extended pre-training task, and a new
neighbor-aware mechanism that attends neigh-
boring tokens more to capture the richness
of context for pre-training language modeling.
Our best model achieves new state-of-the-art
results of 95.7% F1 and 90.6% EM on SQuAD
1.1 and also outperforms existing pre-trained
language models such as RoBERTa, ALBERT,
ELECTRA, and XLNet on the SQuAD 2.0
benchmark.

1 Introduction

Question answering (QA) is the task of answer-
ing given questions, which demands a high level
of language understanding and machine reading
comprehension abilities. As pre-trained language
models based on a transformer encoder (Vaswani
et al., 2017) have brought a huge improvement
in performance on a broad range of natural lan-
guage processing (NLP) tasks including QA tasks,
methodologies for QA tasks are widely used to de-
velop applications such as dialog systems (Bansal
et al., 2021) and chat-bots (Hemant et al., 2022;
Duggirala et al., 2021) in a variety of domains.

Pre-trained language models like BERT (Devlin
et al., 2018) are designed to represent individual
words for contextualization. However, recent ex-
tractive QA tasks such as Stanford Question An-
swering Dataset (SQuAD) benchmarks (Rajpurkar

Figure 1: Example of a passage with a pair of question
and answer sampled from the SQuAD 1.1 dataset.

et al., 2016, 2018) involve reasoning relationships
between spans of texts that include a group of two
or more words in the evidence document (Lee et al.,
2016). In the example, as shown in Figure 1, “a
golden statue of the Virgin Mar”, the correct an-
swer for the question “What sits on top of the Main
Building at Notre Dame?”, is a group of words
consisting of nouns and other words and is called
as a noun phrase, which performs as a noun in a
sentence. Since predicting a span of answer texts
including a start and end positions may be chal-
lenging for self-supervised training rather than pre-
dicting an individual word, we introduce a novel
pre-training approach that extends a standard mask-
ing scheme to wider spans of texts such as a noun-
phrase rather than an entity level and prove that
this approach is more effective for an extractive
QA task by outperforming existing models.

In this paper, we present a new pre-training
approach, ANNA (Approach of Noun-phrase
based language representation with Neighbor-
aware Attention), which is designed to better under-

121



stand syntactic and contextual information based
on comprehensive experimental evaluation of data
processing, pre-training tasks, attention mecha-
nisms. First, we extend the conventional pre-
training tasks. Our models are trained to predict
not only individual tokens but also an entire span
of noun phrases during the pre-training procedure.
This noun-phrase span masking scheme lets models
learn contextualized representations in the whole
span level, which benefits predicting answer texts
for the specific extractive QA tasks. Second, we
enhance the self-attention approach by incorpo-
rating a novel neighbor-aware mechanism in the
transformer architecture (Vaswani et al., 2017). We
find that more consideration of relationships be-
tween neighboring tokens by masking diagonality
in attention matrix is helpful for contextualized rep-
resentations. Additionally, we use a larger volume
of corpora for pre-training language models and
find that using a lot of additional datasets does not
guarantee the best performance.

We evaluate our proposed models on the SQuAD
datasets which is a major extractive QA bench-
marks for pre-trained language models. For
SQuAD 1.1 task, ANNA achieves new state-of-the-
art results of 90.6% Exact Match (EM) and 95.7%
F1-score (F1). When evaluated on the SQuAD 2.0
development dataset, the results show that our pro-
posed approaches obtain competitive performance
outperforming self-supervised pre-training models
such as BERT, ALBERT, RoBERTa, and XLNet
models.

We summarize our main contributions as fol-
lows:

• We propose a new pre-trained language model,
ANNA that is designed to address extractive
QA tasks. ANNA is trained to predict the
masked group of words that is an entire noun
phrase, in order to better learn syntactic and
contextual information by taking advantage of
span-level representations.

• We introduce a novel transformer encoding
mechanism stacking new neighbor-aware self-
attention on an original self-attention in the
transformer encoder block. The proposed
method takes into account neighbor tokens
more importantly than identical tokens during
the computation of attention scores.

• ANNA establishes new state-of-the-art results
on the SQuAD 1.1 leaderboard and outper-

forms existing pre-trained language models
for the SQuAD 2.0 dataset.

