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Abstract
In the few works that have used NLP to
study literary quality, sentiment and emotion
analysis have often been considered valuable
sources of information. At the same time, the
idea that the nature and polarity of the senti-
ments expressed by a novel might have some-
thing to do with its perceived quality seems
limited at best. In this paper, we argue that the
fractality of narratives, specifically the long-
term memory of their sentiment arcs, rather
than their simple shape or average valence,
might play an important role in the percep-
tion of literary quality by a human audience.
In particular, we argue that such measure can
help distinguish Nobel-winning writers from
control groups in a recent corpus of English
language novels. To test this hypothesis, we
present the results from two studies: (i) a prob-
ability distribution test, where we compute the
probability of seeing a title from a Nobel lau-
reate at different levels of arc fractality; (ii) a
classification test, where we use several ma-
chine learning algorithms to measure the pre-
dictive power of both sentiment arcs and their
fractality measure. Our findings seem to indi-
cate that despite the competitive and complex
nature of the task, the populations of Nobel
and non-Nobel laureates seem to behave dif-
ferently and can to some extent be told apart
by a classifier.

1 Introduction

The question of what defines the perception of qual-
ity in literature is probably as old as narrative it-
self, but the ability to process and analyze large
quantities of literary texts, and to perform complex
statistical experiments on them (Moretti, 2013),
has recently made new ways of studying this ques-
tion possible. This does not mean that the riddle
has become easy at all: first of all, studying liter-
ary quality with methods from corpus linguistics
means that one has to create a dataset of “high

quality” texts, usually to contrast against “lower
quality” texts; second, while it is possible to ana-
lyze a larger number of texts in a shorter time, we
need to know where to look to find possible, non-
obvious correlations with the perception of quality.
Recently, a series of studies have looked into the
possibility of correlating some fractal properties
of a text - the degree of fractality of its sentences’
length, sentiment arc, or succession of topics - with
its literary quality. These studies have been us-
ing as a proxy to define the quality of a text either
canons defined by a single scholar, or majority-vote
measures taken by large reader platforms, where
the aggregated score given by a large number of
readers is used as the value of the book, often with
a threshold to transform it into a binary problem.
Other similar works have used the number of sales
of a book to approximate its “quality”.

In this work, we try to use a perhaps more daring,
less explored metric to define quality: we apply
an already tested measure: the fractality of the
sentiment arc of a text, which is the curve that
represents the changes in sentiment throughout the
text. We compute this metric for a group of texts
written by authors who won the Nobel Prize for
Literature, and we ask whether this simple measure
can help tell such texts from a highly competitive
control group.

Despite the difficulty of the task - in the best
cases, Nobel Prizes are assigned to only one among
many valid competitors, which means that several
high quality writers will fall in the negative class
- our results seem to indicate that a weak but reli-
able signal is present, and that it can be exploited
by classic machine learning algorithms to predict
whether a narrative’s arc belongs to a Nobel laure-
ate or not.

The paper is organized as follows: in Section
2, we describe some of the most relevant related
works in sentiment analysis and fractal theory for
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studies in literary quality. In Section 3 we present
the corpus and discuss the idea of using Nobel
Prize winners; Section 4 gives a detailed overview
of the concept of series fractality for sentiment arcs.
Finally, Section 5 details the settings of our experi-
ments and Section 6 presents our main results. In
Section 7 we discuss our conclusions and possible
future works.

2 Related Works

2.1 Sentiment Arcs of Narratives

Drawing the sentiment arc of a story is one of the
simplest methods to abstract a narrative’s shape. At
the same time the sentiment or emotional aspect
of communication is often regarded as one of the
most relevant in narrative, especially “artistic” nar-
rative (Drobot, 2013), as it is linked with the central
and somewhat unique property of literary texts of
evoking, rather than describing, experiences and
inner states. As Hu et al. (2021) argues, readers
have to emotionally engage with the evolution of
the story, and a sentiment arc is an index of those
engagement “prompts”. For this reason, sentiment
analysis models (Alm, 2008; Jain et al., 2017), at
the word (Mohammad, 2018), sentence (Mäntylä
et al., 2018) or paragraph (Li et al., 2019) level,
have often been employed in computational liter-
ary studies (Cambria et al., 2017; Kim and Klinger,
2018; Brooke et al., 2015; Jockers, 2017). Senti-
ment analysis usually draws its scores from human
annotations of single words (Mohammad and Tur-
ney, 2013) or from lexicons induced from labelled
documents (Islam et al., 2020). Several studies
have tried to complement the essentiality of senti-
ment analysis with algorithms for textual emotion
detection (Alm et al., 2005), or by developing more
complex SA tools (Xu et al., 2020). Scholars usu-
ally analyse sentiment arcs in terms of their overall
shape (Reagan et al., 2016), but recent develop-
ments have looked for more complex mathematical
properties (Gao et al., 2016).

