
ESSLLI 2022

Proceedings of the 3rd Natural Logic Meets Machine Learning
Workshop (NALOMA III)

8–12 August, 2022
University of Galway

Galway, Ireland

c©2022 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-959429-39-5

Introduction

Welcome to the 3rd edition of the Natural Logic and Machine Learning workshop (NALOMA). NALOMA
aims to bridge the gap between ML/DL and symbolic/logic-based approaches to NLU and lay a focus on
hybrid approaches. NALOMA’22 took place in August 8-12, 2022, during ESSLLI 2022, organized at
the National University of Ireland Galway.

The workshop run over 5 days of 1.5 hour slots. It included two invited talks, one by Robin Cooper
and one by Oana Camburu, and 8 regular talks. A panel discussion followed at the end with Stergios
Chatzikyriakidis, Valeria de Paiva and Christos Papadimitriou moderated by Larry Moss. Of the 8 sub-
missions corresponding to the regular talks, 5 of them were short or long papers and are included in the
proceedings, and three of them were extended abstracts and are not included in the proceedings.

The workshop was sponsored by the Special Interest Group on Computational Semantics (SIGSEM). We
are grateful for their support.

Stergios Chatzikyriakidis and Aikaterini-Lida Kalouli

Crete & Munich

October 2022

iii

Organisers:

Stergios Chatzikyriakidis and Aikaterini-Lida Kalouli

Program Committee:

Stergios Chatzikyriakidis, Aikaterini-Lida Kalouli, Lasha Abzianidze, Katrin Erk, Hai Hu, Thomas
Icard, Lawrence S. Moss, Valeria de Paiva, Hitomi Yanaka

Invited Speakers:

Robin Cooper, University of Gothenburg
Oana Camburu, University College, London

iv

Table of Contents

Strings from neurons to language . 1
Tim Fernando

Classification Systems: Combining taxonomical and perceptual lexical meaning 11
Bill Noble, Staffan Larsson and Robin Cooper

Learning Knowledge with Neural DTS . 17
Daisuke Bekki, Ribeka Tanaka and Yuta Takahashi

Center-Embedding and Constituency in the Brain and a New Characterization of Context-Free
Languages . 26

Daniel Mitropolsky, Adiba Ejaz, Mirah Shi, Christos Papadimitriou and Mihalis Yannakakis

A Philosophically-Informed Contribution to the Generalization Problem of Neural Natural Lan-
guage Inference: Shallow Heuristics, Bias, and the Varieties of Inference 38

Reto Gubelmann, Christina Niklaus and Siegfried Handschuh

v

Strings from Neurons to Language

Tim Fernando
School of Computer Science and Statistics

Trinity College Dublin, Ireland
Tim.Fernando@tcd.ie

Abstract

Chains of transitions by finite automata orig-
inally conceived to analyze neural events are
described at different granularities by strings.
The granularities are refined, and transformed
into increasingly elaborate structures, against
which to understand the events recorded in the
strings. Choosing the correct structure is a
problem of induction and learning. The events
and strings studied arise in natural language se-
mantics.

1 Introduction

Natural language inference concerns connections
that may or may not exist between say, (i) and (ii).

(i) Facebook bought Instagram.

(ii) Facebook owns Instagram.

If (ii) follows from (i), we might add the link�� ��facebook owns−→
�� ��instagram

to a knowledge graph which already has the link�� ��facebook
bought−→

�� ��instagram .1

But does (ii) follow from (i)? What if an event
happened after the purchase (i) transferring owner-
ship of Instagram away from Facebook (perhaps to
Meta)? Rather than insisting that buy(X,Y) entails
own(X,Y) by leaving out such troublesome events,
the present paper proposes that buy(X,Y) entails
Become(own(X,Y))

buy(X,Y) ⇒ Become(own(X,Y)) (1)

as pictured by a transition

¬own(X,Y)
buy(X,Y)−→ own(X,Y) (2)

1A recent work on link prediction and entailment graphs
is Hosseini et al. (2019).

(associating the precondition ¬own(X,Y) and post-
condition own(X,Y) with the act buy(X,Y)) which
may (or may not) follow (or precede) a transition
such as

own(X,Y)
sell(X,Y)−→ ¬own(X,Y)

(swapping the preconditions and postconditions in
(2)) to describe further changes in ownership. The
operator Become in (1) can be found in the aspec-
tual calculus of Dowty (1979) and characterized by
entailments

Become(A) ⇒ ¬A A (3)

and

¬A A ⇒ Become(A) (4)

using the same binary connective⇒ in (1) to map
regular languages L and L′ to a regular language
L ⇒ L′ (see, for example, §3.4 of Fernando
(2015)).2

Whatever semantics is (or is not) attached to⇒
in (1), it is clear that there is more to a buy-event
than the change in ownership expressed in (1),(2);
no mention is made, for instance, of a payment
that is part of any buy-event. While this omission
does not diminish the entailment (1), it suggests
there is more to the pre-states and post-states of a
buy(X,Y)-transition than is on display in the boxes

¬own(X,Y) and own(X,Y)

2That is, (1), (3) and (4) are not unlike constraints in finite-
state morphology (e.g., Beesley and Karttunen, 2003), except
that the symbols constituting the alphabet of the languages for
⇒ are assumed throughout to be sets. These sets are drawn
with boxes (rather than the customary curly braces {, } and ∅)
to distinguish sets qua symbols (as in the string of length
1) from sets qua languages (e.g., the language ∅ without any
strings, not to mention the empty string ε of length 0).

1

in (2). To salvage (2), let us bring out the (bounded)
granularity Σ underpinning (2), and assert that if

q
buy(X,Y)−→ q′

then the states q and q′ are Σ-approximated by

¬own(X,Y) and own(X,Y)

respectively. That is, (2) becomes

q
buy(X,Y)−→ q′ with πΣ(q) = ¬own(X,Y)

and πΣ(q′) = own(X,Y) (5)

where πΣ maps a state to its Σ-approximation. But
what exactly is this granularity Σ and map πΣ?
And how can we refine Σ to establish an entailment

buy(X,Y) ⇒ pay(X,Y) (6)

injecting an ingredient, pay(X,Y), missing from
(1),(2)?

To answer these and related questions, the
present work defines three notions, a transition
signature Σ, a Σ-strip and an X-projection relative
to Σ, under which a chain

q0
a1→ q1

a2→ q2
a3→ · · · an→ qn (7)

of transitions qi
ai+1→ qi+1 from state qi to state qi+1

over ai+1 can be formulated as strings of varying
granularities, capturing finite fragments of qi and
of ai. The somewhat surprising suggestion here
is that there are strings other than a1a2 · · · an to
extract from the chain (7), and proper fragments of
qi and of ai to describe. This suggestion becomes
less surprising when we turn to the source (Kleene,
1956) of finite automata; in the application there to
nerve nets, ai is a set and qi is a record. This is ex-
plained in section 2, where transition signatures Σ
and Σ-strips are defined, under which the transition
(2) can be encoded as the string

(own(X,Y),0), buy(X,Y) (own(X,Y),1)

of length 2; its first symbol is the box consisting of
the act buy(X,Y) and the ordered pair (own(X,Y),0)
saying own(X,Y) is 0/false; its second symbol
is the box consisting of the single ordered pair
(own(X,Y),1) saying own(X,Y) is 1/true. More gen-
erally, (7) becomes a string α1α2 · · ·αk of boxes
αi formed by adding acts to records, or better
still (when varying a signature within a category),

record types (applied to linguistic semantics in
Cooper and Ginzburg (2015)). As for the entail-
ment (6), this is addressed through X-projections
(relative to Σ), defined in section 3, where Russell-
Wiener event structures (Kamp and Reyle, 1993,
pages 667–674) and interval relations from Allen
(1983) are revisited. Section 4 outlines how to
deploy the three notions defined within logical set-
tings for learning finite automata from strings as-
sociated with signatures. The claim is that the
step from strings to automata tracks the move from
episodic reports (such as (i), Facebook bought In-
stagram) to generic statements such as

(iii) Facebook spreads lies.

The ideas described below, including the connec-
tion to neural nets, are intended to make this claim
plausible3 and intriguing.

2 Nerve nets and beyond

Finite automata go back to Kleene (1956)’s analysis
of a nerve net from McCulloch and Pitts (1943)
consisting of finite numbers k and m of

(i) input cells, N1, . . . ,Nk, described at differ-
ent times by different symbols from a finite
alphabet A, and

(ii) inner cells,M1, . . . ,Mm, described at differ-
ent times by different states from a finite set
Q.

In Rabin and Scott (1959), (i) and (ii) are put
aside in favor of a “black box” perspective on fi-
nite automata, moving them away from nerve nets.
Widely adopted in textbook accounts of finite au-
tomata, this perspective has proved enormously
fruitful. It has, however, also resulted in some ideas
from Kleene (1956) being sidelined, including the
possibility from (i) and (ii) above that

(†) a state q is anm-tuple (v1, . . . , vm) and a tran-
sition q′ a→ q combines m simpler relations
→1, . . . ,→m

q′ a→ q iff q′ a→i vi for all i ∈ {1, . . . ,m}

where q′ a→i vi depends on only certain parts
of q′ and of a (for 1 ≤ i ≤ m).

3Generics have been linked to causation (e.g., Carlson,
1995); automata are obvious candidates for causal structures.

2

The m in (†) is the same number m in (ii) of in-
ner cellsM1, . . . ,Mm; the state q in (†) assigns
values v1, . . . , vm to M1, . . . ,Mm, respectively.
Apart from k and m, Kleene (1956) assumes each
inner cellMi can be assigned any of si ≥ 2 differ-
ent values (of which vi is one), leading to

∏m
i=1 si

manym-tuples (v1, . . . , vm) in the state setQ. The
all-or-none assumption of nervous activity in Mc-
Culloch and Pitts (1943) is applied to the k input
cells in (i) for an alphabet A consisting of the 2k

subsets a of {N1, . . . ,Nk}, the intention being that
a describes a time where an input cell is active (fir-
ing) if and only if it is in a. The transition q′ a→i vi
in (†) is subject to activation laws specifying how
to update the value ofMi when the inner cells have
values q′ and a is the set of active input cells.4 If
q′ = (v′1, . . . , v

′
m), then q′ a→i vi does not depend

on any v′j describing an inner cellMj that does not
feed intoMi nor on any input cell in a that does
not feed intoMi. (The nerve nets may or may not
be fully recurrent.)

Extracting the string a1a2 · · · an from the chain

q0
a1→ q1

a2→ q2
a3→ · · · an→ qn (7)

of transitions leaves out the states q0, q1, . . . , qn,
which in Kleene (1956) describe m inner cells at
n + 1 times. This reflects a focus on the external
environment that is connected to inner cells via
inputs cells (described at n times by a1a2 · · · an).
Away from the particularities of nerve nets, how-
ever, no such separation between external and in-
ternal matters need keep us from extracting instead
the string q0q1 · · · qn from (7). In line with Dowty
(1979)’s use of stative predicates as the basis for his
aspectual calculus, we apply strings q0q1 · · · qn in
section 3 to represent the finitely many events men-
tioned in a (finite) discourse. Some middle ground
between strings q0q1 · · · qn of states and the usual
strings a1a2 · · · an ∈ A∗ is staked out by strings
α0α1 · · ·αn of finite sets αi that provide informa-
tion about states qi and symbols ai+1 (for i < n)
alike. That information may, in (†) above, zero
in on the parts of q′ and of a on which q′ a→i pi
depends.

Two basic intuitions shape the work on strings
α0α1 · · ·αn below. The first is that

(∗) a string which represents a chain (7) of tran-
sitions is a data point that is to be explained

4These involve thesholds and two types of connections, in-
hibitory and excitatory (McCulloch and Pitts, 1943), or in the
case of perceptrons, weights, biases and activation functions.

Kleene (1956) transition signature
inner cellMi label ∈ L
(s1, . . . , sm) value-sets {V(l)}l∈L
input cell Ni act ∈ Act

neural connections af : Act→ 2L

Table 1: Transition signatures in Kleene (1956)

(alongside other data points) with more com-
plex structures

and the second is that

(∗∗) to keep the structures in (∗) managable, we as-
sociate a string α0α1 · · ·αn with a finite gran-
ularity which can be refined as information
about it accumulates.

Mention of data in (∗) calls for a reference to gram-
matical inference (e.g., Heinz and Sempere, 2016;
de la Higuera, 2010). The examples considered
here, however, are from natural language seman-
tics. Under (∗), the step from accounts of events
that happen (in actuality) up to general statements
(including causal claims, counterfactuals and poten-
tiality) is an inductive generalization over strings
which demands richer structures. As for (∗∗), the
main thrust of the present paper is to formulate
granularities as signatures (or vocabularies) famil-
iar in model theory, preparing the ground for logi-
cal systems based on signatures called institutions
(Goguen and Burstall, 1992). The finite signatures
formed below keep the structures finite-state (con-
nected in a precise sense with Kleene (1956)), mak-
ing significant bits of the reasoning decidable (a
theme from Rabin and Scott (1959)).

Getting down to business, let us package key
aspects of Kleene (1956) in a signature, following
Table 1 above.

Definition 1. A transition signature is a 4-tuple
Σ = (L,V,Act, af), where

(i) L is a finite set of labels,

(ii) V is a function with domain L assigning each
label l a finite set V(l) of l-values,

(iii) Act is a finite set of acts distinct from pairs
(l, v) of labels l and l-values v

Act ∩ {(l, v) | l ∈ L and v ∈ V(l)} = ∅

and

3

(iv) af : Act → 2L is a function specifying the
set af(a) of labels that an act a can affect.

In Kleene (1956), labels are inner cells, acts are
input cells, and af maps every input cell to the set
of inner cells it is connected to. For the transition

¬own(X,Y)
buy(X,Y)−→ own(X,Y) (2)

(from the previous section), let

Σ = ({own(X,Y)}, V, {buy(X,Y)}, af)

where
V(own(X,Y)) = {0, 1}

and
af(buy(X,Y)) = {own(X,Y)}

to encode (2) as the string

(own(X,Y),0), buy(X,Y) (own(X,Y),1) .

In general, a transition signature Σ has a stative
part Q(Σ) equal to the set of V-records, where a
V-record is a function q with domain L mapping
each l ∈ L to an l-value q(l) ∈ V(l). The dis-
jointness in clause (iii) of Definition 1 prevents any
confusion when forming a string α0α1 · · ·αn of
subsets αi of

Act ∪ {(l, v) | l ∈ L and v ∈ V(l)}

to specify a chain

q0
a1→ q1

a2→ q2
a3→ · · · an→ qn (7)

of transitions where qi is the part of αi without acts

qi := αi \Act (i.e., {a ∈ αi | a 6∈ Act})

and ai+1 is the subset of αi consisting of acts

ai+1 := αi ∩Act (for i < n).

We can sidestep the disjointness requirement by
turning each set αi in α0α1 · · ·αn into an ordered
pair (qi, ai+1) of a V-record qi and subset ai+1 of
Act; we opt here instead for the union

qi ∪ ai+1 = αi.

Let us define a Σ-box α to be the union of a V-
record with a subset of Act. Given a Σ-box α and
a label l ∈ L, let us agree that the value of l at α
is the unique l-value v such that (l, v) ∈ α. We

say α and α′ are l-equivalent and write α =l α
′ if

l has the same value at α and α′. To express the
idea that adjacent boxes in a string are l-equivalent
unless the boxes are linked by an act affecting l,
let af : 2Act → 2L be the function mapping each
α ⊆ Act to the set

af(α) := L \
⋃

a∈α
af(a)

of labels not in af(a) for any a ∈ α. For example,

af(∅) = L

as there is no act in ∅ to affect a label. A label is
said to be unaffected by α if it belongs to af(α).
Next we define strings basic to this paper.

Definition 2. Given a transition signature Σ =
(L,V,Act, af), a Σ-strip is a string α1 · · ·αn of
Σ-boxes αi such that αn ∩Act = ∅ and for all i
such that 1 ≤ i < n, αi ∩Act 6= ∅ and

αi =l αi+1 for each l ∈ af(αi ∩Act). (8)

Line (8) in Definition 2 comes with a slogan

no change without force

on the understanding that αi =l αi+1 means “no
change” and that Act covers all relevant forces.
(8) gives us a handle on change and the ten-
dency to infer (ii) from (i) in the absence of
any act affecting own(facebook,instagram) after
a buy(facebook,instagram)-event.

(i) Facebook bought Instagram.

(ii) Facebook owns Instagram.

More on af and on what it says about refinements
of Σ in the next section.

3 Events from intervals to strings

“An important part” of interpreting “a piece of dis-
course” is representing the “comparatively few
events” mentioned in it, according to Kamp (2013).
An event e is assumed in Allen (1983) and Kamp
and Reyle (1993) to stretch over a temporal interval,
leaving times before and after e. Under this assump-
tion, a set E of events induces a notion of time as
follows. Let us define an E-state q = (U,A,D) to
be a triple of subsets U,A,D ofE that are pairwise
disjoint and cover E

U ∩A = ∅ and D = E \ (U ∪A).

The idea is that (U,A,D) describes a time that is

4

(i) before every event in U (making U the set of
unborn events in E),

(ii) during every event in A (making A the set of
alive events in E), and

(iii) after every event in D (making D the set of
dead events in E).

To capture the order implicit in this idea, we letQE
be the set of E-states, and we represent the passage
of time by a binary relation→E on QE such that

(U,A,D)→E (U ′, A′, D′)

means

U ′ ⊆ U and A 6= A′ and D ⊆ D′ ⊆ D ∪A. (9)

(9) says unborn events were in the past unborn
(U ′ ⊆ U), the set of alive events changes (A 6= A′),
and dead events stay dead, having at the previ-
ous moment been alive or dead (D ⊆ D′ ⊆
D ∪ A). To associate a transition signature Σ =
(L,V,Act, af) with→E , we let L = E, and fix a
set {u,a,d} of three values to which V maps every
event in E, identifying an E-state q = (U,A,D)
with the function q̂ : E → {u,a,d} mapping e ∈ E
according to which of U,A,D has e

q̂(e) :=

u if e ∈ U
a if e ∈ A
d otherwise (i.e., e ∈ D).

The three e-values (u,a,d) are more than
the two (0,1) needed by a label l such as
own(facebook,instagram) to say l is true or false.
For transitions such as→E that do not specify any
acts, we can express that non-specification through
an anonymous act , that can affect any of the la-
bels. Putting

Act = {,} and af(,) = L

completes the→E-column of Table 2. An alterna-
tive to , is to associate every event e ∈ E with a
left border le and a right border re for a set

El,r := {le | e ∈ E} ∪ {re | e ∈ E}

of borders of E.5 From the definition (9) of
(U,A,D) →E (U ′, A′, D′) above, we can then
extract a non-empty subset

{le | e ∈ A′ ∩ U} ∪ {re | e ∈ D′ ∩A} (10)

Σ →E actions (10) synthesis
L E ∅ E
V λe.{u, a, d} ∅ λe.{u, a,d}

Act {,} El,r El,r

af {(,, E)} λa.∅ afE

Table 2: Transition signatures for E as interval-strings

ue,ue′

ae,ue′

de,ue′

de,ae′

ae,ae′

ue,ae′

ue,de′

ai,de′

de,de′

le

le′

le, le′

re

re, le′

le′

le′

re′

re′

le, re′

le

le

re

re

re′

re, re′

Figure 1: The relation→{e,e′} labelled by actions (10)

of El,r, to express the transition from (U,A,D)
to (U ′, A′, D′). We can also use an event e as a
subscript on the value an E-state q associates with
e, under the repackaging q̂ = {ve | e ∈ E} where
ve abbreviates the pair (e, v) in q̂. For instance, for
E = {e, e′}, we can shorten the E-state (E, ∅, ∅)
to {ue,ue′}, the E-state ({e′}, {e}, ∅) to {ae,ue′},
the E-state (∅, {e′}, {e}) to {de, ae′}, and the E-
state (∅, ∅, E) to {de,de′}. These four E-states
appear in red in Figure 1, with the sets (10) as
boxes over arrows given by →E . The three blue
boxes in Figure 1 form the string

le re, le′ re′ (11)

corresponding to the Allen interval relation e meets
e′ (called abutment in Kamp and Reyle (1993)).
All 13 interval relations in Allen (1983) are ex-
pressed in Figure 1 as strings labelling transitions
from {ue,ue′} to {de,de′}. The 13 strings over
the 8 symbols le , le, le′ , le, re′ , re , re, le′ ,

re, re′ , le′ , re′ appear in Durand and Schwer
(2008) without E-states. The derivation (10) of
le and re from E-states supports the intuition de-

5An event e is, as it were, born with the injunction live, le,
and dies with the injunction rest, re.

5

fended in Allen (1983) that intervals are conceptu-
ally prior to points such as le and re.

Indeed, we can construe le as Become(ae) and
re as Become(de), where Become is one of the
“three or four sentential operators and connectives”
through which David Dowty explains “the differ-
ent aspectual properties of the various kinds of
verbs” on the basis of “a single homogeneous class
of predicates — stative predicates” (Dowty, 1979,
page 71). The pairs ae and de in Become(ae) and
Become(de) are stative insofar as they make up an
E-state q̂, changes to which are trigerred by actions
made up of le and re.

Strings of actions such as

le re, le′ re′ (11)

differ from strings of E-states such as�� ��ue, ue′
�� ��ae, ue′

�� ��de, ae′
�� ��de, de′ (12)

(red in Figure 1) in an important respect that is
revealed when reducing the set E of events to a
smaller set. For this, a definition is helpful. Given
a setX and a string s = α1 · · ·αn of sets αi, theX-
reduct ρX(s) of s is s intersected componentwise
with X

ρX(α1 · · ·αn) := (α1 ∩X) · · · (αn ∩X)

(Fernando, 2015). For example, the {le, re}-reduct
of (11) is

ρ{le,re}(le re, le′ re′) = le re (13)

while the {ue, ae, de}-reduct of (12) is�� ��ue
�� ��ae

�� ��de
�� ��de . (14)

Strings (13) and (14) can be extracted from the
chain

�� ��ue
le
−→

�� ��ae
re
−→

�� ��de −→
�� ��de (15)

of transitions, which we can truncate to

�� ��ue
le
−→

�� ��ae
re
−→

�� ��de (16)

in accordance with the Aristotelian dictum

no time without change

where change is observed through the elements
of X . Truncating (15) to (16) removes the empty
box in (13) and the stutter

�� ��de
�� ��de in (14). This

suggests forming the X-projection of a string s by
compressing its X-reduct ρX(s); that compression
is Durand and Schwer (2008)’s deletion d2 of

d2(ε) := ε (empty string)

d2(αs) :=

{
d2(s) if α =
αd2(s) otherwise

and Fernando (2015)’s elimination bc of stutters

bc(s) := s if length(s) < 2

bc(αα′s) :=

{
bcA(α′s) if α = α′

αbcA(α′s) otherwise.

