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Abstract

Recent approaches to Word Sense Disambigua-
tion (WSD) have profited from the enhanced
contextualized word representations coming
from contemporary Large Language Models
(LLMs). This advancement is accompanied
by a renewed interest in WSD applications in
Humanities research, where the lack of suit-
able, specific WSD-annotated resources is a
hurdle in developing ad-hoc WSD systems. Be-
cause they can exploit sentential context, LLMs
are particularly suited for disambiguation tasks.
Still, the application of LLMs is often limited
to linear classifiers trained on top of the LLM
architecture. In this paper, we follow recent
developments in non-parametric learning and
show how LLMs can be efficiently fine-tuned to
achieve strong few-shot performance on WSD
for historical languages (English and Dutch,
date range: 1450-1950). We test our hypothe-
sis using (i) a large, general evaluation set taken
from large lexical databases, and (ii) a small
real-world scenario involving an ad-hoc WSD
task. Moreover, this paper marks the release of
GysBERT, a LLM for historical Dutch.

1 Introduction & Related Work

A common task in Natural Language Processing
(NLP) applications is the disambiguation of a par-
ticular target word in a given context. Due to a
variety of reasons (see e.g. Blank, 1999), word
forms may be semantically extended to a range of
different meanings or word senses (e.g. rat ‘animal’
> ‘informer, snitch’). Automated disambiguation—
i.e. the mapping of an ambiguous word form to
its intended underlying word sense—is a task that
can help in many different types of information
extraction and text mining tasks.

In recent years, WSD approaches have shifted
towards contextualized embeddings extracted from
Large Language Models (LLM) like BERT (Devlin
et al., 2019). These token-based embeddings incor-
porate substantial semantic information from the

target lexical item and the sentential context that
surrounds it. For this reason, LLMs are particularly
well suited to disambiguation tasks and have, in
fact, already been shown to indirectly capture word
senses and perform competitively (Reif et al., 2019;
Hadiwinoto et al., 2019). More recently, LLMs also
obtained state-of-the-art performance using seman-
tic networks (Loureiro and Jorge, 2019) and gloss
information (Luo et al., 2018; Huang et al., 2019;
Blevins and Zettlemoyer, 2020).

These recent advancements in WSD by means
of LLMs are also interesting for Humanities
scholars, as large-scale corpus-based studies have
steadily become more standard practice over the
last decades. Traditionally, data annotation in Hu-
manities research is done manually, but with ever-
growing size of corpora, such manual WSD has
become decreasingly feasible. At the same time,
researchers are also increasingly interested in dis-
ambiguating word senses without relying on intu-
itive judgment, which is ultimately subjective. This
desire for a more data-driven approach to WSD is
particularly prominent in research involving his-
torical language, for which researchers are unable
to solicit native speaker interpretations and expert
annotators are rare. There is, in short, a growing
interest in and need for automated WSD in Human-
ities research, and researchers have turned to NLP
techniques to meet their needs.

As examples, we find projects aiming to trace
the history of concepts over time (e.g. Beelen et al.,
2021), automatically detect (different types of)
lexical-semantic (e.g. Sagi et al., 2011; Giulianelli
et al., 2020) and grammatical change (e.g. Fonteyn,
2020) or to quantify the evolution of the senses
of a word (e.g. Tahmasebi et al., 2018). Because
of their temporal dimension, such projects require
NLP architectures that can process word senses
in settings which are complicated by an evolv-
ing grammar and lexicon (Fonteyn, 2020), shift-
ing spelling conventions, and noise introduced by
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OCR errors (Piotrowski, 2012). Yet, applications
of LLMs on historical corpora tend to be either
limited to arithmetic operations on the vector space
of frozen contextual embeddings, or restricted to
fine-tuning a linear layer to perform disambigua-
tion to a pre-determined number of senses (Hagen
et al., 2020; Beelen et al., 2021; Manjavacas and
Fonteyn, 2021).