2.2 Fractality

The study of fractals (Mandelbrot and Ness,
1968; Mandelbrot, 1982, 1997), especially applied
to long series (Beran, 1994; Eke et al., 2002;
Kuznetsov et al., 2013) offers a new way of look-
ing into the properties of narrative and literary
texts, exploring their degree of predictability or
self-similarity (Cordeiro et al., 2015), following
links with fractal properties already found in visual

arts and musics. Recently, Mohseni et al. (2021)
have looked into the degree of fractality of canoni-
cal and non-canonical literary texts using a series
of classical stylometric features such as sentence
length, type-token ratio and part of speech ratio,
while Hu et al. (2021) applied fractal analysis to a
novel’s sentiment arc. Bizzoni et al. (2022) explore
this possibility further, showing that sentiment arcs’
fractality appears to correlate with the perceived
quality of literary fairy tales. Nonetheless, not all
studies on literary quality have relied on sentiments
or fractality: important results have also been ob-
tained with much simpler measures such as bigram
frequency (van Cranenburgh and Koolen, 2015).

2.3 Quality

The idea that readers’ perception of what is pleasant
or engaging could be found in complex statistical
patterns has given rise to a series of attempts to
approach literary quality using quantitative models
(Moretti, 2013). While it is hardly meaningful to
define an absolute measure for something like the
apperception of quality, this line of research has
had to define strategies to approximate a value of
quality for a dataset of texts. To “measure quality”,
most works to this date have looked for large scale
collections of readers’ preferences, from books’
sales to average scores on reading platforms such as
GoodReads (Kousha et al., 2017), while a smaller
number of work has instead tried to rely on estab-
lished literary canons (Wilkens, 2012). Although
these two concepts of quality are distinct and often
retrieve different collections of titles, Walsh and
Antoniak (2021) have observed that their overlap
might be much larger than expected. In both cases,
the possibility of comparing different canons and
different aggregations of readers’ preferences has
opened the possibility of expanding the scope and
reliability of aesthetic studies of literature (Under-
wood, 2019; Wilkens, 2012).

3 A dataset of Nobel literature

The first problem in determining the relationship
between sentiment arcs and literary quality is find-
ing a metric for literary quality itself; and it could
be argued that the problem of finding a reliable
source of quality judgments is the same that every
individual reader has when faced with an amount
of literature too large to read and evaluate alone
(Underwood, 2019) - it’s one of the main reasons
why literary awards exist at all. While several previ-
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N. Authors N. Titles
Whole corpus 7000 9089
Nobel group 18 85
Control group 738 1312

Table 1: Overall titles and authors in the corpus, num-
ber of Nobel laureates and dimensions of the control
group.

ous works attempting to classify or measure some
aspect of literary quality have relied on quantitative
metrics such as number of copies sold or average
reviews on large scale platforms - or even in news-
papers - few attempts have been made, to the best of
our knowledge, to use high prestige literary awards
as a central metrics to approximate the quality of a
work. In this paper we try to use arguably the most
prestigious international literary award, the Nobel
Prize for Literature, as our sole guide to select lit-
erary quality. Naturally, this setting is a deliberate
extremization: no literary award can possibly be
considered the unique indicator of what literary
quality is, and questions on the sensibility of the
Nobel committee’s choices, both in terms of who
got the prize and in terms of who did not receive it,
rise almost every year. At the same time, high level
literary prizes can work as imperfect guidelines for
one kind of quality, and it would be interesting to
find out whether, on a larger scale than single books
or authors, a “signal” telling Nobel-winning texts
from a control population can be found.

Unfortunately, no comprehensive corpus of
Nobel-winning authors exists to date. To carry out
our experiment, we used a recent corpus of literary
texts, the Chicago Corpus, compiled by Hoyt Long
and Richard Jean So, composed of 9089 novels
published in the US between 1880 and 2000. The
corpus contains key works of US Nobel laureates,
seminal works from mainstream literature as well
as relevant works in genres such as Mystery and
Science Fiction (Long and Roland, 2016). 1

The US Nobel laureates in the corpus make the
relative majority of the group of Nobel laureates,
e.g. John Galsworthy, Sinclair Lewis, William
Faulkner, Ernest Hemingway, John Steinbeck, Saul
Bellow and Toni Morrison. Works by non-US writ-
ers like for example Knut Hamsun, Samuel Beckett
and Nadine Gordimer are represented with a more

1Several quantitative literary studies have used the
corpus (Underwood et al., 2018; Cheng, 2020), which
can be found at https://textual-optics-lab.
uchicago.edu/us_novel_corpus.

limited selection of their work.
As noted, the corpus is highly curated and con-

tains high quality fiction from authors who have re-
ceived other prizes, like the National Book Award,
e.g. Don DeLillo, Joyce Carol Oates, and Philip
Roth. Our expectation is therefore not that Nobel
laureates will be completely different from the rest
of the corpus, also in terms of literary quality.

Finally it is worth noting that the whole corpus is
heavily skewed towards the Anglosaxon literature,
and that both the Nobel laureates and their con-
trol group are mainly constituted by Anglophone
writers. This naturally moves the whole contest on
the plain of a well refined “Anglo-centric” canon.
While it does not damage our experiments per se,
given that the same imbalance happens among the
Nobel laureates as among the remaining writers, it
is a distortion that we have to keep in mind.