Returning to the transition signatures in Table 1,
the two middle columns (in blue and red) agree in
allowing every act to affect every label

af(a) = L for every a ∈ Act (17)

(as , is the only act in the→E-column, and there
are no labels in the column next to it). For the
fourth component af of a signature Σ to do any
work (i.e., for line (8) in Definition 2 to be non-
vacuous), neither its stative partQ(Σ) nor its active
part Act should be trivial. This brings us to the
rightmost column of Table 1, where the specificity
of the acts le and re is captured by the equation

afE(le) = {e} = afE(re) for e ∈ E

which, if |E| = 1, reduces to (17) but is quite
different otherwise.

The question arises: how do we define the X-
projection of a string s of sets with non-trivial sta-
tive and non-stative parts? We compress its X-
reduct ρX(s) by splitting X between its intersec-
tions with Act and with the complement of Act

A = X ∩Act and B = X \Act.

In case B = ∅, we remove all occurrences of the
empty box from ρA(s) for d2(ρA(s)). Otherwise,
we eliminate stutters αα whenever α does not in-
tersect A, as carried out by κA

κA(s) := s if length(s) < 2

κA(αα′s) :=

κA(α′s) if α = α′ and
α ∩A = ∅

ακA(α′s) otherwise

6

(so that bc is just κ∅). Putting these two cases to-
gether, let the (A,B)-projection κA,B(s) of s be

κA,B(s) :=

{
d2(ρA(s)) if B = ∅
κA(ρA∪B(s)) otherwise.

For the record, we have

Definition 3. Given a set X and a string s of sets,
the X-projection of s relative to a transition signa-
ture Σ = (L,V,Act, af) is the (A,B)-projection
κA,B(s), where A is X ∩Act and B is X \Act.
When it is clear what Σ is, we shorten κA,B(s) to
κX(s) and refer to it simply as the X-projection of
s.

If ŝ is the string

ue,ue′ , le ae, ue′ , re, le′ de, ae′ , re′ de,de′

then κ{le,re,ue,ae,de}(ŝ) is the string

ue, le ae, re de

depicting the chain (16) above. In this particular
case, the X-projection of a Σ-strip is a ΣX -strip,
where ΣX is the transition signature thatX reduces
Σ to. In general, however, the X-projection of a Σ-
strip need not be a ΣX -strip. Such projections can
be viewed as disfavored models, where we might
find counterexamples to Facebook owns Instagram
even though Facebook bought Instagram.

Let us summarize this section. Transitions→E

based on a set E of events-as-intervals are strung
out to Σ-strips, turning E into a set of labels of
records, boxed alongside acts. The sortal distinc-
tion between acts and statives (built into the transi-
tion signature Σ) is applied to the compression of
X-reducts, yielding X-projections at a granularity
coarser than Σ.6

4 Finite-state elaborations

Definitions 1-3 from sections 2 and 3 above are
part of an attempt to work out (over strings) a basic
aspectual difference between buy and own, glossed
over by links�� ��facebook owns−→

�� ��instagram (18)

and �� ��facebook
bought−→

�� ��instagram (19)

6With the stative/non-stative distinction in place, events as
intervals can be refined to Vendler classes (e.g., Moens and
Steedman, 1988; Fernando, 2020).

(from a knowledge graph), but represented by a
transition

¬own(X,Y)
buy(X,Y)−→ own(X,Y) (2)

(in a finite automaton). The transition (2) suggests
that inferring (18) from (19) is (to put it gently)
complicated. But if we are to take the transition
(2) seriously as a tool for lexical semantics, we
must acknowledge too that buy(X,Y) is more com-
plicated than (2), involving, as it does, acts such
as pay(X,Y) left out of (2). Accordingly, we take
pains to associate a certain transition signature Σ◦
with (2), which we encode as the Σ◦-strip

(own(X,Y),0), buy(X,Y) (own(X,Y),1) (20)

(see section 2). This Σ◦-strip can be obtained
from transition signatures with larger vocabular-
ies through X-projections, where X is the set

{(own(X,Y),0), buy(X,Y), (own(X,Y),1)}

from which the boxes in (20) are formed (see sec-
tion 3). In particular, we may add an act pay(X,Y)
to the transition signature Σ◦ for a more refined
transition signature on which to impose the entail-
ment

buy(X,Y) ⇒ pay(X,Y) (6)

adding pay(X,Y) to the first box in (20) because
that box has buy(X,Y). Fleshing out the precondi-
tions and postconditions of pay(X,Y) may require
further expansions of the transition signature’s vo-
cabulary. Each expansion is finite and is (with any
luck) not the last, reflecting the open-endedness of
events described in natural language. Refining Σ
may not only fill boxes in a Σ-strip; it may also
lengthen the Σ-strip, as one transition follows an-
other. This is why we consider chains of more than
a single transition, and why (i) does not entail (ii).

(i) Facebook bought Instagram.

(ii) Facebook owns Instagram.

The increase in string length is turned into a de-
crease when, in section 3, the X-reduct ρX(s) of
a string s is compressed to form its X-projection
κX(s) (relative to a signature distinguising acts
from the label-value pairs of records). This is be-
cause a projection moves to a coarser granularity,
rather than (as in the case of an embedding) a finer

7

one. More precisely, given a category Sign of sig-
natures where a morphism σ : Σ → Σ′ embeds a
signature, Σ, into a finer one, Σ′, a functor Mod
that is contravariant on Sign returns a projection
Mod(σ) coarsening Mod(Σ′) down to Mod(Σ).
The category Sign and functor Mod constitute
part of a logical system

(Sign,Mod,Sen, {|=Σ}Σ∈|Sign|)

called an institution (Goguen and Burstall, 1992)
in which

(i) the functor Mod maps Σ contravariantly to a
category Mod(Σ) of Σ-models,

(ii) a covariant functor Sen maps Σ to a set
Sen(Σ) of Σ-sentences, and

(iii) for each signature Σ, |=Σ is a binary rela-
tion between Σ-models and Σ-sentences that
meets a certain Satisfaction Condition dis-
cussed below.

But how is a string of sets to be understood as a
model of predicate logic? For any set U and string
s = α1α2 · · ·αn of subsets αi of U , let MU [s] be
the U -structure

MU [s] = ([n], <n, {[[Pu]]}u∈U)

over a universe [n] = {1, 2, . . . , n} of string po-
sitions with <n as the usual < restricted to [n],
interpreting, for every u ∈ U , a unary relation
symbol Pu as the set

[[Pu]] = {i ∈ [n] | u ∈ αi}

of positions in s where u occurs. Forming unary
predicate symbols Pu from elements u of a string
symbol α is “unconventional” (Vu et al., 2018), the
custom being instead to name unary predicates Pα
after the string symbol α in its entirety (not gener-
ally assumed to be a set with noteworthy elements).
This shift from α to an element u ∈ α is consequen-
tial, but preserves the Büchi-Elgot-Trakhtenbrot
theorem characterizing regular languages as the
sets of strings definable in Monadic Second-Order
Logic over strings (e.g., Libkin, 2004, Theorem
7.21). For any subset X of U , the X-structure
MX [ρX(s)] associated with the X-reduct ρX(s)
of s is the U -structure MU [s] with Pu restricted to
u ∈ X .

Transition signatures add a bit more information
about the set U of subscripts u on unary predicates

uxstart ax dx

lx rx

Figure 2: Interval ux, lx ax, rx dx as an automaton

ue,ue′ ae,ae′ de,de′

le, re′ re, re′

Figure 3: The shortest (middle) path in Figure 1

Pu, separating acts a from label-value pairs, and
specifying the set af(a) of labels whose values an
act a can af fect. Linked in section 2 to connections
in nerve nets from input cells (acts) to inner cells
(labels), the function af motivates the compression
of X-reducts ρX(s) of a string s, based on two
dicta that bring up inertia

- no time without change

- no change without force

(meaning: no stuttering stative boxes nor empty
boxes of acts). Compressing reducts deviates from
the convention in institutions of using reducts for
the contravariant functor Mod, altering a model’s
universe (of string positions) and damaging a prop-
erty called amalgamation that is of some interest
(e.g., Diaconescu, 2012; Sannella and Tarlecki,
2015). That damage is illustrated dramatically by
the thirteen Allen interval relations from the con-
junction of two Allen intervals; in pictures, Fig-
ure 1 from section 3 arises from Figure 2 with
x ∈ {e, e′} (e.g., Fernando, 2020). Without com-
pression, Figure 1 would collapse to its shortest
path, Figure 3, with e and e′ marching in lockstep
(born at the same time, and died at the same time).

Initial and final states are designated in Figure 2
to form a finite automaton, pointing more generally
to the matter of computing constraints on strings
beyond the reach of af. The clues from af(a) fall
short of a specification of a’s effects, never mind
its preconditions. This is where the Σ-sentences
ϕ from the functor Sen come in, each of which
defines, via the relation |=Σ, a set

ModΣ(ϕ) := {s ∈Mod(Σ) | s |=Σ ϕ}

of strings that we can assume is accepted by some
finite automaton, provided we are careful enough
with our choice of Sen(Σ). The aforementioned
Büchi-Elgot-Trakhtenbrot theorem provides an ob-
vious candidate, but a number of representations of

8

regular languages (beginning with Kleene (1956)’s
regular expressions) are known. The pay-off from
working with such representations is that the entail-
ment from ϕ to ψ given by the inclusion

ModΣ(ϕ) ⊆ModΣ(ψ)

of two regular languages is decidable. (Inclusion
between say, context-free languages is not.)

There is no shortage of finite-state toolkits about.
Mechanical support for interval reasoning in tempo-
ral annotation in TimeML (e.g., Pustejovsky et al.,
2010) is described in Woods and Fernando (2018),
based on a simplification of the string in Figure 2
to x , construable here as

(x, 0) (x, 1) (x, 0)

with two values (0,1), rather than three (u,a,d).
To represent acts such as buy(X,Y) along with
their preconditions and effects, it is natural to box
records and acts, connected by more interesting
choices of af than those explored in section 3. But
already with a simple interval x, its different rep-
resentations raise the problem of semantic interop-
erability. We can formulate translations between
representations two ways:

(i) within an institution, the Sign-morphisms in
which may go beyond inclusions⊆ that Mod
turns into X-projections, or

(ii) between institutions, each of which can be
kept simple, if (as with signatures in Sign)
there can be another to improve it.

The possibility in (ii) of multiple institutions points
to logical pluralism (e.g., Kutz et al., 2010), cau-
tioning against turning Definitions 1-3 into a single
institution where all signatures can be found (and
justifying some vagueness about what Sign, Mod
and Sen precisely are). That said, any institution
must meet a Satisfaction Condition asserting that
for any Sign-morphism σ : Σ→ Σ′, Σ′-model s′

and Σ-sentence ϕ,

s′ |=Σ′ Sen(σ)(ϕ) ⇐⇒ Mod(σ′)(s′) |=Σ ϕ.

For the special case of Σ = (L,V,Act, af) and
Σ′ = (L′,V ′,Act′, af ′) where

L ⊆ L′ and V ′ �L = V and Act ⊆ Act′ (21)

we can set Mod(σ)(s′) to κvoc(Σ)(s
′) where the

vocabulary voc(Σ) of Σ is the set

voc(Σ) := Act ∪ {(l, v) | l ∈ L and v ∈ V(l)}

of acts and label-value pairs, some subsets of which
go into the set

BΣ := {a ∪ r | a ⊆ Act and r ∈ Q(Σ)}
of Σ-boxes that are strung together into Σ-models
s ∈ BΣ

+. Construing a Σ′-model s′ as the voc(Σ′)-
structure Mvoc(Σ′)[s

′] defined above, we can apply
the translation scheme machinery in Makowsky
(2004) to analyze κvoc(Σ)(s

′) as well as the Σ′-
sentence Sen(σ)(ϕ), abbreviated 〈σ〉ϕ, such that

s′ |=Σ′ 〈σ〉(ϕ) ⇐⇒ κvoc(Σ)(s
′) |=Σ ϕ.

The idea is κvoc(Σ)(s
′) restricts Mvoc(Σ′)[s

′]’s uni-
verse to string positions x satisfying the disjunction

φΣ(x) := χAct(x) ∨ χ′voc(Σ)\Act(x)∨
∃y(xSy ∧ χAct(y))

where χAct(x) says an act is done at x

χAct(x) :=
∨

a∈Act

Pa(x)

while χ′B(x) says some binding from B holds at x
but not at x’s successor

χ′B(x) :=
∨

u∈B
(Pu(x) ∧ ¬∃y(xSy ∧ Pu(y))

(amounting to a B-discernible change at x), where
S is the usual successor relation definable from <

xSy := x < y ∧ ¬∃z(x < z ∧ z < y). (22)

It is convenient here that <, rather than S, is prim-
itive, as κvoc(Σ)(s

′) simply restricts < to φΣ, and
similarly with Pu, for u ∈ voc(Σ). Not so with S,
which the translation machinery analyzes as (22).

What about Sign-morphisms σ : Σ → Σ′

for which the inclusions in (21) above do not
hold? It suffices that σ come with a function
fσ : BΣ′ → BΣ reducing a Σ′-box α′ to a Σ-
box fσ(α′), which we can extend homomorphi-
cally to BΣ′∗ → BΣ

∗ before compressing by either
d2 provided voc(Σ) ⊆ Act, or κAct otherwise.
The resulting composition is the voc(Σ)-projection
κvoc(Σ) in case fσ(α′) = α′ ∩ voc(Σ). In general,
the point is to apply κvoc(Σ) after a map fσ which
adds no information in that for every Σ′-box α′,

α′ |− fσ(α′)

where |− is a suitable notion of entailment. I hope
to write elsewhere about some interesting examples
of |− (as well as fσ), and what these have to do with
Kleene (1956), in particular, with changes to them-
tuple (s1, . . . , sm) specifying the number of values
that the inner cellsM1, . . . ,Mm can take.

9

Bibiliographic note Connections between the
present work and action signatures in M. Gel-
fond and V. Lifschitz 1998 (Action languages,
Linköping Electronic Articles in Computer and In-
formation Science, 3:16) are described in a com-
panion paper, T. Fernando 2022 (Action signatures
and finite-state variations, Proc ESSLLI Workshop:
AREA II, Annotation, Recognition and Evaluation
of Actions), where the relation (21) above between
transition signatures Σ and Σ′ is generalized to in-
corporate a notion of blurring (turning the records
making up the stative part Q(Σ) into record types).

References
J.F. Allen. 1983. Maintaining knowledge about tem-

poral intervals. Communications of the ACM,
26(11):832–843.

K.R. Beesley and L. Karttunen. 2003. Finite State Mor-
phology, volume 2900 of LNCS. CSLI, Stanford.

G.N. Carlson. 1995. Truth conditions of generic sen-
tences: Two contrasting views. In G.N. Carlson and
F.J. Pelletier, editors, The Generic Book, pages 224–
237. University of Chicago Press.

R. Cooper and J. Ginzburg. 2015. TTR for natural lan-
guage semantics. In S. Lappin and C. Fox, editors,
Handbook of Contemporary Semantic Theory, sec-
ond edition, pages 375–407. Wiley-Blackwell.

R. Diaconescu. 2012. Three decades of institution the-
ory. In J-Y Béziau, editor, Universal Logic: An An-
thology, pages 309–322. Springer.

D.R. Dowty. 1979. Word Meaning and Montague
Grammar. Reidel.

I.A. Durand and S.R. Schwer. 2008. A tool for rea-
soning about qualitative temporal information: the
theory of S-languages with a Lisp implementation.
J. Univers. Comput. Sci., 14(20):3282–3306.

T. Fernando. 2015. The semantics of tense and as-
pect: a finite-state perspective. In S. Lappin and
C. Fox, editors, Handbook of Contemporary Seman-
tic Theory, second edition, pages 203–236. Wiley-
Blackwell.

T. Fernando. 2020. Temporal representations with and
without points. In R. Loukanova, editor, Logic
and Algorithms in Computational Linguistics 2018,
pages 45–66. Springer.

J.A. Goguen and R.M. Burstall. 1992. Institutions: Ab-
stract model theory for specification and program-
ming. Journal of the ACM, 39(1):95–146.

J. Heinz and J. Sempere, editors. 2016. Topics in Gram-
matical Inference. Springer-Verlag.

C. de la Higuera. 2010. Grammatical Inference: Learn-
ing Automata and Grammars. Cambridge Univer-
sity Press.

M.J. Hosseini, S.B. Cohen, M. Johnson, and M. Steed-
man. 2019. Duality of link prediction and entail-
ment graph induction. In Proc 57th ACL, pages
4736–4746. Florence, Italy.

H. Kamp. 2013. The time of my life. Available at
https://lucian.uchicago.edu/blogs/elucidations/files/
2013/08/KampTheTimeOfMyLife.pdf.

H. Kamp and U. Reyle. 1993. From Discourse to Logic.
Kluwer Academic Publishers.

S.C. Kleene. 1956. Representation of events in nerve
nets and finite automata. In C. Shannon and
J. McCarthy, editors, Automata Studies, pages 3–41.
Princeton University Press.

O. Kutz, T. Mossakowski, and D. Lücke. 2010. Car-
nap, Goguen, and the Hyperontologies: Logical plu-
ralism and heterogeneous structuring in ontology de-
sign. Logica Universalis, 4:255–333.

L. Libkin. 2004. Elements of Finite Model Theory.
Springer.

J.A. Makowsky. 2004. Algorithmic uses of the
Feferman-Vaught theorem. Annals of Pure and Ap-
plied Logic, 126:159–213.

W. S. McCulloch and W. H. Pitts. 1943. A logical cal-
culus of the ideas immanent in nervous activity. Bull.
Math. Biophys., 5:115–133.

M. Moens and M. Steedman. 1988. Temporal ontology
and temporal reference. Computational Linguistics,
14(2):15–28.

J. Pustejovsky, K. Lee, H. Bunt, and L. Romary. 2010.
ISO-TimeML: An international standard for seman-
tic annotation. In Proc 7th International Conference
on Language Resources and Evaluation (LREC’10),
pages 394–397.

M.O. Rabin and D.S. Scott. 1959. Finite automata and
their decision problems. IBM Journal of Research
and Development, 3:114–125.

D. Sannella and A. Tarlecki. 2015. The foundational
legacy of ASL. In Software, Services and Systems:
Essays Dedicated to Martin Wirsing on the Occasion
of His Retirement from the Chair of Programming
and Software Engineering, volume 8950 of LNCS,
pages 253–272. Springer.

M.H. Vu, A. Zehfroosh, K. Strother-Garcia, M. Sebok,
J. Heinz, and H.G. Tanner. 2018. Statistical rela-
tional learning with unconventional string models.
Frontiers in Robotics & AI, 5.

D. Woods and T. Fernando. 2018. Improving string
processing for temporal relations. In Proc 14th Joint
ISO-ACL Workshop on Interoperable Semantic An-
notation (ISA-14), pages 76–86.

10

Classification systems:
Combining taxonomical and perceptual lexical meaning

Bill Noble Staffan Larsson
Centre for Linguistic Theory and Studies in Probability (CLASP)

Dept. of Philosophy, Linguistics and Theory of Science
University of Gothenburg

{bill.noble@, sl@ling, cooper@ling}.gu.se

Robin Cooper

Abstract

Lexical meaning includes both perceptual and
logical aspects. We present a method for com-
bining a taxonomy with perceptual classifiers,
and show that in the few-shot setting, it out-
performs other methods of injecting taxonomi-
cal information in image classification. We use
this method to define witness conditions for
types in a rich type system with probabilistic
type judgments and suggest how such a type
system can be used as the basis for a new type
of hybrid NLU architecture.

For words like red, apple, and hug, part of what
it means for a person—or indeed an artificial NLU
system—to understand the word’s meaning is the
ability to recognize that some object is red, or an
apple, or that some event is one in which hugging is
taking place. Marconi (1997) calls this referential
competence. Another mode of understanding is
supported by inferential competence, which has
to do with the relationship that certain lexical items
have with one another—a system that infers that
John is not married from the sentence John is a
bachelor demonstrates inferential competence with
the words bachelor and married. Marconi (1997)
argues that neither of these competencies are re-
ducible to the other, meaning that a comprehensive
theory of lexical meaning must explain both refer-
ential and inferential ability.

In this paper, we propose a framework for com-
bining taxonomical information, which supports an
inferential competence, with perceptual classifiers,
which implement referential competence. This
classification system is formalized in a rich type
theory with probabilistic type judgments, meaning
it can be integrated in a formal semantics based on
Type Theory with Records (Cooper et al., 2015).1

1A PyTTR implementation of a classification sys-
tems based on convolutional visual classifiers is avail-
able online here: https://github.com/GU-CLASP/
classification-systems. We also make available the
code for the experiments conducted in Section 4.

1 Classifier-based perceptual meaning

While distributional methods of representing mean-
ing have achieved a lot of success, many have ar-
gued that that relying on exclusively ungrounded
meaning representations has fundamental limita-
tions (Harnad, 1990; Bender and Koller, 2020; Bisk
et al., 2020).

Classifier semantics offers a way to ground lex-
ical meaning, operating on the intuition that part
of what it means to understand the meaning of a
word is to be able to identify instances of it based
on perceptual input.

In one approach to classifier semantics (e.g.,
Schlangen et al., 2016; Silberer et al., 2017), the
parameters of a learned classifier (for example, the
relevant row of a liner classifier’s weight matrix)
are regarded as a distributed representation of the
meaning of the word. Alternatively, it is possi-
ble to regard the classifier itself, as a function of
type f : PerceptualData → [0, 1], that provides
the semantics of the relevant word (e.g., Larsson,
2020a). Here, both the parameters of the classifier
and the classification algorithm are considered to
be part of the perceptual meaning, whereas in the
distributed approach, the classification algorithm is
simply a means by which a distributed representa-
tion is learned.

In this work, we take a functional approach to
classifier semantics. Because they can (at least for
one-place predicates) be considered analogous to
Montague’s e → t type, it is natural to integrate
classifiers-as-functions in a type-theoretic approach
to compositional meaning. Furthermore, classifiers
have the nice theoretical property that they can
distinguish between intentional identity and exten-
sional equivalence (Muskens, 2005; Lappin, 2012;
Larsson, 2020b).

A multi-class classifier, C for a set of labels, L
is a function that takes an input and produces a
prediction among the labels in the form of a prob-

11

ability distribution. We will consider multi-class
classifiers that take perceptual data as input:2

C : PerceptualData→ (L→ [0, 1]),

subject to the restriction that for any input a,∑
l∈LC(a)(l) = 1.

2 Folk taxonomies

A folk taxonomy is a hierarchically structured col-
lection of conceptual categories that is common
ground, in the sense of Clark (1996), in a certain
speech community. We wish to invoke a more
general notion than that of scientific or technical
taxonomies that rely on an authoritative reference
for their common ground status. Folk taxonomies
by contrast can be informal, emerging from the
communicative needs of a particular community
and changing in response to changes in the envi-
ronment. Such a taxonomy can also be established
in an ad hoc way between a group of speakers,
grounded in a particular interaction.

