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Abstract

Knowledge-grounded dialogue systems utilise
external knowledge such as knowledge graphs
to generate informative and appropriate re-
sponses. A crucial challenge of such systems
is to select facts from a knowledge graph perti-
nent to the dialogue context for response gen-
eration. This fact selection can be formulated
as path traversal over a knowledge graph condi-
tioned on the dialogue context. Such paths can
originate from facts mentioned in the dialogue
history and terminate at the facts to be men-
tioned in the response. These walks, in turn,
provide an explanation of the flow of the con-
versation. This work proposes KG-CRUSE,
a simple, yet effective LSTM based decoder
that utilises the semantic information in the
dialogue history and the knowledge graph ele-
ments to generate such paths for effective con-
versation explanation. Extensive evaluations
showed that our model outperforms the state-
of-the-art models on the OpenDialKG dataset
on multiple metrics.

1 Introduction

Inducing factual information during response gen-
eration has garnered a lot of attention in dialogue
systems research. While language models (Zhao
et al., 2020; Zheng et al., 2020) have been shown
to generate responses akin to the dialogue history,
they seldom contain factual information, leading to
a bland conversation with the agent. Knowledge-
grounded dialogue systems focus on leveraging
external knowledge to generate coherent responses.
Knowledge Graphs (KGs) are a rich source of fac-
tual information and can be combined with an ut-
terance generator for a natural and informative con-
versational flow.

Zhou et al. (2018) showed that utilising KGs in
dialogue systems improves the appropriateness and
informativeness of the conversation. Augmenting
utterances in a dialogue with the KG information

Could you recommend me movies
similar to The Dark Knight?

The sequel to Batman Begins is The
Dark Knight.

Okay. Who is the director of The Dark
Knight and any other movies from him

not related to Batman?

Christopher Nolan was the director.
He also directed Insomnia and

Inception.
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Figure 1: An example conversation wherein the agent
utilises relevant information from the KG while generat-
ing responses. The agent generates facts about “Christo-
pher Nolan” in utterance 4 while utilising the semantic
information in the dialogue history and the KG.

guides the conversational agent to include relevant
entities and facts in the response. For example,
Figure 1 shows an example conversation where
a user is interacting with a dialogue agent about
movies. The agent has access to a KG that aids
in suggesting relevant facts during the dialogue
flow. When responding to utterance 3, the agent
can utilise information from the KG and produce
relevant facts about “Christopher Nolan”. This
information would be more engaging than respond-
ing with information about “Batman” or “Batman
Begins”.

While KGs have been used extensively to in-
clude relevant facts in a dialogue, the explicability
of such systems is limited. Naturally, this fostered
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research on developing models for explainable con-
versation reasoning. Moon et al. (2019) addressed
this problem by inducing KG paths for conversa-
tion explainability. They posited a dialogue-KG
path aligned corpus wherein utterances are aug-
mented with a KG path to denote fact transitions in
the dialogue. The KG paths emanate from entities
or facts mentioned in the dialogue history and ter-
minate at the entity to be mentioned in the response
text. Such paths form a sequence of entities and
relations and aid the dialogue agent in introducing
appropriate knowledge to the dialogue. In addition
to this, they proposed an attention-based recurrent
decoder over the KG to generate entity paths. Jung
et al. (2020) designed a novel dialogue-context in-
fused graph neural network to propagate attention
scores over the knowledge graph entities for KG
path generation. While such approaches have their
inherent strengths, their limitations are manifold.