4 Fractality of sentiment arcs

To estimate the long-term memory of sentiment
arcs we combine non-linear adaptive filtering with
fractal analysis, specifically adaptive fractal anal-
ysis (Gao et al., 2011; Tung et al., 2011). Non-
linear adaptive filtering is used because of the
inherent noisiness of story arcs. First, the sig-
nal is partitioned into segments (or windows) of
length w = 2n + 1 points, where neighboring
segments overlap by n + 1. The time scale is
n+ 1 points, which ensures symmetry. Then, for
each segment, a polynomial of order D is fitted.
Note that D = 0 means a piece-wise constant,
and D = 1 a linear fit. The fitted polynomial for
ith and (i+ 1)th is denoted as y(i)(l1), y(i+1)(l2),
where l1, l2 = 1, 2, ..., 2n+ 1. Note the length of
the last segment may be shorter than w. We use the
following weights for the overlap of two segments.

y(c)(l1) = w1y
(i)(l + n) + w2y

(i)(l),

l = 1, 2, . . . , n+ 1 (1)

where w1 = (1 − l−1
n ), w2 = 1 − w1 can be

written as (1− dj
n ), j = 1, 2, where dj denotes the

distance between the point of overlapping segments
and the center of y(i), y(i+1). The weights decrease
linearly with the distance between the point and
center of the segment. This ensures that the filter
is continuous everywhere, which ensures that non-
boundary points are smooth.

We use the Hurst exponent to measure long-term
memory. Assuming that stochastic process X =

https://textual-optics-lab.uchicago.edu/us_novel_corpus
https://textual-optics-lab.uchicago.edu/us_novel_corpus
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Xt : t = 0, 1, 2, ..., with stable covariance, mean µ
and σ2, the process’ autocorrelation function for
r(k), k ≥ 0 is:

r(k) =
E [X(t)X(t+ k)]

E [X(t)2]
∼ k2H−2, as k →∞

(2)
where H is called the Hurst exponent (Mandel-

brot, 1982). For 0.5 < H < 1 the story arc is
characterized by persistent such that increments
are followed by increases and decreases by further
decreases. For H = 0.5 the story arc only has
short-range correlations; and when H < 0.5 the
story arc is anti-persistent such that increments are
followed by decreases and decreases by increments.
For the specific application domain (i.e., narratives)
persistent story arcs are characteristic of coherent
narratives, where the emotional intensity evolves at
longer time scales. Story arcs’ that only show short
memory lack coherence and appear like a collec-
tion of short stories. Anti-persistent story arcs will
appear bland and rigid narratives oscillating around
an average emotional state (Hu et al., 2021).

Detrended fluctuation analysis (DFA) is the most
widely used method for estimating the Hurst pa-
rameter, but DFA may involve discontinuities at
the boundaries of adjacent segments. Such discon-
tinuities can be detrimental when the data contain
trends (Hu et al., 2001), non-stationarity (Kantel-
hardt et al., 2002), or nonlinear oscillatory compo-
nents (Chen et al., 2005; Hu et al., 2009). Adaptive
fractal analysis is a more robust alternative to DFA
(Gao et al., 2011; Tung et al., 2011). AFA consists
of the following steps: first, the original process is
transformed to a random walk process through first-
order integration u(n) =

∑n
k=1(x(k)− x), n =

1, 2, 3, ..., N , where x is the mean of x(k). Second,
we extract the global trend (v(i), i = 1, 2, 3, ..., N)
through the nonlinear adaptive filtering. The resid-
uals (u(i) − v(i)) reflect the fluctuations around
a global trend. We obtain the Hurst parameter by
estimating the slope of the linear fit between the
residuals’ standard deviation F (2)(w) and w win-
dow size as follows:

F (2)(w) =

[
1

N

∑N
i=1(u(i)− v(i))2

] 1
2

∼ wH

(3)
All our sentiment arcs are sentence based, ex-

tracted using the VADER model (Hutto and Gilbert,
2014) in NLTK’s implementation (Bird, 2006).

While VADER is not the most recent Sentiment
Analysis model, we chose it for its transparency,
since it is possible to reconstruct the reasons of its
judgments based on its systems of rules, as well
as its popularity, as its underlying dictionary and
set of rules has proven the weapon of choice for
a large number of previous works. The sentiment
arc is obtained by first computing the sentiment of
each word in the text, and then by computing the
average sentiment of each sentence. The sentiment
of a word is in turn obtained using an ad-hoc lex-
icon, which links a sentiment score to each word
and takes care of morphological variations. The
sentiment of a sentence is then computed as the
average of the sentiment scores of all the words in
that sentence, by taking care of tricky structures
like negations, intensifiers and so forth.