For now, we define a taxonomy in set theoretic
terms. A taxonomy takes the form

Tax := 〈Taxon, Set(Set(Tax))〉,
where Taxon is the label for a taxonomical cate-
gory. A taxonomy bottoms out in pairs of the form
〈Taxon,∅〉, which we refer to as leaf taxons.

Notice that the second element of Tax is a set
of sets of taxonomies. To see why this is, we will
first introduce the notion of a distinction, which is
a pair that takes the following form:

Dist : 〈Taxon, Set(Taxon)〉.

Consider this taxonomy:

〈object , {{〈animal , {
{〈mammal , {...}〉, ..., 〈bird , {...}〉},
{〈herbivore,∅〉, 〈omnivore,∅〉, 〈carnivore,∅〉}},
〈vegetable, {...}〉, 〈mineral , {...}〉}}〉

Here, animal is subject to two distinctions: the dis-
tinction based on diet, and the one that categorizes
animals as mammals, birds, and so on.

2In the remainder of the paper, we restrict our attention to
classifiers and taxonomies of individuals, so we assume that
PerceptualData is of a kind that corresponds to entities of type
Ind . In general, however, we can also classify other kinds of
entities (events, relations between individuals, etc.).

In the following, we let dist : Tax→ Set(Dist)
be the function from a taxonomy to its distinctions.

A genus-species relation holds between a taxon
and the (first component of) an element of one of its
distinctions. In the above example, both mammal
and herbivore are species of animal .3 Conceptu-
ally, the key feature of a distinction is that it implies
an exhaustive partition of the genus into a set of
mutually exclusive species. Note however that we
need not assume every species is associated with a
lexical item—there can, for example, be a catch-all
species in cases where the named alternatives don’t
cover the entire genus.4

This leaves us with two main desiderata for when
we start giving content to our taxonomy in the next
section.

1. An instance of a species is an instance of its
corresponding genus.

2. An instance of a genus is an instance of ex-
actly one species in each of its distinctions.

3 Classification systems

By associating a word with a prediction class of a
classifier, a system can be endowed with at least
some referential competence. Similarly, associat-
ing a word with taxon gives a system some inferen-
tial competence in relation to other words embed-
ded in the taxonomy. In this section, we describe
a classification system, which combines classifiers
and a taxonomy to integrate these two kinds of
competence.

With this in mind, we will formalize a classifica-
tion system as a rich Martin-Löf (1984)-style type
system that allows for probabilistic type judgments
(as in Cooper et al., 2015). Furthermore, we will
assume that we can provide basic types with wit-
ness conditions that ground type judgments. From
the perspective of an agent, a type’s witness condi-
tions are the methods by which an agent may judge
something to be of that type (Cooper, forthc).

3For word senses, this is referred to as a hypernym-
hyponym relation.

4Generally we would expect a conventionalized taxonomy
to make distinctions in a systematic way; that is, where the
species within a distinction are differentiated along some com-
mon dimension or set of dimensions. This intuition can be
traced back at least to Aristotle’s Categories. However, his is
not a formal requirement of a taxonomy at this stage and nor
could it be since, taxons are not yet associated with any kind
of content that could be considered as features or establish
differentia. Such content will come by way of classifiers in
Section 3.

12

Suppose we have a taxonomy T, and a classifier,
Cd, for each distinction d ∈ dist(T). For each
taxon, t, in the taxonomy, we want to define a
type, Tt, with the appropriate witness conditions
such that p(a : Tt) estimates the probability that a
belongs to the taxon, according to the classifiers.

Intuitively, the classifiers give content to the dis-
tinctions of the taxonomy by distinguishing be-
tween species. The classifier is thus premised on
the assumption that the object of classification cer-
tainly belongs to one the species, si, among which
it distinguishes, meaning that it must in turn belong
to the associated genus, g. In practice, this means
that the classifier for a given distinction is trained
on the subset of labeled data from the associated
genus. The classifier’s prediction, Cd(a)(si), can
thus be interpreted as the conditional probability
that a has belongs to si, given that it belongs to g.

There is one taxon in the taxonmy—the root
taxon—that is not a species in any distinction. Let
Tt∗ , which we will refer to as the domain classifi-
cation system, be the type associated with the root
taxon. We will assume that Tt∗ is universal in the
sense that it is witnessed by any object:5

p(a : Tt∗) = 1 (1)

Every other taxon is a species in some distinc-
tion, meaning that we have a classifier associated
with it. Let d = 〈g, {s1, ..., sn}〉 ∈ dists(T) be
a distinction. We define auxiliary types, T ′s1 ...T

′
sn

with witness conditions as follows:

p(a : T ′si) = Cd(a)(si). (2)

That is, an object a is judged to be of type T ′si with
probability equal to the probability assigned by the
classifier for the corresponding distinction.

The interpretation of the classifier as providing
a conditional probability suggests that we should
define Tsi such that:6

p(a : T ′si) = p(a : Tsi | a : Tg) (3)

We also want Tsi to satisfy the desiderata from the
end of Section 2, which can be restated as follows:

p(a : Tsi) ≤ p(a : Tg) (4)
5This assumption is convenient for simplicity, but it also

works if Tt∗ is given some constant prior or well-defined
witness conditions as part of some larger type system in which
the classification system is embedded.

6This corresponds to the probability that a is of type Tsi

given that it is of type Tg , though other notions of condi-
tional judgments are possible in probabilistic type theory. See
Larsson and Cooper (2021).

and

p(a : Tsi | Tg) = 1−
∑

j 6=i

p(a : Tsj | a : Tg) (5)

With this in mind, we let the witness conditions
for Tsi be defined as the product of the probability
assigned to T ′s and Tg:7

p(a : Tsi) = p(a : T ′si) · p(a : Tg) (6)

By induction on the taxonomy and the base case of
Tt∗, this gives us well-defined witness conditions
for for every taxon t.

Briefly, we will show that this definition meets
each of our desiderata. In the following, let
〈g, {s1, ..., sn}〉 be a distinction. Without loss of
generality, we consider the case of Tsi .

We get (4) directly from (6), since 0 ≤ p(a :
T ′si) ≤ 1. As a result of (4) we may write Tsi v
Tg—i.e., that Tsi is a subtype of Tg (Cooper et al.,
2015). Furthermore, this has the consequence that

p(a : Tg|a : Tsi) = 1 (7)

From Bayes Theorem and (7), we can prove (3):

p(a : Tsi | a : Tg)

=
p(a : Tg | a : Tsi) · p(a : Tsi)

p(a : Tg)

=
p(a : Tsi)

p(a : Tg)

=
p(a : T ′si · p(a : Tg)

p(a : Tg)

=p(a : T ′si)

Finally, (5) follows from (3) and the fact that∑
i≤nCd(a)(si) = 1.

4 Empirical comparison

To investigate how well the classification system
performs in practice, we compare it with two other
plausible methods of combining classification with
taxonomical hierarchy. We put aside type theory

7Note that Tsi has different witness conditions from that
of the meet type T ′si ∧ Tg , as defined in Cooper et al. (2015),
since the witness condition for the meet type is defined by the
classical Kolmogorov (1950) equation for conjunction:

p(a : T ′si ∧ Tg) = p(a : T ′si) · p(a : Tg | a : T ′si),

which is different since we can’t assume that Cd[si] is proba-
bilistically independent from Cd′ [g], where d′ is the distinc-
tion of which g is a species.

13

Precision Recall F1

per-distribution 0.93 0.90 0.90
marginalization 0.90 0.86 0.82
hierarchy-agnostic 0.80 0.84 0.81

Table 1: Macro-averaged precision, recall, and F1 score
for the three methods of incorporating hierarchy in clas-
sification.

for the moment and make a comparison based
on metrics that are traditionally used for machine
learning classification.

Dhall et al. (2020), proposes several possible
methods of incorporating hierarchical information,
including the hierarchy agnostic and marginaliza-
tion methods that we compare against.8

The hierarchy agnostic method is the simplest
and most common way of dealing with a taxonomi-
cally organized label set. Every label is considered
by a single multi-label classifier, without respect to
taxonomical hierarchy. There is thus no guarantee
that the predicted probabilities will be consistent—
the probability assigned to a genus label could be
lower than the probability assigned to one of its
species, for example. Hopefully the hierarchical re-
lations inherent in the data encourages the classifier
to learn a function that approximates the taxonomy.

In the marginalization method, a bottom-up
classifier, is trained on the leaf nodes in the tax-
onomy. Labels at higher levels are predicted by
marginalizing the leaf node probabilities—the prob-
ability of a genus label is computed as the sum of
the probability of its species labels. Note that this
method assumes that the leaf labels are disjoint,
meaning that it only works for taxonomies in which
there is on distinction per genus.

The system described in Section 3 is will be
referred to as the per-distinction method. As de-
scribed there, we train a classifier for each distinc-
tion and compute the probability of a given label
as the product of the classifier output and the prob-
ability assigned to its parent label.

We test each method on a simple synthetic
dataset shapes with different colors and sizes. The
data was generated with a hierarchical stochastic

8Dhall et al. (2020) also tests a per-level and masked per-
level method, which are arguably most similar to what we pro-
pose here. We do not reproduce those tests because marginal-
ization tended to out-perform them in Dhall et al. (2020)’s
experiments. Like marginalization, the per-level and masked
per-level methods assume that there is a single distinction per
genus.

process reflected in the taxonomy of the labels
given to each item. Images were encoded with a
convolutional autoencoder, which was pre-trained
on images from a larger unstructured sample space.

Each method used simple single-layer linear
classifiers trained by stochastic gradient descend
through backpropagation. The marginalization and
per-distinction classifiers use softmax activations
with categorical cross-entropy as the loss function,
and the hierarchy agnostic classifier uses a sigmoid
activation and binary cross entropy with the indi-
cator function of the item’s actual label set. Table
1 gives a summary of the results of the classifiers
in a few-shot classification scenario with 5 training
instances and 100 testing instances for each leaf
label. A separate set of 100 development items
were used to choose the best model after 10 epochs
of training. For the precision, recall and F1 met-
rics, the predicted classes were chosen in a greedy
fashion from the top of the taxonomy, taking the
label with the highest probability consistent with
the label chosen at the previous level.

Consistent with Dhall et al. (2020), we find that
both methods that explicitly take the label hierarchy
into account out-perform the hierarchy agnostic
method. In the few-shot experiment reported here,
our per-distribution method performed best, though
we note that this advantage is less pronounced with
more training examples.

5 Conclusion

In this paper we have focused on the problem of
integrating perceptual and logical meaning on a
lexical level. To do this, we have embedded percep-
tual classifiers as witness conditions for types in a
type system that respects a taxonomical structure.
Our method for doing this is based on the intuition
that such a taxonomy gives rise to a collection of
distinctions, whose content can be defined by multi-
class classifiers. We have compared our method of
embedding classifiers at each node in a taxonomy
to other strategies for classifying in a taxonomi-
cally structured label space suggested by (Dhall
et al., 2020). Future work should also consider the
possibility of learning the label hierarchy on the fly,
as Bengio et al. (2010) does. Embedding such a
hierarchy in a type system may present additional
challenges, but allowing for changes to the taxon-
omy would be necessary to full model the plasticity
of the lexical semantic structures used by natural
language speakers.

14

We have also left open the looming question
of compositional semantics. We presented clas-
sification systems as a rich type system in order
to suggest a way forward in this regard. Our pro-
posal is compatible with Type Theory with Records
(TTR), which can be used to define version of com-
positional semantics (Cooper et al., 2015). Indeed,
TTR has been used for compositional semantics
with perceptual classifier-based meaning (Larsson,
2013, 2017). The issue remains, however of how
to compose the types we define in Section 3.

Composing classifiers-as-functions is no easy
task.9 For a given object a, one can compute the
probability that a witnesses both T1 and T2 sim-
ply by taking judgments for T1 and T2 separately.
The difficulty comes when one needs to reason hy-
pothetically, as is necessary in NLI. What is the
likelihood that some object of type T1 is also of
type T2? One way forward is to find a way to
compose the classifiers for T1 and T2 directly, as
Monroe et al. (2017) does for color terms. Another
option is to use the classifiers to to sample from
conditioned space of objects. Something like this
is the basis of the system proposed by Bernardy
et al. (2019), though it is not perceptually grounded.
In order for that to work, the embedding space of
PerceptualData would have to be regularized in
such a way that admits sampling, which could po-
tentially be achieved by using a variational autoen-
coder (Kingma and Welling, 2014).

Aside from compositionality, there remain many
questions on the side of lexical representation, such
as that of polysemy. It would seem that certain
words may appear in multiple places in a taxonomy.
The meaning of a word may be ambiguous among
a set of such corresponding types. So far we have
only discussed predicative nouns. Adjectives, and
verbs, including transitive verbs admit a similar
treatment, but that leaves quantifiers and function
words, among others.

Finally, we only discuss perceptual and taxo-
nomical aspects of meaning, but there are other
aspects of meaning, including other inferential as-
pects. How would we represent, for example, that
being from the Champagne region is an aspect of
the meaning of champagne (the beverage)? In Mar-
coni (1997)’s schema, this fact would be treated
as an aspect of inferential competence. Certainly
we should not expect the inference to be deriva-

9Importantly, it is a different task from the one of compos-
ing distributed representations learned through classification.
See Moro et al. (2019) for more on that task.

tive of a perceptual classifier for champagne, but
it does not fit neatly as taxonomical information
either. A more sophisticated type system is needed
to incorporate lexical information of this kind.

Acknowledgements

This work was supported by grant 2014-39 from
the Swedish Research Council (VR) for the estab-
lishment of the Centre for Linguistic Theory and
Studies in Probability (CLASP) at the University
of Gothenburg.

References
Emily M. Bender and Alexander Koller. 2020. Climbing

towards NLU: On Meaning, Form, and Understand-
ing in the Age of Data. In ACL 2020.

Samy Bengio, Jason Weston, and David Grangier. 2010.
Label Embedding Trees for Large Multi-Class Tasks.
In Advances in Neural Information Processing Sys-
tems, volume 23. Curran Associates, Inc.

Jean-Philippe Bernardy, Rasmus Blanck, Stergios
Chatzikyriakidis, Shalom Lappin, and Aleksandre
Maskharashvili. 2019. Bayesian Inference Seman-
tics: A Modelling System and A Test Suite. In Pro-
ceedings of the Eighth Joint Conference on Lexical
and Computational Semantics (*SEM 2019), pages
263–272, Minneapolis, Minnesota. Association for
Computational Linguistics.

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob
Andreas, Yoshua Bengio, Joyce Chai, Mirella Lapata,
Angeliki Lazaridou, Jonathan May, Aleksandr Nis-
nevich, Nicolas Pinto, and Joseph Turian. 2020. Ex-
perience Grounds Language. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8718–8735,
Online. Association for Computational Linguistics.

Herbert H. Clark. 1996. Using Language. Cambridge
University Press.

Robin Cooper. forthc. From Perception to Communi-
cation: A Theory of Types for Action and Meaning.
Oxford University Press.

Robin Cooper, Simon Dobnik, Shalom Lappin, and
Staffan Larsson. 2015. Probabilistic Type Theory and
Natural Language Semantics. In Linguistic Issues
in Language Technology, Volume 10, 2015. CSLI
Publications.

Ankit Dhall, Anastasia Makarova, Octavian Ganea,
Dario Pavllo, Michael Greeff, and Andreas Krause.
2020. Hierarchical Image Classification using En-
tailment Cone Embeddings. arXiv:2004.03459 [cs,
stat].

Stevan Harnad. 1990. The symbol grounding problem.
Physica D: Nonlinear Phenomena, 42(1):335–346.

15

Diederik P. Kingma and Max Welling. 2014. Auto-
Encoding Variational Bayes. In Conference Proceed-
ings: Papers Accepted to the International Confer-
ence on Learning Representations (ICLR), Calgary.

A. N. Kolmogorov. 1950. Foundations of the Theory of
Probability. New York: Chelsea Pub. Co.

Shalom Lappin. 2012. An Operational Approach to
Fine-Grained Intensionality. UCLA Working Papers
in Linguistics, Theories of Everything, 17:180–186.

Staffan Larsson. 2013. Formal semantics for perceptual
classification. Journal of Logic and Computation,
25(2):335–369.

Staffan Larsson. 2017. Compositionality for perceptual
classification. In IWCS 2017 — 12th International
Conference on Computational Semantics — Short
Papers.

Staffan Larsson. 2020a. Discrete and Probabilistic
Classifier-based Semantics. In Proceedings of the
Probability and Meaning Conference (PaM 2020),
pages 62–68, Gothenburg. Association for Computa-
tional Linguistics.

Staffan Larsson. 2020b. Extensions are Indeterminate if
Intensions are Classifiers. In SemDial 2020 (Watch-
Dial) Workshop on the Semantics and Pragmatics of
Dialogue, page 10, Waltham, MA and online.

Staffan Larsson and Robin Cooper. 2021. Bayesian
Classification and Inference in a Probabilistic Type
Theory with Records. In Proceedings of the 1st and
2nd Workshops on Natural Logic Meets Machine
Learning (NALOMA), pages 51–59, Groningen, the
Netherlands (online). Association for Computational
Linguistics.

Diego Marconi. 1997. Lexical Competence. Language,
Speech, and Communication. MIT Press, Cambridge,
Mass.

Per Martin-Löf. 1984. Intuitionistic Type Theory. Bib-
liopolis, Naples.

Will Monroe, Robert X.D. Hawkins, Noah D. Goodman,
and Christopher Potts. 2017. Colors in Context: A
Pragmatic Neural Model for Grounded Language
Understanding. Transactions of the Association for
Computational Linguistics, 5:325–338.

Daniele Moro, Stacy Black, and Casey Kenning-
ton. 2019. Composing and Embedding the
Words-as-Classifiers Model of Grounded Semantics.
arXiv:1911.03283 [cs].

Reinhard Muskens. 2005. Sense and the Computation
of Reference. Linguistics and Philosophy, 28(4):473–
504.

David Schlangen, Sina Zarrieß, and Casey Kenning-
ton. 2016. Resolving References to Objects in Pho-
tographs using the Words-As-Classifiers Model. In

Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1213–1223, Berlin, Germany.
Association for Computational Linguistics.

Carina Silberer, Vittorio Ferrari, and Mirella Lapata.
2017. Visually Grounded Meaning Representations.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(11):2284–2297.

16

Learning Knowledge with Neural DTS

Daisuke Bekki and Ribeka Tanaka and Yuta Takahashi
Ochanomizu University

{bekki|tanaka.ribeka|takahashi.yuta}@is.ocha.ac.jp

Abstract

Neural DTS is a framework that combines logic
and machine learning by fusing dependent type
semantics (DTS) and deep neural networks. In
this paper, we propose a learning algorithm for
Neural DTS, in which a collection of semantic
representations of DTS is obtained from text
through syntactic parsing and semantic compo-
sition, and the collection of positive predicates
is generated through the deduction of DTS. We
will also discuss the advantages of this method
and the challenges it shall face.

1 Introduction

In the field of natural language understanding
(NLU), type-logical semantics and neural language
processing exhibit complementary benefits: The
former has advantages in the systemic prediction
of complex linguistic phenomena such as negation,
conditional, quantification, anaphora, presupposi-
tion, and modality as they appear in various syn-
tactic structures including embeddings, while the
latter has a wide range of applications including
similarity calculations, summarization, translation,
dialogue processing, and even multimodal infer-
ence, as well as being robust and able to quickly
process real texts. In recent years, hybrid methods
that utilizes both of the techniques have been ex-
plored in neighboring fields of NLU, and methods
adopted in previous studies can be roughly classi-
fied as follows:

1. Emulating symbolic reasoning by embedding
into neural networks:

• knowledge graphs (Guu et al., 2015)(Das
et al., 2017)(Takahashi et al., 2018)

• SAT problems (Selsam et al., 2019)
• first-order logic (FoL) (Demeester et al.,

2016)(Šourek et al., 2018)

2. Introducing a similarity measure between
symbols by using distributional representa-

tions instead of symbols (Lewis and Steed-
man, 2013)(Rocktäschel and Riedel, 2017).

3. Controlling the direction of proof search
guided by neural networks (Wang et al.,
2017).

One method that differs from these approaches
is Neural DTS (Bekki et al., 2021). Compared with
previous studies, Neural DTS is unique in its use of
DTS (Bekki and Mineshima, 2017), a higher-order
type-logical semantic framework. Since DTS is
based on Martin-Löf type theory (MLTT; Martin-
Löf (1984)), a framework for intuitionistic math-
ematics, it allows for the construction of the real
numbers necessary for developping deep neural net-
works.1 Neural DTS replaces all of the predicates
of DTS with neural classifiers, which provide the
soft symbols that are required for soft reasoning.
Nevertheless, the entire system is still within the
framework of MLTT, and all of the components of
the neural networks, such as loss functions, have
proof terms.

In this paper, we propose a learning algorithm for
Neural DTS that fits the parameters for the names
and predicates of Neural DTS to the data generated
by the proof system of DTS from the propositions
obtained from the real texts. Using this algorithm,
we investigate the claim of Bekki et al. (2021) that
the symbols (names and predicates) of Neural DTS
are learnable, one of the criteria for soft reasoning
systems.

1.1 Dependent Type Semantics (DTS)
DTS is a framework for the proof-theoretic se-
mantics of natural language. Unlike similar proof-
theoretic attempts2, DTS takes a verificationist ap-
proach, in which the meaning of a proposition in a
given context is a collection of proofs of that propo-
sition in that context. This position shows sharp

1See Appendix A.4 for details.
2cf. Francez and Dyckhoff (2010); Francez (2014).

17

contrasts to most of the standard model-theoretic se-
mantics, but it provides a more fine-grained notion
of meaning than the model-theoretic approaches in
the following sense.

1. In model-theoretic semantics, all tautologies
have the same meaning (i.e., the set consisting
of all models), but in DTS, tautologies with
different proofs have different meanings. The
same is true for contradictions.

2. There are pairs of sentences that are indistin-
guishable in their truth conditions but which
have different anaphoric potentials. For exam-
ple (cf. Kamp et al. (2011)):

(1) a. Some student did not show up.
They must have overslept.

b. Not every student showed up.
*They must have overslept.

To explain this contrast, DRT uses an ex-
tra layer called Discourse Representation
Structure (DRS), where the difference in the
anaphoric potential is explained via the notion
of accessibility defined on DRS. In DTS, on
the other hand, the difference is explained by
the constructivity of the proofs, without intro-
ducing another layer to the semantic theory
(Bekki, 2014). It has been pointed out that
the extra-representational layer in DRT com-
plicates the compositionality problem (Yana
et al., 2019), while compositionality is pre-
served in DTS.

With these features, DTS opens up the analy-
ses of many linguistic phenomena, some of which
were previously unexplained by model-theoretic
semantics, based on a proof-theoretic perspective
where one can refer to a proof as an object.3 There
have also been studies on implementations of type
checking (Bekki and Sato, 2015) and proof search
(Daido and Bekki, 2020) in DTS, with the goal of
developing a research program in which the predic-
tions of formal semantics can be verified through
implementation.