In this paper, we explore the capabilities of Large
Language Models (LLMs) á la BERT (Devlin et al.,
2019) for WSD on historical text. In doing so, we
investigate to what extent (i) fine-tuning can im-
prove WSD over arithmetic operations on plain
frozen embeddings, and (ii) how much annotated
data is needed in order to obtain gains over a base-
line. Our focus lies on examining the data effi-
ciency of LLM-based approaches for WSD, be-
cause annotated resources for WSD are generally
scarce and costly to generate – a problem that is ex-
acerbated with historical languages, where rare ex-
pert historical knowledge is required to produce an-
notated resources. To attain these goals, we take in-
spiration from recent metric-based non-parametric
approaches (Holla et al., 2020; Du et al., 2021;
Chen et al., 2021). These aim to optimize a model
on a set of learning tasks (e.g. the disambiguation
of a given ambiguous word) so that the model can
quickly adapt to perform well on similar future
tasks (e.g. disambiguating sentences of an ambigu-
ous new word on the basis of a small annotated set
of word senses). More specifically, we deploy a
non-parametric approach to WSD fine-tuning that
does not rely on additional task-specific parameters
and that achieves surprisingly strong performance
on out-of-domain lemmas. We argue that these re-
sults are promising if we aim to extend the scope
of applications of WSD models in the Humanities.

Main Contributions Our experiments show that
a metric-based parameter-free approach to few-shot
WSD can achieve promising performance on his-
torical data, even on held-out lemmas that were not
seen during training. To do so, they require only a
small number of training lemmas and word sense
examples.

Moreover, we show that historical pre-training
can push performance even further. To this end,
we rely on MacBERTh (Manjavacas and Fonteyn,
2021, 2022), a LLM pre-trained on historical En-
glish. Additionally, in order to back up the re-
sults across different languages, a new historically
pre-trained LLM for Dutch named GysBERT was

developed and tested. The release of GysBERT
accompanies the publication of the present study.1

Outline In Section 2, we describe the archi-
tecture used in order to tackle WSD in a non-
parametric way. Subsequently, in Section 3, we
describe the resources, datasets and pre-trained
models underlying the present study. In Section 4,
we present a series of experiments in order to il-
lustrate the main results achieved by the evaluated
approaches, focusing on small training regimes in
Section 4.2, as well as the effect of time in Sec-
tion 4.3. Section 4.4 showcases a downstream ap-
plication on a type ad-hoc WSD task in a specific
semantic field (i.e. the concepts MASS and WEIGHT

in scientific language) that is common in Human-
ities reseearch but often overlooked in favor of
full-coverage WSD. The paper concludes with a
discussion and pointers to future work in Section 5.

2 Method

2.1 Architecture

The present approach deploys a parameter-free ar-
chitecture which is heavily inspired by both the
Matching Networks (Vinyals et al., 2016) and the
Prototypical Networks (Snell et al., 2017) frame-
works.

In this non-parametric approach, we fine-tune a
given LLM using episodic training. In this type of
training, each batch constitutes a training episode
which is designed in order to match the experimen-
tal conditions expected at inference time. In the
case of WSD, each episode consists of a number
of randomly sampled sentences—a ‘support set’—
, exemplifying different word senses of a given
lemma, as well as a second set of randomly sam-
pled sentences—a ‘query set’—, for which a word
sense prediction needs to be made.2

Sentences in the query set are used in order to
obtain a contextualized word embedding for the tar-
get word (i.e. the word representing the lemma to
be disambiguated). The support set is used in order
to compute abstract word sense representations for
each of the word senses a lemma may have.3

1Both models can be accessed through the origi-
nal huggingface repository through the following
links https://huggingface.co/emanjavacas/
MacBERTh and https://huggingface.co/
emanjavacas/GysBERT.

2See Table 3 in the Appendix for an illustration of the struc-
ture of the lexical databases and an example of the sentences
that are being classified.