5 Experiments

We present the results for two experiments:

1. Without directly testing the predictive power
of narrative sentiment arcs and their Hurst ex-
ponent, we analyzed its distribution in both
Nobel-winning and non-Nobel-winning pop-
ulations, to test whether the two populations
might differ in their average score;

2. To directly test the predictive power of our
Hurst exponent, we ran a series of classifiers
to check whether sentiment arcs and their
Hurst score can provide a degree of predic-
tive power on telling whether or not a given
text is likely to belong to a Nobel-winning
author.

In both cases, we decided to design the non-Nobel-
winning class (or control group) in order to be as
contextual to the Nobel population as possible: for
each book belonging to an author who won the No-
bel prize, we took all novels published between one
year before and one year after its publication date,
and we considered them as the “control group” for
that book. All the control groups for all books of
one author work as the control group for that author,
and all control groups together combine into the
overall control group for the Nobel prize popula-
tion. We did this also to mimic as much as possible
the logic of the prize itself, that selects between
contemporary candidates. A detailed summary of
this selection process can be seen in Table 2.
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Nobel N. titles Control
S. Beckett 1 32
S. Bellow 5 228
W. Churchill 4 125
W. Faulkner 15 332
J. Galsworthy 9 105
W. Golding 2 6
N. Gordimer 2 3
K. Hamsun 1 1
E. Hemingway 7 170
R. Kipling 3 19
D. Lessing 3 34
S. Lewis 8 137
T. Morrison 5 192
A. Munro 1 2
J. Steinbeck 15 81
R. Tagore 1 19
S. Undset 2 32
P. White 1 0
Total 85 1518

Table 2: Number of titles per Nobel and control group.
Notice that the control group’s total number is higher
than the one reported in Table 1 since one title can fig-
ure in more than a subgroup.

5.1 Probability distribution

In the first experiment, we simply focused on
the possibility that the Nobel-winning population
might have a different Hurst score distribution than
the control group, and that such difference might
be statistically significant on the large scale. To fur-
ther test this idea, we divided our corpus in Hurst
classes (e.g. all titles having a Hurst score of 0.51,
0.52, etc.) and we looked at the probability of see-
ing a title from a Nobel laureate in each of these
classes. To deal with the problem of having a heav-
ily imbalanced dataset, since the control authors
are much more numerous in any class than Nobel
winning authors, we computed the probabilities on
a sub-sampled portion of the control group as large
as the Nobel group, so that both populations sum up
to the exact same amount. Finally, in order to avoid
relying on random lucky or unlucky sub-samplings
from the majority class, and in general to increase
the representativity of our comparison, we repeated
the random majority class sub-sampling 100 times
and drew the average probability for each Hurst
class. The result is that for each class of Hurst val-
ues, we compute the probability of seeing a Nobel
author’s title and the average probability of seeing

a non-Nobel author’s title as computed over several
subsamples.2

5.2 Classification
In the second experiment, we trained four different
classifiers:

• Quadratic Discriminant Analysis classifier
(Bose et al., 2015): a generative model that
is particularly apt to classify data when the
decision boundaries are non-linear;

• Gaussian Naive Bayes classifier (Chan et al.,
1982): we chose this model particularly for its
ability to handle small and complex training
data;

• Random Forest classifier (Ho, 1995): this
algorithm is well suited to make fine-grained
predictions on data that are not necessarily
linearly divisible;

• Decision Tree classifier, which has the bene-
fits of being simple and able to handle rel-
atively small datasets (Swain and Hauska,
1977).

As features, we used the Hurst score and a con-
densed version of the sentiment arc for each novel.

The large difference in our classes’ sizes repre-
sents an additional difficulty. The sparsity of Nobel
titles makes training on the dataset as is a seem-
ingly meaningless task, since classifiers systemati-
cally ignore or misrepresent the minority class. To
contrast that dataset’s imbalance, we tried three
resampling techniques:

• Random subsampling: this is the easiest re-
sampling technique, and it simply means that
we randomly drew from the majority class a
number of data points equal to the size of the
minority class, as we did in Section 5.1;

• Near Miss subsampling (Mani and Zhang,
2003; Bao et al., 2016), specifically the so
called Near-Miss 1 method: this is a more
sophisticated undersampling technique based
on the distance between items from the major-
ity and items from the minority class, where
the elements from the majority class with the
smallest average distance to three minority
class examples are selected for comparison.

2This naturally means that the probabilities do not neces-
sarily sum up to 1.
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Score p-value
T-test 2.57 0.01
Anova 6.63 0.01
Mann-Whitney U 55106 0.023
Kruskal-Wallis 5.166 0.023

Table 3: Difference between Nobel laureates and con-
trol group as tested by four significance measures (the
first two assume that the populations have a normal dis-
tribution, the last two do not make such assumption).
In all cases, the difference in Hurst score distributions
is statistically significant.

In this way, the algorithm selects datapoints
that are closest to the decision boundary;

• SMOTE upsampling (Chawla et al., 2002), a
upsampling technique widespread in machine
learning, often used in cases of severely im-
balanced datasets (Liu et al., 2019; Rustogi
and Prasad, 2019). SMOTE has the consider-
able benefit of creating not simple duplicates
of the observed datapoints, but rather slightly
different synthetic datapoints, increasing the
ability of a classifier of modeling a minority
class.