To supplement the DTS specifications that are
relevant to the main purpose of this paper, first,

3For recent developments regarding the semantic analyses
in DTS, see the discussions on the overwriting problem (Yana
et al., 2019), generalized quantifiers (Tanaka, 2021), proviso
problems (Yana et al., 2021), and weak crossover (Bekki,
2021).

the enumeration type4 entity plays the role of type
e in the standard semantics. Second, the role of
type t (or type prop) in the standard semantics is
played by the type type (namely, propositions, un-
der the Curry-Howard isomorphism between types
and propositions). Consequently, an n-place predi-
cate has a type entityn → type. For example, dog
is a unary predicate with type entity → type and
the name john has type entity. The dog(john)
has type type, which is a collection of proofs that
John is a dog. The truth condition in DTS tells us
that dog(john) is true if and only if it is inhabited
by at least one proof.

From the perspective of fusing symbolic and soft
reasoning, however, this kind of specification by
DTS shares a crucial property with the standard se-
mantics, despite the differences between type e and
type entity, and type t and type type: the symbols
in DTS are neither comparable nor learnable when
compared with the distributional representations
that are often found in neural networks, which have
become a trend in recent neural language process-
ing technology. These properties are often consid-
ered to be shortcomings of symbolic reasoning but
the advantages of soft reasoning.

1.2 Neural DTS
Bekki et al. (2021) proposed Neural DTS as a
framework for combining DTS with some aspects
of soft reasoning. Neural DTS is obtained by re-
placing n-place predicates in DTS (that is, con-
stant symbols of type entityn → type) with neu-
ral classifiers, which are also DTS terms of type
entityn → type. Since the descriptive power of
DTS allows for the construction of real numbers
and real functions (or complex numbers and com-
plex functions, if necessary) internally through the
notion of setoids5, it also allows for the implemen-
tation of neural networks and neural classifiers in
the following way.

Consider DTS with a given signature where:

1. the type entity has n-introduction rules
(namely, entity has the form {a1, . . . , an}).

2. there are k-many unary predicates P1, . . . , Pk,
each of which is of type entity→ type.

Let ENT be a setoid (entity,=entity), and let
onehot be a setoid function from ENT to Rn

4See Appendix A.2 for the definition of the enumeration
type.

5See Appendix A.3 for the definition of setoid in DTS.

18

Γ, pemb_ent ∈ Rn×m, pemb_pred ∈ Rk×l, phidden ∈ R(m+l)×o, pout ∈ Ro×1

⊢ pred(ai, j)
def≡ sigmoid(Wout(sigmoid(Whidden(Wemb_ent(onehot(ai))⊕Wemb_pred(ej))))) ∈ R

Figure 1: Neural predicate in DTS

Γ, pemb_ent ∈ Rn×m, pemb_pred ∈ Rk×l, phidden ∈ R(m+l)×o, pout ∈ Ro×1

⊢ λx.pred(x, j) ≥ threshold : entity→ type

Figure 2: Neural classifier in DTS

that maps each entity (namely, each element ai of
{a1, . . . , an}) to the i-th element in the standard ba-
sis e1, . . . , en of an n-dimensional real vector space
(defined as a product setoid). Additionally, let W
be a linear setoid function from Rn to Rm that
maps e1, . . . , en to their respective embeddings in
an m-dimensional real vector space.

Next, let assume the following parameters:

pemb_ent ∈ Rn×m

pemb_pred ∈ Rk×l

phidden ∈ R(m+l)×o

pout ∈ Ro×1

by which we define the following matrices as linear
setoid functions:6

Wemb_ent ∈ Rn → Rm

Wemb_pred ∈ Rk → Rl

Whidden ∈ R(m+l) → Ro

Wout ∈ Ro → R

Non-linear functions such as sigmoid ∈ R → R
can also be defined as setoid functions. By com-
bining these components, a simple neural predicate
with only one hidden layer can be defined as in
Figure 17. Note that neural predicates with more

6From the theoretical point of view, it is worth not-
ing that all of these are defined within the framework of
MLTT. However, from the perspective of implementation,
we may simply import an off-the-shelf deep learning library
such as pytorch (https://pytorch.org/) or tensorflow
(https://www.tensorflow.org/), and use arrays in-
stead of product setoids. In other words, we don’t have to
implement setoids on top of the implementation of the DTS’s
type system.

7sigmoid is a sigmoid function defined as a setoid function.
The one applied to the hidden layer is broadcasted to Ro. The
⊕ operator is the vector concatenation.

complicated structures such as RNNs and Trans-
formers, are also definable in the same manner as
the setoid functions in DTS.

Let us call this setoid function pred(ai, j),
where ai is an entity and j indicates that this is the
j-th unary predicate (1 ≤ j ≤ k) in the signature.
Suppose that threshold is a real number hyperpa-
rameter between 0 and 1. Then the inequality be-
tween pred(ai, j) and threshold is a DTS relation.
Thus, a neural classifier of type entity → type
obtained, as in Figure 2. Since entity → type is
a type for one-place predicates in DTS, we may
safely replace it with a corresponding neural classi-
fier. It is straightforward to implement n-ary classi-
fiers in a similar manner.

2 Learning Algorithm for Neural DTS

The next step for Neural DTS, which is absent in
previous work, is to fit the parameters to data. The
main contribution of this paper is to propose such
an algorithm. We consider a setting where knowl-
edge is given via real texts with credible content,
and where “true” (or grounded) propositions can be
extracted from the syntactic-semantic theory of nat-
ural language (this will be done in practice by CCG
parsers). The algorithm optimizes the parameters
in Neural DTS to make this set of propositions true.
DTS is the best framework candidate since it has
a proof theory (unlike most of the model-theoretic
semantics) that enables this kind of proposition ex-
traction, which has already been implemented, as in
Bekki and Sato (2015) and Daido and Bekki (2020).
The learning algorithm is described as follows.

2.1 Preprocessing

First, we prepare a collection of texts (TXTd)d∈D
whose contents we assume to be correct. This will

19

be used as the training data for Neural DTS. Also,
let each

pe ∈ R(n×m)+(k×l)+((m+l)×o)+(o×1)

be the parameter of the neural network at epoch e.

1. Perform syntactic analysis on each
(TXTd)d∈D by using CCG parser. Let
(SYNd)d∈D be the resulting (1-best) syntactic
structures.

2. Perform semantic composition on each
(SYNd)d∈D. Taking DTS to be the semantic
theory, it is ensured that a syntactic structure
will yield a well-formed semantic representa-
tion via syntax-semantics transparency. Let
(SEMd)d∈D be the resulting DTS representa-
tions, where each SEMd is a type that contains
the parameter p1 (the initial parameter) as a
free variable.

2.2 Training Loop
Let e be the epoch. Loop the following steps, start-
ing from e = 1.

1. Obtain a collection of positive predicates
(pred(a, j))(a,j)∈T+ , where T+ is a subset of
entity× {1, . . . , k}, each of which being de-
duced from one of the (SEMd)d∈D by using
only the elimination rules (such as (ΠE) and
(ΣE)).

2. Prepare a collection of negative predicates
(pred(a, j))(a,j)∈T− , where T− is a randomly
selected subset of (entity×{1, . . . , k})−T+

such that |T−| = |T+|.

3. The loss function losse is a setoid function
defined for each epoch e as follows:

losse
def≡

∑

(a,j)∈T+

|1− pred(a, j)|2

+
∑

(a,j)∈T−
|0− pred(a, j)|2

losse is minimized when each of
(pred(a, j))(a,j)∈T+ is 1 and each of
(pred(a, j))(a,j)∈T− is 0.

Notice that losse contains a free variable pe.
We need to show that Γ ⊢ λpe.losse ∈ R is a
differentiable function, which is a repetition
of the standard argument in analysis but in
terms of setoids.

4. Update the parameters. Stop the loop if losse
falls below a certain threshold; or if e reaches
a certain value. Otherwise set e = e+ 1 and
go to the step 1.

We refer to this set of procedures as one round.

The reason for using only the elimination rules
in step 1 is that it is computationally faster, in the
sense that substitution does not arise in the premise
part of the elimination rules. At the same time, how-
ever, this restricts the deduction power of DTS at
the minimum level. Looser restrictions with greater
computational burden should also be investigated.

Note that in this algorithm, the value of the loss
function is not guaranteed to converge since the
logical deduction of DTS is used in the training
loop to generate the training data for each epoch.
This feature of the algorithm is a drawback from an
engineering viewpoint, but from a cognitive view-
point, it may reflect the process of how humans
learn knowledge, where our beliefs do not always
converge by the increase of knowledge. Also, this
algorithm proposes a particular method for the in-
teraction of logical deduction and machine learning
at the level of the training loop. These are left as
topics for further study.

2.3 Evaluation Methods
One way to evaluate this learning algorithm is to
check its soundness and completeness: the direct
computation is compared with the training set. In
this case, precision corresponds to soundness and
recall to completeness.

Next, for the embedding of predicates, we would
evaluate whether empirically similar predicates
have similar embeddings on the Neural DTS. This
would follow the standard methods, where mea-
sures like 5best, 1best, among others, are valid.

3 Discussion

The advantage of Neural DTS over other repre-
sentation learning methods using DNN is that it
is sensitive to polarities such as negation and con-
ditional clauses in the text. For example, when
the proposition A is included in the scope of the
negation in one of (SEMd)d∈D, as in the example
below, it is not added to the training data since A
is not deduced from ¬(A×B).

¬(A×B) ̸⊢ A

Also, A is not added to the training data when it
is included in the antecedent part of the conditional

20

sentence, as in the example below, since A is not
deduced from A→ B.

A→ B ̸⊢ A

In other words, due to the soundness of the log-
ical deduction, once the mapping from text to se-
mantic representation is performed, the set of pos-
itive predicates obtained from it by deduction is
guaranteed to be correct, as long as the text is cor-
rect. This is a major advantage of having a logic
system like DTS at the core of the knowledge learn-
ing system.

On the other hand, the reliability of the train-
ing data is sensitive to the validity of the syntactic
theory that generates the semantic representations
in DTS; here, the CCG parser and the lexicon do
the job. Given that the accuracy of off-the-shelf
CCG parsers is not yet sufficient, one might rather
consider methods that use only dependency parsers
more prospective, or even an end-to-end neural
system that does not assume the division of labor
among these modules from the beginning, that is, a
language model such as an RNN or a transformer
whose final layer is trained as classifier for pred-
icates. These approaches may seem more robust
for some researchers, but less precise for the rest
of the researchers. Comparing these approaches is
methodologically difficult since they are based on
different views on language faculty.

However, using the CCG parser and the ap-
proach of making lexical semantics more precise
is the study of formal syntax and of formal seman-
tics itself. In other words, in this enterprise, the
improvement of the formal syntax and the formal
semantics is directly related to the improvement of
the lexical semantics and the cognitive capacity.

4 Conclusions and Future Work

This paper proposed a learning algorithm for Neu-
ral DTS for acquiring knowledge representations
from text, and discussed its features, expected ad-
vantages, and difficulties.

The next step is to implement, experiment with,
and evaluate this algorithm. Some difficulties are
expected to be caused by errors in the syntactic
parsing, by ambiguity of predicate symbols, and by
the problem of entity size (namely, the number of
entities forming the enumeration type).

Moreover, many of the philosophical issues
raised in Bekki et al. (2021) are left open. For
example, unlike DTS, all predicates have canonical

proofs in Neural DTS, the implication of which is
still an open question.

We would like to leave these issues, both com-
putational and philosophical, for future discussion.

Acknowledgments We sincerely thank the
anonymous reviewers of NALOMA22 for their
comments. This work was partially supported by
the Japan Science and Technology Agency (JST),
CREST Grant Number JPMJCR20D2.22.

Appendix

A Dependent Type Theory (DTT)

A.1 Syntax

Definition A.1 (Alphabet) An alphabet is a pair
(Var, Con) where Var is a collection of variables
and Con is a collection of constant symbols.

Definition A.2 (Preterms) The collection of
preterms of DTT (notation Λ) under an alphabet
(Var, Con) is defined by the following BNF
grammar, where x ∈ Var and c ∈ Con.
Λ := x | c | type
| (x : Λ)→ Λ | λx.Λ | ΛΛ
| (x : Λ)× Λ | (Λ,Λ) | π1(Λ) | π2(Λ)
| Λ⊕ Λ | ι1(Λ) | ι2(Λ) | unpackL (M,N)
| {a1, . . . , an} | a1 | . . . | an | caseΛ

Λ (Λ, . . . ,Λ)

| Λ =Λ Λ | reflΛ(Λ) | idpeelΛΛ (Λ)

| N | 0 | s(Λ) | natrecΛΛ(Λ,Λ)
Free variables, substitutions, β-reductions are de-

fined in the standard way. The full version of DTT
also employs well-ordered types and universes, as
adopted in Martin-Löf (1984), the detail of which I
omit here for the sake of space.

Definition A.3 (Vertical/Box notation)[
x : A
B

]
def≡ (x : A)×B

Definition A.4 (Logical operators) 8

A→ B
def≡ (x : A)→ B where x /∈ fv(B).[

A
B

]
def≡

[
x : A
B

]
where x /∈ fv(B).

⊥ def≡ {}
¬A def≡ A→ ⊥

8⊥ is defined as an empty enumeration type.

21

A.2 Type System

Definition A.5 (Signature) A collection of signa-
tures (notation σ) for an alphabet (Var, Con) is
defined by the following BNF grammar:

σ ::= () | σ, c : A

where () is an empty signature, c ∈ Con and ⊢σ
A : type.

Definition A.6 (Context) A collection of contexts
under a signature σ (notation Γ) is defined by the
following BNF grammar:

Γ ::= () | Γ, x : A

where () is an empty context, x ∈ Var and Γ ⊢σ
type.

Definition A.7 (Judgment) A judgment of DTT is
the following form

Γ ⊢σ M : A

where Γ is a context under a signature σ and M
and A are preterms, which states that there exists
a proof diagram of DTT from the context Γ to the
type assignment M : A. The subscript σ may be
omitted when no confusion arises.

Definition A.8 (Truth) The judgment of the form
Γ ⊢ A true states that there exists a term M that
satisfies Γ ⊢M : A.

Definition A.9 (Structural Rules)
A : type
x : A

(V AR)

c : A
(CON)

where σ ⊢ c : A.

type : kind
(typeF)

M : A N : B
M : A

(WK)

M : A
M : B

(CONV)
where A =β B.

Definition A.10 (Π-types)

A : s1

x : A
i

....
B : s2

(x : A)→ B : s2
(ΠF),i

where (s1, s2) ∈
{

(type, type),
(type, kind)

}
.

A : type

x : A
i

....
M : B

λx.M : (x : A)→ B
(ΠI),i

M : (x : A)→ B N : A

MN : B[N/x]
(ΠE)

Definition A.11 (Σ-types)

A : type

x : A
i

....
B : type

(x : A)×B : type
(ΣF),i

M : A N : B[M/x]

(M,N) : (x : A)×B (ΣI)

M : (x : A)×B
π1(M) : A

(ΣE)

M : (x : A)×B
π2(M) : B[π1(M)/x]

(ΣE)

Definition A.12 (Disjoint Union Types)
A : type B : type

A ⊎B : type
(⊎F)

M : A
ι1(M) : A ⊎B (⊎I)

N : B
ι2(N) : A ⊎B (⊎I)

L : A ⊎B
P : (A ⊎B)→ type
M : (x : A)→ P (ι1(x))
N : (x : B)→ P (ι2(x))

unpackPL (M,N) : P (L)
(⊎E),i

Definition A.13 (Enumeration Types)

{a1, . . . , an} : type
({}F)

ai : {a1, . . . , an}
({}I)

M : {a1, . . . , an}
P : {a1, . . . , an} → type
N1 : P (a1)
. . .
Nn : P (an)

caseP
M (N1, . . . , Nn) : P (M)

({}E)

22

Definition A.14 (Intensional Equality Types)
A : type M : A N : A

M =A N : type
(=F)

M : A
reflA(M) :M =A M

(=I)

E :M =A N
P : (x : A)→ (y : A)→ (x =A y)→ type
R : (x : A)→ Pxx(reflA(x))

idpeelPE (R) : PMNE
(=E)

Definition A.15 (Natural Number Types)

N : type
(NF)

0 : N
(NI) n : N

s(n) : N
(NI)

n : N
P : N→ type
e : P (0)
f : (k : N)→ P (k)→ P (s(k))

natrecPn (e, f) : P (n)
(NE)

A.3 Setoids

Definition A.16 A setoid is a pair (X,∼X) con-
sisting of a typeX and an equivalence relation∼X

on X .

Definition A.16 can be rewritten in the form of the
formation rule as follows.

Definition A.17 (Setoid formation)

X : type
∼X : X ×X → type
equiv(∼X) true

(X,∼X) setoid

Definition A.18 (Setoid membership)
(X,∼X) setoid x : X

x ∈ (X,∼X)

Definition A.19 (Setoid function) A setoid func-
tion f from a setoid X to a setoid Y is a pair
(f, extf) consisting of a function f : X → Y and
a proof term extf that proves the extensionality of
f :

extf : (x, y : X)→ (x ∼X y)→ (fx ∼Y fy)

Definition A.20 (Exponential of setoids) The ex-
ponential of setoids X ≡ (X,∼X) and Y ≡

(Y ,∼Y) is (X → Y ,∼E) (notation: X → Y),
where X → Y is a type defined as:

X → Y
def≡

(
f : X → Y

)
× (x, y : X)→

(x∼Xy)→ (fx∼Y fy)

and ∼E is a binary relation defined as:

(f, _) ∼E (g, _)
def≡ (x : X)→ fx ∼Y gx

A function application operator ev is defined for
each domain-codomain pair of setoids.

(f, _) ∈ X → Y a ∈ X

evX,Y ((f, _), a)
def≡ fa ∈ Y

Definition A.21 (Product of setoids) The prod-
uct of setoids X ≡ (X,∼X) and Y ≡ (Y ,∼Y) is
the pair (X × Y ,∼P) (notation: X × Y), where
X × Y is a type defined as:

X × Y def≡ X × Y

and ∼P is a binary relation defined as:

(x, y) ∼P (u, v)
def≡ (x ∼X u)× (y ∼Y v)

Projections work as expected.
p ∈ X × Y
π1(p) ∈ X

p ∈ X × Y
π2(p) ∈ Y

Definition A.22 (Relation on setoids) A binary
relation R between setoids X and Y is a pair
(R, extR) consisting of a binary relation R such
that x : X, y : Y ⊢ R(x, y) : type together with a
proof term extR that proves the extensionality of
R:

extR :
(
x, x′ : X

)
→

(
y, y′ : Y

)
→

x∼Xx
′ → y∼Y y

′ → Rxy → Rx′y′

Definition A.23 (Quotient setoids) Let X ≡
(X,∼X) be a setoid and ∼ be a binary relation
on X such that x : X, y : X ⊢ x ∼ y : type.
If ∼ is an equivalence relation on X , we define a
quotient setoid X/ ∼ as:

X/ ∼ def≡ (X,∼)

with a setoid function q : X → X/∼ defined by
identity function on X and its extensionality.

23

Remark A.24 By the extensionality of the relation,
the following holds for any x, y ∈ X:

x ∼X y → x ∼ y
Thus the equivalence relation ∼X is finer than ∼
on the type X .

Definition A.25 (Subsetoids) Let X be a setoid.
A subsetoid of X is a pair (∂S, iS), where ∂S is
a setoid and iS : ∂S → X is an injective setoid
function.

Definition A.26 (Subsetoid membership) Let X
be a setoid. An element a ∈ X is a member of the
subsetoid S of X if there exists an element s : ∂S
such that a ∼X i(s), namely:

a ∈X (∂S, iS)
def≡ (s : ∂S)× (a ∼X iS(s))

Note that a ∈X (∂S, iS) is a type. If A and B
are subsetoids of X , then

A ⊆X B
def≡ (x : X)→ x ∈X A→ x ∈X B

Definition A.27 (Separation of subsets) Let
X = (X,∼X) be a setoid and A a type. A subset{
x ∈ X A

}
of X is defined as:

{
x ∈ X A

} def≡ (((x : X)×A,∼S) , i)

where (x, _) ∼S (y, _)
def≡ x ∼X y

i(x, _)
def≡ x

A.4 Setoids of Natural Numbers, Integers,
Rationals, and Reals

Definition A.28 The setoid of natural numbers N
is obtained by embedding the natural number type
N with its intensional equality.

N
def≡ (N,=N)

Definition A.29 The setoid of integers Z is defined
as:

Z
def≡ (N× N)/ ∼Z

where ∼Z is defined as (m,n) ∼Z (p, q)
def≡ m +

q =N p+ n.

Definition A.30 The setoid of rational numbers Q
is defined as:9

Q
def≡ (Z×

{
z ∈ Z ¬(z ∼Z 0Z)

}
)/ ∼Q

where ∼Q is defined as

(a, (b, _)) ∼Q (c, (d, _))
def≡ a · d =∼Z c · b

Definition A.31 (Cauchy sequence)
Cauchy(seq) is a proposition that a sequence
seq ∈ N → Q is a Cauchy sequence, defined as
follows:10

Cauchy(seq)
def≡

(i : N)→ (i ̸= 0)→ (k : N)×
(j1, j2 : N)→ (j1 > k)→ (j2 > k)

→ |(seq(j1))− (seq(j2))| <
1

asRational∗(i)

Definition A.32 The setoid of real numbers R is
defined as:

R
def≡

{
seq ∈ N→ Q Cauchy(seq)

}
/ ∼R

where ∼R is defined as:

s1 ∼R s2
def≡

(i : N)→ (i ̸= 0)→ (k : N)× (j : N)→ (j > k)

→ |π1(s1)(j)− π1(s2)(j)| <
1

asRational∗(i)

90Z is defined as (0, 0) : Z.
10The function asRational∗ is defined as a compostion:

asRational∗
def≡ asRational ◦ asInteger : N → Q

where each casting function is defined as follows:

asInteger
def≡ λn.(n, 0) : N → Z

asRational
def≡ λz.(z, 1Z) : Z → Q

24

References
Daisuke Bekki. 2014. Representing anaphora with de-

pendent types. In Logical Aspects of Computational
Linguistics (8th international conference, LACL2014,
Toulouse, France, June 2014 Proceedings), LNCS
8535, pages 14–29. Springer, Heiderburg.

Daisuke Bekki. 2021. Proof-theoretic analysis of weak
crossover. In Logic and Engineering of Natural Lan-
guage Semantics 18 (LENLS18), pages 75–88.

Daisuke Bekki and Koji Mineshima. 2017. Context-
passing and Underspecification in Dependent Type
Semantics, Studies of Linguistics and Philosophy,
pages 11–41. Springer.

Daisuke Bekki and Miho Sato. 2015. Calculating pro-
jections via type checking. In TYpe Theory and LEx-
ical Semantics (TYTLES), ESSLLI2015 workshop.

