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Abstract
Named Entity Recognition (NER) is a well-
explored area from Information Retrieval and
Natural Language Processing with an exten-
sive research community. Despite that, few
languages, such as English and German, are
well-resourced, whereas many other languages,
such as Romanian, have scarce resources, es-
pecially in domain-specific applications. In
this work, we address the NER problem in the
legal domain from both Romanian and Ger-
man languages and evaluate the performance
of our proposed method based on domain adap-
tation. We employ multi-task learning to jointly
train a neural network on two legal and general
domains and perform adaptation among them.
The results show that domain adaptation in-
crease performances by a small amount, under
1%, while considerable improvements are in
the recall metric.

1 Introduction

Legal is one of the domains where NER plays a
central role, especially in document processing,
where it is used for identifying key elements like
the court name, the name of the parties in a case,
or the case number (Skylaki et al., 2020). In recent
years, interest has grown in the research community
for performing various tasks on legal documents,
known as LegalAI (Zhong et al., 2020).

One direct application of these extracted named
entities is document organization and search. How-
ever, they can be further incorporated into other
systems like document anonymization, judgement
prediction, or case summarization, offering addi-
tional insights to legal professionals (Zhong et al.,
2020; Bansal et al., 2019).

Although still considered under-resourced, Ro-
manian is one of the languages that has seen a
recent expansion with the introduction of two Bidi-
rectional Encoder Representation from Transform-
ers (BERTs) (Devlin et al., 2019) trained on Roma-
nian text (Dumitrescu et al., 2020; Masala et al.,

2020), three named entity corpora (Dumitrescu
and Avram, 2020; Păis, et al., 2021b; Mitrofan
and Tufiş, 2018), over three hundred hours of
publicly-available transcribed speech (Georgescu
et al., 2020; Wang et al., 2021), and a benchmark
that tracks the progress of various Romanian NLP
tasks (Dumitrescu et al., 2021). In addition, domain
adaptation research showed that we could perform
knowledge transfer between datasets using effec-
tive methods in both supervised (Yue et al., 2021)
and unsupervised (Ganin and Lempitsky, 2015)
settings.

In this work, we want to take advantage of these
recent developments and explore the area of do-
main adaptation with a task discriminator on the
Romanian language. On a more granular level,
we experiment with domain adaptation from the
general to the legal domain, using the Romanian
Named Entity Corpus (RONEC) (Dumitrescu and
Avram, 2020) as a reference and Romanian Legal
NER corpus (LegalNERo) (Păis, et al., 2021b) as a
target.

Our proposed neural architecture employs multi-
ple components. A pre-trained BERT layer gener-
ates the feature representation. Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) is utilized in bidirectional configuration to
capture both left-to-right and right-to-left depen-
dencies. Conditional Random Fields (CRFs) (Laf-
ferty et al., 2001) generate the predictions based on
the conditional probability of the sequence. We em-
ploy multi-task learning (Changpinyo et al., 2018)
to train the model on legal and general domains
jointly, and on top of that, we apply domain adapta-
tion as described by Ganin and Lempitsky (2015),
but in a supervised setting.

Furthermore, to explore the robustness of our
approach in another but better-resourced language,
we apply the same methodology to German and
investigate domain adaptation from GermEval
2014 (Benikova et al., 2014) to German Legal NER
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(German LER) (Leitner et al., 2020). Ultimately,
we evaluate our approach through visualizations
and analysis of the predictions.

We summarize the contributions as follows:

• We propose a multi-task domain adversarial
model that is jointly trained on two domains,
namely general and legal;

• We evaluate the performances of our approach,
the quality of the predictions, and propose a
way of visualizing the embedding space of the
named entities;

• To the best of our knowledge, we are the first
to experiment with domain adaptation in the
legal NER.

2 Related Work

Named Entity Recognition. In the supervised
setting, Lample et al. (2016) introduced LSTM-
based neural architectures that do not rely on
domain-specific resources or hand-crafted features.
Both character-level and word-level representations
passed through LSTM and CRF layers proved ef-
fective in NER.

Since Transformers (Vaswani et al., 2017) be-
came popular in NLP, BERT-based approaches
were evaluated on NER tasks, proving the effec-
tiveness of the contextualized word embeddings
and transformer word representations (Souza et al.,
2019; Dai et al., 2019; Jiang et al., 2019; Liu et al.,
2020; Syed and Chung, 2021). These methods com-
bine the previous neural components (i.e., LSTM,
BERT, and CRF) with deep learning techniques
such as transfer learning (Weiss et al., 2016), active
learning (Cohn et al., 1996), and domain adaptation.
Pointer Generator Networks (See et al., 2017) were
also employed in NER by Skylaki et al. (2020),
showing that the proposed method achieves better
results when compared to BERT-based and LSTM-
based models.

Often, NER is jointly addressed along with re-
lation extraction (Feldman and Rosenfeld, 2006;
Nasar et al., 2021). While NER is usually solved
using recurrent neural networks, relation extrac-
tion can be handled using convolutional (Zheng
et al., 2017) and feed-forward layers (Bekoulis
et al., 2018; Bhatia et al., 2019; Shi and Lin, 2019).

To generate labels for new types of entities and
relation extraction in automated systems, distant su-
pervision (Mintz et al., 2009) is utilized based on a

dataset of entities. Improvements rely on introduc-
ing a reinforcement learning module in the tagger
that selects clean data for the model architecture
during training (Yang et al., 2018).

NER tasks can become challenging when enti-
ties are nested; often, they address flat NER. Gen-
erally, classical approaches do not consider nesting
and treat this task as dependency parsing (Yu et al.,
2020). The method relies on embeddings gener-
ated via BERT for word-based embeddings and
convolutional layers for char-based embeddings.
Feed-forward layers and a biaffine model (Dozat
and Manning, 2017) predict the entity spans.