Given a dialogue context, it is desirable to gen-
erate paths that results in a natural dialogue flow.
Therefore it is essential to capture the semantic in-
formation in the dialogue context as well as the
KG elements. Transformer based models (Devlin
et al., 2019; Lan et al., 2020; Liu et al., 2019a)
have enabled the capture of contextual relation-
ships between different words in a sentence. Tex-
tual representations from such models have been
successfully adapted for the dialogue conditioned
KG reasoning task (Jung et al., 2020). However,
prior works use the embedding of the [CLS] token
to encode the dialogue history and the KG elements.
Reimers and Gurevych (2019) demonstrated that
such sentence embeddings are sub-optimal and lead
to degraded performance in downstream applica-
tion tasks. Sentence-transformers (Reimers and
Gurevych, 2019) are strong tools for capturing the
semantic information of a sentence into a fixed-size
vector. As KG elements can be long phrases, KG-
CRUSE uses the Sentence-BERT (SBERT) model
to encode both the dialogue history and the KG
elements for capturing their semantic information.

As a result of the long tailed distribution of node
neighbors in a KG, it can become difficult to gen-
erate relevant paths over the KG for explainable
conversation. Given the dialogue history, it is desir-
able to traverse paths that are semantically relevant.
KG-CRUSE utilises the rich sequential informa-
tion in the dialogue history and the path history to
sample the top-k semantically similar neighbors for
extending its walk over the KG.

We show that our KG-CRUSE improves upon
the current state-of-the-art on multiple metrics,
demonstrating the effectiveness of KG-CRUSE for
explainable conversation reasoning.

To summarise, our contributions are as follows:

• We propose a KG-CRUSE , a LSTM based
decoder leveraging Sentence-Transformer (S-
BERT) embedding to reason KG paths for
explainable conversation.

• We show the efficacy of our model by improv-
ing the current state-of-the-art performances
over multiple metrics on the OpenDialKG
(Moon et al., 2019) dataset. Additionally, we
conduct extensive empirical analysis to em-
phasise the effectiveness of KG-CRUSE for
the reasoning task.

• We release1 our system and baseline sys-
tems as an open-source toolkit to allow re-
producibility and future comparison on this
task.

2 Related Work

The use of external knowledge in dialogue agents
has become commonplace, owing to the rich het-
erogeneous information contained in them. He et al.
(2017) addressed the knowledge-grounded conver-
sation task by iteratively updating the knowledge
base embeddings to generate informative responses.
Following this, knowledge-based dialogue sys-
tems have been studied extensively including the
collection of new knowledge-grounded datasets
(Ghazvininejad et al., 2018; Qin et al., 2019; Zhang
et al., 2018) and developing knowledge-centric dia-
logue systems (Liu et al., 2018; Parthasarathi and
Pineau, 2018a; Zhang et al., 2020).

Young et al. (2018a) attempted to integrate a
large scale KG into an end-to-end dialogue system.
Other similar works (Chen et al., 2019; Zhou et al.,
2020; Sarkar et al., 2020) leveraged graph neu-
ral networks and KG embeddings to recommend
relevant products in conversational recommender
systems. Though successful in retrieving suitable
entities or facts from the KG, these systems fail to
provide explainability to the recommendations.

Such limitations encouraged explainable conver-
sation reasoning using external knowledge. Liu
et al. (2019b) develop the problem as a Partially

1https://github.com/rajbsk/kg-cruse
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Figure 2: Modular overview of KG-CRUSE architecture. KG-CRUSE utilises the SBERT architecture to encode
the dialogue history and the KG elements. To generate walk paths over the KG, KG-CRUSE leverages an LSTM
network to model the temporal information. To generate the path at timestep t, the LSTM takes as input (D,
(r1; e1), ..., (rt−1; et−1)) and outputs the hidden state representation ht of the step t. KG-CRUSE then computes
dot-product of ht with the embeddings of the actions available at timestep t ([rt,1; et,1], [rt,2; et,2], ...,[rt,m; et,m])
followed by a softmax layer to compute the probability of each available action.