2 Related works

Pre-trained contextualized word representations
There have been many recent efforts on pre-training
language representation models aiming for captur-
ing linguistic and contextual information, and the
models have brought a significant improvement of
performance in a variety of NLP tasks. ELMo (Pe-
ters et al., 2018) is a deep contextualized word
representation to learn complex characteristics of
word use across linguistic contexts, and pre-trained
models with these representations have shown no-
ticeable improvements in many NLP challenges.
BERT (Devlin et al., 2018) is a pre-trained lan-
guage model with a deep bidirectional long short-
term memory, which learns context in text using
the masked language modeling (MLM) and the
next sentence prediction (NSP) objectives for self-
supervised pre-training. The latest language mod-
els (Liu et al., 2019; Lan et al., 2019; Yang et al.,
2019b; Radford et al., 2018; Raffel et al., 2019a;
Lewis et al., 2019) influenced by BERT mainly em-
ploy the transformer architecture (Vaswani et al.,
2017) for pre-training but are trained with similar
or extended to the pre-training objectives used in
BERT implementation for enhancement of perfor-
mance. There also exist many attempts to improve
the capabilities of the standard transformer mecha-
nism in contextualized word representations.

Extension of MLM Many recent studies have
attempted to use different pre-training objectives
by extending the MLM task in language modeling
including BART (Lewis et al., 2019) and T5 (Raf-
fel et al., 2019b). ELECTRA (Clark et al., 2020)
introduces a new pre-training method of replaced
token detection that replaces input tokens with al-
ternative samples and detects whether the tokens
are replaced or not. MASS (Song et al., 2019) is
pre-trained on the sequence to sequence framework
where fragments of input sentences are masked,
and the masked fragment is predicted in its decoder
part. XLNet (Yang et al., 2019b) adopts a span-
based masking approach that predicts a masked
subsequent span of tokens in a context of tokens au-
toregressively. SpanBERT (Joshi et al., 2020) and
REALM (Guu et al., 2020) employ a span masking
scheme that masks spans of tokens rather than ran-
dom individual tokens, and the model is designed to
learn span representations during pre-training. Sim-
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ilarly, LUKE (Yamada et al., 2020), ERNIE (Zhang
et al., 2019), and KnowBERT (Peters et al., 2019)
learn joint representations of words and entities by
incorporating knowledge of entity embeddings.

Improvement of Attention Mechanism Since the
standard transformer architecture has flexibility,
many studies have shown the implementation of
Transformer-based variants for improving further
performance on language modeling and NLP tasks
such as machine translation. (Shaw et al., 2018)
extends self-attention mechanism by incorporating
embeddings of relative positions or distances be-
tween sequence elements, which is beneficial for
performance improvement in machine translation
tasks. (Yang et al., 2019a) introduces a context-
aware self-attention approach that improves the
self-attention with additional contextual informa-
tion. (Sukhbaatar et al., 2019) presents a novel
attention method extending the self-attention layer
with persistent vectors storing information which
plays a similar role as the feed-forward layer. (Fan
et al., 2021) proposes a mask attention network
that is a sequential layered structure incorporated
a new dynamic mask attention layer with the self-
attention and feed-forward networks.

3 Methodology

We introduce a novel transformer encoder architec-
ture integrating a new neighbor-aware mechanism
for pre-training a language model. Figure 2 demon-
strates the architecture of ANNA model. ANNA
extends the original transformer encoder blocks
by including a neighbor-aware self-attention layer
stacked on a multi-head self-attention layer.

3.1 Neighbor-aware Self-Attention

In this study, we propose a neighbor-aware atten-
tion mechanism. In an attention matrix, there is
a pattern of diagonal line that illustrates a token
more attends to itself, but less influences to other
tokens. To give more attention to related tokens, we
implement a new neighbor-aware attention mech-
anism that is designed to mitigate influences of
identical tokens by ignoring the diagonality in an
attention matrix when attention scores are com-
puted. Instead, other tokens are more attended, so
that the neighbor-aware mechanism enhances bet-
ter understanding for relationships between tokens
in inputs. Here, we integrate a neighbor-aware self-
attention layer between the self-attention and the

Figure 2: Architecture of ANNA.

feed-forward network. The original attention infor-
mation of a token, passed through the self-attention
and the residual connection, is passed through the
neighbor-aware self-attention again, so the token
can more reflect a context to understand the sen-
tence.

As the self-attention layer shown in Figure 2 is
adopted from the standard transformer architecture
(Vaswani et al., 2017), we denote the self-attention
as AS that is calculated using query (Q), key (K)
and value (V) projections as follows:

AS(Q,K, V ) = SS(Q,K)V (1)

SS(Q,K) =

[
exp(QiK

T
j /

√
dk)∑

k exp(QiKT
k /

√
dk)

]
(2)

where Q, K and V represent HWq, HWk and
HWv, respectively. H ∈ RL×d denoted as the
input hidden vectors, L is the length of the input
sequence, and d is the hidden size. Wq,Wk,Wv ∈
Rd×d are the projection matrices, and dk is the
query/key dimension. AS , AN ∈ RL×L represents
the attention matrices.

