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Abstract

Lexical meaning includes both perceptual and
logical aspects. We present a method for com-
bining a taxonomy with perceptual classifiers,
and show that in the few-shot setting, it out-
performs other methods of injecting taxonomi-
cal information in image classification. We use
this method to define witness conditions for
types in a rich type system with probabilistic
type judgments and suggest how such a type
system can be used as the basis for a new type
of hybrid NLU architecture.

For words like red, apple, and hug, part of what
it means for a person—or indeed an artificial NLU
system—to understand the word’s meaning is the
ability to recognize that some object is red, or an
apple, or that some event is one in which hugging is
taking place. Marconi (1997) calls this referential
competence. Another mode of understanding is
supported by inferential competence, which has
to do with the relationship that certain lexical items
have with one another—a system that infers that
John is not married from the sentence John is a
bachelor demonstrates inferential competence with
the words bachelor and married. Marconi (1997)
argues that neither of these competencies are re-
ducible to the other, meaning that a comprehensive
theory of lexical meaning must explain both refer-
ential and inferential ability.

In this paper, we propose a framework for com-
bining taxonomical information, which supports an
inferential competence, with perceptual classifiers,
which implement referential competence. This
classification system is formalized in a rich type
theory with probabilistic type judgments, meaning
it can be integrated in a formal semantics based on
Type Theory with Records (Cooper et al., 2015).1

1A PyTTR implementation of a classification sys-
tems based on convolutional visual classifiers is avail-
able online here: https://github.com/GU-CLASP/
classification-systems. We also make available the
code for the experiments conducted in Section 4.

1 Classifier-based perceptual meaning

While distributional methods of representing mean-
ing have achieved a lot of success, many have ar-
gued that that relying on exclusively ungrounded
meaning representations has fundamental limita-
tions (Harnad, 1990; Bender and Koller, 2020; Bisk
et al., 2020).

Classifier semantics offers a way to ground lex-
ical meaning, operating on the intuition that part
of what it means to understand the meaning of a
word is to be able to identify instances of it based
on perceptual input.

In one approach to classifier semantics (e.g.,
Schlangen et al., 2016; Silberer et al., 2017), the
parameters of a learned classifier (for example, the
relevant row of a liner classifier’s weight matrix)
are regarded as a distributed representation of the
meaning of the word. Alternatively, it is possi-
ble to regard the classifier itself, as a function of
type f : PerceptualData → [0, 1], that provides
the semantics of the relevant word (e.g., Larsson,
2020a). Here, both the parameters of the classifier
and the classification algorithm are considered to
be part of the perceptual meaning, whereas in the
distributed approach, the classification algorithm is
simply a means by which a distributed representa-
tion is learned.

In this work, we take a functional approach to
classifier semantics. Because they can (at least for
one-place predicates) be considered analogous to
Montague’s e → t type, it is natural to integrate
classifiers-as-functions in a type-theoretic approach
to compositional meaning. Furthermore, classifiers
have the nice theoretical property that they can
distinguish between intentional identity and exten-
sional equivalence (Muskens, 2005; Lappin, 2012;
Larsson, 2020b).

A multi-class classifier, C for a set of labels, L
is a function that takes an input and produces a
prediction among the labels in the form of a prob-
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ability distribution. We will consider multi-class
classifiers that take perceptual data as input:2

C : PerceptualData→ (L→ [0, 1]),

subject to the restriction that for any input a,∑
l∈LC(a)(l) = 1.

2 Folk taxonomies

A folk taxonomy is a hierarchically structured col-
lection of conceptual categories that is common
ground, in the sense of Clark (1996), in a certain
speech community. We wish to invoke a more
general notion than that of scientific or technical
taxonomies that rely on an authoritative reference
for their common ground status. Folk taxonomies
by contrast can be informal, emerging from the
communicative needs of a particular community
and changing in response to changes in the envi-
ronment. Such a taxonomy can also be established
in an ad hoc way between a group of speakers,
grounded in a particular interaction.

For now, we define a taxonomy in set theoretic
terms. A taxonomy takes the form

Tax := 〈Taxon, Set(Set(Tax))〉,

where Taxon is the label for a taxonomical cate-
gory. A taxonomy bottoms out in pairs of the form
〈Taxon,∅〉, which we refer to as leaf taxons.

Notice that the second element of Tax is a set
of sets of taxonomies. To see why this is, we will
first introduce the notion of a distinction, which is
a pair that takes the following form:

Dist : 〈Taxon, Set(Taxon)〉.

Consider this taxonomy:

〈object , {{〈animal , {
{〈mammal , {...}〉, ..., 〈bird , {...}〉},
{〈herbivore,∅〉, 〈omnivore,∅〉, 〈carnivore,∅〉}},
〈vegetable, {...}〉, 〈mineral , {...}〉}}〉

Here, animal is subject to two distinctions: the dis-
tinction based on diet, and the one that categorizes
animals as mammals, birds, and so on.