Observable Markov Decision Process and use pol-
icy gradient for training the agent to generate KG
paths. Moon et al. (2019) posited a KG path-
parallel-dialogue corpus along with DialKG Walker
(DKGW) model, a recurrent decoder model to gen-
erate the KG path for a response entity selection.
Jung et al. (2020) suggested the use of graph neu-
ral networks using attention flow to generate KG
entity paths. While novel, DKGW does not ex-
plicitly utilise the graph structure during model
training. On the other hand, the performance of At-
tnIO (Jung et al., 2020) relies on the node sampler
during training. AttnIO becomes computationally
expensive due to dialogue specific graph neural
network (both during training and inference) as
the model concatenates the dialogue embedding to
the node embeddings while propagating attention
scores. To counter these issues, we design a very
simple, lightweight, yet efficient LSTM network
leveraging the dialogue and path history to extend
the path over the KG.

While, DKGW uses TransE (Bordes et al., 2013)
for encoding the elements of the KG, such transla-
tion embeddings have weak representation capac-
ity. On the other hand, Jung et al. (2020) utilise
the ALBERT (Lan et al., 2020) representation of
sentence to encode the dialogue history and the KG
elements. They use the [CLS] token representation
of the text sequence as the sentence representation.

Reimers and Gurevych (2019) suggested Sentence-
Transformers for encoding sentences. We encode
the dialogue history and the KG elements using
Sentence-Transformers to capture rich semantic
similarities between the dialogue history and the
KG elements.

The processing of semantically rich sequen-
tial information using a lightweight LSTM model
makes KG-CRUSE ideal for generating walks over
a KG for explainable conversation.

3 Methodology

In the following sections, we begin with formally
introducing the problem statement. We then outline
the embeddings used in KG-CRUSE. Following
this, we discuss the architecture of KG-CRUSE as
illustrated in Figure 2. Finally, we describe de-
coding process used by KG-CRUSE during the
inference step.

3.1 Formal Problem Definition

We describe the problem statement similar to Moon
et al. (2019). The KG is defined as G = VKG ×
RKG ×VKG , where VKG is set of entities and RKG
is set of relations in the KG. Facts in the KG are
denoted by triples, and each has the form (e, r, e’)
where e, e’ ∈ VKG are entities and r ∈ RKG is the
relation connecting them.
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In addition to the KG, each input contains a di-
alogue D ∈ D, represented as a sequence of utter-
ances D = {s1, ..., sn}, and the set of entities xe

= {x(i)e } occurring in the user’s last utterance sn,
where x(i)e ∈ VKG . The output is represented as
y = {ye, yr}, where ye is a set of entity paths ye =

{y(i)e }, with each element y(i)e = {y(i)e,t}
T
t=1 denoting

an entity path connecting x(i)e to the response entity
y(i)e,T . Likewise, yr = {y(i)r } is a set of relation paths,

where y(i)r ∈ RKG . The element y(i)r = {y(i)r,t}
T
t=1

is a sequence of relations from the KG connecting
x(i)e and {x(i)e,t}

T
t=1.

3.2 Dialogue and KG Representation

Capturing the semantic information in the dialogue
context is an important component of our model.
SBERT is a contextual sentence encoder that cap-
tures the semantic information of a sentence in a
fixed-size vector. We encode pieces of text using
Equation 1. The text is first sent though a pre-
trained BERT model to obtain the contextual repre-
sentation of its tokens. The sentence embedding is
computed by taking a mean-pool of the contextual
token representations. The dialogue context is con-
structed by concatenating a maximum of three pre-
vious utterances and is then passed through SBERT
encoder to obtain a fixed-size contextual dialogue
representation.

S = MeanPooling(BERT(S)) (1)

In order to align the semantic vector space of
the dialogue representations and the KG repre-
sentations, we use SBERT to encode the KG el-
ements. As KG entities and relations can be words
or phrases, SBERT can effectively capture their
semantic information. We use the publicly avail-
able SBERT-BERT-BASE-NLI2 model with mean-
pooling as our SBERT encoder.