We define the Neighbor-aware Attention layer
presented with AN as follows:
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Figure 3: Example of the input sequence “Animal Farm is a satirical allegorical novella by George Orwell, first
published on 1945” for pre-training ANNA. Different types of masking schemes are illustrated with such colors:
masking a noun or noun phrase span (Orange), a whole word masking (Blue), and a wordpiece token masking
(Green).

AN (Q,K, V ) = SN (Q,K)V

SN (Q,K) =
M(i, j)exp(QiK

T
j /

√
dk)∑

k M(i, j)exp(QiKT
k /

√
dk)

M(i, j) =

{
0, if i = j
1, others

where M denotes a mask that functions to omit
capturing interactions of identical tokens. The in-
teractions between each pair of input tokens xi and
xj at positions i and j for 0 ≤ i, j ≤ L are calculated
except for i = j.

3.2 Pre-training Task
We present a new pre-training task for training
ANNA model. We follow the conventional MLM
pre-training objective similar to BERT (Devlin
et al., 2018). BERT is more sensible and effective
to deeply represent context fusing the left and the
right text with the MLM objective rather than uni-
directional language models (Radford et al., 2018,
2019; Brown et al., 2020) or shallow Bi-LSTM
models (Clark et al., 2018; Huang et al., 2015).
In addition, a new masking scheme is applied for
focusing on noun phrases in order to train our lan-
guage model for better understanding syntactic and
lexical information considering the specific down-
stream tasks. Here, we define three different mask-
ing schemes as illustrated in Figure 3. First, we
use a span masking scheme that masks a group of
texts in a span-level adopted by SpanBERT (Joshi
et al., 2020). In this study, nouns or noun phrases
identified by spaCy’s parser (Honnibal and Mon-
tani, 2017) are randomly masked for span masking
selection. Then we apply a whole word masking

approach that masks all of the sub-tokens corre-
spondings to a word at once, while we randomly
mask tokens not included in the above two cases.

Following BERT, we randomly select 15% of the
tokens in input sequences, and 80% of the selected
tokens are replaced with the special token [MASK].
We keep 10% of the tokens in the rest of them un-
changed, and the other 10% are replaced with ran-
domly selected tokens. Our language model is also
designed to train for the prediction of each token in
the masked span by computing the cross-entropy
loss function. However, the next sentence predic-
tion (NSP) objective used in the BERT implemen-
tation is not used in this study, as RoBERTa (Liu
et al., 2019) removes the NSP task due to perfor-
mance decreases on downstream tasks.

3.3 Vocabulary and Tokenizer

In this study, we build a new vocabulary of 127,490
wordpieces that are extracted from the English
Common Crawl corpus (Raffel et al., 2019a) and
English Wikipedia dump datasets. The vocabu-
lary consists of sub-words (30%) tokenized by the
WordPiece algorithm (Wu et al., 2016), and 70% of
the rest include noun-phrase words in their original
form. We aim to prevent words from being out
of vocabulary words and also keep noun phrases
as the original forms so that our model is able to
take many words in order to better learn human
linguistic understanding during training.

In addition, we propose a new approach of word
tokenization to suit our vocabulary used to pre-
train ANNA model. This approach avoids sepa-
rating words by special symbols since our vocab-
ulary contains words including special characters
by tokenizing noun-phrase words with white space
only. Many studies use a subword-based word rep-
resentation method for efficiency in vocabulary. A
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Words BERT tokens ANNA tokens
Sant’Egidio Sant , ’ , E , ##gi , ##dio Sant’Egidio
COVID-19 CO , ##VI , ##D , - , ’19’ COVID-19
U.S. U , . , S , . U.S.
Ph.D. Ph , . , D , . Ph.D.
l’amour l , ’ , am , ##our l’amour
non-profit non , - , profit non-profit
X-Files X , - , Files X-Files
UTF-16 U , ##TF , - , 16 UTF-16
C++ C , + , + C++

Table 1: Comparison of tokenization results between BERT and ANNA.

word is represented with several subword units tok-
enized by BERT tokenizer as exampled in Table 1.
However, we do not follow this conventional tok-
enization method (Wu et al., 2016), since we use
a span masking scheme that masks an entire noun
phrase randomly selected during a pre-training pro-
cedure. It is not suitable to train models as the
length of masking tokens gets longer if subword
units are used for the span masking scheme. We
also aim to represent a whole-word token rather
than subword units when attention scores are calcu-
lated. We implement an ANNA tokenizer in order
to enhance a better understanding of contexts by
not separating words as much as possible. Table 1
compares word tokenization results between BERT
and ANNA tokenizers.