3Note that for this approach to work, the true word sense

https://huggingface.co/emanjavacas/MacBERTh
https://huggingface.co/emanjavacas/MacBERTh
https://huggingface.co/emanjavacas/GysBERT
https://huggingface.co/emanjavacas/GysBERT
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These abstract sense embeddings can be com-
puted in multiple ways, but for simplicity we have
chosen a centroid approach. First, the contextual-
ized embeddings of the target lemma in the support
sentences are extracted, and, then, averaged in or-
der to get a single representation per word sense.4

More formally, let E(Si) and E(Qj) denote the
contextualized embeddings of the target lemma in
the ith support sentence and the jth query sentence
in the current training episode. And let R(Sj) de-
note the word sense of the jth sentence in the sup-
port set. Then, the representation for the kth word
sense rk in a given training episode is computed as
follows:

E(rk) =
∑

{j|R(Sj)=k}

E(Sj)

|{j|R(Sj) = k}|
(1)

The objective of the approach is to maximize
the probability of the true word sense given by the
following equation.

p(k|E(Qj)) ∝ sim(E(Qj), E(rk)) (2)

where sim is a similarity function in the embedding
space. The probability that a given query example
belongs to a given word sense is proportional to
the similarity between the embedding of the query
sentence and the word sense representation. In
order to obtain a valid probability distribution, the
similarity scores are normalized using the soft-max
function.5

We fine-tune the entire set of LLM parameters
over a number of training episodes. For each
episode, we sample lemmas from the training set
uniformly—i.e. disregarding lemma frequency—,
which has been found to be helpful in order to im-
prove the classification efficacy for low frequency
words (Chen et al., 2021). Moreover, we sample
a maximum of 10 sentences for the support set
and 20 sentences for the query set. Each model
is trained for a maximum of 3,000 training steps,
or less if convergence is reached, as indicated by
development performance.

of all sentences in the query set needs to be represented in the
support set.

4During all the present experiments, we take the output of
the last hidden layer as the contextualized embedding. More-
over, if the target word was sub-tokenized into multiple sub-
words, we average over the embeddings of these sub-words.

5From this point of view, the present approach resembles
metric-based methods in the context of few-shot classification.
See also Chen et al. (2021) for an application to WSD.

2.2 Historical Pre-Training

As we target WSD in historical text, the NLP mod-
els we employ need to address a number of addi-
tional difficulties that are usually not present when
dealing with present-day text. First, historical lan-
guages often have non-consolidated spelling, which
leads to an increased amount of orthographic vari-
ation. This is further aggravated by the fact that
historical text exists primarily in printed or hand-
written form, and hence requires error-prone digiti-
zation techniques to be computationally processed.
Finally, in many studies, the collection of histor-
ical text under scrutiny covers a large time span
and, thus, the language used in these texts has been
subject to grammatical and semantic change.

Following previous research (Hosseini et al.,
2021; Manjavacas and Fonteyn, 2021, 2022), we
resort to historically pre-trained LLMs in order as
the basis for our WSD experiments. More specif-
ically, we deploy LLMs that are pre-trained from
scratch on historical data instead of adapted from
present-day models, since the former strategy has
been shown to yield stronger performance when
applied to historical data (Manjavacas and Fonteyn,
2021, 2022). For English, we used MacBERTh
(Manjavacas and Fonteyn, 2022), and for Dutch we
use the newly introduced GysBERT, which will be
described in more detail in Section 3.1.

3 Datasets

The datasets underlying the present study come
from the Oxford English Dictionary (henceforth:
OED Oxford University Press) and the “Woorden-
boek der Nederlandsche Taal” (Dictionary of the
Dutch Language, henceforth: WNT Instituut voor
de Nederlandse Taal). Both resources consist of
large historical lexicons, where each lemma is cate-
gorized into a hierarchy of word senses. Each word
sense is given a definition, and is exemplified by a
set of sentences spanning a certain time window.

To construct a suitable corpus for testing our
WSD approaches, we sampled 1,000 words ac-
cording to frequency from each language 6 and
searched for them in the corresponding resource.
The collected data for each language is described
in Table 1.

On this data set, we produced a 10% split of
lemmas, which were used to evaluate models on

6More specifically, we made sure to sample equally from
different frequency bands in order to obtain a representative
sample of the vocabulary.
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Lemmas Senses Quotations

OED 846 22,004 121,684
WNT 755 22,547 137,131

Table 1: Summary statistics of the used datasets.

unseen lemmas. We refer to this as the “held-out
set”. Finally, for each lemma, we produced a 50%
split of quotations, following the original distribu-
tion of word senses.