6 Results

6.1 Probability distribution

The difference between the distributions of Hurst
scores for the Nobel and the control group is sta-
tistically significant according to several measures,
as can be seen in Table 3.

The probability of seeing a text from a Nobel lau-
reate peaks at a different point than the probability
of seeing a text from the control group (see Figure
1). The distribution of the two groups reinforces the
hypothesis, laid by Hu et al. (2021), that high liter-
ary quality might lie in a specific area on the Hurst
continuum - in other words, that there might be a
specific interval of Hurst values where high quality
narrative texts are most likely to fall. Naturally we
should not ignore the fact that the two probability
distributions have a considerable overlap; that the
statistical significance, while being strong, does not
mean that the two groups are completely separable;
and that the number of control titles is higher than
the number of titles from Nobel-winning authors
for any Hurst interval. In other words, any text
has a lower probability of belonging to a Nobel
laureate than of belonging to an author that did not

win the Nobel prize - after all it’s possible to award
the Nobel prize to just one person every year. At
the same time, if we take equal-sized classes for
the two groups, texts having a Hurst score ranging
approximately between 0.53 and 0.61 seem to have
a higher probability of belonging to a Nobel lau-
reate than of belonging to a control author, while
texts falling outside of this range have a higher
probability of belonging to a control author than
of belonging to a Nobel laureate: again, the Nobel
population and the control population display statis-
tically different behaviours on the Hurst continuum.
Figure 1 offers a visualization of our results.

A cursory qualitative examination of the results
for different authors proved that these results of-
ten (but not always) correspond to what we might
expect from a given title or author. For example
John Steinbeck, one of the best represented writ-
ers in the corpus with 15 novels, has an average
Hurst exponent of 0.598, and thus differs insignifi-
cantly from the 90 works in its control group, that
score an average of 0.606, but with a more signif-
icant standard deviation (0.41 vs. 0.25). While
Steinbeck’s novels Hurst scores range from 0.56
to 0.64, the two novels that get by far the highest
average grades on GoodReads (Mice and Men and
The Grapes of Wrath with Cannery Row as a very
distant third) both have a Hurst exponent of exactly
0.58, at the apex of the probability curve for Nobel
titles. Similar observations can be made for the
works for other popular Nobel laureates, such as
Hemingway, with his most renowned titles (such
as for example The Old Man and the Sea or For
whom the bell tolls) roughly falling within what we
considered a fuzzy Goldilocks interval for literary
quality, while less acclaimed texts such as To have
and have not are clearly out of it (Figure 1). Many
other factors play into the success of these promi-
nent novels, but their location in the middle of what
seems to be a “Goldilocks”-zone for variability is
significant, also when studied on the level of the
individual authorship.

6.2 Classification

Among the three techniques we adopted to resam-
ple our dataset, we found that randomly undersam-
pling the majority class does not yield particularly
strong results, while Near Miss understampling and
SMOTE oversampling both bring the models to bet-
ter performances (see Figure 2). The reason for this
lies probably in the fact that the difference between
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Figure 1: Probability distribution of the Nobel group and of the control group. The control population’s proba-
bilities are averaged over 100 different selections. We added some titles for reference. Not all works from Nobel
laureates fall in the Hurst “sweet spot”: for example, The Old Man and The Sea has a Hurst score of 0.53, while
the less acclaimed To Have and Have Not from the same author has a Hurst score of 0.69.

the two populations, while present, is quite difficult
to pick up even when we control for size: after
all, we are using a corpus with a large number of
high quality authors that did not win a Nobel prize,
so the control group is both much larger than the
Nobel group and bound to have several elements
similar to its members. Just randomly subsampling
from the majority class to create a small group of
non-Nobels to learn from makes the task very diffi-
cult, while an algorithm like Near Miss, that selects
data with the least distance to the negative classe’s
samples, essentially selecting learning cases that is
most fruitful for the classifier to model, brings sig-
nificantly better results. Finally, it’s worth noting
how SMOTE upsampling brings about the high-
est performances of the group (excluding the “All
dataset” case): while this technique does not create
completely dependable results, since it relies on
the synthetic generation of new data points for the
minority class, its effectiveness can make us more
confident in postulating that a difference between
the Nobel and the control populations does indeed
exist.

In Table 4 we provide a summary of the per-
formances, adding in parenthesis the performance
of the classifiers when they are only fed informa-
tion from the sentiment arcs, without accessing the

Hurst exponent. The comparison seems to us quite
interesting: the sentiment arcs seem to suffice in
bringing about better-than-chance performances,
and in some cases even quite high scores; on the
other hand, all classifiers trained on a feature set
enriched by the single dimension of the arcs’ Hurst
exponent perform better than when they do not
have access to such information, with no exception,
and in some cases the single presence of the Hurst
exponent increases the F scores significantly.