Legal NER. Previously, classical machine learn-
ing techniques such as Support Vector Machines,
Naive Bayes, and ontologies were utilized to detect
named entities from legal documents (Dozier et al.,
2010; Bruckschen et al., 2010; Cardellino et al.,
2017; Glaser et al., 2018). New datasets started to
emerge in the legal domain since legal is one of
the domains that received little attention (Leitner
et al., 2019). Methods based on domain-specific
embeddings and LSTMs combined with CRFs
were utilized in multiple languages, such as En-
glish (Chalkidis et al., 2019), German (Leitner
et al., 2020), Romanian (Păis, et al., 2021a), and
Portuguese (Luz de Araujo et al., 2018). Barriere
and Fouret (2019) employed a two-learning-step
approach that first trains a model on the NER task,
which then creates features for training a second
neural network model. This approach was evalu-
ated on French legal documents, showing a signifi-
cant reduction in the F1-score error.

Domain Adaptation. The domain adaptation
setting aims to reduce the domain gap between
the source and target data distributions. This tech-
nique takes advantage of the knowledge of well-
resourced domains and transfers it to downstream
tasks with fewer resources. Jia and Zhang (2020)
approached the cross-domain NER via multi-task
learning and a variation of the LSTM cell. Their ap-
proach evaluated on few-shot datasets showed sig-
nificant improvements over other multi-task learn-
ing methods. In the cross-domain setting, Liu et al.
(2021) tested multiple model architectures based
on BERT, LSTM, and CRFs. Their experiments
suggested that domain-adaptive pre-training can
enhance both span-level and token-level perfor-
mances.

Various transfer learning and fine-tuning tech-
niques, such as parameter initialization and multi-
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Figure 1: The proposed model architecture.

task learning, can be employed to reduce the train-
ing overhead of neural architectures (Lin and Lu,
2018). Bekoulis et al. (2018) enhanced the LSTM-
CRF architecture by adding adversarial training
through adversarial perturbation in the embedding
space. Virtual Adversarial Training (VAT) (Miyato
et al., 2019) was combined with the LSTM-CRF
model in both supervised and semi-supervised set-
tings. In the minimization objective, they intro-
duced the Kullback-Leibler divergence computed
between estimated labels of original and adversar-
ial examples (Chen et al., 2020). VAT significantly
improved performance over baseline models.

A language discriminator is added in the
multi-lingual setting to perform adversarial learn-
ing (Chen et al., 2021). The goal of the discrimina-
tor is to force the feature encoder to learn language-
invariant features. Moreover, domain adaptation
was achieved using latent semantic association such
that the same concepts from different domains
should be semantically similar (Guo et al., 2009).

3 Approach

3.1 Neural Network Architecture
Inspired by the previously mentioned works, we
based our neural network architecture on a domain
adaptation technique via multi-task learning. We
consider a two-domain model, which jointly trains,
in a supervised fashion, on two datasets from do-
mains characterized by a domain shift. Figure 1
presents the complete model architecture.

Each domain is associated with a branch in the
model architecture while sharing the feature en-
coder. We utilize contextualized BERT embed-
dings to generate the feature space. Two branches
and a domain discriminator process the BERT’s

output. The transformer model is pre-trained on
the language of the datasets we use and follows a
fine-tuning approach during training, such that we
do not change too much the embedding space, but
it is still subject to domain adaptation.

Implementation-wise, we introduce a gradient
scaler layer that scales down the gradients during
back-propagation by a factor γ, similar to a learn-
ing rate. We apply a scheduler that increases this
learning rate over time:

γ∗ =
1

1 + eγ(−2p+1)
(1)

where γ∗ is the learning rate at the current progress
rate p ∈ [0, 1], and e is Euler’s number. Our in-
tuition is that at the beginning of the training, we
want to avoid affecting the pre-trained Transformer
model’s weights since the higher-level layers are
not trained, and we enable fine-tuning after some
training steps.

Each domain branch comprises a BiLSTM (Bidi-
rectional LSTM), followed by a fully connected
layer and a CRF output layer. We use BiLSTMs
since these are more resilient to gradient vanish-
ing (Hochreiter and Schmidhuber, 1997) while cap-
turing feature dependencies from both left-to-right
and right-to-left directions, and CRFs to model
the conditional probability distribution of the input
sequence. Lastly, we introduce a discriminative
branch linked to the shared embedding encoder via
a gradient reversal layer (Ganin and Lempitsky,
2015), having a linear layer followed by CRF. The
motivation for the usage of domain adaptation is
presented in Section 3.3.
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3.2 Conditional Random Field
CRFs (Lafferty et al., 2001) are discriminative mod-
els based on undirected graphs, modelling the con-
ditioned probability of labels obeying the Markov
property relative to the dependency graph, given
the input (i.e., P (y|X)) (Sutton and McCallum,
2012). The input of the CRF is a sequence of fea-
tures of the input sequence X = (x1, x2, ..., xn),
being output by the last fully connected layer. The
output sequence of the CRF is a label y from the
set of all possible classes K. For each pair of input
sequence labels, its score is defined as:

s(X, y) =
n∑

i=0

Ayi,yi+1 +
n∑

i=1

Pi,yi (2)

where A is the transition score matrix of size K ×
K, and P are the output scores generated by the
last fully connected layer of size n×K. Probability
of the sequence y is defined as a softmax over all
scores:

p(y|X) =
exp (s(X, y))∑

y′∈YX
exp (s(X, y′))

(3)

with YX being the set of all possible tag sequences
for a sequence X . Compared with the softmax
activation function, the CRF can handle sequential
dependencies.