3.1 GysBERT: A Historically Pre-Trained
LLM for Dutch

In order to process historical Dutch, we have devel-
oped GysBERT, a historically pre-trained model
for Dutch. To our knowledge, GysBERT repre-
sents the first such model for Dutch. Architec-
turally, GysBERT closely follows BERT-base un-
cased. For pre-training purposes, we compiled a
data set using two databases of historical Dutch
texts.

The first data set is Delpher, a database of histor-
ical newspapers, books and journals that comprises
more than 130 million scanned and digitized pages,
spanning from 1618 to the end of the 20th cen-
tury (Koninklijke Bibliotheek). The second set is
the Digital Library of Dutch Literature (DBNL)
(Koninklijke Bibliotheek et al.). The DBNL con-
sists in a comprehensive digital library of Dutch
literature that resulted from the joint effort of Dutch
and Flemish libraries, and aims to represent the en-
tire linguistic area.

While the Delpher database contains OCR’d text
of varying quality, the DBNL is the result of a
thorough digitization campaign and presents gener-
ally high quality transcriptions. In order to make
sure that only text of sufficiently quality is used for
pre-training, we developed the following filtering
strategy. First, we trained statistical character-level
5-gram language models using KenLM (Heafield,
2011). Specifically, we trained a single model per
century of text available from the clean DBNL data.
Then, for each snippet of Delpher data, we obtain
a quality estimate as the perplexity that the corre-
sponding DBNL-based model assigns to it. Manual
observation of random snippets suggested discard-
ing texts with a perplexity of 20 or higher. Fur-
thermore, we restricted ourselves to texts published
between 1500 and 1950.

In total, the remaining data set consists of 5.8B

tokens from Delpher and 1.3B tokens from DBNL—
which amounts to ca. 7.1B tokens. We used this
data set in order to train a WordPiece tokenizer
with a vocabulary of 30,000 tokens, and pre-trained
BERT with default parameters, for 1,000,000 train-
ing steps, keeping the maximum sequence length
at 128 subtokens.7

4 Experiments

In order to test the efficiency of this non-parametric
approach, as well as the impact of historical pre-
training, we ran a series of experiments compar-
ing historically pre-trained models and present-day
models. For English, we compare MacBERTh to
BERT—which corresponds to the official release
of BERT-base uncased (Devlin et al., 2019). For
Dutch, we compare GysBERT with the BERT-
based BERTje (de Vries et al., 2019) and the
RoBERTa-based (Liu et al., 2019) RobBERT (De-
lobelle et al., 2020).

Moreover, for each model, we compare results
with respect to non fine-tuned versions of the
models—we refer to these variants as frozen base-
lines. When applicable, we also report the results
obtained by a most frequent sense (MFS) baseline.
We focus on F1-scores averaged over the different
lemmas. Since the distribution of word senses is
often heavily skewed, we report both micro and
macro F1-scores.

4.1 General Results

Figure 1 and Figure 2 show the average F1-scores
over in-domain lemmas—i.e. these lemmas were
present in the training data, even though the spe-
cific sentences on which these results are computed
were absent—and held-out lemmas for the differ-
ent models in the full training data regime. In these
plots, we highlight the effect of using an increas-
ing number of shots (shown on the x-axis). Note
that the number of shots in this context refers to
the number of available support examples for each
word sense during inference.

Figure 1 and Figure 2 show that the proposed
fine-tuning approach is very efficient with respect
to the frozen baselines, as we observe an increase
of 0.2 points or more. The effect is larger when
considering macro F1-scores and an increase in
the number of shots, indicating that the proposed
fine-tuning yields more discriminative models ir-

7GysBERT will be released on the huggingface plat-
form.
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Figure 1: Results of WSD on the OED for in-domain lemmas (a) and held-out lemmas (b). Solid lines denote
the proposed models trained on the full data sets. Dashed lines represent the corresponding frozen baselines. The
MFS baseline is shown by a grey dashed line. The x-axis (number of shots) corresponds to the number of example
sentences per sense shown during inference.
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Figure 2: Results of WSD on the WNT for in-domain lemmas (a) and held-out lemmas (b). Solid lines denote
the proposed models trained on the full data sets. Dashed lines represent the corresponding frozen baselines. The
MFS baseline is shown by a grey dashed line. The x-axis (number of shots) corresponds to the number of example
sentences per sense shown during inference.

respectively of the skewness of a given lemma’s
word senses. Interestingly, this happens under both
in-domain and held-out conditions. Overall, frozen
baselines underperform the MFS baseline in terms
of micro F1. In terms of macro F1, frozen base-
lines do outperform the MFS baseline, albeit very
slightly.