3.3 KG-CRUSE Architecture

KG-CRUSE learns to traverse a path on the KG
by learning a function πθ that calculates the proba-
bility of an action at ∈ At given the state st. The
state st contains the dialogue history and entities
already traversed by KG-CRUSE while decoding
the paths, while at is the set of edges from the KG
available to KG-CRUSE for extending its path.

2
https://huggingface.co/sentence-transformers/

bert-base-nli-mean-tokens

The state st at step t is defined as a tuple (D, (r1,
e1, ..., rt−1, et−1)), where D is the dialogue context
and ri, ei(i < t) are the relation and entity already
decoded by KG-CRUSE at step i. The initial state
s0 is denoted as (D, ∅), where ∅ is the empty set.

At step t, an action has the form at = (rt, et) ∈
At, where At is the set of all possible actions avail-
able to the model at step t. At includes all outgo-
ing edges of et−1 in the KG G, i.e. At is the set
of all the outgoing edges of the entity decoded by
KG-CRUSE at timestep t− 1. To let the agent ter-
minate the search process, we add self-loop edges
to every entity node in the graph denoting no oper-
ation ("self-loop"). The action at is represented as
a concatenation of the relation and entity embed-
ding at = [rt; et], where r ∈ Rdr , e ∈ Rde and
Rde , Rdr are the size of the entity embedding and
relation embedding respectively. At step 1, KG-
CRUSE chooses between the entities mentioned in
sn for path traversal. The relation associated with
action at step 1 is the zero vector. As mentioned,
the state st contains the dialogue context and action
history (path history). This sequential information
in st is modelled using an LSTM:

d = WdD (2)

h0 = LSTM(0,d) (3)

ht = LSTM(ht−1, at−1), t > 0 (4)

where D is the contextual dialogue embedding ob-
tained using Equation 1 and Wd is a learnable ma-
trix that maps the dialogue embedding to the LSTM
input dimension. Given the hidden state representa-
tion ht at time t, KG-CRUSE assigns a probability
to each action using Equation 6.

xt = W3,θ(ReLU(W2,θh⊺
t )) (5)

πθ(at|st,At) =
exp(at · xt)∑

ai∈At
exp(ai · xt)

(6)

The hidden state representation ht is passed
through a two-layered dense network with ReLU
activation (Nair and Hinton, 2010) in the first
layer. The LSTM weights, W2,θ ∈ Rdh×dh and
W3,θ ∈ R(dr+de)×dh are the learnable parameters,
and dh is the LSTM hidden representation size.

3.3.1 Model Learning

We train KG-CRUSE by minimising the cross-
entropy loss on the entities decoded at each
timestep. Additionally, we train the model using
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teacher forcing (Sutskever et al., 2014), wherein
the model makes each action conditioned on the
gold history of the target path. To prevent overfit-
ting, we add L2 regularisation to the parameters of
the model. During training, we do not fine-tune
the SBERT architectures, but back-propagate the
gradients to the entity and relation embeddings.

3.3.2 KG-CRUSE Path Generation
Once the model is trained, KG-CRUSE takes the
dialogue history and the entities mentioned in the
current utterance as input, a horizon T and outputs
a set of entity paths, relations paths of length T

along with the probability score of each path. Dur-
ing inference, we remove self-loops from the KG
except for the self-loop with label "self-loop" intro-
duced in section 3.3. We do so to allow the agent
traverse diverse paths rather than staying at entities
mentioned in the dialogue history.

4 Experimental Setup

This section presents the dataset used, the baselines
compared with and the description of the model
settings of KG-CRUSE along with the metrics the
models have been evaluated on.

4.1 Dataset

We evaluate our proposed framework on the Open-
DialKG dataset (Moon et al., 2019). The dataset
has 91,209 turns spread over 15,673 dialogues in
the form of either task-oriented dialogues (recom-
mendations) or chit-chat conversations on a given
topic. Each turn is annotated with a KG path to
represent fact transitions in the conversation. The
KG is a subset of the Freebase KG (Bollacker et al.,
2008), which has 1,190,658 fact triples, 100,813
entities and 1,358 relations. Following Moon et al.
(2019), we split the dataset randomly into 70%,
15% and 15% for training, testing and validation.