To determine the predictions of the input se-
quence, we run the Viterbi algorithm (Forney,
1973), which extracts the tags y∗ with the maxi-
mum score:

y∗ = arg max
y′∈YX

s(X, y′) (4)

The optimization process is based on maximiz-
ing the likelihood:

log p(y|X) = s(X, y)−log(
∑

y′∈YX

exp (s(X, y′)))

(5)
It allows us to combine CRFs with neural network
models, where the loss function is the negative log-
likelihood (i.e., LCRF = − log p(y|X)), which is
optimized using gradient-based methods.

3.3 Optimization in Domain Adaptation
Setting

One of the most influential works is in the unsuper-
vised domain adaptation setting (Ganin and Lempit-
sky, 2015), which aims to reduce the domain shift
by introducing a domain discriminator. Similar to

how Generative Adversarial Networks (Goodfel-
low et al., 2014) work, the domain discriminator
learns indistinguishable feature representations be-
tween different domains. Therefore, it minimizes
the loss function concerning the labels while maxi-
mizing the error rate of the domain discriminator.
This minimax game is formalized as follows:

θ̂f , θ̂y = arg min
θf ,θy

L(θf , θy, θ̂d) (6)

θ̂d = argmax
θd

L(θ̂f , θ̂y, θd) (7)

where L is the loss function, θf are the parameters
of the feature generator, θy are the parameters of
the label predictor, and θd are the parameters of
the domain discriminator. The variables with a hat
are fixed during optimization. The empirical loss
function is the difference between the prediction
loss Ly and domain adaptation loss Ld:

L = Ly − λLda (8)

where λ is a hyperparameter that controls the level
of domain adaptation during training. This opti-
mization problem is implemented by linking the
discriminator to the feature extractor via a gradi-
ent reversal layer that negates the gradient during
back-propagation while solving:

L = Ly + λLda (9)

In this paper, we utilize the domain adaptation at
the tag level, meaning that the discriminator learns
specific feature representations based on the con-
text of each tag. Therefore, we use a CRF layer
to model the sequence of constant values among
the same domain (for example, a sequence of 1s
for the first domain and 2s for the second domain).
This also motivates why we use a gradient scaler
after the BERT layer.

When performing the feed-forward step, a batch
containing examples from both domains is passed
through the model. First, we utilize the samples
from the first domain and accumulate gradients
computed for the loss associated with the first do-
main Ly1 and domain discriminator Lda1 . Then,
we pass the examples from the second domain and
accumulate the gradients for the second domain out-
put Ly2 and the domain discriminator Lda2 . Next,
we perform gradient updates and repeat the train-
ing procedure for all batches in the training set.
See Figure 1 for how the gradients are propagated
throughout the network.

308



We minimize the negative log-likelihood loss for
each branch, computed as described in Section 3.2.
The total loss is formalized below:

Ltotal = Ly1 + Ly2 − λ(Lda1 + Lda2) (10)

We vary λ according to the same Equation (1)
but scaled by a constant α. Hence, we enable more
domain adaptation over time at a progress rate p:

λp = α

(
2

1 + e−βp
− 1

)
(11)

where α defines the upper boundary of the func-
tion, and β controls the widening of the sigmoid
function.

During training, we observed that the adversarial
loss starts to increase after a period of training. At
the same time, the discriminator performs poorly
(that means the discriminator becomes unable to
distinguish among features). Subsequently, this
also hinders the performance on the other tasks,
and limiting domain adaptation proved to yield bet-
ter results. Another observation we made is that
by negating the loss term of the domain discrim-
inator, instead of using +Lda (further referenced
as ADAL), we utilize −Lda during optimization
(further referenced as SDAL). The performances
considerably improved when compared with classi-
cal domain adaptation.

4 Experiments

4.1 Datasets
We evaluate our approach on datasets from general
and legal domains, Romanian and German, respec-
tively. We utilize the splits provided; where these
were not provided, we randomly split the datasets
into train/test/validation, using 80%-20%-20% ra-
tios.

RONEC (Named Entity Corpus for the Roma-
nian language) (Dumitrescu and Avram, 2020)1

is an open-source dataset, currently at version 2.0,
containing 0.5M tokens within 12,330 annotated
sentences extracted from newspapers. The to-
tal number of entities annotated in the RONEC
v2.0 corpus is 80,283 from 15 distinct classes,
inspired by the OntoNotes5 (Weischedeld et al.,
2013) and ACE (Doddington et al., 2004) datasets.
The dataset is available under CoNLL-U format2,

1https://github.com/dumitrescustefan/
ronec

2https://universaldependencies.org/
format.html

using the BIO annotation schema (Lample et al.,
2016). The second version was annotated by
termene.ro3. The dataset is split into 9,000
sentences for training, 1,330 sentences for valida-
tion, and 2,000 for testing. The entity classes are
roughly evenly balanced among the splits. This
dataset also has version 1.0 available but was not
utilized during experiments.

LegalNERo (Păis, et al., 2021a)4 is a named en-
tity corpus proposed for the Romanian language by
researchers from the Romanian Institute of Artifi-
cial Intelligence. This dataset was annotated by five
human annotators and consists of 370 documents
extracted from the MARCELL-RO corpus (Tufis,
et al., 2020). The dataset contains 8,284 sentences
and a total of 13,614 entities. The entity classes
considered in this dataset are the following: Person,
Location, Organization, Time, and Legal Ref. The
dataset is available in the CoNLL-U Plus format,
annotated using the BIO schema.

GermEval 2014 (Benikova et al., 2014)5 is a
dataset proposed at the KONVENS workshop that
introduces an extended set of tags compared with
previous works. In summary, it contains 31,300 an-
notated sentences, consisting of a total of 590,000
tokens and 41,124 entities from four main classes
(person, location, organization, and other), as well
as derivations and parts of named entities for each
of the main classes (there are 12 classes in to-
tal). The dataset is divided into three sets: 24,000
sentences for training, 2,200 sentences for vali-
dation, and 5,100 sentences for testing, all being
provided in the CoNLL-U format, following the
BIO schema.