3.4 Pre-training Datasets

We use an English Wikipedia dataset like BERT
(Devlin et al., 2018), and add publicly avail-
able English-language corpora such as a Colossal-
Cleaned version of Common Crawl (C4) corpus
(Raffel et al., 2019a), Books3 (Gao et al., 2020),
and OpenWebText2 (OWT2) extended from Web-
Text (Radford et al., 2019) and OpenWebTextCor-
pus (Gokaslan and Cohen) for pre-training our
models. Details of datasets and pre-processing
techniques are described in Appendix B.

With the extensive data pre-processing proce-
dure, we gain the size of 12GB, 580GB, 51GB,
and 22GB for Wikipedia, C4, Books3, and OWT2,
respectively. The pre-processed texts are tok-
enized into 410B word-piece tokens in total for
pre-training our models.

In this study, we conduct an experiment in order
to investigate whether the use of different sources
of data for pre-training language models affects
model performance on downstream tasks. We

compare the performance of models pre-trained
with different datasets in Table 2. We observe
that C4 improves performance on the SQuAD 1.1
task when it is added to the Wikipedia dataset, but
that models pre-trained over Books3 and OWT2
datasets are not beneficial for performance in-
creases. We also find that the use of the larger
volume of data including all of these four corpora
is not helpful to improve performance. Thus we
use both the C4 data and the Wikipedia corpus for
pre-training ANNA models. Pre-training details
for ANNA models can be found in Appendix A.

Corpora EM F1
Wikipedia 85.51 90.99
Wikipedia + C4 85.90 91.02
Wikipedia + Books3 85.40 90.79
Wikipedia + OWT2 84.79 90.27
ALL 85.14 90.22

Table 2: Comparison of model performance pre-trained
with the different data sources. Models pre-trained
with different pre-training corpora are evaluated on the
SQuAD1.1 dataset. ALL includes the four datasets of
Wikipedia, C4, Books3, and OWT2. Due to the limita-
tion of computing resources, ANNABase model is used
for this experiment.

4 Experiments

In this section, we present the fine-tuning results of
ANNA transferred to specific extractive question
answering tasks.

We evaluate ANNA on SQuAD 1.1 and 2.0 tasks
that are well-known machine reading comprehen-
sion benchmarks in the NLP area, and some NLU
tasks. The dataset of SQuAD 1.1 consists of around
100k pairs of a question and an answer along with
Wikipedia passages where the answers are included.
This task is to predict a correct span of an answer
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text for a given question from the corresponding
Wikipedia passage (Rajpurkar et al., 2016). For
SQuAD 2.0, the dataset is extended to the SQuAD
1.1 dataset by combining over 50,000 unanswerable
questions, so that systems are required to predict
answers to both answerable and unanswerable ques-
tions (Rajpurkar et al., 2018). We follow the fine-
tuning procedure of BERT (Devlin et al., 2018), but
the provided SQuAD training dataset only is used
for fine-tuning, while BERT augments its training
dataset with other QA datasets available in public.

SQuAD 1.1 Table 3 indicates the results of our
best performing system compared with top results
on the SQuAD 1.1 leaderboard. We also compare
ours with BERT baselines. ANNA establishes a
new state-of-the-art result on this task outperform-
ing LUKE (Yamada et al., 2020) by EM 0.4 points
and F1 0.3 points on the test dataset. LUKE is the
latest best performing system in the leaderboard,
and it is designed for contextualized representa-
tions of words and entities. As for a comparison
with SpanBERT (Joshi et al., 2020) that masks
contiguous sequences of token for span representa-
tions, ANNA also achieves better performance by
both EM 1.8 points and F1 1.1 points.

SQuAD 2.0 ANNA is evaluated on SQuAD 2.0
development dataset, and the results are compared
with the published pre-trained language models
(Devlin et al., 2018; Liu et al., 2019; Lan et al.,
2019; Yang et al., 2019b; Clark et al., 2020) in Ta-
ble 4, which demonstrates that ANNA outperforms
all of those language models and in particular, pro-
duces performance increases than ELECTRA by
0.4 points of EM and 0.2 points of F1.

GLUE The General Language Understanding
Evaluation (GLUE) benchmark is a collection of
datasets used for training and evaluation diverse
natural language understanding tasks (Wang et al.,
2018). Since fine-tuning on GLUE is currently in
progress, we show the results of the tasks that we
complete in Appendix A.

5 Model Analysis

We conduct additional experiments in terms of per-
spectives such as data processing, pre-training task,
and attention mechanisms. We report a detailed
analysis of how those approaches affect the per-
formance of ANNA on a specific downstream task
individually. In this study, ANNABase model is

used for these additional experiments due to the
limitation of computing resources.