4.2 Baselines and Evaluation Metrics

We compare KG-CRUSE against the following
baseline models suggested by Moon et al. (2019)
and Jung et al. (2020):

• Tri-LSTM (Young et al., 2018b): The model
encodes each utterance along with facts from
the KG within 1-hop distance from the entities
mentioned in the current utterance. This is
used to retrieve facts from the KG for dialogue
explanation.

• Ext-ED (Parthasarathi and Pineau, 2018b):
Moon et al. (2019) conditioned the response
generation with external knowledge vector in-
put to generate response entity token at the
final softmax layer, without using the struc-
tural information from the KG.

• Seq2Path (Jung et al., 2020): An attention
based Seq2Seq model is modified to gener-
ate entity paths by masking out unreachable
nodes at each decoding step.

• Seq2Seq: An LSTM based seq2seq
(Sutskever et al., 2014) model where the
decoder is modified to generate entity paths.
Similar to DKGW (Moon et al., 2019) model,
we use modality attention as the output of
the encoder. Following Moon et al. (2019),
we replace the softmax layer in the decoder
with a zero-shot learning layer in the KG
embedding space.

• DKGW (Moon et al., 2019): A model to
generate KG paths using domain-agnostic,
attention-based recurrent graph decoder re-
inforced with a zero-shot learning layer over
the KG embedding space.

• AttnIO (Jung et al., 2020): A dialogue condi-
tioned KG path traversal leveraging attention
flow using graph neural networks.

Since the authors of OpenDialKG and AttnIO
have not released their implementations, we report
their performance on our re-implementations. We
note that for most systems, our implementation
is similar or better than the reported results. Re-
garding AttnIO, we were not able to reproduce
the results although we note that errors in the im-
plementation of the node sampler or leakage of
the test dataset into the training dataset can easily
lead to overestimation of the accuracy. The code
and dataset used for re-implementation as well as
our system is accessible at https://github.
com/rajbsk/kg-cruse.

We evaluate our models on different recall@k
metrics for entity and path retrieval. Path@k mea-
sures if the ground-truth path is present in the top-k
paths with the highest probability searched by the
agent. Similarly, tgt@k measures if the response
entity is present in the top-k entities retrieved by
the agent. In situations where multiple paths point
to the same response entity, we consider the path
with the highest score for entity retrieval.
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Recall@k
Model path@1 path@5 path@10 path@25 tgt@1 tgt@5 tgt@10 tgt@25

Tri-LSTM 3.2 22.6 36.3 56.2 - - - -
Ext-ED 1.9 9.0 13.3 19.0 - - - -
Seq2Path 14.92 31.1 38.68 48.15 15.65 33.86 42.52 53.28

Seq2Seq∗ 6.53±0.78 26.21±1.21 35.02±1.27 45.78±1.18 7.13±0.85 30.64±1.62 41.01±1.43 52.97±1.55
DKGW∗ 14.16±1.16 37.26±1.91 47.85±2.60 59.20±2.33 14.96±1.04 39.53±1.81 51.06±2.15 63.85±1.58
AttnIO∗ 19.08±1.19 38.49±0.79 43.99±1.10 48.94±0.55 20.32±1.80 45.90±0.93 52.82±0.65 55.17±0.96

KG-CRUSE 19.59±0.43 44.62±1.08 56.16±1.21 70.59±0.38 20.20±0.36 47.76±0.62 60.11±0.92 75.30±0.57

Table 1: Performance of KG-CRUSE in comparison with other baseline methods on different Recall@k metrics.
The numbers reported are the mean values with the sample standard deviation (p=0.01). Results are statistically
significant with p=0.01. Models with ∗ denote our re-implementation.