7 Discussion and Conclusions

In this paper we have tried to use a measure of
fractality for sentiment arcs to distinguish Nobel-
winning writers in a corpus of selected literary texts
in the English language, as a case for the relevance
of this metric in literary quality evaluation. We are
not interested in the overall valence of a literary
work as such, but in its patterns of variation and
repetition throughout the narrative arc, although
the underlying argument for using sentiment analy-
sis (and not just, for example, PoS tagging) is that
it can be linked to the evocation of emotions in
the work. Even if it is far from catching the ex-
pressions of emotions perfectly, as there are many
way to express them, also through words with a
neutral sentiment, we believe it remains a strong
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Original dataset Random Subs. Near Miss SMOTE Ups.

Quadratic Discr. An. 0.90 (0.90) 0.55 (0.51) 0.56 (0.51) 0.57 (0.50)
Gaussian Naive Bayes 0.91 (0.90) 0.52 (0.49) 0.80 (0.67) 0.67 (0.53)
Decision Tree Cl. 0.88 (0.88) 0.57 (0.52) 0.69 (0.60) 0.87 (0.82)
Random Forest 0.91 (0.90) 0.53 (0.51) 0.79 (0.62) 0.90 (0.86)

Average

Table 4: Weighted F scores, averaged from a 10-fold cross-validation, for four classifiers trained on different ver-
sions of the dataset. Notice how the results on the “all dataset” column are effects of the majority class being
overwhelmingly larger than the minority class. In parenthesis, we add the performances when only using informa-
tion from the sentiment arcs. The other three columns, reporting results based on resampled versions of the dataset,
do not resent of the distortion.

indicator of the work’s rhetoric appeal structure.
Overall, the best attitude towards this kind of met-
ric is probably similar to the attitude we can have
towards the aesthetic properties of fractals in mu-
sic or visual arts: it is never necessary for a work
of art to contain anything fractal, but on the large
scale we could expect fractal patterns to hold a
correlation with the perception of beauty. In the
same way, we should not imagine a systematic re-
lationship between quality and a given range of
Hurst exponents: first of all because there is no
single way to measure literary quality, and second
because a “good” Hurst exponent can hardly be
the single factor in high quality textual narrative.
Nonetheless, we have found that the distribution
of Hurst exponents, as computed on the sentiment
arcs of whole novels, for the titles of authors who
won a Literature Nobel Prize is different from the
distribution of Hurst exponents for the titles of the
control group. This is particularly relevant consid-
ering that the control group still included several
high-level writers, from Nabokov to Woolf, who
can be said to rival the Nobel population in terms
of both fame and critical acclaim. What this differ-
ence in distribution seems to indicate is that there
might be a “sweet spot” of self-similarity in senti-
ment arcs, roughly between 0.53 and 0.61, where
the probability of seeing a text from a Nobel laure-
ate grows and the probability of seeing a title from
a non-Nobel laureate decreases. Following on this
finding, we tried to create a classifier that would tell
whether a text came from a Nobel laureate or not
based on its Hurst exponent and a representation
of its sentiment arc only. What we found is that
when we control for data imbalance by using Near
Miss subsampling or SMOTE upsampling, classi-

fiers appear to perform well above chance, while if
we subsample randomly their performance suffers
considerably. We consider this a indication that
a “signal” for Nobel laureates exists, despite the
highly competitive control group, and that it falls
in line with previous studies on the Hurst exponent
for sentiment arcs.

8 Future Work

Given the scope and complexity of the concept of
literary quality, there are several interesting direc-
tions this research can take. A sensible next step
would be to increase the size of our corpus to in-
clude more texts, in order to see if the signal for
Nobel laureates becomes more pronounced. Specif-
ically, we aim at increasing the number of titles in
the minority class, both by looking at other presti-
gious awards and by including not only the winners,
but also the list of nominees. Being pre-selected for
a prestigious award, nominees could help creating
a larger “quality class” and might even temper the
random or political factors playing in the choice
of a single individual winner. The Chicago cor-
pus does not offer such information in its metadata,
but it is still possible and even relatively easy to
access it for the Nobel prize. Other large English
language prizes like the Pulitzer Prize would also
be of great interest to create a larger subset. An-
other goal worth striving for, albeit on a longer
time scale, is to include a more diverse range of
titles. The Chicago corpus is constituted mainly
of Anglophone writers - both the Nobel group and
its control are heavily skewed towards the Anglo-
Saxon literature. Finally, the internal imbalance in
the amount of titles that different Nobel laureates
hold in our selection might play a role in the be-
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Figure 2: Classification results for our 4 classifiers under three different assumptions: random undersampling, Near
Miss undersampling and SMOTE upsampling, with increasing number of folds in a K-folds cross-validation.

haviour of the systems. While we are comforted
by the fact that the same metrics have proved use-
ful with completely different authors in previous
works, in future we would like to design ablation
experiments aimed at checking the performance
of the machine learning models on the less repre-
sented names. Finally, it would be interesting to
see if this signal is specific to English-language
texts or if it appears in other languages as well.