5.1 Effect of ANNA Tokenization
As mentioned in Section 3.3, we build a new vocab-
ulary containing noun-phrase words in their orig-
inal format. For this, we introduce a new word
tokenization strategy that keeps words in the origi-
nal formats for noun phrases, which suits for our
vocabulary. We compare our tokenization approach
with the standard word-piece split approach, and
find that ANNA tokenization performs better as
shown in table 5.

5.2 Effect of Data Processing
We describe several data pre-processing techniques
we conduct to build a high-quality dataset for pre-
training ANNA in Section 3.4. Here we demon-
strate how the use of the data processing techniques
affects the performance on the extractive question
answering task. There exist documents with a va-
riety of ranges of word length in the pre-training
corpora. For a generation of an input sequence, doc-
uments containing less than 100 words are filtered
out, while the others are split into multiple sentence
chunks. Due to the maximum sequence length of
512, we limit the size of the chunks to not exceed-
ing approximately 300 words. We observe that the
data processing procedure making a suitable word
length for the max sequence length is helpful to
improve performance slightly as shown in Table 6.
However, the input sequences overlapped with 128
tokens at the back and front between successive
sentence chunks rather hurt system performance.

5.3 Effect of Pre-training Mechanism
We investigate how different MLM objectives af-
fect the performance of models on a specific down-
stream task. During a pre-training procedure, a
model is trained with a deep bidirectional represen-
tation of input sequences. First, we concatenate
part-of-speech (POS) tags to each word, then we
apply a whole word masking approach to explore
whether a masking method employing syntactic in-
formation is helpful to understand the context. We
also mask tokens identified as named entities and
noun phrases instead of masking single tokens ran-
domly. In all of the experiments, we use the same
percentage of 15% for the masking tasks. Table 7
compares results on the SQuAD 1.1 task for mod-
els using those MLM schemes. Comparing with
the standard MLM approach that simply masks
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System
Dev Test

EM F1 EM F1
BERTLarge (Devlin et al., 2018) 84.2 91.1 85.1 91.8
BERTLarge (ensemble) - - 87.4 93.1
SpanBERT (Joshi et al., 2020) - - 88.8 94.6
XLNetLarge (Yang et al., 2019b) 89.0 94.5 89.9 95.1
LUKE (Yamada et al., 2020) 89.8 95.0 90.2 95.4
ANNABase 87.0 92.8 - -
ANNALarge 90.0 95.4 90.6 95.7

Table 3: Performance of systems evaluated on the SQuAD 1.1 datasets.

System
SQuAD 2.0 SQuAD 2.0

Dev EM Dev F1
BERTLarge (Devlin et al., 2018) 79.0 81.8
ALBERTLarge (Lan et al., 2019) 85.1 88.1
RoBERTa (Liu et al., 2019) 86.5 89.4
XLNetLarge (Yang et al., 2019b) 87.9 90.6
ELECTRALarge (Clark et al., 2020) 88.0 90.6
ANNALarge 88.4 90.8

Table 4: Performance of systems evaluated on the SQuAD 2.0 development dataset.

SQuAD1.1 SQuAD1.1
Dev EM Dev F1

WordPiece tokenizer 85.3 90.8
ANNA tokenizer 86.3 91.2

Table 5: Ablation study of our tokenizer comparing to
BERT tokenizer

15% of tokens, the pre-trained models using Entity
and Noun-phrase MLM schemes improve perfor-
mance, but the approach masking words including
POS tags decreases performance than the standard
MLM. Thus we use the Noun-phrase MLM ap-
proach to pre-train ANNA models for final results.

5.4 Effect of Neighbor-aware Self-Attention
We attempt to implement a new transformer en-
coder focusing on relatives, entities, or neighbors in
input tokens in order to enhance capturing syntactic
and contextual information. Firstly, we extend the
original self-attention based on the transformer in
order to consider relationships between input to-
kens. The relation matrix of input tokens is simply
added when attention scores are computed. For an
entity-self-attention that focuses on named entities,
we identify named entities in text and then com-
pute additional attention scores to those entities for
learning effective representations. We describe the
mechanism of a neighbor-aware self-attention in

detail in Section 3.1. We report that the neighbor-
aware self-attention approach performs better than
the original self-attention and other transformer
modifications on the extractive question-answering
task in Table 8. We consider that the neighbor-
aware mechanism is effective to capture relation
information of neighboring tokens in an input se-
quence.

5.5 Effect of Layer-stacking Approach

We examine how approaches to stack sub-layers in
a transformer encoder architecture impact perfor-
mance. We compose a transformer encoder block
by collaborating three sub-layers such as a self-
attention, a neighbor-aware self-attention, and a
feed-forward network in different combinations.
We evaluate the models using different combination
methods of stacking layers and report the results
on the SQuAD 1.1 dataset in Table 9.