Daisuke Bekki, Ribeka Tanaka, and Yuta Takahashi.
2021. Integrating deep neural network with depen-
dent type semantics. In the Symposium Logic and
Algorithms in Computational Linguistics 2021 (LA-
CompLing2021), page p.37. Stockholm University,
2021, DiVA Portal for Digital Publications.

Hinari Daido and Daisuke Bekki. 2020. Development
of an automated theorem prover for the fragment of
dts. In the 17th International Workshop on Logic
and Engineering of Natural Language Semantics
(LENLS17).

Rajarshi Das, Arvind Neelakantan, David Belanger, and
Andrew McCallum. 2017. Chains of reasoning over
entities, relations, and text using recurrent neural net-
works. Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Volume 1, Long Papers, pages
132–141. Association for Computational Linguistics.

Thomas Demeester, Tim Rocktäschel, and Sebastian
Riedel. 2016. Lifted rule injection for relation em-
beddings. Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing,
pages 1389–1399. Association for Computational
Linguistics.

Nissim Francez. 2014. The Granularity of Meaning in
Proof-Theoretic Semantics, pages 96–106. Springer,
Toulouse.

Nissim Francez and Roy Dyckhoff. 2010. Proof-
theoretic semantics for a natural language fragment.
Linguistics and Philosophy, 33(6):447–477.

Kelvin Guu, John Miller, and Percy Liang. 2015.
Traversing knowledge graphs in vector space. Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 318–327.
Association for Computational Linguistics.

Hans Kamp, J. van Genabith, and Uwe Reyle. 2011.
Discourse Representation Theory, volume 15, pages
125–394. Springer, Doredrecht.

Mike Lewis and Mark Steedman. 2013. Combined
distributional and logical semantics. Transactions of
the Association for Computational Linguistics, 1:179–
192.

Per Martin-Löf. 1984. Intuitionistic Type Theory, vol-
ume 17. Italy: Bibliopolis, Naples.

Tim Rocktäschel and Sebastian Riedel. 2017. End-to-
end differentiable proving. In the 31st International
Conference on Neural Information Processing Sys-
tems. Curran Associates, Inc.

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy
Liang, Leonardo de Moura, and David L. Dill. 2019.
Learning a SAT solver from single-bit supervision.
In ICLR (Poster).

Ryo Takahashi, Ran Tian, and Kentaro Inui. 2018. Inter-
pretable and compositional relation learning by joint
training with an autoencoder. Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2148–2159. Association for Computational Linguis-
tics.

Ribeka Tanaka. 2021. Natural Language Quantification
and Dependent Types. Doctoral dissertation.

Gustav Šourek, Vojtěch Aschenbrenner, Filip Železný,
Steven Schockaert, and Ondřej Kuželka. 2018. Lifted
relational neural networks: efficient learning of latent
relational structures. J. Artif. Int. Res., 62(1):69–100.

Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng.
2017. Premise selection for theorem proving by deep
graph embedding. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing
Systems, pages 2783–2793. Curran Associates Inc.

Yukiko Yana, Koji Mineshima, and Daisuke Bekki.
2019. Variable handling and compositionality: Com-
paring drt and dts. Journal of Logic, Language and
Information, 28(2):261–285.

Yukiko Yana, Koji Mineshima, and Daisuke Bekki.
2021. The proviso problem from a proof-theoretic
perspective. In Logical Aspects of Computational
Linguistics (LACL) 2021, pages 159–176.

25

Center-Embedding and Constituency in the Brain
and a New Characterization of Context-Free Languages

Daniel Mitropolsky, Adiba Ejaz, Mirah Shi, Mihalis Yannakakis, Christos H. Papadimitriou
Dpeartment of Computer Science

Columbia University
NewYork, NY 10027

Abstract
A computational system implemented exclu-
sively through the spiking of neurons was re-
cently shown capable of syntax, that is, of car-
rying out the dependency parsing of simple
English sentences. We address two of the most
important questions left open by that work:
constituency (the identification of key parts of
the sentence such as the verb phrase) and the
processing of dependent sentences, especially
center-embedded ones. We show that these two
aspects of language can also be implemented
by neurons and synapses in a way that is com-
patible with what is known, or widely believed,
about the structure and function of the language
organ1. Surprisingly, the way we implement
center embedding points to a new characteriza-
tion of context-free languages.

1 Introduction

How does the brain make language? Even though
it is universally accepted that language is produced
through the activity of the brain’s molecules, neu-
rons, and synapses, there has been extremely slow
progress over the past decades in the quest for pin-
pointing the neural basis of language, that is, the
precise biological structures and processes which
result in the generation and comprehension of lan-
guage — see Friederici (2017) for an excellent
overview of a major direction in the theory of
the language organ. In a recent advance in this
direction, a parser of English was implemented
(Mitropolsky et al., 2021) in the computational sys-
tem known as the Assembly Calculus (AC) (Pa-
padimitriou et al., 2020), a biologically plausible
computational framework for implementing cog-
nitive functions. The basic data structure of the
AC is the assembly of neurons, a large set of neu-
rons representing an idea, object, episode, word,
etc. — a brief description of the AC and its brain-
like execution environment is given in Section 2.1.

1Code available https://www.github.com/
dmitropolsky/assemblies.

The Parser is implemented through assembly oper-
ations, and thus ultimately by the actual spiking of
stylized neurons. Its input is a sequence of words,
and in response to it the Parser produces, as a de-
tectable substructure of the neural circuit, a cor-
rect dependency parse of the sentence. For this to
happen, neural representations of the words are as-
sumed to be already in place in a brain area called
LEX (for lexicon). For each new word, all neurons
in the corresponding representation spike, and the
representations contain enough grammatical infor-
mation to cause a cascade of neural activity which
results in the correct parsing of the sentence. It was
shown through experiments in Mitropolsky et al.
(2021) that several simple classes of sentences can
be parsed this way. It is important to remember
that the Parser in Mitropolsky et al. (2021) works
exclusively through the spikes of biologically plau-
sible neurons, and hence it can be seen as a proof
of concept — a concrete hypothesis even — about
the way syntactic analysis of language happens in
the brain.

Several research directions were left open in
Mitropolsky et al. (2021), and preeminent among
them were these two: (a) how can the parser be
extended so that dependent clauses, and especially
center-embedded ones, are parsed correctly? and
(b) how could the constituency representation of
the sentence (the tree with "Sentence" and "Verb
Phrase" as its internal nodes and the “Subject,”
“Verb,” and “Object” as leaves) be produced —
there is experimental evidence that the main con-
stituents of a sentence are indeed created in Broca’s
area during sentence processing (e.g. Zaccarella
and Friederici (2015)).

Parsing center-embedded sentences presents a
serious conceptual difficulty: the parsing of the em-
bedding sentence must be interrupted, and then be
continued after the embedded sentence is parsed.
This is the nature and essence of recursion. A mech-
anism for recovering the state of the parser at the

26

moment of the interruption seems thus necessary.
It would be tempting to posit that recursion in the
brain happens as it does in software, through the
creation of a stack of activation records, but as we
shall discuss this is not biologically plausible.

In this paper we pursue these two unresolved re-
search goals and make significant progress on both.
We start our description with constituents, which
is the simpler narrative. The Parser in Mitropol-
sky et al. (2021) consists of the brain area LEX

where the lexicon resides (believed to be a part of
the medial temporal lobe, MTL), as well as sev-
eral other areas labeled SUBJ, VERB, OBJ, DET

etc. corresponding to syntactic roles, believed to
be subareas of Wernicke’s area; this is where the
dependency parse is created. We show that this
architecture can be augmented by new areas and
fibers in such a way that the basic constituency
tree of the sentence (the three-leaf tree that has in-
ner nodes Sentence and Verb Phrase) can be also
built “on the side” while the sentence is parsed.
This entails two new brain areas denoted S for sen-
tence and VP for verb phrase. The brain areas in
our model are intended to correspond to two well
known subareas of Broca’s area, BA 43 and BA 44,
respectively, where such activity is thought to take
place (Friederici, 2017).

Coming now to the problem of dependent
clauses, to handle clauses that are not embedded
(say“if dogs are angry, they chase cats”), the Parser
needs only one extra brain area beyond the areas
needed by the original (Mitropolsky et al., 2021),
namely an area labeled DS for “dependent seg-
ment.”

To see the problem with embedded sentences,
consider the variant “dogs, when they are angry,
chase cats.” The Parser would recognize “dogs” as
the subject of the sentence and project the assembly
for “dogs” to the SUBJ area and change the state
as appropriate (inhibit a fiber). Upon encounter-
ing the first comma, the parsing of the sentence
is curtailed, and the parsing of a new clause will
be initiated. This is not a problem, since brain ar-
eas can contain many assemblies at the same time,
and the two verbs, subjects, etc. will not interfere
with each other. However, upon the second comma
(for simplicity we assume that these clues are al-
ways available– in speech, they may, for instance,
by indicated using prosodic or pausal cues), the
Parser needs to continue the parsing of the outer
clause (that is, the main sentence), and for this it

needs to restore the state at the moment the parsing
was interrupted by the embedding sentence. We
could have the state saved in a pushdown store
and retrieve it at this point, but we can see no bio-
logically plausible implementation of either Parser
state records or a pushdown store. As we shall
point out, the Parser so far is a finite automaton,
and thus it is not surprising that it has trouble han-
dling embedded clauses.

The question is, which biologically plausible de-
parture from finite state machines, and from the
model in Mitropolsky et al. (2021), can handle em-
bedding? We propose the following: The Parser
stores the part of the utterance already parsed in
some working memory (as in Awh et al. (2006), for
example). When the embedded clause has been
parsed, the Parser returns to the beginning of the
outer sentence in the working memory and repro-
cesses it (up to the comma) to restore the state. We
only need to execute the action sets of the words in
the first part of the sentence, an activity that we we
call touching, which is, in terms of elapsed time,
an order of magnitude faster than parsing the first
time. Once the first comma is seen, the embedded
clause is skipped (without state changes) until the
second comma, and parsing of the outer sentence is
resumed from the recovered state. Any embedded
clause can be handled with the touching maneu-
ver — non-embedded dependent clauses are much
simpler.

We show by processing several examples that
several forms of dependent and embedded clauses
can be correctly parsed (that is, a correct depen-
dency graph of the whole sentence can be retrieved
from the device after processing). If the embedded
clause has its own embedded clause, the trick can
be repeated.

Very surprisingly to us, this extension of the
Parser, arrived at strictly through considerations
of biological plausibility and ease of implementa-
tion, yields a rather unexpected theorem in formal
language theory: if one defines an extension of
nondeterministic finite-state automata to capture
the operation of the enhanced Parser, with the extra
capabilities of (a) marking the current input symbol
and (b) reverting from the current input symbol to
the previously marked symbol that is closest to the
current one, then the class of languages accepted
by these devices — call them fallback automata —
coincides with the context-free languages!

27

2 Background

2.1 The Assemblies Model

How does the brain beget the mind? How do
molecules, neurons, and synapses effect reasoning,
planning, emotions, language? Despite tremendous
progress in the two extremes of scale — cognitive
science and neuroscience — we do not know how
to bridge the scales. According to Nobel laureate
Richard Axel (A, 2018), “We don’t have a Logic for
the transformation of neuronal activity to thought
and action. I consider discerning (this) Logic as
the foremost research direction in neuroscience.”
Notice the use of the word “Logic” whereby a dis-
tinguished experimentalist dreams of a formal sys-
tem...

Recently, a computational framework called the
Assembly Calculus (AC) was proposed whose pre-
cise intention is to be this Logic: to model the
brain at the level of cognitive function through the
control of a dynamical system of spiking neurons.
This section describes the variant of the AC used
in Mitropolsky et al. (2021) and the present paper.

We start with a mathematical model of the brain:
a finite number a of brain areas A,B, ... each con-
taining n excitatory neurons. Every two neurons
i, j in each area have a probability p of being con-
nected by a synapse. Each synapse (i, j) has a
nonnegative weight wij > 0, initially 1, say, which
changes dynamically. For certain unordered pairs
of areas (A,B), A ̸= B, there is a fiber connecting
them, a random directed bipartite graph connect-
ing neurons in A to neurons in B and back, again
with probability p independently for each possible
synapse. Thus, the brain is a large directed graph
with an nodes and random weighted edges.

Time is discrete (in the brain each time step is
throught to be about 20 ms). The state of the dy-
namical system at time t has two components: the
weights of the synapses wt

ij , and the set of neurons
that fire at time t. That is, for each neuron i we
have a state variable f ti ∈ {0, 1} denoting whether
or not i fires at time t. The state transition from
time t to time t+ 1 is computed thus:

1. For each neuron i compute its synaptic input
SIti =

∑
(j,i)∈E,f t

j=1w
t
ji, that is, the sum to-

tal of all weights from pre-synaptic neurons
that fired at time t.

2. For each neuron f t+1
i = 1 — that is, i fires at

time t+1 — if i is among the k neurons in its

area with the highest SIti (breaking any ties
arbitrarily).

3. For each synapse (i, j) ∈ E,
wt+1
ij = wt

ij(1 + f ti f
t+1
j β); that is, a synaptic

weight increases by a factor of 1 + β if and
only if the post-synaptic neuron fires at time
t+ 1 and the pre-synaptic neuron had fired at
time t.

These are the equations of the dynamical system.
The AC also has commands for the high-level con-
trol of the system. A fiber can be inhibited (that is,
prevented from carrying synaptic input to other ar-
eas) and disinhibited (inhibition is canceled). Also,
a set x of k neurons in an area can be made to fire
by the command fire(x) (this is most relevant in
connection to assemblies, defined next.

The state of the system contains the firing state
of each neuron, the edge weights wij , and inhibi-
tion information.

Assemblies of neurons are a critical emergent
property of the system. An assembly is a special set
of k neurons, all in the same area, that are densely
interconnected — that is, these k neurons have far
more synapses between them than random, and
these synapses have very high weights. This ren-
ders assemblies stable representations for repre-
senting in the brain objects, words, ideas, etc.

How do assemblies emerge? Suppose that at
time 0, when nothing else fires, we execute fire(x)
for a fixed subset of k neurons x in area A (these k
neurons will always correspond to a previously cre-
ated assembly2), and suppose that there is an adja-
cent area B (connected to A through a disinhibited
fiber) where no neurons currently fire. Since assem-
bly x in area A fires at times 0, 1, 2, . . . (and ignor-
ing all other areas), it will effect at times 1, 2, . . .
the firing of an evolving set of k neurons in B, call
these sets y1, y2, It is shown in Papadimitriou
et al. (2020) that, with high probability (where the
probability space is the random connectivity of the
system), the sequence {yt} eventually converges to
a stable assembly y in B, called the projection of x
in B. The new assembly will be strongly intercon-
nected, and also has strong connections from with
x: If one of the two assemblies henceforth fires,
the other will follow suit.

In Mitropolsky et al. (2021) this operation was
generalized for the paper’s purposes. Suppose an

2Initially, assemblies are created by projection from stimuli
from the outside world coded in the sensory cortex.

28

assembly x in area A fires repeatedly and there are
many areas downstream — not just a single area
B as before — and these areas are connected by
disinhibited fibers in a way that forms a tree. Then
a sequence of project operations, denoted project∗,
creates a tree of assemblies, with strong synaptic
connections between them. In (Mitropolsky et al.,
2021), it is these synaptic connections between
projected word assemblies that constitute the valid
dependency parse tree created by the Parser.

2.2 The Parser
The basic architecture of the Parser in Mitropolsky
et al. (2021) consists of several brain areas con-
nected by fibers. LEX special, and contains repre-
sentations of all words. Upon input of a new word
(in brain reality, read or heard) the corresponding
representation is excited, and upon firing it exe-
cutes the action set of the word, commands which
capture the grammatical role of the word. These
commands open and close (disinhibit and inhibit)
certain fibers. Then the project* operation is exe-
cuted: all active assemblies fire. By this scheme, it
was shown in Mitropolsky et al. (2021) that many
categories of English sentences (and Russian as
well) can be parsed correctly (the correctness can
be verified because the running of the parser on an
input sentence leaves a retrievable graph structure
within and between brain areas, which constitute
a correct dependency graph of the sentence). This
completes the description of the Parser’s architec-
ture. We provide a figure with an example sentence
parsed, and refer the interested reader to Mitropol-
sky et al. (2021).

2.3 Neuroscience
We believe that our Parser represents a reasonable
hypothesis for parsing in the brain. The neurobio-
logical underpinnings of Assembly Calculus, with
which our model is built, and the original Parser
of Mitropolsky et al. (2021), which ours extends,
are presented more fully in that paper. Briefly, As-
sembly Calculus is based on established tenets of
neuron biology, including that neurons fire when
they receive sufficient excitatory input from other
neurons, the atomic nature of neuron firing, and a
simplified narrative of synaptic Hebbian plasticity
(see for instance Kandel et al. (1991), Chapters 7,
8, and 67). Assemblies, in turn, are an increasingly
popular hypothesis for the main unit of higher-level
cognition in modern neuroscience– first hypothe-
sized decades ago by Hebb, they have been identi-

fied experimentally (Harris, 2005) displacing pre-
viously dominant theories of information encoding
in the brain, see e.g. Eichenbaum (2018). With
what regards the higher-level Parser architecture,
language processing appears to start with access
to a lexicon, a look-up table of word representa-
tions thought to reside in the left medial temporal
lobe (MTL), motivating the inclusion of an area
LEX. After word look-up, activity in the STG is
thought to signify the identification of syntactic
roles. Overall, the Parser generates a hierarchical
dependancy-based structure that from a sentence
that is processed incrementally, which we believe
models something like the creation of hierarchical
structures in Broca’s areas in experiments such as
Ding et al. (2016).

3 Constituency

Constituency parsing revolves around the idea that
words may lump into a single assembly. The noun
subject of a sentence — along with its dependent
adjective(s) and determinant(s) if any — form the
“Subject," while the verb and object form the “Verb
Phrase." At the coarsest level, the “Subject" and
“Verb Phrase" then form the “Sentence." We modify
the underlying framework of the Parser to assign
this syntactic structure to a sentence.

We add two new brain areas that hold the “Verb
Phrase" and “Sentence," VP and S respectively,
as well as fibers between VERB and VP, OBJ and
VP, SUBJ and S, and VP and S. These fibers re-
main disinhibited throughout parsing so that the
constituency tree is built concurrently as we parse
the sentence. That is, when the verb is processed, a
corresponding assembly is formed in VP, and upon
encountering the object, the assemblies in VERB,
OBJ, and VP fire together to form in VP what is
now the merge of assemblies representing the verb
and object. Parallel to this process, assemblies fire
along the SUBJ to S and VP to S fibers so that the
final assembly in S represents the joining of the
“Subject" and “Verb Phrase."

Experiments. We extend the implementation of
the Parser in Python to incorporate these new abili-
ties. Additionally, we tailor the readout algorithm
(which in Mitropolsky et al. (2021) recovers the
dependency tree) to output the desired tree rooted
in S. To verify that the Parser produces the cor-
rect constituency tree, we provide a test set of 40
sentences constructed from 20 syntactic patterns
that include variations in word orderings; additions

29

of determinants, adjectives, adverbs, and prepo-
sitional phrases; and both transitive and intransi-
tive verbs. The Parser generates the correct con-
stituency trees on all of our given test cases. Im-
portantly, the constituency Parser can handle any
sentence structure that the original Parser can han-
dle.

As in the original parser, we execute 20 firing
epochs of project∗ to allow the dynamical system
to stabilise. The multiple concurrent projections
into S and VP cause a slowdown by a factor of
2.5 relative to the dependency parser, resulting in a
frequency of 0.5-1.3 seconds/word.

4 Embedded Sentences

To handle embedded sentences, the Parser requires
a new area DS (for dependent segment) to handle
dependent and embedded clauses. Additionally,
we need modifications that recover the state before
an embedded clause (which we recover when we
finish parsing an embedded clause, i.e., upon a
“right comma").

In particular, we assume that there is a working
memory area which holds the words which have
already been processed, in sequence. We assume
for simplicity that the parser can always recognize
the beginning of a dependent sentence — that this
is always possible through simple clues such as a
comma (in text), prosodic cues (in speech), and/or
a complementizing pronoun or preposition, such as
“who”, “if”, or “that". We also assume that there is
a unique sentence or clause at each depth, though
with minor modifications we can handle the more
general case.

To handle center-embedded clauses, the parser
utilizes a limited working memory: it must remem-
ber the sentence up to the point when an embedded
clause begins in order to efficiently reprocess these
words after parsing the embedded clause. More
concretely, when a center embedding is detected,
the Parser “cleans the slate"; that is, the Parser
state (the fiber and area states) is reinitialized in
order to parse the new embedded clause, which is
parsed normally until its end is detected. At this
point the Parser has to restore its last state when it
was parsing the outer clause. To do so, it reinitial-
izes the state again and reprocesses the sentence
from the beginning of the outer clause up to the
interruption. However, this re-processing is spe-
cial: the parser only “touches” the words, by which
we mean that for each word we apply its action

sets (inhibiting or disinhibiting areas/fibers), fire
the entire system exactly once to reactivate existing
assemblies that were formed in the initial parse of
the fragment (when we initially parsed this part
of the sentence, we used project*, which fires the
entire system 20+ times in order for assemblies to
form and converge). In this way, touching is by an
order of magnitude faster than parsing on initial
input of the word — both in our simulation and
in the hypothesized language organ — since it is
only recovering the preexisting structure. Note that
when the first comma is scanned, the parsing of
the outer sentenced is resumed from the second
comma, skipping the (already parsed) embedded
clause.

The remaining difficulty is in linking the outer
and inner clauses. The last word of the outer clause
before the inner sentence functions as a “signa-
ture" for the outer clause. This signature may re-
side in SUBJ or OBJ, for instance. After parsing
the fragment of the outer clause pre-interruption,
we project from the relevant signature area to DS.
Then, on the verb of the inner clause, we project
from both LEX and DS into VERB simultane-
ously. This way, we can later recover the root verb
of the inner clause via the signature assembly of
the outer sentence (through projection into DS and
subsequently VERB). to DS, and then to VERB.

Experiments. We extend the implementation of
the dependency Parser in Python to incorporate
touching, linkage, and recursion within the main
Parser loop. In principle, the developed Parser
can handle arbitrarily many levels of embedding.
We test on 20 sentences sampled from 5 differ-
ent embedding structures, with depths 0, 1, and 2
(informed by the lack of three or greater depth sen-
tences in ordinary language). Our test cases feature
center-embedding, edge-embedding, mixed embed-
ding, and relative clauses modifying the subject
or the object. We assume there is a unique clause
at each depth. The Parser generates the expected
dependency tree on all of our given test cases.

Again, we execute 20 firing epochs of project∗.
The modified parser preserves the speed of the orig-
inal, with a negligible increase in time for linkage
projections and touching. Despite several chal-
lenges created by the added complexity of sentence
embedding, the linkages between projected assem-
blies correspond to the correct dependency graph
in all sentences.