For held-out lemmas, there is just a mild de-
crease in performance, of less than 0.1 points in
both data sets. This indicates encouraging gener-
alization capabilities. Focusing on the x-axis, we
observe that an increase in the number of shots re-
sults in a continuous increase in performance up
until 5 shots, after which the improvement plateaus.

Overall, performance is slightly higher in the
Dutch data set, which may be due to a larger skew-

ness in the distribution of word senses. This skew-
ness can, indeed, be inferred from the high micro
F1-score obtained by the MFS baseline.

Finally, historically pre-trained models outper-
form present-day models with a safe margin. This
result is particularly relevant in our case, since the
superiority of historical pre-training cannot be con-
cluded on the basis of the frozen baselines alone,
but surfaces only after applying the non-parametric
fine-tuning.

4.2 Small Training Regime

In order to assess the efficiency of the proposed
approach on the low-data regime, we performed a
series of experiments in which both the number of
lemmas and the maximum number of examples per
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sense are limited during training. The results are
shown in Figure 3 for the OED and in Figure 4 for
the WNT. For inference, we keep the number of
shots at 5. Note that the performance in these ex-
periments refers to inference on held-out lemmas.

In Figure 3, we observe that the historically pre-
trained models are consistently more effective than
the present-day counterparts across training condi-
tions. Furthermore, we observe that even a very
small amount of training data (e.g. 50 training lem-
mas in total) yields consistent gains over the frozen
baselines, regardless of the number of examples
per sense.

Moreover, the effect of number of lemmas is
small when using only 2 or 5 examples per sense.
When using 10 or 50, an increase in the number
of lemmas has a positive effect on performance up
to 500 lemmas. Doubling this amount to 1,000
lemmas, however, yields little return. These experi-
ments seem to indicate that strong generalization
can be achieved with relatively small training data
sets (e.g. 500 training lemmas and 10 example
sentences per sense).

In the case of the Dutch data set from Figure 4,
we observe similar patterns to those from the OED
data set. Again, micro F1-scores are very high for
the MFS baseline, and a larger number of training
lemmas (i.e. 500) and number of examples per
sense (i.e. 50) are needed in this data set for the
models to outperform the MFS baseline.

4.3 Impact of Time
Since the example sentences of both the OED and
WNT data sets display the publication year of the
work in which they appear, we can inspect the per-
formance of the different models over sentences
in different time periods. From this angle, we ex-
pect to observe an improvement in performance for
the earlier periods when the fine-tuned model was
pre-trained historically. Figure 5 shows the time-
aggregated results with the century on the x-axis.

The historically pre-trained models outperform
the present-day models across the entire range.
Moreover, these plots confirm that the relative im-
provement over present-day models is indeed larger
in the earlier centuries, where the challenges pre-
sented by historical text are most acute.

4.4 Downstream Application
So far, we have examined the performance of the
non-parametric fine-tuning on the basis of the lexi-
cal databases (OED and WNT), which offer large

quantities of available training data and allow us to
control the training conditions. In order to test the
efficiency of non-parametric fine-tuning on smaller-
scale scenarios, which can be considered more ‘re-
alistic’ in the context of Humanities research, we
ran an experiment on a classification task involving
an ad-hoc WSD task around the word senses of the
lemmas mass and weight in 18th and 19th century
scientific writing.

This experiment is part of on-going research
aimed at tracing the development of the concept
of MASS when Newtonian physics forced a pro-
cess of semantic differentiation between the terms
mass and weight. To this end, all 56,813 instances
of mass and weight in the Royal Society Corpus
(RSC Fischer et al., 2020) will be analyzed with
respect to a fine-grained classification of 6 word
senses—see A for examples of these categories.
With the goal of automating the annotation process,
a sample of 1,500 instances—including 621 cases
of mass and 879 of weight—was first manually
annotated by a domain expert.