We observe that a self-attention substituted with
a neighbor-aware attention in an original trans-
former architecture decreases performance by F1
0.5 points. When a neighbor-aware attention is
stacked between a self-attention and a feed-forward
network, the model slightly performs better than
the original transformer. The sequential layered
structure of a self-attention, a neighbor-aware at-
tention, and a feed-forward network achieve the
best performance on the exact matching criteria,
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Data Processing
SQuAD1.1 SQuAD1.1

Dev EM Dev F1
Wiki+C4

85.9 91.0
(Without sentence chunking)
Wiki+C4

85.0 90.5
(Sentence chunking with 128 token-overlap)
Wiki+C4 86.3 91.2
(Sentence chunking)

Table 6: Comparison of model performance pre-trained with the use of different data processing techniques.

Model
SQuAD1.1 SQuAD1.1

Dev EM Dev F1
Standard MLM 83.7 89.1
w/POS 80.7 87.1
Entity 85.3 90.8
Noun phrase 86.3 91.2

Table 7: Results of different masking schemes during
the pre-training task.

Model
SQuAD1.1 SQuAD1.1

Dev EM Dev F1
Self-Att. 85.9 91.1
Relative-QK-Att. 86.0 91.1
Relative-QV-Att. 85.2 90.7
Entity-Self-Att. 85.7 90.9
Neighbor-Aware-Att. 86.4 91.4

Table 8: Comparison of model performance pre-trained
with different transformer variants. Att is an abbrevia-
tion for Attention. The Self-Att. scores are the mean of
multiple runs.

which demonstrates that our proposed approach
has an effect on the extractive question answering
task. We consider that attention scores computed
in a self-attention layer are re-weighted to actually
related tokens by ignoring identical tokens during
the computation of attention scores in the neighbor-
aware attention so that the neighbor-aware mech-
anism is helpful to capture relationships between
input tokens.

6 Conclusion

In this paper, we present a novel pre-trained lan-
guage representation model, ANNA which im-
proves the original transformer encoder architec-
ture by collaborating a neighbor-aware mechanism,
and is pre-trained for contextualized representa-
tions of words and noun phrases in a span level.
The experimental results show that ANNA achieves

Model
SQuAD1.1 SQuAD1.1

Dev EM Dev F1
SA → FFN 85.9 91.1
NAA → FFN 85.5 90.6
SA → SA → FFN 85.5 91.0
NAA → NAA → FFN 86.1 91.5
NAA → SA → FFN 86.1 91.4
SA → NAA → FFN 86.4 91.4

Table 9: Performance of different stacking approaches
of Self-attention (SA), Neighbor-aware-attention (NAA)
and Feed-forward-network (FNN) layers in transformer
encoder blocks. The SA-FNN scores are the mean of
multiple runs.

a new state-of-the-art on the specific extractive
question answering task by outperforming pub-
lished language model systems including BERT
baselines, as well as the latest top system on the
corresponding leaderboard. There are two main di-
rections for future research: (1) validating the com-
petitiveness of ANNA to a variety of NLP tasks;
and (2) enhancing the robustness of ANNA in order
to apply for real-world question answering tasks in
business.

References

Aakash Bansal, Zachary Eberhart, Lingfei Wu, and
Collin McMillan. 2021. A neural question answering
system for basic questions about subroutines. In 2021
IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 60–71.
IEEE.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training

128



text encoders as discriminators rather than generators.
arXiv preprint arXiv:2003.10555.

Kevin Clark, Minh-Thang Luong, Christopher D Man-
ning, and Quoc V Le. 2018. Semi-supervised se-
quence modeling with cross-view training. arXiv
preprint arXiv:1809.08370.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Vishnu Dutt Duggirala, Rhys Sean Butler, and
Farnoush Banaei Kashani. 2021. ita: A digital teach-
ing assistant. In CSEDU (2), pages 274–281.

Zhihao Fan, Yeyun Gong, Dayiheng Liu, Zhongyu Wei,
Siyuan Wang, Jian Jiao, Nan Duan, Ruofei Zhang,
and Xuanjing Huang. 2021. Mask attention net-
works: Rethinking and strengthen transformer. arXiv
preprint arXiv:2103.13597.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Aaron Gokaslan and Vanya Cohen. Openwebtext cor-
pus.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. arXiv
preprint arXiv:2002.08909.