References

Cecilia Ovesdotter Alm, Dan Roth, and Richard
Sproat. 2005. Emotions from text: machine
learning for text-based emotion prediction. In
Proceedings of human language technology con-
ference and conference on empirical methods in
natural language processing, pages 579–586.

Ebba Cecilia Ovesdotter Alm. 2008. Affect in* text
and speech. University of Illinois at Urbana-
Champaign.

Lei Bao, Cao Juan, Jintao Li, and Yongdong Zhang.
2016. Boosted near-miss under-sampling on svm
ensembles for concept detection in large-scale
imbalanced datasets. Neurocomputing, 172:198–
206.

Jan Beran. 1994. Statistics for Long-Memory Pro-
cesses, 1 edition. Chapman and Hall/CRC, New
York.

Steven Bird. 2006. Nltk: the natural language
toolkit. In Proceedings of the COLING/ACL
2006 Interactive Presentation Sessions, pages
69–72.

Yuri Bizzoni, Telma Peura, Kristoffer Nielbo, and
Mads Thomsen. 2022. Fractal sentiments and
fairy tales-fractal scaling of narrative arcs as pre-
dictor of the perceived quality of andersen’s fairy
tales. Journal of Data Mining & Digital Human-
ities.

Smarajit Bose, Amita Pal, Rita SahaRay, and Ji-
tadeepa Nayak. 2015. Generalized quadratic
discriminant analysis. Pattern Recognition,
48(8):2676–2684.

Julian Brooke, Adam Hammond, and Graeme Hirst.
2015. Gutentag: an nlp-driven tool for digital
humanities research in the project gutenberg cor-
pus. In Proceedings of the Fourth Workshop on
Computational Linguistics for Literature, pages
42–47.

Erik Cambria, Dipankar Das, Sivaji Bandyopad-
hyay, and Antonio Feraco. 2017. Affective
computing and sentiment analysis. In A prac-
tical guide to sentiment analysis, pages 1–10.
Springer.

Tony F Chan, Gene H Golub, and Randall J LeV-
eque. 1982. Updating formulae and a pair-
wise algorithm for computing sample variances.



40

In COMPSTAT 1982 5th Symposium held at
Toulouse 1982, pages 30–41. Springer.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O
Hall, and W Philip Kegelmeyer. 2002. Smote:
synthetic minority over-sampling technique.
Journal of artificial intelligence research,
16:321–357.

Zhi Chen, Kun Hu, Pedro Carpena, Pedro Bernaola-
Galvan, H. Eugene Stanley, and Plamen Ch.
Ivanov. 2005. Effect of nonlinear filters on
detrended fluctuation analysis. Phys. Rev. E,
71(1):011104.

Jonathan Cheng. 2020. Fleshing out models of
gender in english-language novels (1850–2000).
Journal of Cultural Analytics, 5(1):11652.

João Cordeiro, Pedro R. M. Inácio, and Diogo A. B.
Fernandes. 2015. Fractal beauty in text. In
Progress in Artificial Intelligence, Lecture Notes
in Computer Science, pages 796–802. Springer
International Publishing.

Andreas van Cranenburgh and Corina Koolen.
2015. Identifying literary texts with bigrams. In
Proceedings of the Fourth Workshop on Compu-
tational Linguistics for Literature, pages 58–67.

Irina-Ana Drobot. 2013. Affective narratology.
the emotional structure of stories. Philologica
Jassyensia, 9(2):338.

A. Eke, P. Herman, L. Kocsis, and L. R. Kozak.
2002. Fractal characterization of complexity in
temporal physiological signals. Physiological
Measurement, 23(1):R1.

Jianbo Gao, Jing Hu, and Wen-wen Tung. 2011.
Facilitating Joint Chaos and Fractal Analysis of
Biosignals through Nonlinear Adaptive Filtering.
PLoS ONE, 6(9):e24331.

Jianbo Gao, Matthew L Jockers, John Laudun, and
Timothy Tangherlini. 2016. A multiscale the-
ory for the dynamical evolution of sentiment in
novels. In 2016 International Conference on
Behavioral, Economic and Socio-cultural Com-
puting (BESC), pages 1–4. IEEE.

Tin Kam Ho. 1995. Random decision forests. In
Proceedings of 3rd international conference on
document analysis and recognition, volume 1,
pages 278–282. IEEE.

Jing Hu, Jianbo Gao, and Xingsong Wang. 2009.
Multifractal analysis of sunspot time series: the
effects of the 11-year cycle and Fourier trunca-
tion. Journal of Statistical Mechanics: Theory
and Experiment, 2009(02):P02066.

Kun Hu, Plamen Ch. Ivanov, Zhi Chen, Pedro
Carpena, and H. Eugene Stanley. 2001. Effect of
trends on detrended fluctuation analysis. Physi-
cal Review E, 64(1).

Qiyue Hu, Bin Liu, Mads Rosendahl Thomsen,
Jianbo Gao, and Kristoffer L Nielbo. 2021. Dy-
namic evolution of sentiments in never let me go:
Insights from multifractal theory and its implica-
tions for literary analysis. Digital Scholarship in
the Humanities, 36(2):322–332.