Subsequently, we set up a total of 4 compet-
ing fine-tuning approaches, including the non-
parametric approach described in Section 2, and 3
additional ones to serve as baselines. The first one,
Standard, consists in fine-tuning a classification
layer on top of MacBERTh, as implemented in the
transformers library (Wolf et al., 2020). The
remaining two involve a K-Nearest Neighbours
(KNN) and a Support Vector Machine classifier
(SVC) on top of the token-embeddings produced
by MacBERTh.8 We optimize the models using
a 10-fold Cross Validation procedure, where each
fold respects the original word sense proportions.9

For the non-parametric fine-tuning approach, we
follow the hyper-parameterization from the main
experiments reported in this paper.

We focus on micro and macro F1-scores, re-
porting means and standard deviations for each
model. The results are shown in Table 2. The non-
parametric approach outperforms the baselines in
terms of both micro and macro F1-scores. However,
taking into account the standard deviation from the
Cross Validation, the advantage with respect to the
best baseline in terms of macro F1-score does not
hold.

8The latter two baselines were implemented with the
scikit-learn library (Pedregosa et al., 2011).

9In the case of the KNN classifier, we hyper-optimize the
number of nearest neighbors, as well as the distance metric.
In the case of SVC, we hyper-optimize the C parameter.
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Figure 3: F1-scores for WSD on OED held-out lemmas for the proposed models trained on 50, 250, 500 and all
lemmas (on the x-axis) and 2, 5, 10, and 50 example sentences per sense (on the columns).
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Figure 4: F1-scores for WSD on WNT held-out lemmas for the proposed models trained on 50, 250, 500 and all
lemmas (on the x-axis) and 2, 5, 10, and 50 example sentences per sense (on the columns).

Surprisingly, the standard fine-tuning approach
is not only less competitive than the baselines, but
also suffers from strong variance across CV folds.
This is probably due to the small number of training
examples available for fine-tuning, and the large
number of parameters that need to be tuned in this
approach. In contrast, the non-parametric approach
achieves not only the highest scores but also the
lowest standard deviation of all competitors, indi-
cating that this may be a much better suited ap-
proach for fine-tuning on small training data sets.

5 Discussion & Future Work

Our experiments highlight that Humanities re-
searchers who seek to automatically disambiguate

Micro F1 Macro F1
Model Mean StdDev Mean StdDev

KNN 0.830 0.007 0.695 0.032
SVC 0.819 0.007 0.601 0.035

Standard 0.827 0.029 0.520 0.066
Non-Parametric 0.864 0.006 0.699 0.025

Table 2: 10-fold cross-validated results of the classifica-
tion experiments of “mass” and “weight” for 4 different
fine-tuning methods. Best performing result in bold.

word senses over time may be able to do so with
reasonable performance, even when they provide
only a small amount of sentences exemplifying the
target word senses and/or leverage general-purpose
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Figure 5: Results of WSD over different periods of time (on the x-axis), using the fine-tuned models (solid lines) as
well as the corresponding frozen baselines (dashed lines) and an MFS baseline (grey dashed line). Inference was
done on held-out lemmas using 5 shots and the full-training regime.

lexical resources, such as the OED or the WNT.
More specifically, in the full training data scenario,
held-out lemmas could be classified with micro
F1-scores of 0.627 for English and 0.71 for Dutch,
using the historically pre-trained models. These re-
sults imply 40.3% and 34.22% improvements over
the respective frozen baselines. Moreover, we ob-
serve that even a small number of training lemmas
can lead to important improvements over frozen
baselines. For example, when training on just 50
lemmas and only 2 instances per sense, micro F1-
scores can be obtained of 0.557 for English and
0.617 for Dutch, which represent improvements of
32.8% and 24.4% over the frozen baselines.

In this sense, we go a step further than Chen
et al. (2021), who—in contrast to our experiments—
leveraged the training data in order to construct
word sense representations at inference time. By
doing so, they assumed that all lemmas in the test
data are known from training data. What we found
is that the fine-tuning approach is also effective on
held-out lemmas, which means it can be applied
in cases where practical constraints exist on the
amount of available annotated data.