P Hemant, Pramod Kumar, and CR Nirmala. 2022. Ef-
fect of loss functions on language models in question
answering-based generative chat-bots. In Machine
Learning, Advances in Computing, Renewable En-
ergy and Communication, pages 271–279. Springer.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Transactions of the Association for Com-
putational Linguistics, 8:64–77.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Kenton Lee, Shimi Salant, Tom Kwiatkowski, Ankur
Parikh, Dipanjan Das, and Jonathan Berant. 2016.
Learning recurrent span representations for ex-
tractive question answering. arXiv preprint
arXiv:1611.01436.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Matthew E Peters, Mark Neumann, Robert L Lo-
gan IV, Roy Schwartz, Vidur Joshi, Sameer Singh,
and Noah A Smith. 2019. Knowledge enhanced
contextual word representations. arXiv preprint
arXiv:1909.04164.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019a. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv e-prints.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019b. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
arXiv preprint arXiv:1803.02155.

Nakatani Shuyo. 2010. Language detection library for
java. Retrieved Jul, 7:2016.

129

http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683


Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. Mass: Masked sequence to sequence
pre-training for language generation. arXiv preprint
arXiv:1905.02450.

Sainbayar Sukhbaatar, Edouard Grave, Guillaume Lam-
ple, Herve Jegou, and Armand Joulin. 2019. Aug-
menting self-attention with persistent memory. arXiv
preprint arXiv:1907.01470.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki
Takeda, and Yuji Matsumoto. 2020. Luke: deep con-
textualized entity representations with entity-aware
self-attention. arXiv preprint arXiv:2010.01057.

Baosong Yang, Jian Li, Derek F Wong, Lidia S Chao,
Xing Wang, and Zhaopeng Tu. 2019a. Context-
aware self-attention networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 387–394.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019b.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. Ernie: Enhanced
language representation with informative entities.
arXiv preprint arXiv:1905.07129.

Appendices

A Performance on GLUE
At this stage, we have not submitted our results to
the official GLUE leaderboard 1, since we currently
work on fine-tuning for the GLUE benchmark. In-
stead, we report our results on the tasks that we
have completed the evaluation so far as shown in
Table 10. We compare performance with two base-
line models, BERT and SpanBERT, as the former

1https://gluebenchmark.com/leaderboard

is a pre-trained language model using a standard
encoder architecture, and the later is pre-trained
to predicts spans of texts, and motivated our noun-
phrase masking approach. Comparing to the base-
lines, ANNA outperforms those baselines on every
task, and gains the improvement of 1.7% accuracy
over SpanBERT in average. For further improve-
ment of performance on GLUE, we continue to
work on fine-tuning.

B Pre-training Datasets and Pre-processing

In this study, we use several large corpora for pre-
training language models. As shown in Table 11,
the total size of data is about 900GB for the four
corpora.

For pre-training language models with a large
volume of corpora, it is crucial to generate high-
quality data for inputs. We use heuristic pre-
processing techniques to improve the data quality
for the generation of input sequences as follows:

• Each document is split into sentences, and
we filter the sentences including less than 10
words out due to their incompleteness. Also,
documents with less than 100 words are ig-
nored for input sequences.

• Text noises such as paragraph separators, spe-
cial characters, URL addresses, and directory
paths are heuristically filtered by regular ex-
pressions.

• For Books3 data, non-English documents
are deleted by a language-detection module
(Shuyo, 2010) which is utilized for the dele-
tion of documents written in non-English
words in the Common Crawl dataset.

• Since the maximum sequence length is 512
tokens, we split the pre-processed documents
into multiple sentence chunks that do not ex-
ceed the predefined maximum length for the
input of pre-training.

C Pre-training Details

Table 12 summarizes hyperparameters that we
use for pre-training our two models: ANNABase
(L=12, H=768, A=12, Total Parameters=160M)
and ANNALarge (L=24, H=1024, A=16, Total Pa-
rameters=550M). We use the maximum sequence
length of 512, the Adam optimization (Kingma
and Ba, 2014) with learning rates of 2e-4 and 1e-4
is used for the large and base models, respectively.
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CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg.
BERTLarge 60.5 94.9 89.3/85.4 87.6/86.5 72.1/89.3 86.7/85.9 92.7 70.1 82.5
SpanBERT 64.3 94.8 90.9/87.9 89.9/89.1 71.9/89.5 88.1/87.7 94.3 79.0 85.0
RoBERTa 67.8 96.7 92.3/89.8 92.2/91.9 74.3/90.2 90.8/90.2 95.4 88.2 87.6
ANNA 65.8 96.4 91.4/88.4 91.5/90.9 73.5/89.5 90.1/89.7 95.0 83.7 86.7

Table 10: Comparison results on the GLUE development set. The “Avg.” column is slightly different than the
official GLUE scores, since the scores of WNLI and AX tasks are excluded in the average.