4.3 Implementation Details

For the task, we set horizon T to 3. The dia-
logue, entity and relation embeddings are encoded
using SBERT into a 768 dimensional vector. In
KG-CRUSE, we consider 3 LSTM layers with
dh = de + dr = 1, 536. To prevent the agent from
overfitting on the dataset, we add L2 regularisation
with a weight decay parameter of 1e-3.

Similar to Jung et al. (2020), we set the batch
size to 8 and train the model with Adam optimiser
(Kingma and Ba, 2015) with a learning rate of 1e-4
for 20 epochs. For models with re-implementations,
we report the results on five different splits of the
data. For Tri-LSTM and Ext-ED, we report the
number reported by Moon et al. (2019), while for
Seq2Path, the numbers are reported from the work
of Jung et al. (2020). As entity occurrences in a
dialogue dataset is sparse, it is desirable to report
the performance on five different splits of the data
rather than an assessment of five models on one
split.

5 Results and Discussion

We begin with performing a quantitative evaluation
of the models. Following this, we study the im-
pact of our choice of sentence embeddings on the
model performance. Then we analyse the impact of
beam-width at each decoding step during inference.
Finally, we provide insights of examples where the
results of KG-CRUSE are not consistent with the
ground truth paths.

5.1 Quantitative Analysis

In this section, we compare the performance of
our proposed approach against the different base-
lines. From Table 1, it can be observed that KG-
CRUSE performs better than the different baseline

Model P@1 P@25 E@1 E@25 Rel@1

BERT 12.74 66.72 12.98 72.14 39.37
ALBERT 13.42 65.67 13.96 72.23 40.93
SRoBERTa 17.17 68.04 17.65 73.34 40.71
SBERT 19.52 70.72 20.20 75.72 40.02

Table 2: Influence of sentence embeddings on KG-
CRUSE performance. Comparison of different embed-
ding methods.

models on the OpenDialKG dataset. For entity
and path accuracy, AttnIO has the closest perfor-
mance compared to our model, with the latter be-
ing 2.7% relatively better on both path@1 and en-
tity@1 metrics. On increasing k of recall@k, we
find KG-CRUSE has at least 10% relative improve-
ment over the baseline models. It is interesting
to notice that on increasing the value “k”, KG-
CRUSE performs relative better than other models.
KG-CRUSE identifies paths semantically relevant
to the dialogue context although different from the
gold-label paths as discussed in Section 5.6. The
huge gain on the path@25 metric advocates for this
hypothesis. It is worthwhile to notice that although
AttnIO has the closest performance for path@1
and entity@1 to KG-CRUSE, the performance de-
grades when “k” increases in path@k and entity@k.
This might be due to the fact that the beam-width
reported by the authors is not expressive enough to
capture semantically relevant paths or entities.

5.2 Effectiveness of Sentence Embeddings

In our framework, we utilise sentence SBERT em-
beddings to encode dialogue context and KG el-
ements. In this section, we conduct an ablation
study on the efficacy of such embeddings. We
replace the SBERT embeddings with the [CLS]
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SBERT Aligned
Fine-tuned KG P@1 P@25 E@1 E@25 Rel@1

Yes No 17.82 69.47 18.21 74.47 40.24
Yes Yes 18.46 69.93 19.00 74.75 40.47
No No 18.00 62.01 18.52 74.54 38.48
No Yes 19.52 70.72 20.20 75.72 40.02

Table 3: Results on fine-tuning the SBERT architecture
used for encoding the dialogue history. Additionally, the
table reports the results of initialising the KG elements
with random initialisation.