LER (Legal Entity Recognition) (Leitner et al.,
2019)6 contains 750 court decisions from Ger-
many, which were published on an online portal
(i.e., "Rechtsprechung im Internet"; in eng. "Ju-
risprudence on the Internet"). The dataset has
66,723 sentences, which consists of 53,632 anno-
tated named entities. This dataset is available in
the CoNNL-U format, using the BIO annotation
schema. The dataset consists of seven categories
for the named entities (i.e., person, location, orga-
nization, legal norm, case-by-case regulation, court
decision, and legal literature), divided into 19 fine-

3https://termene.ro
4https://zenodo.org/record/4772095
5https://sites.google.com/site/

germeval2014ner/
6https://github.com/elenanereiss/

Legal-Entity-Recognition
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grained classes.

4.2 Data Preprocessing
Extracting named entities from documents can be
cast to a tagging problem. Each word follows the
BIO schema (Lample et al., 2016) (i.e., the begin-
ning of entities are labelled with B, inside tokens
are labelled with I, and outside of entities are anno-
tated with O). The labels are numerically encoded
such that each label indicate the BIO tag and its
class.

In this work, we employ Transformer represen-
tations, and we utilize the pre-trained BERT tok-
enizer (Sennrich et al., 2016) on the language we
train the model to generate the input tokens. Since
the goal is to keep a small enough vocabulary, some
words are split among multiple tokens. In this case,
we consider a NULL tag that indicates the token is
an inside subword (for example, when using BERT
tokenizer, these tokens start with ’##’). Each sam-
ple consists of a sentence. If the sentence length
after tokenization is longer than the maximum se-
quence length for BERT, then we split the sentence
into multiple examples.

4.3 BERT Embedding Representation
We use the language-specific pre-trained BERT
model since we deal with multiple languages.
For the Romanian language, we use the pre-
trained Romanian BERT model (Dumitrescu et al.,
2020), which was trained on three corpora, namely
OPUS (Tiedemann, 2012), OSCAR (Suárez et al.,
2019), and Romanian Wikipedia, in total repre-
senting 15.2GB of processed data. We employed
the cased base model. For the German language,
we utilized the German BERT model (Chan et al.,
2020), which was pre-trained on four datasets
(i.e., the German version of OPUS, OSCAR, and
Wikipedia, at which it is added the Open Legal
Data (Ostendorff et al., 2020) – a dataset for legal
domain), worth over 150GB of data. We used the
cased base model in our experiments since some
words (such as nouns) are spelt with capital letters
at the beginning of the words.

4.4 Baselines
We compare our approach with simplified versions
of the proposed architecture, considered baseline.
They consist of a BERT transformer, a BiLSTM
layer, a fully connected layer, and a CRF layer
for generating the probability distribution for the
tokens. We trained this architecture on all four

datasets and followed the same training procedure
as the proposed method. During training, we set
the BERT model to be fine-tuned to improve the
embedding generation on the downstream task.

4.5 Experimental Setup

We trained all models on TPUv3-87 provided by
Kaggle8 for free. We used a batch size between 4
and 16 per TPU, and trained the baseline models for
at most 10 epochs. The learning rate was varied us-
ing a linearly decreasing scheduler, with the warm-
up proportion set to 1%. The maximum learning
rate was set to 0.002, and the minimum value was
attained at the last epoch. In all cases, we used a
gradient scaler value of 1e-5. To reduce overfitting,
we utilized the AdamW optimizer (Loshchilov and
Hutter, 2019) with a weight decay of 1e-5. In ad-
dition, we employ gradient clipping of magnitudes
greater than 2.0. For tokenizer, we set the maxi-
mum sequence length to 200. For domain adapta-
tion setup, similar hyperparameters were employed.
In addition, we set the maximum epoch to be 20
while keeping the best-performing checkpoint for
evaluation, and the domain adaptation hyperparam-
eter α was set to 0.1. In contrast, β was set to
10.

4.6 Evaluation Metrics

We assess the performance of the models in terms
of negative log-likelihood computed as described in
Section 3.2, and F1-score at the entity level (Yadav
and Bethard, 2018; Dumitrescu et al., 2020) from
four metrics: Entity Type, Partial, Exact, and Strict,
computed as follows9:

P =
Correct

Correct+ Incorrect+ Partial + Spurius
(12)

R =
Correct

Correct+ Incorrect+ Partial +Missing
(13)

F1 =
2PR

P +R
(14)

where Correct represents correctly predicted enti-
ties; Incorrect are the incorrectly predicted labels
by the system; Partial are the partially correct de-
tected annotations; Missing are the golden labels
not detected by the model; Spurius are the entities
detected by the model, but they are not in the gold
set.

7https://cloud.google.com/tpu
8https://www.kaggle.com/
9https://www.davidsbatista.net/blog/

2018/05/09/Named_Entity_Evaluation/
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5 Results

This section presents results on baseline models
and domain adaptation. We present the precision,
recall, and F1-scores at the entity level (strict mea-
sures). In the end, we provide t-SNE (van der
Maaten and Hinton, 2008) visualizations of the em-
bedding space on the feature space along with the
limitations of the current approach. In Appendix A,
we present more detailed results.