30

��������
��������
��������
��������

'6
��������
��������
��������
��������

9(5%

��������
��������
��������
��������

68%-

��������
��������
��������
��������

2%-

��������
��������
��������
��������

/(;

GRJV

��������
��������
��������
��������

'6
��������
��������
��������
��������

9(5%

��������
��������
��������
��������

68%-

��������
��������
��������
��������

2%-

��������
��������
��������
��������

/(;

GRJV

��������
��������
��������
��������

'6
��������
��������
��������
��������

9(5%

��������
��������
��������
��������

68%-

��������
��������
��������
��������

2%-

��������
��������
��������
��������

/(;

GRJV
ZKR

UXQ

��������
��������
��������
��������

'6
��������
��������
��������
��������

9(5%

��������
��������
��������
��������

68%-

��������
��������
��������
��������

2%-

��������
��������
��������
��������

/(;

GRJV
ZKR

UXQ [GRJV

��������
��������
��������
��������

'6
��������
��������
��������
��������

9(5%

��������
��������
��������
��������

68%-

��������
��������
��������
��������

2%-

��������
��������
��������
��������

/(;

GRJV

GRJV

�D�

��������
��������
��������
��������

��������
��������
��������
��������

9(5%

��������
��������
��������
��������

68%-

��������
��������
��������
��������

2%-

��������
��������
��������
��������

/(;

GRJV
ZKR

UXQ
FKDVH

FDWV

'6

�E�

�F� �G�

�H� �I�

[UXQGRJVGRJV

GRJV GRJV

Figure 1: Snapshots of the Parser while processing the center-embedded sentence “dogs, when they run, chase
cats." Green arrows represent fibers that have been disinhibited between each stage; red arrows represent inhibited
fibers. Purple dotted arrows indicate assemblies that have been connected through project∗. Pink dotted arrows
indicate assemblies touched through activating their corresponding assemblies in LEX. (a) Outer sentence, up until
beginning of inner sentence, parsed; (b) Assemblies in the signature and DS areas linked; (c) Fiber and area states
reset in anticipation of a new sentence; (d) Inner sentence parsed and linked to outer sentence through the DS area;
(e) Outer sentence revisited: each word prior to dependent sentence is touched, restoring Parser state of stage (a); (f)
Remainder of outer sentence parsed.

31

Algorithm 1: Enhanced Parser, main loop
input :a sentence s, depth d
output :representation of dependency parse

of s, rooted in VERB

Function parse(s, d← 0):
foreach word w in s do

if (d+ 1)-depth clause begins after
w then

disinhibit(DS) ;
disinhibit(DS, AREA(w)) ;
project* ;
inhibit(DS, AREA(w)) ;
inhibit(DS) ;

else if w begins (d+1) depth clause
then
d← d+ 1 ;
clear the slate ;

else if w ends embedded sentence
then
d← d− 1 ;
foreach word y before w do

activate y in LEX ;
fire DISINHIBITED AREAS ;

if d > 0, AREA(w) = VERB then
disinhibit(DS) ;
disinhibit(DS, VERB) ;

execute w actions and project* ;
inhibit(DS) ;
inhibit(DS, VERB) ;

5 A Little Formal Language Theory

The Parser, without the embedded sentence mod-
ule, is a finite state device. The reason is that the
Parser’s state is an acyclic subgraph of the graph
of brain area and fibers (excluding LEX). It is no
wonder then that sentence embedding (intuitively,
a feature involving recursion and therefore moving
us out of the realm of regular languages) requires
an extension, and among many other options that
seemed to us less biologically plausible we chose
to revisit the outer sentence and restore the state
of the Parser. It is now natural to ask: Can the
operation of the Parser when handling embedded
sentences be seen as a more powerful genre of au-
tomaton? This is the motivation for the results in
this section.

Definition: A fallback automaton (FBA) is a tuple
A = (Σ,K, I, F,∆), where (as in a nondetermin-
istic finite-state automaton) Σ is a nonempty finite
set of symbols, K is a set of states, I is the set of
initial states, F is the set of accepting states, and ∆
is the transition relation.

Define the type set T = {f, s} ∪K. Whereas
in nondeterministic FSAs ∆ ⊆ (Σ×K)×K, the
transition relation of FBAs is more complex.

∆ ⊆ ((Σ× T ×K)× (K × {s,✓,←})
The automaton is nondeterministic, reflecting

the nondeterministic nature of parsing in general,
due to ambiguity and polysemy. The transition
relation can be understood thus: symbols on the
tape are marked by a type, either f (for fresh),
s (for seen), or by a state q ∈ K. Initially, all
symbols are fresh and hence marked f . When a
symbol is marked s or by a state of K, it is not
being scanned for the first time — the automaton
may scan a symbol multiple times. The first time a
symbol is scanned, its type is changed from f to s,
or, if the rule outputs ✓, it is set to the current state
q. Subsequently, after a symbol marked by a state
is scanned, the type reverts to s.

To formalize the operation of the automaton, at
each step, there is a tape x ∈ (Σ× T)∗; we denote
its ith symbol as xi = (σi, ti), where σi ∈ Σ and
t ∈ T . The automaton is in a state q ∈ K and the
ith symbol xi is scanned. The overall configuration
is thus (x, q, i). In the initial configuration, the type
of every symbol is f , q ∈ I and i = 1.

If the next configuration after (x, q, i) is (y, r, j)
then:

32

• y is identical to x except that the type of the ith
symbol may have changed: f must become s
or the machine’s current state q, s stays s, and
q ∈ K always become s.

• unless this is a fallback step, j = i+ 1.

• Fallback. When scanning a fresh symbol, the
automaton may return to a position j < i,
where j is the largest position j that was
marked — that is, tj ∈ K. Notice that in the
next step, tj = s— the symbol is unmarked.

• When scanning a symbol with type q ∈ K,
i.e., a symbol fallen back to, the transition can
map to only s or ←– that is, it can fallback
again, but it cannot mark the symbol again for
fallback.

• In all cases, the corresponding pair
((xi, q)(r, σ)) must be in ∆. σ = s
means that the i-th symbol’s type is changed
to s, σ = ✓ means it is changed to the state q,
and σ =← means the step is a fallback.

This concludes the definition of the FBA. We say
that a string x in Σ∗ is accepted by FBA A if there
is a sequence of legal steps from a configuration
with state in I and tape x with all symbols fresh to
a configuration in which the state is in F .

Note that when the FBA falls back to a previous
tape location j < i, it then passes again over the
seen symbols (marked s) between xj and xi, and
may do meaningful computation upon this revisit-
ing. Furthermore, an FBA can fallback repeatedly,
immediately after a fallback move. Our Parser
more closely corresponds to an FBA without this
abilities. Hence it is interesting to define a weaker
model without this ability:

A weak-FBA is an FBA with the additional re-
quirements that 1) for any symbol marked s, tran-
sitions cannot change the state (that is, for all
α ∈ Σ, q ∈ K and (α, s, q) × (q′, s) ∈ ∆, we
require q′ = q, in effect, skipping over all s sym-
bols) and 2) for any symbol marked with q ∈ K,
the transition must output (q′, s) (that is, there are
no repeated fallbacks).

It may seem that FBAs can do more than weak-
FBAs. Consider the following language over Σ =
{0, 1, α, β}, L = {αnxβn : x ∈ {0, 1}∗}. By
marking every α and falling back on every β, an
FBA can read through x at least n times, a linear
dependence. However, a weak-FBA can read each
symbol in the tape exactly 1 or 2 times.

Perhaps surprisingly, it turns out that the ability
to do additional computation on revisited symbols
offers no additional power. More importantly, it
turns out that both models recognize a fundamental
class of formal language theory. Denote the class of
languages accepted by FBAs as FBA, that by weak-
FBAs as weak-FBA, and the class of context-free
languages as CFL. We can prove the following:

Theorem: weak-FBA = FBA = CFL

Proof outline: To show that weak-FBA ⊇ CFL,
we recall the classic theorem of Chomsky and
Schützenberger (Chomsky and Schützenberger,
1963) stating that any context-free language L can
be written as L = R ∩ h(Dk), where R is a reg-
ular language, Dk denotes the Dyck language of
balanced parentheses of k kinds, and h is a homo-
morphism, mapping any symbol in the alphabet of
Dk to a string in another alphabet. Let us take a
context-free language in this form. Note that FBAs
are ideal for accepting h(Dk). The machine uses
non-determinism to guess which symbol is repre-
sented by the next sequence of characters. When
it guesses that it will see the image of a left paren-
thesis, say ‘{’, it checks each symbol of h({) (and
rejects if the sequence of symbols is not h({)), and
marks the final character (with the state q{)). For a
right parenthesis, after checking for the sequence
h(}), it falls back and checks that the symbol fallen
back to is marked q{). Intersection with the regular
language R is done by simultaneously maintaining
the state of the automaton accepting R in a sep-
arate component of the FBA’s state (in fact, one
can show that the languages accepted by FBAs are
closed under intersection with regular languages).

To show that FBA ⊆ CFL, we emulate the ex-
ecution of a FBA with a push-down automaton
(that is, a non-deterministic finite state automaton
with the additional computational power of one
stack). By the classic result proved independently
by Chomsky (1962); Schützenberger (1963); Evey
(1963), the languages recognized by push-down
automata are exactly CFL. The emulation uses the
following trick: the stack is composed of vectors
of states of length |K|. These vectors keep track of
the execution of the FBA on every possible state on
the sequence of symbols between consecutive pairs
of marked symbols, and between the most recent
marked symbol and the head. Whenever the FBA
falls back and is in state q where q corresponds to
the i-th coordinate in the stack vectors, the emu-
lation pops the top vector on the stack and jumps

33

to the state in the i-th coordinate, as this would
be the resulting state had the machine re-read the
seen symbols starting in state q. The full proof is
technical, and is given in the Appendix.

6 Discussion

The Parser in Mitropolsky et al. (2021) can be seen
as a concrete hypothesis about the nature, structure,
and operation of the language organ. Here we elab-
orate on this hypothesis: First, rough constituency
parsing (the creation of the two highest layers of
the syntactic — or constituency — tree of the sen-
tence) can be carried out simultaneously with the
main dependency parsing. Second, dependent sen-
tences can also be parsed. For center-embedded
sentences, a significant extension of the Parser is
required: A working memory area stores the whole
utterance, and the parser returns to the beginning
of the utterance to recover the state of the Parser
after processing the outer sentence, and and then
skips the embedded sentence and continues parsing
the outer one.

Even though this maneuver was motivated by
biological realism and programming necessity, we
showed that it transforms the device from one that
handles only regular languages to one capable of ac-
cepting all context free languages — and just these.
We find this quite surprising, and possibly signif-
icant for the history of linguistic theory: Seven
decades ago, Noam Chomsky sought to formalize
human language and in the mid 1950s introduced
CFLs expressly for this purpose. In the following
two decades, this choice was criticised as too gen-
erous (not all features of CFLs are needed) and
also as too restrictive (some aspects of natural lan-
guage are not covered by CFLs). Arguably, this
criticism was accepted by Chomsky’s school of
thought: Grammar remained important, of course,
but context-free rules besides S → NPV P (right-
hand side unordered) were not used often. Much
of NLP centered around the dependency formu-
lation of syntax. Two-thirds of a century later,
computer scientists speculating about syntax in the
brain came up with a computational trick in order
to handle center recursion. And this maneuver,
when formalized properly, leads to a device that
can recognize all CFLs.

Besides speculating on the meaning of this the-
oretical result, our work suggests a major open
problem: If we assume that syntax in the brain is
handled in a way similar to the one suggested by

the Parser3, and all humans are born with a system
of brain areas and fibers in their left hemisphere
capable of such operation, how do babies learn to
use this device? How are words learned and pro-
jected, presumably from the hippocampus, where
they are associated with world objects and episodes,
to the LEX in the medial temporal lobe? And how
is each of them attached to the correct system of
interneurons that are capable of changing the in-
hibited/disinhibited status of fibers and possibly of
brain areas?

7 Acknowledgments

The authors thank Tal Malkin for helpful discus-
sions about the proof of the theorem, and the anony-
mous NALOMA reviewers for helpful feedback.

References
Q & A. 2018. Richard Axel. Neuron, 99:1110–1112.

E. Awh, E.K. Vogel, and S.-H. Oh. 2006. Interactions
between attention and working memory. Neuro-
science, 139(1):201–208.

N. Chomsky. 1962. Context-free Grammars and Push-
down Storage.

N. Chomsky and M.P. Schützenberger. 1963. The alge-
braic theory of context-free languages*. In P. Braffort
and D. Hirschberg, editors, Computer Programming
and Formal Systems, volume 35 of Studies in Logic
and the Foundations of Mathematics, pages 118–161.
Elsevier.

Nai Ding, Lucia Melloni, Hang Zhang, Xing Tian, and
David Poeppel. 2016. Cortical tracking of hierarchi-
cal linguistic structures in connected speech. Nature
neuroscience, 19(1):158.

Howard Eichenbaum. 2018. Barlow versus hebb: When
is it time to abandon the notion of feature detectors
and adopt the cell assembly as the unit of cognition?
Neuroscience letters, 680:88–93.

R. James Evey. 1963. Application of pushdown-store
machines. In Proceedings of the November 12-14,
1963, Fall Joint Computer Conference, AFIPS ’63
(Fall), page 215–227, New York, NY, USA. Associa-
tion for Computing Machinery.

Angela D Friederici. 2017. Language in our brain: The
origins of a uniquely human capacity. MIT Press.

Kenneth D Harris. 2005. Neural signatures of cell as-
sembly organization. Nature Reviews Neuroscience,
6(5):399.
3A far-fetched assumption, of course, but one that is some-

what justified by the fact that there is no competing theory that
we are aware of.

34

Eric R. Kandel, James H. Schwartz, and Thomas M.
Jessell, editors. 1991. Principles of Neural Science,
fifth edition. Elsevier, New York.

Daniel Mitropolsky, Michael J. Collins, and Christos H.
Papadimitriou. 2021. A Biologically Plausible Parser.
In Transactions of the Association for Computational
Linguistics. ArXiv: 2108.02189.

Christos H. Papadimitriou, Santosh S. Vempala, Daniel
Mitropolsky, Michael Collins, and Wolfgang Maass.
2020. Brain computation by assemblies of neurons.
Proceedings of the National Academy of Sciences,
117(25):14464–14472.

M.P. Schützenberger. 1963. On context-free languages
and push-down automata. Information and Control,
6(3):246–264.

Emiliano Zaccarella and Angela D. Friederici. 2015.
Merge in the human brain: A sub-region based func-
tional investigation in the left pars opercularis. Fron-
tiers in Psychology, 6:1818.

8 Appendix

Here we give the full proof of our main theoretical
result:

Theorem: weak-FBA=FBA=CFL.

Note: We say a symbol on the tape is “marked’
whenever its type is some q ∈ K.

Lemma: For any strong-FBA, there exists a strong-
FBA recognizing the same language that is deter-
ministic whenever the input symbol is marked s
(that is, for every state and symbol pair q, α, there
is at most one rule ((α, s, q), (q′, s)) ∈ ∆.

Proof: this is shown using essentially the same
reduction from non-deterministic to deterministic
finite state automata (FSA), since when at a seen
symbol, the FBA cannot mark or fallback and is
hence in a FSA-like regime. Concretely, if K is the
original state set, the state set of the new FBA is
2K . ∆ contains the same rules when the input is
in state f or is marked (we represent states of the
original FBA with the singleton of that state in 2K)–
whenever the input is in state s, it transitions to the
ϵ-closure of the subset represented by the state (i.e.,
(α, s, S) → (S′, s) iff S′ is the set of all states
that can be reached from a state of S on symbol α,
before or after any epsilon transitions). Addition-
ally, whenever the FBA reads symbol marked with
anything other than s, or reaches the end of the
tape, if the current state-set S is a non-singleton,
it non-deterministically transitions to the single-
ton of any q ∈ S (thereby returning to a “regular"

state of FBA, and moving all the non-determinism
away from s symbols). The new FBA is determin-
stic on s-inputs and recognizes the same language:
any transition through a sequence of s-states cor-
responds to a specific non-deterministic transition
to a single state from the final state-set at the first
non−s symbol. □

The main technical result is showing that a push-
down automaton (PDA) can simulate a strong-
FBA, i.e., that strong-FBA ⊆ CFL.

Proof of theorem: By the lemma, without loss
of generality we can assume that the strong-FBA
is deterministic when the input has type s. Let
K = {q1, . . . , qt} be the state set of the strong-
FBA. The PDA will have state set K, and stack
alphabet Σ×K×K |K|, that is, tuples of a symbol, a
state, and state vectors. We define the “s-transition
on α" of a state q to mean the (deterministic) FBA
transition rule with left-side (α, s, q).

The PDA simulates the execution of the strong-
FBA. When in state q′ and on fresh tape symbol α,
the PDA will:

1) Non-deterministically select a rule with left
side (α, f, q′) on the left-hand side. Let (q, σ) be
the right-hand side. That is, σ ∈ {s,✓,←}.

2) Update the state to q.
3) If the stack is non-empty, pop the top element

(β, p, (r1, . . . , rt)) from the stack. For each vector
coordinate i ∈ [t], apply the s-transition on α to
each ri– push the updated tuple (β, p, (r′1, . . . , r

′
t))

back to the stack.
4) if σ = ✓, push (α, q, (q1, . . . , qt)) to the

stack.
5) if σ =←, the corresponding PDA transition

does nothing else, but enters the following loop:
5.1) Pop the top element (β, p, (r1, . . . , rt)) of

the stack and sample a rule of the FBA that transi-
tions on the marked symbol, that is, a rule of the
form (β, p, q) → (q′, σ). Note that σ ∈ {s,←}.
If the stack is non-empty, pop the next element,
(γ,w, (u1, . . . , ut)) and “apply" (r1, . . . , rt) to the
state vector– that is, for each i ∈ [t], if ui = qj ,
replace ui with u′i := rj . Push the resulting pair
(γ,w, (u′1, . . . , u

′
t)) back onto the stack.

5.2) if σ =← (which we call a “fallback-again"
rule of the FBA), the PDA updates the state to q′,
and returns to the beginning of 5.1). If σ = s
(which we call a non-“fallback-again" rule), the
PDA updates the state to ri (that is, the i-th co-
ordinate in the stack-vector from 5.1), where i is
the index of q′, i.e. q′ = qi. Because the FBA

35

can have “fallback-again" rules, the PDA can re-
peat 5.1 multiple times, and stops when it selects a
non-“fallback-again" rule (or rejects).

For any execution of the PDA, it will have |x|+
F +M transitions, or steps, where x is the input,
F is the number of times the PDA repeated step 5.1
(i.e. executed a “fallback-again" rule of 5.2), and
M is the number of times it ends the loop of 5), i.e.
selects a non-“fallback-again" rule. Each step iwill
correspond to a “strong"-step of an equivalent FBA
execution, which is a transition where the input
symbol has type not equal to s (in other words, a
step where the FBA either processes a fresh symbol,
or falls back to a marked symbol).

Claim: There is a one-to-one correspondence be-
tween executions of the FBA on x with executions
of the PDA on x, such that, for each such pair, the
PDA simulation maintains the following invariant
at each step i with respect to the FBA:

a) the PDA state after the i-th step is equal to the
FBA state immediately before the i+ 1-th strong
step (or the final state, if i = |x|), and the position
of the PDA head is equal to the position of the last
f -symbol seen by the FBA.

b) the PDA stack has l elements, where l is the
number of marked symbols after the i-th strong-
step of the FBA, and

c) the k-th stack element consists of the k-th
marked symbol and type in the FBA execution,
and a vector that contains for each state qj , the
execution of s-transitions starting from the symbol
immediately after the k-th marked symbol, up to
and including either the (k+1)-th marked symbol,
or the head, whichever comes first.

Note that if the claim is true, by part a) of the
invariant, the final state of the PDA is an accept
state iff the equivalent FBA execution accepts x, so
the theorem is proved.

We prove the claim recursively. It is trivially
true at the beginning. Now, assume that after i −
1 steps of execution, the FBA corresponds to an
execution of i−1 strong-steps of the PDA, and that
the invariant is true.

At step i, we consider all possible strong-steps
of the FBA.

First, for any rule of the type
((α, f, q′), (q, s)) ∈ ∆: by a) of the invari-
ant the FBA and PDA must both be scanning a new
symbol α and are in state q′. The PDA simulation
can sample this rule by step 1), which results in
updating the state q′ to q, satisfying a). Since no

marked symbols were added or removed by this
kind of FBA transition, b) is trivially satisfied.
Finally, 2) updates the top state vector on the stack
with the s-transitions on α– since it previously
represented the s-transitions from the most recent
marked symbol to the previous tape symbol, it now
represents an execution up to and including the
current symbol, that is, c) is maintained.

For any rule of the type ((α, f, q′), (q,m)) ∈ ∆:
similarly, the PDA simulation can select this rule
in 1), updating the state to q′, giving a). The
number of marked symbols in the FBA execution
changes if this rule were applied, so invariants b)
and c) must be checked. By step 3), we push
(α, q, (q1, . . . , qt)) to the stack, immediately sat-
isfying b). Note that the penultimate element of
the stack is now “frozen", showing an execution of
s-transitions from the previous marked-symbol up
to and including α, the new marked symbol. The
vector of the top element of the stack, (q1, . . . , qt),
trivially represents an execution of every state from
the new marked symbol to the head (since it is
empty). Hence c) is satisfied.

For any rule of the type ((α, f, q′), (q,←)) ∈ ∆:
again both the PDA and FBA are at a fresh tape
symbol, but after this step, the FBA head will be
at the previously marked symbol. By step 1) the
PDA can sample this rule, updating the state to q,
which satisfies a). Note that b) and c) are trivially
satisfied.

Next for any strong rule of the type
((β, p, q′), (q,←)), the FBA head must be at
a marked symbol, and immediately before the
next strong step, it will be at the previous marked
symbol in state q. Indeed, the FBA can sample this
rule in 5.1, updates state to q satisfying a), pops
the top stack vector satisfying b), and as for c), the
PDA “applies" the state vector of the popped tuple,
(r1, . . . , rt), to the next state vector on the stack,
(γ,w, (u1, . . . , ut)). If ui is the s-transition of qi
from the symbol after γ up to and including β (this
is guaranteed by the invariant) and ui = qj , then
rj is exactly the s-transition of qi from the symbol
after β up to and including the head, ensuring c).

Finally if the rule is of the type ((β, p, q′), (q, s),
the FBA head must be at a marked symbol, and
immediately before the next strong step it passes
through every s-symbol between the marked symbol
and the fresh symbol. The corresponding PDA tran-
sition satisfies b) and c) as in the previous case (a
marked symbol is removed and the other vectors in

36

the stack are updated), but this time, we also update
the current state based on the popped vector; since,
by b), it contained the s-transition of each state
from the marked symbol to the head, it correctly
yields the state of the FBA before the next fresh
symbol.