token representation of BERT3 (Devlin et al.,
2019) and ALBERT model4 (Lan et al., 2020)
in KG-CRUSE. Additionally, we consider an in-
stance wherein the elements are encoded using
Sentence-RoBERTa (SRoBERTa)5 (Reimers and
Gurevych, 2019). The results in Table 2 demon-
strates the strength of our embedding choices
wherein SBERT and SRoBERTa outperforms the
BERT and ALBERT embeddings. Both the sen-
tence embedding models models are pre-trained
on NLI datasets, which allows them to capture
rich semantic information for textual similarity.
These embeddings have demonstrated strong per-
formances in the task of semantic search using
cosine-similarity (Reimers and Gurevych, 2019).
It should be noted that before the softmax layer in
KG-CRUSE, we compute the dot product of the
LSTM layer hidden representation with that of the
relation-entity embeddings available at the given
timestep. As a result of this step, we expect the per-
formance of SBERT and SRoBERTa embeddings
to be better that BERT and ALBERT embeddings.

Additionally, we see from the Table 2 that the
relation accuracy of different models is higher than
path accuracy. This is due to the outgoing edges
of a node (from the dialogue history) sharing sim-
ilar features if they are connected using the same
relation. Thus multiple entities can fit our choice
of the response entity given the dialogue context.

5.3 Impact of KG Embedding Alignment and
SBERT Fine-tuning

In this section, we study the impact of encoding KG
elements with SBERT embeddings. Additionally,
we analyse if fine-tuning the SBERT architecture
used for encoding the dialogue history is beneficial
for explainability.

3
https://huggingface.co/bert-base-uncased

4
https://huggingface.co/albert-base-v2

5
https://huggingface.co/sentence-transformers/

roberta-base-nli-mean-tokens

Size P@1 P@25 E@1 E@25

2, 5, 50 19.59 56.26 20.09 62.19
2, 10, 25 19.55 64.93 20.04 70.16
2, 10, 50 19.55 64.93 20.04 70.18
2, 25, 10 19.52 69.75 20.02 74.57
2, 25, 25 19.52 70.72 20.02 75.72
2, 25, 50 19.52 70.72 20.02 75.75
2, 50, 5 19.52 68.46 20.02 72.53
2, 50, 25 19.52 70.56 20.02 75.43

Table 4: Impact of the beam width at different timesteps
on the model performance. The results are reported
on one of the dataset split. Best results are shown in
bold, while the results on the default setting of KG-
CRUSE are underlined. All numbers are in percentage.

Model GPU Train Time Test Time

Seq2Seq Nvidia 1080Ti ≈8 mins ≈1 mins
DKGW Nvidia 1080Ti ≈4 mins ≈8 mins
AttnIO Tesla V100 ≈38 mins ≈82 mins
KG-CRUSE Nvidia 1080Ti ≈7 mins ≈8 mins

Table 5: Analysis of the time required by different
models for training and inference on the OpenDialKG
dataset. The numbers in the third column denote per
epoch train time.

Table 3 outlines four situations, where in two
cases we fine-tune the SBERT architecture used
for encoding the dialogue history. We also con-
sider two cases where the embeddings of the KG
elements are initialised with values drawn from a
normal distribution with mean 0 and standard de-
viation 1, corresponding to the value “No” in the
second column. It should be noted that we never
consider fine-tuning the SBERT architecture used
for encoding the KG elements.

We see from the Table 3 that in cases when the
KG elements are not encoded with SBERT em-
beddings, their performance drops as compared
to cases when we use SBERT embeddings. Addi-
tionally, we find that fine-tuning SBERT leads to a
decrease in the performance of KG-CRUSE. This
can be attributed to the change in semantic space of
the dialogue embeddings and the KG embeddings
during fine-tuning. Hence, we do not finetune the
SBERT architecture in the default setting of KG-
CRUSE.