Clayton Hutto and Eric Gilbert. 2014. Vader: A
parsimonious rule-based model for sentiment
analysis of social media text. In Proceedings of
the international AAAI conference on web and
social media, volume 8, pages 216–225.

SM Mazharul Islam, Xin Luna Dong, and Gerard
de Melo. 2020. Domain-specific sentiment lexi-
cons induced from labeled documents. In Pro-
ceedings of the 28th International Conference on
Computational Linguistics, pages 6576–6587.

Swapnil Jain, Shrikant Malviya, Rohit Mishra, and
Uma Shanker Tiwary. 2017. Sentiment analysis:
An empirical comparative study of various ma-
chine learning approaches. In Proceedings of the
14th International Conference on Natural Lan-
guage Processing (ICON-2017), pages 112–121,
Kolkata, India. NLP Association of India.

Matthew Jockers. 2017. Syuzhet: Extracts senti-
ment and sentiment-derived plot arcs from text
(version 1.0. 1).

Jan W. Kantelhardt, Stephan A. Zschiegner,
Eva Koscielny-Bunde, Shlomo Havlin, Armin
Bunde, and H. Eugene Stanley. 2002. Multifrac-
tal detrended fluctuation analysis of nonstation-
ary time series. Physica A: Statistical Mechanics
and its Applications, 316(1-4):87–114.

Evgeny Kim and Roman Klinger. 2018. A survey
on sentiment and emotion analysis for computa-
tional literary studies.

Kayvan Kousha, Mike Thelwall, and
Mahshid Abdoli. 2017. Goodreads

https://doi.org/10.1103/PhysRevE.71.011104
https://doi.org/10.1103/PhysRevE.71.011104
https://doi.org/10.1007/978-3-319-23485-4_80
http://stacks.iop.org/0967-3334/23/i=1/a=201
http://stacks.iop.org/0967-3334/23/i=1/a=201
https://doi.org/10.1371/journal.pone.0024331
https://doi.org/10.1371/journal.pone.0024331
https://doi.org/10.1088/1742-5468/2009/02/P02066
https://doi.org/10.1088/1742-5468/2009/02/P02066
https://doi.org/10.1088/1742-5468/2009/02/P02066
https://doi.org/10.1103/PhysRevE.64.011114
https://doi.org/10.1103/PhysRevE.64.011114
https://aclanthology.org/W17-7515
https://aclanthology.org/W17-7515
https://aclanthology.org/W17-7515
https://doi.org/10.1002/asi.23805


41

reviews to assess the wider impacts
of books. 68(8):2004–2016. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/asi.23805.

Nikita Kuznetsov, Scott Bonnette, Jianbo Gao, and
Michael A. Riley. 2013. Adaptive Fractal Anal-
ysis Reveals Limits to Fractal Scaling in Center
of Pressure Trajectories. Annals of Biomedical
Engineering, 41(8):1646–1660.

Xin Li, Lidong Bing, Wenxuan Zhang, and Wai
Lam. 2019. Exploiting bert for end-to-end
aspect-based sentiment analysis. arXiv preprint
arXiv:1910.00883.

Shiyu Liu, Ming Lun Ong, Kar Kin Mun, Jia Yao,
and Mehul Motani. 2019. Early prediction of
sepsis via smote upsampling and mutual informa-
tion based downsampling. In 2019 Computing
in Cardiology (CinC), pages Page–1. IEEE.

Hoyt Long and Teddy Roland. 2016. Us novel
corpus. Technical report, Textual Optic Labs,
University of Chicago.

Benoit Mandelbrot. 1982. The Fractal Geometry
of Nature, updated ed. edition edition. Times
Books, San Francisco.

Benoit B. Mandelbrot. 1997. Fractals and Scaling
in Finance: Discontinuity, Concentration, Risk.
Selecta Volume E, 1997 edition edition. Springer,
New York.

Benoit B. Mandelbrot and John W. Van Ness. 1968.
Fractional Brownian Motions, Fractional Noises
and Applications. SIAM Review, 10(4):422–437.

Inderjeet Mani and I Zhang. 2003. knn approach
to unbalanced data distributions: a case study
involving information extraction. In Proceed-
ings of workshop on learning from imbalanced
datasets, volume 126, pages 1–7. ICML.

Saif M. Mohammad. 2018. Obtaining reliable hu-
man ratings of valence, arousal, and dominance
for 20,000 english words. In Proceedings of
The Annual Conference of the Association for
Computational Linguistics (ACL), Melbourne,
Australia.

Saif M Mohammad and Peter D Turney. 2013. Nrc
emotion lexicon. National Research Council,
Canada, 2.

Mahdi Mohseni, Volker Gast, and Christoph
Redies. 2021. Fractality and variability in canon-
ical and non-canonical english fiction and in non-
fictional texts. 12.

Franco Moretti. 2013. Distant reading. Verso
Books.
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