5.1 Baselines

For the baseline models, we present the results
in Table 1. Results are obtained in the follow-
ing configurations: RONEC - LegalNERo, and
GermEval 2014 - LER. We present the negative
log-likelihood averaged per token (NLL) as abso-
lute values (the lower, the better) and F1-scores
as percentages (the higher, the better). The Ger-
man LER model achieves the highest F1-scores
and the lowest NLL absolute value (0.0676) since
this is the largest dataset we used. On the other
side of the spectrum, the model trained on Legal-
NERo achieves the smallest F1-scores, with only
80.3%, being at the same time the smallest dataset.
On RONEC, we observed higher scores for Entity
Type and F1-Partial, meaning that the models par-
tially identified entities in the text, while the exact
boundaries and, in some cases, the types of the en-
tities were misidentified. However, on this dataset,
the model achieves the highest NLL score. On the
GermEval 2014 dataset, the model reaches the best
score when identifying partial entities. In contrast,
the smallest score is achieved when determining
the exact match of the boundaries and entity types.

Dataset NLL Ent. Type F1-Partial F1-Exact F1-Strict
RONEC 0.1121 90.51 91.22 89.52 87.51
LegalNERo 0.0900 86.69 85.21 81.07 80.30
GermEval 2014 0.0684 84.60 88.40 84.22 82.62
LER 0.0676 96.18 93.76 90.37 89.86

Table 1: Baseline results obtained on all datasets.

All models achieve over 85% in F1-score in par-
tially identifying entities while ignoring their type.
At the same time, we observe that the performances
drop by almost 5% when the model has to identify
the exact boundaries and entity type. In general,
we observe the following patterns inspecting the
outputs of the baseline models:

• In the case of nested entities, the models pre-
dict the inside entities but not the whole one;

• The precision is lower compared with recall,
meaning that the models predict non-existing
entities, while those that correspond to ground
truth are correctly identified and classified;

• Some classes are repeatedly misclassified (for
example, on LegalNERo, organizations are
predicted as persons, or in RONEC, events
are predicted as organizations);

• Invalid boundaries, as observed earlier by the
drop of 5% in strict metric compared with the
partial metric.

5.2 Domain Adaptation on Different Domains

Applying domain adaptation, we experimented
with two configurations: first, in which we add the
domain adaptation loss +Lda, and second, in which
we subtract the domain adaptation loss −Lda.

Table 2 presents the results of the ADAL sce-
nario. We observe the performances are similar to
the baseline models, meaning that even if we per-
form domain adaptation, the input space’s new la-
tent structure does not help improve performances.
In general, the results are slightly lower, by at most
3% in F1-score. In the case of LegalNERo, we see
an improvement of 1% in strict and exact metrics.
In almost all cases, the evaluation NLL score is
larger than the baseline values, the exception being
LER.

Dataset NLL Ent. Type F1-Partial F1-Exact F1-Strict
RONEC 0.1561 88.14 89.49 87.45 84.51
LegalNERo 0.1239 86.58 85.79 82.05 81.24
GermEval 2014 0.0739 83.77 88.21 87.13 81.96
LER 0.0245 94.45 93.54 90.62 89.15

Table 2: Domain adaptation trained using ADAL.

On SDAL (see Table 3), we notice improvements
of up to 3% along almost all datasets, except for
LegalNERo, where the performance drops by 5%.
We note that the highest score obtained on LER is
92.2%, GermEval 2014 is 85.57%, and RONEC
is 87.10%. Compared with ADAL, these scores
are higher by up to 4% in the case of the generic
datasets.

Dataset NLL Ent. Type F1-Partial F1-Exact F1-Strict
RONEC 0.1084 90.17 90.86 89.13 87.10
LegalNERo 0.0910 81.21 79.95 76.39 75.68
GermEval 2014 0.0666 86.91 90.66 89.87 85.57
LER 0.0168 96.27 95.27 93.07 92.30

Table 3: Domain adaptation trained using SDAL.
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5.3 In-Dataset Domain Adaptation

We analyze the effects of applying domain adap-
tation inside the same dataset. In other words, we
utilize the same train set for both domains while
keeping different domain tags. The intuition is to
enforce a feature representation that is more robust
against small variations in the latent space due to
the random initialization of both branches. Table 4
shows the results on all four datasets.

Dataset NLL Ent. Type F1-Partial F1-Exact F1-Strict
RONEC 0.2558 88.39 90.07 88.42 85.59
RONEC 0.2620 89.65 90.62 88.99 86.82
LegalNERo 0.1498 84.86 77.67 66.05 63.46
LegalNERo 0.1435 89.15 88.86 85.93 85.17
GermEval 2014 0.1073 85.31 89.76 88.86 83.79
GermEval 2014 0.1090 85.08 90.23 89.49 83.94
LER 0.0208 95.59 93.96 91.05 90.40
LER 0.0203 95.70 93.99 91.16 90.59

Table 4: Domain adaptation on the same datasets:
RONEC - RONEC, LegalNERo - LegalNERo,

GermEval 2014 - GermEval 2014, and LER - LER.

We observe that almost consistently, one of the
two task heads performs better than the other. In
the case of LegalNERo, there is a considerable
difference in performances between the two heads
while keeping similar NNL scores. This indicates
that small changes in per-tag measurements may
have larger impacts on sequential measurements.
Moreover, these results improve upon the baseline
results, by a small margin, under 1%, on all datasets
except RONEC, on which we observe performance
degradation by at most 1%. In addition, we observe
higher NLL scores, except on the LER dataset.

5.4 Effects of Domain Adaptation on the
Feature Space

We generate t-SNE representations in the latent
space of the model, outputted by the Transformer
layer. The visualizations are generated at perplex-
ity set to 30. We compare these representations
between datasets and assess how well the model
adapted to the changes in the data distributions.

Figure 2 shows the scenario on the Romanian
datasets. The pre-trained BERT outputs are gen-
erated using the non-fine-tuned version of the pre-
trained BERT model in the Romanian language.
We observe that the pre-trained BERT outputs on
RONEC are sparse and tend to form two blobs (i.e.,
a large one on the left and a smaller one on the
right). On the LegalNERo dataset, the data points
tend to cluster and not follow the same distribution
as RONEC.