5.4 Impact of Beam-Width on Path Reasoning

In this experiment, we study the influence of beam-
width at different timesteps on the model perfor-
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Dialogue Model Walk Path

A: Could you recommend movies similar KG-CRUSE Kung Fu Panda→written by→Cyrus Voris
to Kung Fu Panda? Ground Truth Kung Fu Panda→directed by→Mark

B: [response] Osborne→wrote→Monsters vs. Aliens

A: Oh cool, I also read Wocket in my Pocket! KG-CRUSE 1958→released year→Tom’s Midnight Garden
But sure, what else is there? Garden→has genre→Children’s literature

B: Cool! Yertle the Turtle and Horton Hears
a Who! are also written by Dr. Seuss. Ground Truth 1958→released year→Have Space Suit - Will

A: That first one is really old right? I think Travel→written by →Robert A. Heinlein
it was released in 1958. // B: [response]

A:Could you recommend a book by Jeffrey Zaslow? KG-CRUSE Jeffrey Zaslow→wrote→The Last Lecture
B: [response] Ground Truth Jeffrey Zaslow→wrote→Last Lecture

→has genre→Non-fiction

Table 6: Examples where KG-CRUSE generates path different from the true paths.

mance. The first column of Table 4 lists the tuples
(K1, K2, K3) where each Ki denotes the top-Ki

edges sampled at timestep i.
We conduct this analysis on a single split of the

dataset keeping all other parameters of the model
constant. We consider a diverse set of values for
each Ki. From Table 4, we find that although the
tuples (2, 5, 50), (2, 10, 25), (2, 25, 10) and (2, 50,
5) have an equal number of sampled paths, tuple (2,
25, 10) performs better than others. Interestingly,
we observe that the sampling sizes at the second
timestep play a significant role in finding optimal
paths for KG-CRUSE. The first two sets of fact
selection (i.e. during timesteps 1 and 2) largely de-
termine the facts reachable by KG-CRUSE. Sam-
pling more samples during the initial timesteps
enables the agent to explore diverse paths initially
and KG-CRUSE then makes an optimal selection
of facts dependent on the dialogue information.

5.5 Analysis of Computational Requirements

In this study, we conduct an analysis of the time re-
quired for training the model. We also compare the
performance of different architectures with regards
to the inference speed.

Table 5 shows that while DKGW has a bet-
ter train time per epoch than KG-CRUSE and
Seq2Seq has a better inference speed than KG-
CRUSE, we can observe from Table 1 that our
model achieves better performance compared to
these models. It is worthwhile to mention that
while AttnIO achieves the closest performance to
KG-CRUSE as shown in Table 1, it requires
roughly six times more training time and is ten
times slower during inference. This clearly indi-
cates the benefits of using KG-CRUSE for explain-

able conversation using KGs.

5.6 Qualitative Analysis

This section highlights three scenarios showcasing
the underlying working of KG-CRUSE. Table 6
displays three examples where KG-CRUSE gener-
ates paths different from the gold KG paths. In
the first example, it can be observed that KG-
CRUSE identifies a path that is not sufficient to
answer the given question. This can be due to the
limited dialogue context provided. Choosing this
fact might lead to a dialogue with the agent, how-
ever, the user query is not answer with the path
chosen by KG-CRUSE.

In the second example, the relation traversed by
KG-CRUSE is correct, however as the dialogue
context is not specific, it decodes a path that might
potentially fit the dialogue context but is different
from the gold path. However, in the third example,
even with limited context, KG-CRUSE identifies
a path relevant to the context, however the final
entity differs from the gold path. Such paths are
admissible as all of them fit the dialogue context
appropriately.

6 Conclusion

In this work, we propose KG-CRUSE, an LSTM
based lightweight framework for explainable con-
versational reasoning. We utilise SBERT embed-
dings to capture the rich semantic information in
the dialogue history and the KG elements. We con-
duct an extensive evaluation to demonstrate that our
framework outperforms several baseline models on
both explainability and response entity retrieval.
As annotating ground truth paths is expensive, we
plan on extending this model to scenarios when
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ground truth paths are not available involving the
generation of knowledge-conditioned dialogue.
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