37

A Philosophically-Informed Contribution to the Generalization Problem of
Neural Natural Language Inference: Shallow Heuristics, Bias, and the

Varieties of Inference

Reto Gubelmann
University of St.Gallen

Rosenbergstrasse 30
9000 St.Gallen

{reto.gubelmann,

Christina Niklaus
University of St.Gallen

Rosenbergstrasse 30
9000 St.Gallen

christina.niklaus,

Siegfried Handschuh
University of St.Gallen

Rosenbergstrasse 30
9000 St.Gallen

siegfried.handschuh}@unisg.ch

Abstract

Transformer-based pre-trained language mod-
els (PLMs) currently dominate the field of Nat-
ural Language Inference (NLI). It is also be-
coming increasingly clear that these models
might not be learning the actual underlying task,
namely NLI, during training. Rather, they learn
what is often called bias, or shallow heuristics,
leading to the problem of generalization. In
this article, building on the philosophy of log-
ics, we discuss the central concepts in which
this problem is couched, we survey the pro-
posed solutions, including those based on natu-
ral logic, and we propose or own dataset based
on syllogisms to contribute to addressing the
problem.

1 Introduction

Current natural language inference (NLI) is typi-
cally conceived as a three-way classification prob-
lem. With samples such as (1), consisting of a
premise (P) and a hypothesis (H), the PLMs are
tasked to categorize their relationship as either one
of contradiction (P and H cannot both be true), of
entailment (If P is true, then H must be true as
well), or as being neutral (neither of the two).

(1) (P) The streets are wet. (H) It has rained.

As we will show below (see section 2), transformer-
based pre-trained language models (PLMs) are cur-
rently the standard to approach this task of NLI.
What is emerging as neural NLI’s most pressing
problem is the fact that these neural PLMs might
almost outperform the crowdworker-based human
baseline for the dataset on which they were fine-
tuned, but perform worse than random at out-of-
dataset-samples. We call this, following standard
usage, the problem of generalization.

In this article, we focus on this problem of gen-
eralization, contributing a perspective that is in-

formed by the philosophy of logic. More specifi-
cally, our article makes three contributions. First,
after developing a conceptual background from the
philosophy of logic, we give a comprehensive and
systematic view on the extent of the problem of
generalization in NLI, and we survey the different
extant proposals to address this problem. Second,
we propose and make publicly available a new fine-
tune and challenge dataset that is based on syllo-
gistic. Third, we evaluate the performance of both
neural NLI models (including models fine-tuned
on our syllogistic dataset) and a symbolic approach
on this dataset. In the remainder of this section, we
introduce the philosophical concept of inference.

The first and central distinction to be drawn re-
garding the concept of valid inference is the one be-
tween deductively valid inferences and defeasibly
valid inferences (see Koons 2021 for an introduc-
tion to the distinction and to the concept of defeasi-
ble reasoning).1 An inference is deductively valid
if it is not possible that the premises are true while
the conclusion is false (for the concept of necessity
involved here, see Plantinga 1974, 1ff.). With de-
feasible inference, this condition does not hold: for
such inferences, it is possible that the premises are
true, while the conclusion is wrong. Example (1)
is a case of defeasible inference: the streets could
be wet, but this could have other causes than rain.

Within the domain of deductively valid infer-
ences, it is common to distinguish inferences that
are deductively valid due to the form of the propo-
sitions that constitute the inference, and others that
are valid due to the content of these propositions
(see Quine 1980 [1951] for a critical discussion of
the distinction). Example (2) is a case of a formally
deductively valid inference: It does not matter what

1For an early discussion of the distinction between deduc-
tively valid inferences, especially as opposed to conventional
and conversational implicatures, see Zaenen et al. (2005).

38

you plug in for “Germans”, “childcare workers”,
and “fingerprint collectors”, you will always get
a deductively valid inference (note that the truth
of either premise or hypothesis is not required for
an inference to be deductively valid. The concept
of validity applies only to the truth-functional rela-
tionship between premise and hypothesis. A deduc-
tively valid inference with true premises is called a
sound inference).

(2) (P) All Germans are childcare workers and
all childcare workers are fingerprint collec-
tors. (H) All Germans are fingerprint col-
lectors.

In contrast, example (3) is deductively valid be-
cause of the content, the meaning of “bachelor”
and “unmarried”: replacing these concepts with
others will likely result in an invalid inference.

(3) (P) Peter’s marital status is that of a bache-
lor. (H) Peter is unmarried.

Formally valid inferences can further be classified
according to the formal logical apparatus that is
needed to prove its validity: propositional calculi,
propositional calculi of different orders, and modal
calculi are the most common options (see Smullyan
1968 for introductions to propositional and first-
order logic, Garson 2006 for modal logic). Briefly,
natural logic can be understood as the program to
successively cover all of these areas without having
to resort to translation into a formal language (for
details, see section 2.2 and appendix, section C).

There are different proposals to systematize the
domain of defeasible inferences. Currently, a
prominent one is that defeasible inferences are in-
ferences to the best explanation, that is, abductive
inferences (for an excellent introduction to the con-
cept, see Lipton 2004). Example (1) evinces the
plausibility of this perspective: It is reasonable to
conceive the hypothesis there as an explanation for
the premise. The inference is defeasible because
there could emerge a better explanation for the
premise (in example (1), this could be the informa-
tion that a street cleaning crew just passed through
the street). An alternative conception is that such
inferences are inductive in nature, that is, based
on a number of previous observations of similar
situations. Ever since Hume, it has been painfully
clear that, without further metaphysical argument,
such inductive inferences are not deductively valid.
Figure 1 gives an overview on these kinds of valid

Valid Inference

deductively valid

... due to its form ... due to its content

defeasibly valid
(conceived as abductions, inductions, etc.)

Figure 1: Kinds of valid inferences.

inference.
We will see that current practice oscillates be-

tween deductively and defeasibly valid inferences.
Our own dataset focuses on the area of formal de-
ductive validity.

To conclude our terminological survey, we men-
tion that we will propose to distinguish between
bias and shallow heuristics in a way suggested by
Blodgett et al. (2020): We use bias as preconcep-
tions that are potentially harmful, intrinsically nor-
mative, and always couched in a wider worldview.
In contrast, a shallow heuristic is a local tactic to
succeed at a given task without any understanding
or mastery of the actual task that is explicitly not
part of an intrinsically normative worldview.

2 State of the Art in Neural NLI

2.1 Neural NLI: Models & Datasets

In this section, we introduce the state of the art
in neural NLI. As the focus of critical attention
increasingly shifts to the datasets, we consider them
in detail as well.

The Models Transformer-Based pre-trained lan-
guage models (PLMs) have become the de facto
standard in a variety of natural language process-
ing tasks, including NLI. Based on the encoding
part of the transformer (Vaswani et al., 2017), re-
searchers have proposed a number of highly suc-
cessful NLU architectures, starting with BERT (De-
vlin et al., 2019), quickly followed by others, in-
cluding RoBERTa (Liu et al., 2019), XLNet (Yang
et al., 2019), DeBERTa (He et al., 2020), and
smaller versions such as DistilBERT (Sanh et al.,
2019) and Albert (Lan et al., 2019). Additionally, a
number of sequence-to-sequence architectures have
been proposed that are more similar to the original
transformer than to BERT in that they directly try
to transform one sequence to another, much like the
basic set-up of neural machine translation. These
include T5 (Raffel et al., 2019) and BART (Lewis
et al., 2020).

These PLMs are then fine-tuned on specific

39

datasets, such as MNLI, which means that, while
predicting labels on the dataset in question, a part
of their parameters is being optimized. Fine-tuning
usually takes several thousand times less computa-
tions than pre-training.

Such transformer-based PLMs fine-tuned to spe-
cific datasets perform impressively at standard nat-
ural language understanding (NLU) benchmarks,
which include natural language inference (NLI)
tasks. The MNLI Leaderboard, for instance,
shows that the top ten PLMs are without exception
transformer-based. Notably, in contrast to GLUE
as a whole, the PLMs did not yet manage to outper-
form the human baseline at MNLI (as of June 15,
2022).

The Datasets Given the importance of fine-
tuning for the entire method as it is currently prac-
ticed, it is clear that this method is squarely based
on the availability – and quality – of large NLI
datasets. Table 1 gives an overview on the cur-
rently most widely used datasets.2

Name of Dataset Total
Size

Genre

RTE (Wang et al.,
2018)

6k News,
Wikipedia

QNLI (Wang et al.,
2018)

116k Wikipedia

WNLI (Wang et al.,
2018)

852 hand-written

SICK (Marelli et al.,
2014a)

9.8k video & image
captions

SNLI (Bowman
et al., 2015)

570k image captions

MNLI (Williams
et al., 2018)

433k 10 genres, writ-
ten & spoken

Table 1: Overview on Datasets used. Under “size”, we
report the total number of samples in train, test, and
validation splits.

Thanks to their sheer size, SNLI and MNLI have
come to dominate the field, as their size is suitable
for fine-tuning large PLMs for NLI. As a conse-
quence, as we shall see in the following section
2.2, most of the research on generalization issues
focuses on these datasets.

There is a number of studies that critically as-
sess the SNLI and MNLI datasets for their bias and

2Note that the RTE (“Recognizing textual entailment”)
dataset has been compiled from RTE1 (Dagan et al., 2005),
RTE2 (Bar Haim et al., 2006), RTE3 (Giampiccolo et al.,
2007), and RTE5 (Bentivogli et al., 2009). The QNLI
(“Question-answering Natural Language Inference”) dataset
was created based on Rajpurkar et al. (2016). The WNLI
(“Winograd Natural Language Inference”) dataset was created
based on Rahman and Ng (2012).

thereby provides the groundwork for proposals fol-
lowing option 1 below (section 2.3). Williams et al.
(2018) themselves note that their dataset contains a
negation bias: if the hypothesis contains a negation,
then it is more likely to be part of a contradic-
tion pair (most likely, because simply negating the
premise provides an efficient way for annotators to
create contradiction pairs). Poliak et al. (2018) sys-
tematically investigate the prospects of hypothesis-
only approaches (methods that only consider the
hypothesis for predicting the label) to NLI in dif-
ferent datasets, finding better-than-random perfor-
mance at most of them, which suggests the broad
presence of statistical irregularities. Gururangan
et al. (2018) show that SNLI and, to a lesser extent,
MNLI, contain clues that make hypothesis-only ap-
proaches quite successful. Chien and Kalita (2020)
focus on syntactic bias for PLMs fine-tuned on
SNLI and MNLI, also finding that these bias are
strong. Bernardy and Chatzikyriakidis (2019) ar-
gue that both SNLI and MNLI only cover a part of
the entire range of human reasoning. In particular,
they suggest that they do not cover quantifiers, nor
strict logical inference.

The dataset that we will present in this study is
intended to remedy both the lack of quantifiers and
the lack of strict logical inference, given its focus
on formally valid inferences.

Furthermore, we emphasize that, thanks to their
near-ubiquitous use for fine-tuning, SNLI and to a
greater extent MNLI determine the precise shape of
the concept of inference that state-of-the-art mod-
els employ. On the one hand, the instructions given
to crowdworkers are such that it seems reason-
able to conclude that MNLI is about deductively
valid inference: given a premise, crowdworkers
are asked to “[w]rite a sentence that is definitely
correct about the situation or event in the line [con-
taining the premise]” (for the full instructions, see
the appendix, section A). Requiring that the hypoth-
esis be definitely correct given the correctness of
the premise seems to require that it is not possible
that the hypothesis could be false, given that the
premise is true.

This reading, however, is contradicted by the
fact that the creators of MNLI deliberately selected
bits of text at random, not filtering for grammati-
cality, etc. These bits then served as prompts for
the crowdworkers: they were tasked to write other
bits of text for each prompt that either contracts,
is entailed by, or is neutral vis-à-vis this prompt.

40

A consequence of the diversity of genres and this
near-absence of preprocessing in MNLI is that the
corpus contains premises such as (4).

(4) iuh-huh how about any matching programs

It is incoherent to say that questions entail any other
statements: to entail something, a statement has to
have determinate truth conditions; questions are
textbook cases of sentences that have no determi-
nate truth conditions. So, it is simply not possible
for (4) to be part of any valid inference, let alone
a deductively valid one. This issue stems from the
very idea of MNLI, which is to represent the full
variety of American English, using only minimal
pre-processing.

Furthermore, crowdworkers are incentivized to
produce large number of samples, which makes it
rational to assume that a number of samples they
produce are like example (5). Intended as a case
of contradiction, it is clear that the premise does
not contradict the conclusion in any logical sense:
The speaker could simply have been lying, and
no contradiction between premise and hypothesis
would exist.

(5) (P) Oh, my friend, have I not said to you all
along that I have no proofs. (H) I’ve always
had the proof that he did it.

In sum, from a philosophical perspective, a quali-
tative inspection of the MNLI dataset shows that
there might be some deeper problems in the set-up
of the dataset. Furthermore, despite appearances
to the contrary as per crowdworker-instructions,
MNLI itself focuses on defeasible reasoning, that
is, samples where the premise gives grounds to
believe the hypothesis but does not entail it.

2.2 The Generalization Problem of Neural
NLI

The basic problem that begins to emerge with this
currently dominant approach to NLI is the prob-
lem of generalization. By this, we understand the
inability of the PLMs to transfer the impressive
performance on datasets on which they have been
fine-tuned to out-of-dataset samples. Of course, a
drop in performance is natural (even for humans)
if the PLM is asked to perform the same task on
substantially different data. If, however, the perfor-
mance of a PLM simply collapses entirely when
applied to out-of-dataset-samples, then it is concep-
tually wrong to say that the PLM has learned the

task, namely correctly predicting logical relation-
ships between statements, in the first place during
fine-tuning: The task itself remains stable regard-
less of whether the samples are in or out of dataset.
Together with the PLM’s performance’s lack of
stability, this implies that it has learned something
other than the task itself.

The problem of generalization in NLI is broadly
acknowledged in the literature, see Zhou and
Bansal (2020), Bras et al. (2020), Utama et al.
(2020), Asael et al. (2021), He et al. (2019), Ma-
habadi et al. (2019), and Bernardy and Chatzikyri-
akidis (2019). It is generally assumed that the un-
derlying cause of the problem of generalization is
the PLMs’ overfitting (see Goodfellow et al. 2016)
on the training set. This overfitting, so the assump-
tion goes, leads to the PLMs’ picking up on spu-
rious idiosyncrasies of the datasets, leading to the
use of shallow heuristics and ultimately to a lack of
generalization. Romanov and Shivade (2018) de-
tail the generalization problems of pre-transformer
PLMs in a highly specialized domain, namely med-
ical history reports used by doctors.

If the models do not learn the central logical
concepts during fine-tuning, what are they learn-
ing? The dominant view in the field is that they are
learning so-called shallow heuristics, or bias: rules
of thumb that work for the dataset due to some
kind of bias in the data, but which do not apply
to out of dataset samples, causing performance to
collapse. In a much-discussed study, McCoy et al.
(2019) conduct experiments to the conclusion that
state-of-the-art PLMs use three kinds of syntactic
heuristic at NLI tasks, which they call the lexi-
cal overlap, the subsequence, and the constituent
heuristics. McCoy et al. (2019) also present a new
stress test dataset called HANS (“Heuristic Analy-
sis for NLI systems”) that is built so that PLMs’ use
of the three heuristics will come to light in cases
where the heuristics suggest entailment, but where
the true label is not entailment.

2.3 Two Options to Address the
Generalization Problem

In this section, we will consider the two main op-
tions that researchers have explored to address the
problem of generalization in NLI.

Option 1: Debias the Dataset or the PLM The
first option represents the mainstream of current
thinking on NLI: It accepts the diagnosis that the
models are merely picking up shallow heuristics

41

because there is a technical shortcoming in the
method, and it tries to solve the problem by debias-
ing the datasets or the PLMs themselves. In table
2,3 we list the papers, we mention whether their
approach is based on a priori knowledge about the
bias that one should tackle, and we report perfor-
mance gains on the target dataset specified. When-
ever available, we report performance gains on
HANS, as this dataset has established itself as the
de facto standard in the debiasing literature. As a
consequence, these figures lend themselves best to
comparisons between different approaches.

Paper a priori
knowl?

Target
dataset

Acc.

He et al. (2019) Yes HANS n.a.
Clark et al.
(2019)

Yes HANS 66.15
(+3.7)

Mahabadi et al.
(2020)

Yes HANS 71.95
(+10.1)

Yaghoobzadeh
et al. (2019)

Yes HANS 70.5
(+7.4)

Zhou and
Bansal (2020)

Yes Custom +4.5

Belinkov et al.
(2019)

Yes Various no gain

Dranker et al.
(2021)

Yes Various no gain

Bras et al.
(2020)

No Various +3.6

Utama et al.
(2020)

No HANS 69.7
(+8.2)

Nie et al. (2020) (Yes) Various appr.
+2

Bowman et al.
(2020)

(Yes) MNLI no gain

Table 2: Overview on the extant approaches in option
1. Where no performance figures are given (n.a.), the
paper doesn’t report overall figures per dataset and it
was not possible to extract these figures with simple,
undisputable computations; “no gain” is a shorthand for
“no significant gains”.

Option 2: Hybrid Approaches Given the cur-
rent generalization problem faced by purely neural
approaches, some champions of symbolic methods
have seen a chance to reinsert symbolic methods
into the mainstream by combining neural with sym-
bolic approaches. All current hybrid approaches
rely on natural logic, an alternative to classical
translation of natural language sentences into some
formal langue. For details and references, see the
appendix, section C. Hu et al. (2020) deliberately
propose a lightweight, almost simplistic system

3Note that the papers do not always report identical base-
line performance, e.g., for BERT-base. We have reproduced
these figures all the same, as the differences are small enough
so that they do not affect our overall argument.

that does not aim at setting a new state of the art,
but rather at mapping out the lower bound perfor-
mance of such a model. They explore its uses to
provide training data for BERT.

An early approach at combining the two ap-
proaches is Raina et al. (2005). They combine
classical formal logic with statistical learning for
abductive reasoning (i.e., inference to the best ex-
planation, a kind of non-monotonic inference, see
(Lipton, 2004)).

Angeli and Manning (2014) introduce a seminal
approach combining natural logic, monotonicity
structures, WordNet and learned word probabili-
ties as well as embeddings to conceive of NLI as
a search problem. Kalouli et al. (2020) combine a
classical symbolic system with a transformer-based
neural PLM to achieve state-of-the-art performance
on many standard datasets. Chen et al. (2021) adopt
a different approach, conceiving of NLI as a path
planning problem with the premise as the start and
the hypothesis as the goal to be reached. They
develop a system called NeuralLog that combines
classical symbolic approaches using monotonic-
ity notation (Hu et al., 2020) with, among others,
Sentence-BERT embeddings to score the candidate
hypotheses (Reimers and Gurevych, 2019). They
report state of the art performance on both the SICK
(Marelli et al., 2014b) as well as the MED (Yanaka
et al., 2019) test sets; however, from among the
neural approaches, they only consider BERT base.
We report the results of these two only hybrid ap-
proaches post-HANS in table 3.

Paper Target
dataset

Acc.

Kalouli et al. (2020) HANS 68.9
(+7.4)

Chen et al. (2021) MED 93.4
(+21.8)

Table 3: Overview on the performance of the two most
recent hybrid approaches. the MED dataset has been
developed by Yanaka et al. (2018).

3 Dataset

In our experiment, we build on the insight gained
from the qualitative inspection of MNLI as well as
from research by Bernardy and Chatzikyriakidis
(2019) that current NLI datasets lack samples that
center on quantifiers as well as deductively valid
inferences by providing a dataset that focuses on
these very domains. Furthermore, our dataset pro-
vides a simple way to distinguish two properties of

42

models that are often conflated: bias and shallow
heuristics. As we have seen above (section 2.2), it
is often said that the datasets or the models contain
various biases. However, following Blodgett et al.
(2020), we propose to use bias only for evaluations
that are inherently normative and part of a larger
worldview that is viewed critical. For instance, if
a model expects that doctors are always men and
therefore fails to correctly predict some logical re-
lationships between sentences, one should attribute
this to a bias: the model represents doctors as men,
which is a clear case of a gender stereotype.

In contrast, a shallow heuristic is something
that the models use irrespective of any such world-
view, simply to succeed at a given task without
fully learning it. The so-called negation bias is a
clear case for such a shallow heuristic: It is not
connected to any larger and problematic worldview
but a simple instance of a rule of thumb.

While it has so far not been used to assess NLI
capacities of NLU models, the systematic behind
our dataset dates back to Aristotle. In his Prior An-
alytics (composed around 350 BC), Aristotle (1984,
book 1) diligently analyzes the possible combina-
tions of subject-, predicate-, and middle-term via
quantifiers and negations to form a number of for-
mally valid inferences. He deduces 24 formally
valid patterns of inferences, so-called syllogisms.
Example (2) is an instance of such a syllogism,
belonging to the mood of the first figure that goes
by the name of “BARBARA”, the capital “A” sig-
nifying affirmative general assertions (“All X are
Y.”).

Now, consider the formal logical relationship
in (6). By starting out with (2) and changing one
single word, three letters in total, we have switched
the relationship from entailment to contradiction.

(6) (P) All Germans are childcare workers and
all childcare workers are fingerprint collec-
tors. (H) No Germans are fingerprint col-
lectors.

Finally, consider the formal logical relationship
in (7). By changing one word, four letters, we
switched the relationship from entailment to neu-
tral.

(7) (P) All Germans are childcare workers and
some childcare workers are fingerprint col-
lectors. (H) All Germans are fingerprint
collectors.

We are using a total of 12 formally valid syllogisms
– called BARBARA, CELARENT, DARII, FERIO,
CESARE, CAMESTRES, FESTINO, BAROCO,
DISAMIS, DATISI, BOCARDO, FERISON – and
we manually develop 24 patterns that are very sim-
ilar to these 12 syllogisms, but where the first and
the second sentence together contradict or are neu-
tral to the third sentence. This yields a total of
36 patterns, 12 of which are valid syllogisms, 12
are contradictory, and 12 are neutral. To fit the
premise-hypothesis structure expected by the mod-
els, we combine premise one and two to form a
single premise.

We then use a pre-compiled list of occupations,
hobbies, and nationalities to fill the subject- middle-
and predicate-terms in these patterns. Using 15 of
each of them and combining them with the 36 pat-
tern yields 121500 test cases in total, each consist-
ing of a premise and a hypothesis.4 This variation
allows us to capture the influence of any bias on
model prediction, that is, any expectations of the
models that certain nationalities are only likely to
entertain certain hobbies and certain jobs, regard-
less of any valid inferences suggesting otherwise.
Furthermore, it allows us to systematically distin-
guish it from shallow heuristics, rules of thumb
that are not connected to any general worldviews
or racial biases, but merely local attempts to suc-
ceed at the tasks without understanding it.