Wikipedia C4 Books3 OWT2
Size of text 16GB 730GB 100GB 62GB
Token counts for text 3.3B 160B 22B 13B
Size of pre-processed text 12GB 580GB 51GB 22GB
Token counts for pre-processed text 2.6B 126B 12B 5B

Table 11: Statistics of four corpora for pre-training including before and after the pre-processing procedure.

Our large model ANNALarge is trained on 256 TPU
v3 for 1M steps with the batch size of 2048, and it
takes about 10 days.

Hyper-parameter ANNALarge ANNABase

Number of layers 24 12
Hidden size 1024 768
FFN inner hidden size 4096 3072
Attention heads 16 12
Attention head size 64 64
Dropout 0.1 0.1
Warmup steps 10k 10k
Learning rates 2e-4 1e-4
Batch size 2048 1024
Weight decay 0.01 0.01
Max steps 1M 1M
Learning rate decay Linear Linear
Adam ε 1e-6 1e-6
Adam β1 0.9 0.9
Adam β2 0.999 0.999
Number of TPU 266 64
Training time 10 days 5 days

Table 12: Hyperparameters for pre-training ANNA
models.
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Response to reviewers’ comments

We would like to thank all reviewers for their
comments, and address the comments in this page.
R and A refer to reviewers’ comments and their
answers to the comments, respectively.

R1: Some parts of the Model Analysis lack
insights on the experimental results: the impact of
tokenization is still understandable, but many other
experiments raise further questions: for instance,
why does one layer stacking approach work better
than the other? It will be much more impactful to
understand the deeper details here.
A1: Some research on attention stacking such
as (Mask Attention Networks: Rethinking and
Strengthen Transformer) show that sequential
attention layers stacked with an additional attention
layer that used a different masking approach
improve performance. Our experiments present
that capturing the global semantics followed by
capturing interactions with neighbors is beneficial
for performance improvement.

R2: The authors do not say if they will release
their code (in spite of providing the details on
hyperparams etc.). This will hurt future works that
try to replicate or improve on the results, especially
since the work claims to achieve SOTA results.
A2: We are planning to release our source codes
via GitHub. As we are a commercial company,
however, it is taking a while since there are some
processes to get approval for code release. We hope
to release source codes of the ANNA model shortly.

R3: L67: Not the first paper to perform span
masking (eg. SpanBERT).
A3: In line 67, the “First” means the order of
what we are presenting in our paper, not meaning
that this work is the first paper to perform span
masking. To make it clear, we changed “First”
with “Firstly”.

R4: (Minor) The paper is sprinkled with writing
errors and could use another round of proofreading
and surface-level revision.
A4: Sorry for the writing errors. We tried to
proofread thoroughly for revision.

R5: The claim “We assume that a single
self-attention layer in Transformer encoder may be
insufficient to learn context” is not very convincing.

Why do you assume that, based on what? Do you
have a proof of that assumption?
A5: We meant that there’s something to sup-
plement for the standard attention mechanism,
and thus tried to implement the neighbor-aware
attention. To avoid ambiguity, we deleted the
sentence in revision.

R6: I am not sure why the proposed neighbor-
aware attention is specifically good for QA. Why
did you pick that task, and why was this particular
improvement proposed for this task specifically? is
there some intuition or something special about
that?
A6: Our team is interested in the question-
answering task. We found that many of the
answers have long sequences including phrases
illustrated in Figure 1, as well as short answers.
Thus we hypothesized word span might be more
beneficial for the QA task rather than a single
word. For future work, we plan to upgrade our
model and extend it to other tasks.

R7: The Self-Att. scores in Table 8 and SA-FNN
scores in Table 9 are “the mean of multiple runs.”.
Why only these, why not all numbers in the table?
Is this a fair comparison? How are the numbers in
the other rows obtained?
A7: The difference between the experimental
results in Tables 8 and 9 was not noticeable on the
first try. Thus we tried multiple runs to get fair
results.

R8: can you elaborate more in terms of the
pre-training objectives, i.e., the noun-phrase
prediction, e.g., an equation that can describe the
overall loss function?
A8: At the last paragraph in Section 3.2, we
describe how we train our pre-trained language
model mentioning that ‘Following BERT, . . .
Our language model is also designed to train
for the prediction of each token in the masked
span by computing the cross-entropy loss function.’

R9: on SQUAD 2.0, is the result SOTA?
A9: Not achieved the SOTA on SQuAD2.0 yet.

R10: have you evaluated on other downstream
tasks except the QA?
A10: In Appendix A, Table 10 shows results on the
GLUE benchmark.
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