In the case of the German datasets (see Figure 3),
we observe similar behaviors as on the Romanian
datasets. The pre-trained BERT model on the Ger-
man language outputs entities generates a latent
space in which examples from the GermEval 2014
dataset are close to LER while tending to cluster
into groups of points from the same dataset. This
phenomenon is emphasized when domain adapta-
tion is employed. In both ADAL and SDAL, there
is a separation between datasets.

When analyzing ADAL, we can see that the data
tend to form clusters and separation between exam-
ples from the two datasets. In the SDAL training
scenario, we observe at a smaller degree the ten-
dency of clustering. We can see that both datasets
are separated, but the data points are not clutter-
ing into some spots. Considering the performance
differences, we may hypothesize that the feature
predictor prefers sparser representations to com-
pact ones.

Having linearly separable classes is the desired
objective since this representation is much easier to
be classified by the simpler classifiers. We cannot
assume this is the case (i.e., linear separation) due
to how t-SNE works. From these visualizations, we
can deduce that combining both gradient reversal
and gradient scaler layers are an effective way of
shaping the latent space, if set appropriately.

Therefore, from this empirical observation, the
sign of the domain adaptation loss term does in-
fluence the latent representation, more specifically,
when considering the sparsity of the data. When
we add the loss term and perform the optimization
step in domain adaptation, we aim to minimize that
term so that the domain classifier is trained like
a regular neural network. At the same time, we
maximize the loss function in the latent represen-
tation to generate similar feature distributions. In
our experiments, we see the opposite in the multi-
task learning setup. The feature representation at
the entity level tends to become separable and clut-
tered together. It is desired in the context of a label
classifier since we want different features that are
easily predictable for each class.

5.5 Limitations

Our proposed method has some limitations, espe-
cially during training. As previously mentioned, a
more significant domain adaptation on the BERT
architecture yields poor performances. This mo-
tivated us to introduce a gradient scaler layer and

312



(a) Pre-trained BERT outputs (b) ADAL training (c) SDAL training

Figure 2: t-SNE visualizations of the embedding space on Romanian datasets for the baseline, ADAL, and SDAL.

(a) Pre-trained BERT outputs (b) ADAL training (c) SDAL training

Figure 3: t-SNE visualizations of the embedding space on German datasets for the baseline, ADAL, and SDAL.

the hyperparameter schedulers, thus reducing this
effect. On the other hand, we analyzed the models’
predictions and observed that some boundaries are
incorrectly determined, thus affecting the scores.
For example, in the Romanian language, the en-
tity "Sanctităt,ii Sale Papa Francisc" (eng., "His
Holiness Pope Francisc") is split into two entities
(see Appendix A.5). Our method does not detect
some entities on all datasets in a different context.
Also, the model does not capture this variety in the
dataset, which overfits this scenario. More discus-
sions on limitations can be seen in the case study
from Appendix A.4.

6 Conclusions and Future Work

We proposed a method based on multi-task do-
main adaptation in a cross-domain setting. The
model architecture is based on contextualized word
embeddings generated using BERT, LSTM, fully
connected, and CRF layers. We evaluated our ap-
proach on two languages (i.e., Romanian and Ger-
man) from two domains (i.e., general and legal).
We observed minimal improvements in the Ger-
man dataset while reducing performance on the
Romanian legal dataset. More research should be
conducted in this direction.

For future work, we strive to investigate the per-
formance degradation further and analyze the ef-
fects of domain adaptation on the embedding space
via t-SNE visualizations. In addition, we want to
evaluate a cross-lingual setting, considering the
cross-language BERT pre-trained model and per-
forming domain adaptation between the same do-
main but different languages.
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A Appendix

A.1 Entity-Level Performance of the Domain
Adaptation Model

The entity-level performance, in terms of strict met-
rics for precision, recall, and F1-score, are pre-
sented in Tables 5, 6, 7, and 8, for both Romanian
and German languages, on the general and legal
domains.

Entity
Type

Without DA With DA
P R F1 P R F1

DATETIME 55.56 91.01 69.00 46.72 90.07 61.53
EVENT 7.73 55.81 13.58 4.95 49.12 9.00
FACILITY 9.55 69.14 16.78 7.41 73.71 13.47
GPE 58.08 92.94 71.49 49.71 93.40 64.88
LANGUAGE 5.45 87.67 10.26 3.88 87.67 7.44
LOC 17.67 67.46 28.01 13.59 69.05 22.72
MONEY 14.74 87.05 25.21 10.48 83.48 18.62
NAT_REL_POL 38.35 89.76 53.74 30.21 89.24 45.14
NUMERIC 50.22 95.28 65.77 41.44 95.20 57.74
ORDINAL 17.96 80.92 29.39 13.97 85.53 24.02
ORG 40.43 70.44 51.38 38.26 80.69 51.90
PERIOD 12.05 77.11 20.85 9.22 81.00 16.56
PERSON 75.69 89.74 82.12 69.23 90.20 78.34
QUANTITY 17.19 93.90 29.06 12.73 93.90 22.42
WORK_OF_ART 10.96 54.65 18.26 9.04 60.37 15.72

Table 5: Entity-level performance on the RONEC
dataset.

Entity
Type

Without DA With DA
P R F1 P R F1

LEGAL 58.87 83.83 69.17 50.86 80.60 62.37
LOC 46.28 76.57 57.69 41.79 85.30 56.10
ORG 66.13 87.59 75.36 59.88 86.89 70.90
PER 29.37 94.27 44.78 18.17 69.81 28.83
TIME 54.57 90.53 68.09 47.39 91.98 62.55

Table 6: Entity-level performance on the LegalNERo
dataset.