4 Experiment

We run a total of seven models on our test
dataset, all of which are fine-tuned on standard
NLI datasets, namely SNLI and MNLI (see table 4
for details: PLMs marked with one star “*” have
only been fine-tuned on MNLI, PLMs marked with
two stars have been fine-tuned on both SNLI and
MNLI). The models are hosted by by Huggingface
(Wolf et al., 2019), three of them are fine-tuned by
Morris et al. (2020), prefixed with “textattack”, and
four by Reimers and Gurevych (2019), prefixed
with “crossencoder”.

The models’ performances on MNLI, per our
own evaluation (not all of the models provide eval-
uation scores, and we did not find precise docu-
mentation on how the scores were obtained), are
given in table 4, for details of the evaluation, see
the appendix, section B.

The basic idea behind the experiment is to assess

4The datasets can be found on the following github-repo:
retoj/philo_nli.

43

PLM N-
Par.

MNLI-
M

textattack-facebook-bart-large-MNLI* 406M 0.8887
crossencoder-deberta-base** 123M 0.8824
crossencoder-roberta-base** 123M 0.8733
crossencoder-MiniLM2-L6-H768** 66M 0.86602
textattack-bert-base-uncased-MNLI* 109M 0.8458
crossencoder-distilroberta-base** 82M 0.8364
textattack-distilbert-base-uncased-
MNLI*

66M 0.8133

Table 4: Performance of the models in focus on the
MNLI-Matched validation set. PLMs marked with one
star “*” have only been fine-tuned on MNLI, PLMs
marked with two stars have been fine-tuned on both
SNLI and MNLI.

Figure 2: Performance on our syllogistic dataset by
correct label.

whether the PLMs’ performance on our dataset re-
veals any shallow heuristics learned by the models
during fine-tuning on MNLI and SNLI.

5 Results

The results of our experiments are shown in figure
2. For instance, the model whose performance is
represented on the very left, textattack’s fine-tuned
version of BART large, predicts the correct label
in only 7% of cases for neutral labels, while doing
so in 95% for entailment samples and still 83% for
contradiction labels.

Figure 2 shows clearly that the models’ predic-
tions are quite accurate for labels entailment and
contradiction, but very poor for neutral.

6 Discussion & Further Probes

6.1 Discussion of Experimental Results
Overall, figure 2 shows that textattack’s distilbert
leads the field with a accuracy of 65%, which might
surprising just because it was among the smallest
models evaluated here. However, there is growing
evidence that NLI, and its more formal-deductive
parts in particular, cannot be solved by simply in-

Figure 3: Predicted labels for patterns that are symmet-
ric between premise and hypothesis regarding existential
quantifier and negation.

creasing model size. Researchers at DeepMind
find that larger models tend to generalize worse,
not better, when it comes to tasks involving log-
ical relationships. The large study by Rae et al.
(2021, 23) strongly suggests that, in the words of
the authors, “the benefits of scale are nonuniform”,
and that logical and mathematical reasoning does
not improve when scaling up to the gigantic size
of Gopher, a model having 280B parameters (in
contrast, Gopher sets a new SOTA with many other
NLU tasks such as RACE-h and RACE-m, where
it outperforms GPT-3 by some 25% in accuracy).

Furthermore, figure 2 also shows that all of the
models perform very poorly with neutral samples;
indeed, none of the models is able to recognize
such neutral relationships with a accuracy of more
than 10%. Given that pure chance would still yield
an accuracy of some 33%, this is a very poor per-
formance.

We have therefore further probed the heuristics
that the models might be using that could cause
the poor performance with neutral labels. Man-
ual inspection showed that they respond strongly
to symmetries regarding quantifiers and negations
between premises and hypotheses. In particular,
if either both or none of the premise and the hy-
pothesis contain a “some” (existential quantifier)
or a negation (the symmetric conditions), then the
models are strongly biased to predict entailment
(see figure 3).

Conversely, if the pattern contains an asymmetry
regarding existential quantifier and negation be-
tween premise and hypothesis, then the models are
very strongly inclined to predict contradiction (see
figure 4).

44

Figure 4: Predicted labels for patterns that are asymmet-
ric between premise and hypothesis regarding existential
quantifier and negation.

In the case of the contradiction and entailment
pairs, these heuristics serve the models very well
in our dataset, resulting in impressive performance.
However, when applied to the neutral samples, the
heuristics break down, performance falls far below
simple guessing.

We conclude this part of our discussion by noting
that the experiments did not show any significant
bias in the behavior of the PLMs: Their accuracy
did not change depending on existing preconcep-
tions, say, that Germans are always engineers and
like to collect stamps. What we have found, in
contrast, is heavy use of shallow heuristics, as the
figures 3 and 4 evince.

6.2 Fine-Tuning & Re-Evaluation,
Comparison with a Symbolic Approach

In a next step, we assessed whether the mod-
els’ poor performance with neutral samples in our
dataset can be remedied with fine-tuning. We con-
ducted two different fine-tuning runs, FT1 and FT2.
Their sole difference consists in the way that we
split up the 121k samples. For FT1, we used 110k
samples for training and validation, and we tested
on the neutral subset of the 10k remaining samples,
which is about 3k samples (“3k” in figure 5). For
FT2, we used 71k samples for training and valida-
tion, leaving the neutral subset of the remaining
50k samples, about 13k samples, for testing.5

We fine-tuned crossencoderMiniLM2-L6-H768
and textattack-distilbert-base-uncased-MNLI
(BART-large from facebook exceeded our capaci-
ties). Furthermore, we also evaluated one of the

5We adapted a huggingface-notebook found here, letting
run each fine-tuning process for three epochs with a batch size
of 16 on one GPU of a DGX-2.

Model Neutr. MNLI-
M

FT1-crossencoder-
MiniLM2-L6-H768

100% 72%

FT2-crossencoder-
MiniLM2-L6-H768

62% 70%

FT1-textattack-
distilbert-base-uncased-
MNLI

100% 38%

FT2-textattack-
distilbert-base-uncased-
MNLI

61% 53%

GKR4NLI 89/23% n.a.

Table 5: Accuracies of fine-tuned models and GKR4NLI
on different test sets; For FT1-fine-tuned models,
“Neutr.” consists of 3k neutral samples from the syl-
logistic dataset, for FT2-fine-tuned models, it consists
of 13k neutral samples from the same source. MNLI-M
is MNLI-matched.

currently leading symbolic NLI systems on both
test datasets, namely GKR4NLI, introduced in
(Kalouli et al., 2020). The results of all of these
evaluations is shown in table 5.

The results shown in table 5 show that fine-
tuning does indeed help. In the first fine-tuning
split FT1, both models achieve 100% accuracy;
this, however, comes at rather high cost in terms
of accuracy on MNLI-matched (14% and 43% re-
spectively). GKR4NLI also performs well at this
test set with 89% out of the box. With regard to
the second fine-tuning split FT2, GKR4NLI’s per-
formance drops to 23%, while the two fine-tuned
models achieve accuracies of around 62%, again at
the cost of significantly reduced accuracy in MNLI.

These results suggest that it is not easy for
the models tested to combine the representations
needed to perform well at MNLI-matched with
those needed to do well in our neutral samples. In
particular, the results suggest that a large number
of training samples is needed, as in FT1. We note
that our results leave open the possibility that larger
models can accommodate both kinds of sample.

At this point, we would like to compare our
results with those obtained by Richardson et al.
(2020). They use a cleverly chosen roaster of se-
mantic fragments (i.e. subsets of a language trans-
latable into formal logic, in particular first-order
predicate logic) to test the models’ understanding
of the logical relationships of contradiction, en-
tailment and neutral. They find that the models
tested perform poorly on these tasks, but that this
performance can be remedied with fine-tuning the
models on sufficient amounts of training data that

45

has been synthetically generated from these frag-
ments. In contrast to the semantic fragments used
by Richardson et al. (2020), our datasets seem to
pose a more difficult challenge for the models that
we have tested (despite the fact that Richardson
et al. 2020 only considered BERT-base, while we
have also included larger and more recent models).
Perhaps we have made some progress towards what
Richardson et al. (2020) explicitly ask for, namely
more difficult fragments?

We take these results to confirm that our dataset
can make a valuable contribution to the field, as it
presents a challenge for both neural and symbolic
systems. Indeed, in light of these results, one could
wonder whether it is not unfair to expect any NLI
system to master our syllogistic dataset, as samples
such as (2), (6), and (7) might be said to be very
far away from ordinary language use. In response
to this, we point out that, as a matter of logical fact,
these are formally valid inferences which should
be covered by any NLI system that aspires to cover
the full extent of NLI. Furthermore, students of
logics have acquired their concepts of formal valid-
ity through such examples for millennia, making
it a rather natural stepping stone for AI systems.
Finally, as already mentioned, it might very well
be that large models could accommodate both the
defeasible kinds of inferences in MNLI and our
deductively valid ones.

7 Conclusion

We have detailed the problem of generalization that
current neural approaches to NLI face from the
background of philosophical logic. We have sug-
gested that current datasets are light on deductively
valid inferences, proposed a distinction between
bias and shallow heuristics, and we have proposed
our own syllogistic dataset. This dataset allows to
distinguish between bias and shallow heuristic, it
focuses on formally valid inferences, and our re-
sults suggest that it can help to improve both neural
and symbolic approaches.

References
Gabor Angeli and Christopher D Manning. 2014. Nat-

uralli: Natural logic inference for common sense
reasoning. In Proceedings of the 2014 conference on
empirical methods in natural language processing
(EMNLP), pages 534–545.

Aristotle. 1984. Prior analytics. In Jonathan Barnes,

editor, The Complete Works of Aristotle, pages 39–
113. Oxford University Press.

Dimion Asael, Zachary Ziegler, and Yonatan Belinkov.
2021. A generative approach for mitigating structural
biases in natural language inference. arXiv preprint
arXiv:2108.14006.

R Bar Haim, I Dagan, B Dolan, L Ferro, D Giampic-
colo, B Magnini, and I Szpektor. 2006. The second
pascal rte challenge. Proceedings of the 2nd PASCAL
Challenge on RTE.

Yonatan Belinkov, Adam Poliak, Stuart Shieber, Ben-
jamin Van Durme, and Alexander Rush. 2019. Don’t
take the premise for granted: Mitigating artifacts in
natural language inference. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 877–891. Association for
Computational Linguistics.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing
textual entailment challenge. In TAC.

Jean-Philippe Bernardy and Stergios Chatzikyriakidis.
2019. What kind of natural language inference are
nlp systems learning: Is this enough? In ICAART (2),
pages 919–931.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and
Hanna Wallach. 2020. Language (technology) is
power: A critical survey of “bias” in NLP. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5454–
5476, Online. Association for Computational Lin-
guistics.

Johan Bos and Katja Markert. 2005. Recognising tex-
tual entailment with logical inference. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing, pages 628–635.

Johan Bos and Katja Markert. 2006. When logical
inference helps determining textual entailment (and
when it doesn’t).

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. In
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2015, pages 632–642.
Association for Computational Linguistics (ACL).

Samuel R Bowman, Jennimaria Palomaki, Livio Baldini
Soares, and Emily Pitler. 2020. New protocols and
negative results for textual entailment data collection.
In EMNLP (1).

Ronan Le Bras, Swabha Swayamdipta, Chandra Bha-
gavatula, Rowan Zellers, Matthew E Peters, Ashish
Sabharwal, and Yejin Choi. 2020. Adversarial filters
of dataset biases. arXiv preprint arXiv:2002.04108.

46

Zeming Chen, Qiyue Gao, and Lawrence S Moss.
2021. Neurallog: Natural language inference with
joint neural and logical reasoning. arXiv preprint
arXiv:2105.14167.

Tiffany Chien and Jugal Kumar Kalita. 2020. Adver-
sarial analysis of natural language inference systems.
2020 IEEE 14th International Conference on Seman-
tic Computing (ICSC), pages 1–8.

Christopher Clark, Mark Yatskar, and Luke Zettlemoyer.
2019. Don’t take the easy way out: Ensemble
based methods for avoiding known dataset biases.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4069–
4082. Association for Computational Linguistics.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges Workshop,
pages 177–190. Springer.

Ernest Davis. 2017. Logical formalizations of com-
monsense reasoning: a survey. Journal of Artificial
Intelligence Research, 59:651–723.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Yana Dranker, He He, and Yonatan Belinkov. 2021.
Irm—when it works and when it doesn’t: A test case
of natural language inference. Advances in Neural
Information Processing Systems, 34.

Gottlob Frege. 1892. Über sinn und bedeutung.
Zeitschrift für Philosophie und philosophische Kritik,
100:25–50.

James W Garson. 2006. Modal logic for philosophers.
Cambridge University Press.

Gerhard Gentzen. 1935. Untersuchungen über das lo-
gische schließen. i. Mathematische zeitschrift, 35.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
William B Dolan. 2007. The third pascal recognizing
textual entailment challenge. In Proceedings of the
ACL-PASCAL workshop on textual entailment and
paraphrasing, pages 1–9.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep learning. MIT press.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy,
Roy Schwartz, Samuel Bowman, and Noah A Smith.
2018. Annotation artifacts in natural language infer-
ence data. In Proceedings of the 2018 Conference of

the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 107–112.

He He, Sheng Zha, and Haohan Wang. 2019. Unlearn
dataset bias in natural language inference by fitting
the residual. arXiv preprint arXiv:1908.10763.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. In International
Conference on Learning Representations.

Hai Hu, Qi Chen, Kyle Richardson, Atreyee Mukherjee,
Lawrence S Moss, and Sandra Kübler. 2020. Mona-
log: a lightweight system for natural language infer-
ence based on monotonicity. In Proceedings of the
Society for Computation in Linguistics 2020, pages
284–293.

Thomas F Icard III and Lawrence S Moss. 2014. Recent
progress on monotonicity. In Linguistic Issues in
Language Technology, Volume 9, 2014-Perspectives
on Semantic Representations for Textual Inference.

Stanislaw Jaskowski. 1934. On the rules of suppositions
in formal logic. Studia Logica, 1(1).

Aikaterini-Lida Kalouli, Richard Crouch, and Valeria
de Paiva. 2020. Hy-NLI: a hybrid system for natural
language inference. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 5235–5249, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Robert Koons. 2021. Defeasible Reasoning. In Ed-
ward N. Zalta, editor, The Stanford Encyclopedia of
Philosophy, Fall 2021 edition. Metaphysics Research
Lab, Stanford University.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learning
of language representations. In International Confer-
ence on Learning Representations.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and compre-
hension. ArXiv, abs/1910.13461.

Vladimir Lifschitz, Leora Morgenstern, and David
Plaisted. 2008. Knowledge representation and clas-
sical logic. Foundations of Artificial Intelligence,
3:3–88.

Peter Lipton. 2004. Inference to the Best Explanation,
2 edition. Routledge.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

47

Bill MacCartney and Christopher D Manning. 2007.
Natural logic for textual inference. In Proceedings of
the ACL-PASCAL Workshop on Textual Entailment
and Paraphrasing, pages 193–200.

Bill MacCartney and Christopher D Manning. 2008.
Modeling semantic containment and exclusion in nat-
ural language inference. In Proceedings of the 22nd
International Conference on Computational Linguis-
tics (Coling 2008), pages 521–528.

Bill MacCartney and Christopher D Manning. 2009. An
extended model of natural logic. In Proceedings of
the eight international conference on computational
semantics, pages 140–156.

Rabeeh Karimi Mahabadi, Yonatan Belinkov, and
James Henderson. 2019. End-to-end bias mitiga-
tion by modelling biases in corpora. arXiv preprint
arXiv:1909.06321.

Rabeeh Karimi Mahabadi, Yonatan Belinkov, and James
Henderson. 2020. End-to-end bias mitigation by
modelling biases in corpora. In ACL.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zampar-
elli. 2014a. The SICK (Sentences Involving Com-
positional Knowledge) dataset for relatedness and
entailment.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, Roberto Zamparelli,
et al. 2014b. A sick cure for the evaluation of com-
positional distributional semantic models. In Lrec,
pages 216–223. Reykjavik.

John McCarthy. 1959. Programs with common sense.
Proceedings of the Symposium on Mechanization of
Thought Processes, (1).

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right
for the wrong reasons: Diagnosing syntactic heuris-
tics in natural language inference. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3428–3448.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. Textattack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in nlp. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations,
pages 119–126.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
NLI: A new benchmark for natural language under-
standing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4885–4901.

Francis Jeffry Pelletier and Allen Hazen. 2021. Natural
Deduction Systems in Logic. In Edward N. Zalta, edi-
tor, The Stanford Encyclopedia of Philosophy, Winter
2021 edition. Metaphysics Research Lab, Stanford
University.

Alvin Plantinga. 1974. The Nature of Necessity. Oxford
University Press.

Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018.
Hypothesis only baselines in natural language infer-
ence. In Proceedings of the Seventh Joint Conference
on Lexical and Computational Semantics, pages 180–
191. Association for Computational Linguistics.

Willard Van Orman Quine. 1980 [1951]. Two dogmas
of empiricism. In From a Logical Point of View,
pages 20–46. Harvard University Press.

Jack W. Rae, Sebastian Borgeaud, and Trevor Cai et al.
2021. Scaling language models: Methods, analysis &
insights from training gopher. DeepMind Company
Publication.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Altaf Rahman and Vincent Ng. 2012. Resolving com-
plex cases of definite pronouns: The Winograd
schema challenge. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 777–789. Association for
Computational Linguistics.

Rajat Raina, Andrew Y Ng, and Christopher D Man-
ning. 2005. Robust textual inference via learning and
abductive reasoning. In AAAI, pages 1099–1105.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 2383–2392. As-
sociation for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Kyle Richardson, Hai Hu, Lawrence Moss, and Ashish
Sabharwal. 2020. Probing natural language inference
models through semantic fragments. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 8713–8721.

Alexey Romanov and Chaitanya Shivade. 2018.
Lessons from natural language inference in the clin-
ical domain. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1586–1596. Association for Com-
putational Linguistics.

Bertrand Russell. 1905. On denoting. Mind,
14(56):479–493.

48

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Raymond M. Smullyan. 1968. First-Order Logic.
Dover.

Prasetya Ajie Utama, Nafise Sadat Moosavi, and Iryna
Gurevych. 2020. Towards debiasing nlu models from
unknown biases. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 7597–7610.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing. arXiv preprint arXiv:1910.03771.

Yadollah Yaghoobzadeh, Remi Tachet, Timothy J
Hazen, and Alessandro Sordoni. 2019. Robust natu-
ral language inference models with example forget-
ting. arXiv e-prints, pages arXiv–1911.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, Ken-
taro Inui, Satoshi Sekine, Lasha Abzianidze, and
Johan Bos. 2019. Can neural networks understand
monotonicity reasoning? In Proceedings of the 2019
ACL Workshop BlackboxNLP: Analyzing and Inter-
preting Neural Networks for NLP, pages 31–40.

Hitomi Yanaka, Koji Mineshima, Pascual Martínez-
Gómez, and Daisuke Bekki. 2018. Acquisition
of phrase correspondences using natural deduction
proofs. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for

Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 756–766.
Association for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In Advances in neural informa-
tion processing systems, pages 5753–5763.

Annie Zaenen, Lauri Karttunen, and Richard Crouch.
2005. Local textual inference: can it be defined or
circumscribed? In Proceedings of the ACL workshop
on empirical modeling of semantic equivalence and
entailment, pages 31–36.

Xiang Zhou and Mohit Bansal. 2020. Towards robus-
tifying nli models against lexical dataset biases. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8759–
8771.

49

A Full Instructions Given to
Crowdworkers

Williams et al. (2018, 1114) specifies the following
tasks for the crowdworkers:

“This task will involve reading a line from a
non-fiction article and writing three sentences that
relate to it. The line will describe a situation or
event. Using only this description and what you
know about the world:

• Write one sentence that is definitely correct
about the situation or event in the line.

• Write one sentence that might be correct about
the situation or event in the line.

• Write one sentence that is definitely incorrect
about the situation or event in the line. ”

B Method used for evaluation of Models
on MNLI

To evaluate the models, we have used Hugging-
face’s trainer API, see Huggingface (Wolf et al.,
2019). In particular, we followed the instructions
in the notebook here. We evaluated the models
using the API out-of-the-box, with the following
exceptions:

1. The textattack-models had as labels "LA-
BEL_0, LABEL_1, LABEL_2", which could
not be read by the function that ensures that
the labels are used equivalently by both model
and dataset; hence, we reconfigured the mod-
els to use as labels “contradiction, entailment,
neutral”.

2. facebook-bart-large-mnli by textattack posed
two additional challenges.

(a) Due to out of memory issues, we had to
split up processing of the validation set
into three chunks, averaging the accuracy
received afterwards.

(b) The logits containing the predictions is-
sued by facebook-bart-large-mnli could
not be processed by the evaluation func-
tion, which caused the need to select
only the first slice of the tensor that the
model was issuing, ensuring that the met-
ric function got a 1-dimensional tensor
to compute accuracy.

C From First-Order Representations to
Natural Logic

Traditionally, the topic of common-sense reason-
ing, and later of NLI, as we understand it, was
approached by the use of formal logic, predomi-
nantly first-order logic,6 see Davis (2017) and Lif-
schitz et al. (2008) for extensive surveys of this
approach, and McCarthy (1959) for the pioneering
paper in this tradition. Bos and Markert (2005)
and Bos and Markert (2006) are two typical cases
in this tradition. In the latter, the authors find
that, overall, adding logical processing to a shallow
word-overlap approach actually hinders rather than
boosts performance.

More recently, the once-dominant approach of
representing premise and hypothesis in a formal
language such as first-order predicate logic has
been superseded by attempts to recover the logical
structure of a sentence and the logical relationship
between two sentences by directly annotating the
natural language sentence. In particular, the so-
called monotonicity calculus has been popular in a
number of approaches. Icard III and Moss (2014)
present an accessible and thorough review of recent
theoretical work on this monotonicity approach.

The calculus stands in the tradition of natural
logic (pioneered by Gentzen 1935 and Jaskowski
1934, for an overview, see Pelletier and Hazen
2021) is used by the NatLOG system developed by
MacCartney and Manning (2007), MacCartney and
Manning (2008), and MacCartney and Manning
(2009). The basic idea behind the monotonicity
calculus is to use low-level structural properties
of quantifiers and predicates to assess the validity
of an inference. For instance, the validity of the
inference from “Every dog is a mammal” to “Every
poodle is a mammal” is explained by a bottom-up
combination of properties from the quantifier as
well as the predicate involved – and not by translat-
ing the entire sentence into predicate calculus.

6As it has been pioneered by Frege (1892) and developed
by Russell (1905).

50

	Proceedings of the 3rd Natural Logic Meets Machine Learning Workshop (NALOMA III)
	ISBN
	Preface
	Programme Committee
	Invited talks
	Table of Contents
	Strings from neurons to language
	Classification Systems: Combining taxonomical and perceptual lexical meaning
	Learning Knowledge with Neural DTS
	Center-Embedding and Constituency in the Brain and a New Characterization of Context-Free Languages
	A Philosophically-Informed Contribution to the Generalization Problem of Neural Natural Language Inference: Shallow Heuristics, Bias, and the Varieties of Inference