Our experiments also highlighted that histori-
cally pre-trained models are able to better handle
the intricacies of historical data sets than present-
day models when applying the discussed non-
parametric fine-tuning approach. This result is par-
ticularly important in the present context, since the
superiority of historical pre-training is not apparent
on the basis of the frozen embeddings only. Using
the frozen embeddings, the difference in perfor-
mance between the historically pre-trained models

and the present-day models is negligible. More-
over, we presented a case study which highlighted
that non-parametric fine-tuning can be much more
efficient than the more commonly used standard
fine-tuning approaches, especially in small training
regimes.

The main objective of the present fine-tuning
approach is to push the embeddings of the query
sentences closer to the non-parametric representa-
tions of the true word senses. By conjecture, the
proposed approach works by learning to distill the
semantic features in the input sentences that are
most relevant to lexical semantics, stripping off ir-
relevant information for WSD. Thus, the fine-tuned
model is allegedly able to achieve improved perfor-
mance when classifying lemmas that have not been
encountered during training.

Finally, we wish to note that we limited our-
selves to normalized dot products as the measure
of relatedness between representations in this study,
and we deployed the transformer (Vaswani et al.,
2017) architecture underlying BERT as is. Fu-
ture work could, however, investigate what can
be gained by experimenting with other similarity
functions, and adding more complex layers such
as an attention module over different word sense
representations.
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A Appendix

lemma sense definition example year

RAT 1.a.

Any rodent of the genus Rattus and related
genera of the family Muridae, resembling a
large mouse, often with a naked or sparsely
haired tail.

“Rats and mice purloin our grain”
J. Gay, Fables, II. viii. 74

1732

4.a
A dishonest, contemptible, or worthless
person.

“No Female Rat shall me deceive,
nor catch me by a crafty wild.”

in Roxburghe Ballads VI. 106
1656

RAT 1.
Knaagdier behoorende tot het geslacht Rattus
van de familie der Muridae of ’ware muizen‘.

“Daar ’t katje woond, daar word het
huis Gezuiverd van de Rat, en Muis”

Luyken, Besch. d. W. 223
1708

2.
Oneig. toegepast op personen. Armoedzaaier,
gelukzoeker.

“Dien grootmaecker, die cael Rat”
Ogier, Seven Hoofts. 19

1644

Table 3: Example lemma and sense with definition and quotation from the Oxford English Dictionary (top row) and
the Woordenboek der Nederlandsche Taal (bottom row).
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label sense example from Royal Society Corpus

N mass or weight refers to thing or object

"The mass on the filter was treated with boiling alcohol"
(Edward Schunk, 1853)
"a flat circular weight nicely turned, and pierced in the
direction of its diameter to receive the bar, was slid upon it"
(Henry Kater, 1819)

M
mass or weight refers to MASS
(i.e. how much matter is within an object)

"We are thus led to inquire how the stresses are distributed
in the earth ’s mass and what are their magnitudes"
(G. H. Darwin, 1882)
"In the third, the weight of the principle bones of a selected
number of species (27) is stated"
(John Davy, 1865)

W

weight refers to WEIGHT
(i.e. referring to force, balancing,
counterpoises, or the amount of effort
required to lift something)

"fig. 3 is only 40 feet from the bow, and that the excess
of weight over buoyancy on this length is only 45 tons"
(E.J Reed & G.G Stokes, 1871)

W/M
unclear whether the example refers to
MASS or WEIGHT

"The Commissioners for the Restoration of the Standards
of weight and measure, in their Report dated
December 21, 1841, recommended that..."
(W.H Miller, 1856)

COL
mass or weight refers to a collection
of objects
(e.g. a mass of small fragments)

"A glacier is not a mass of fragments"
(James Forbes, 1846)

MET
mass or weight is used to indicate the
importance of a thing
(e.g. the weight of authority)

"The next thought is that I may have assigned
too great a mass to the doubt"
(John Henry Pratt, 1855)
"The contact theory has long had possession of men ’s
minds, is sustained by a greatweight of authority"
(Michael Faraday, 1840)

Table 4: Classification scheme of mass and weight instances retrieved from the Royal Society corpus. In total, 1,500
examples were manually classified in one of these 6 custom categories.