Entity
Type

Without DA With DA
P R F1 P R F1

LOC 69.04 90.97 78.50 70.08 90.33 78.92
LOCderiv 44.32 93.23 60.08 45.97 94.47 61.84
LOCpart 9.34 63.30 16.27 10.30 66.97 17.85
ORG 55.35 80.52 65.60 56.07 79.77 65.85
ORGderiv 0.46 37.50 0.91 0.32 25.00 0.64
ORGpart 17.61 81.40 28.96 17.70 77.91 28.85
OTH 37.86 64.73 47.78 40.18 67.56 50.39
OTHderiv 3.24 56.41 6.13 4.02 66.67 7.59
OTHpart 3.11 50.00 5.85 2.48 38.10 4.66
PER 69.77 94.69 80.34 70.80 94.75 81.04
PERderiv 0.77 45.45 1.51 0.32 18.18 0.64
PERpart 2.81 43.18 5.28 3.74 54.55 7.00

Table 7: Entity-level performance on the GermEval
2014 dataset.

Entity
Type

Without DA With DA
P R F1 P R F1

AN 4.09 78.26 7.78 6.21 82.61 11.55
EUN 37.84 86.56 52.66 45.91 86.21 59.91
GRT 60.17 98.02 74.57 68.83 98.33 80.98
GS 88.19 98.16 92.91 91.10 97.97 94.41
INN 48.19 90.37 62.86 57.72 91.41 70.76
LD 39.34 97.85 56.12 48.58 97.85 64.92
LDS 6.21 70.00 11.41 9.63 77.50 17.13
LIT 51.27 88.42 64.91 58.22 87.02 69.76
MRK 8.28 76.00 14.93 10.77 68.63 18.62
ORG 30.24 82.05 44.19 37.70 81.55 51.56
PER 42.03 93.96 58.08 51.74 94.26 66.81
RR 20.60 98.20 34.06 27.27 97.30 42.60
RS 82.50 95.20 88.40 85.38 94.31 89.62
ST 22.43 95.31 36.31 28.54 91.41 43.49
STR 5.42 85.71 10.19 7.74 85.71 14.20
UN 32.92 90.21 48.24 40.74 88.94 55.88
VO 22.30 87.94 35.58 29.38 87.94 44.05
VS 16.70 73.55 27.22 21.14 68.00 32.26
VT 52.70 91.36 66.85 60.20 89.52 71.99

Table 8: Entity-level performance on the German LER
dataset.

A.2 Comparison with Existing Works

We compare our approach in terms of the strict
exact score on each dataset. On the LegalNERo
dataset, we extracted the results for the best
model (Păis, et al., 2021a) achieving the reported
score on the test set. Their approach is similar to
ours in that both methods utilize BiLSTM and CRF
layers in the architecture. The main difference is
that our approach uses BERT embeddings, while
Păis, et al. (2021a) generated MARCELL embed-
dings and employed gazetteers. On RONEC, we
considered the results reported for Romanian BERT
cased and uncased (Dumitrescu et al., 2020), from
their GitHub page10. We considered this because
our architecture utilizes these pre-trained models
as components for embedding generation.

On the German LER dataset, we considered the
results for BiLSTM-CRF (Benikova et al., 2014),
which utilizes pre-trained embeddings on the Ger-
man language, and the previously mentioned ar-
chitecture for predictions. In the end, on the Ger-
mEval 2014 dataset, we considered the winning
team (Hänig et al., 2014) at the GermEval 2014
competition, which utilizes only the CRF model.

Table 9 showcases the results. We observe that
our approach obtains comparable results on Legal-
NERo; on RONEC and German LER, the differ-

10https://github.com/dumitrescustefan/
ronec/tree/master/evaluate
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Method LegalNERo RONEC LER GermEval 2014
MARCELL+BiLSTM+CRF (Păis, et al., 2021a) 85.34 - - -
romanian-bert-cased (Dumitrescu et al., 2020) - 91.9 - -
romanian-bert-uncased (Dumitrescu et al., 2020) - 95.2 - -
BiLSTM-CRF (Benikova et al., 2014) - - 95.46 -
CRF (Hänig et al., 2014) - - - 79.08
Our method 85.17 87.5 92.30 85.75

Table 9: Comparison with existing works. All scores are F1-strict scores, in percentages (%).

ence between 4% and 8%, and on the GermEval
2014 dataset, our method performs better than a
CRF model by 6%.

A.3 Embedding Space Visualization

We analyze the embedding space by employing
t-SNE representations on the embedding space gen-
erated with the pre-trained BERT models (before
fine-tuning). Since some named entities may have
more than one word or token, we average embed-
dings to generate a meaningful representation. For-
mally, given the set of token embeddings wj

i , each
token of the Transformer’s input has the following
embedding representation ej :

ej =
1

N j

Nj∑

i=1

wj
i (15)

where Nj represents the length of the jth named
entity.

In this space, we apply t-SNE to generate the
visualizations on the test set of each dataset we
utilized in this work, the perplexity being set to 30.
Figure 4 shows the plots on the Romanian language,
while Figure 5 presents the visualizations on the
German language. We observe that tokens from
the same class cluster together in both languages.
In addition, we can observe that LegalNERo is
the sparsest dataset, with classes in general well
separated. On the other hand, we see the data’s
tendency to cluster together on the LER dataset,
but compared to the general domain, it is a less
linearly separable dataset. However, the models
trained on this dataset obtained better results due
to model over-parametrization. We see linearly
separable clusters in the t-SNE representations on
the general domains, with some scattered points.

A.4 Case Study

We present examples of the outputs produced by
the domain adaptation model in Table 10 from Ap-
pendix A.5.

In the case of the Romanian language, we see
that the boundaries are not well recognized, such
as in "Trezoreria Statului" (eng. "State Treasury"),
where only "Trezoreria" is marked as an organi-
zation. In other cases, such as "Băncii Nat,ionale
a României," (eng. "of the Romanian National
Bank"), the comma is included in the entity. Other
limitations rely on the misclassification of entity
type, identifying entities that are not annotated in
the ground truth, such as locations, dates, and orga-
nizations (although these can be considered entities
in other contexts or can be subject to the difficulty
for annotating datasets and ambiguity of words),
and not identifying entities if are used in different
contexts in the same sentence (for example, words
that possess an indefinite/definite article; e.g., in the
RONEC dataset, we have "persoane fizice" (eng.
"natural persons") with both words annotated or
only "persoane" (eng. "persons")). The model
does not capture this variety in the dataset, which
overfits this scenario. As presented in the Sub-
section 5.1, some entities are misclassified with
other similar types, such as an event with an orga-
nization, when they present acronyms (for exam-
ple, "USFL" - United States Football League and
"NFL" - National Football League) and can be used
interchangeably.

In the case of the German language, the model
predicts the wrong boundaries rather than identify-
ing the entity class (this is also supported by the
higher partial metric than the strict and exact met-
rics). One such example can be seen in Table 10
on the GermEval 2014 dataset, where "Przemys-
law II. von Großpolen" (which is a name, where
"von Großpolen" means "from Greater Poland" in
English) is identified as two entities, namely the
primary name "Przemyslaw II." and the location
"Großpolen" which is from the name. Another
limitation, which is not present in the Romanian
dataset, is the identification of long entities. For
example, "Stellungnahme des Wissenschaftlichen
Beirats beim Bundesministerium der Finanzen aus
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(a) RONEC dataset (b) LegalNERo dataset

Figure 4: t-SNE visualizations of the embedding space on Romanian datasets.

(a) GermEval 2014 dataset (b) German LER dataset

Figure 5: t-SNE visualizations of the embedding space on German datasets.

dem Jahr 2010, Reform der Grundsteuer, S. 6"
(eng., "Statement of the Scientific Advisory Board
at the Federal Ministry of Finance from 2010, re-
form of the property tax, P. 6") which is not iden-
tified by our system. Finally, the last limitation
is that the model does not identify the correct en-
tity types. It can be viewed in Table 10, under
the LER dataset, where "A" is a placeholder for a
person, and "X" is a placeholder for a city. These
were identified as company and location, respec-
tively, just from the context. In this instance, we
shall recall that LER has 19 fine-grained classes,
some corresponding to coarse-grained, higher-level
classes.

A.5 Example of Predictions for the Domain
Adaptation Model
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LegalNERo

G
T.

Punerea în circulat,ie a monedelor de circulat,ie, cu tema Vizita Apostolică a
Sanctităt,ii Sale Papa Francisc PER în România LOC , se va face prin sucur-

salele regionale Bucures, ti LOC , Cluj LOC , Ias, i LOC s, i Timis, LOC ale

Băncii Nat,ionale a României ORG , cu ocazia efectuării plăt,ilor în numerar către institut,iile de

credit / Trezoreria Statului ORG .

Pr
ed

.

Punerea în circulat,ie a monedelor de circulat,ie, cu tema Vizita Apostolică a
Sanctităt,ii Sale Papa PER Francisc PER în România LOC , se va face prin su-

cursalele regionale Bucures, ti LOC , Cluj LOC , Ias, i LOC s, i Timis, LOC ale

Băncii Nat,ionale a României ORG , cu ocazia efectuării plăt,ilor în numerar către institut,iile de

credit / Trezoreria Statului. ORG
RONEC

G
T.

Această regulă , reglementată în prezent la art. 83 NUMERIC alin. ( 3 NUMERIC ) din Co-
dul de procedură fiscală, republicat în M.O. nr. 863 NUMERIC / 26.09.2005 DATETIME ,
a generat unele efecte în sensul că în practică au existat numeroase situat,ii în care suma im-
pozitului datorat depăs, ea suma venitului (de exemplu există foarte mult,i act,ionari PERSON
persoane fizice PERSON cu dividende sub un leu nou MONEY ).

Pr
ed

.

Această regulă , reglementată în prezent la art. 83 NUMERIC alin. ( 3 NUMERIC ) din Codul
de procedură fiscală, republicat în M.O. nr. 863 NUMERIC / 26.09.2005 DATETIME , a
generat unele efecte în sensul că în practică au existat numeroase situat,ii în care suma impozitului
datorat depăs, ea suma venitului (de exemplu există foarte mult,i act,ionari PERSON persoane fizice
cu dividende sub un leu nou).

GermEval 2014

G
T.

Mit Herzog Przemysław II. PER von Großpolen LOC schloss Mestwin PER am 15. Februar

1282 im Vertrag von Kempen LOC eine „donatio inter vivos“ (Geschenk unter Lebenden) und
vermachte ihm sein Herzogtum.

Pr
ed

. Mit Herzog Przemysław II. von Großpolen PER schloss Mestwin PER am 15. Februar 1282 im

Vertrag von Kempen LOC eine „donatio inter vivos“ (Geschenk unter Lebenden) und vermachte
ihm sein Herzogtum.

LER

G
T.

Sie hatte in den Streitjahren bei der A PER mit Sitz in X ST ( Österreich LD ) Reisevorleis-
tungen zur Durchführung von in der Bundesrepublik Deutschland LD ( Deutschland LD ) ausge-
führten Radtouren bezogen.

Pr
ed

. Sie hatte in den Streitjahren bei der A UN mit Sitz in X ST ( Österreich LD ) Reisevorleistungen
zur Durchführung von in der Bundesrepublik Deutschland LD ( Deutschland LD ) ausgeführten
Radtouren bezogen.

Table 10: Examples of ground truth (GT.) labels and predictions (Pred.) for the domain adaptation models. We
selected the examples that have wrong predictions. Best viewed in color.
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