2In the remainder of the paper, we restrict our attention to
classifiers and taxonomies of individuals, so we assume that
PerceptualData is of a kind that corresponds to entities of type
Ind . In general, however, we can also classify other kinds of
entities (events, relations between individuals, etc.).

In the following, we let dist : Tax→ Set(Dist)
be the function from a taxonomy to its distinctions.

A genus-species relation holds between a taxon
and the (first component of) an element of one of its
distinctions. In the above example, both mammal
and herbivore are species of animal .3 Conceptu-
ally, the key feature of a distinction is that it implies
an exhaustive partition of the genus into a set of
mutually exclusive species. Note however that we
need not assume every species is associated with a
lexical item—there can, for example, be a catch-all
species in cases where the named alternatives don’t
cover the entire genus.4

This leaves us with two main desiderata for when
we start giving content to our taxonomy in the next
section.

1. An instance of a species is an instance of its
corresponding genus.

2. An instance of a genus is an instance of ex-
actly one species in each of its distinctions.

3 Classification systems

By associating a word with a prediction class of a
classifier, a system can be endowed with at least
some referential competence. Similarly, associat-
ing a word with taxon gives a system some inferen-
tial competence in relation to other words embed-
ded in the taxonomy. In this section, we describe
a classification system, which combines classifiers
and a taxonomy to integrate these two kinds of
competence.

With this in mind, we will formalize a classifica-
tion system as a rich Martin-Löf (1984)-style type
system that allows for probabilistic type judgments
(as in Cooper et al., 2015). Furthermore, we will
assume that we can provide basic types with wit-
ness conditions that ground type judgments. From
the perspective of an agent, a type’s witness condi-
tions are the methods by which an agent may judge
something to be of that type (Cooper, forthc).

3For word senses, this is referred to as a hypernym-
hyponym relation.

4Generally we would expect a conventionalized taxonomy
to make distinctions in a systematic way; that is, where the
species within a distinction are differentiated along some com-
mon dimension or set of dimensions. This intuition can be
traced back at least to Aristotle’s Categories. However, his is
not a formal requirement of a taxonomy at this stage and nor
could it be since, taxons are not yet associated with any kind
of content that could be considered as features or establish
differentia. Such content will come by way of classifiers in
Section 3.



Suppose we have a taxonomy T, and a classifier,
Cd, for each distinction d ∈ dist(T). For each
taxon, t, in the taxonomy, we want to define a
type, Tt, with the appropriate witness conditions
such that p(a : Tt) estimates the probability that a
belongs to the taxon, according to the classifiers.

Intuitively, the classifiers give content to the dis-
tinctions of the taxonomy by distinguishing be-
tween species. The classifier is thus premised on
the assumption that the object of classification cer-
tainly belongs to one the species, si, among which
it distinguishes, meaning that it must in turn belong
to the associated genus, g. In practice, this means
that the classifier for a given distinction is trained
on the subset of labeled data from the associated
genus. The classifier’s prediction, Cd(a)(si), can
thus be interpreted as the conditional probability
that a has belongs to si, given that it belongs to g.

There is one taxon in the taxonmy—the root
taxon—that is not a species in any distinction. Let
Tt∗ , which we will refer to as the domain classifi-
cation system, be the type associated with the root
taxon. We will assume that Tt∗ is universal in the
sense that it is witnessed by any object:5

p(a : Tt∗) = 1 (1)

Every other taxon is a species in some distinc-
tion, meaning that we have a classifier associated
with it. Let d = 〈g, {s1, ..., sn}〉 ∈ dists(T) be
a distinction. We define auxiliary types, T ′s1 ...T

′
sn

with witness conditions as follows:

p(a : T ′si) = Cd(a)(si). (2)

That is, an object a is judged to be of type T ′si with
probability equal to the probability assigned by the
classifier for the corresponding distinction.

The interpretation of the classifier as providing
a conditional probability suggests that we should
define Tsi such that:6

p(a : T ′si) = p(a : Tsi | a : Tg) (3)

We also want Tsi to satisfy the desiderata from the
end of Section 2, which can be restated as follows:

p(a : Tsi) ≤ p(a : Tg) (4)
5This assumption is convenient for simplicity, but it also

works if Tt∗ is given some constant prior or well-defined
witness conditions as part of some larger type system in which
the classification system is embedded.

6This corresponds to the probability that a is of type Tsi

given that it is of type Tg , though other notions of condi-
tional judgments are possible in probabilistic type theory. See
Larsson and Cooper (2021).

and

p(a : Tsi | Tg) = 1−
∑
j 6=i

p(a : Tsj | a : Tg) (5)

With this in mind, we let the witness conditions
for Tsi be defined as the product of the probability
assigned to T ′s and Tg:7

p(a : Tsi) = p(a : T ′si) · p(a : Tg) (6)

By induction on the taxonomy and the base case of
Tt∗, this gives us well-defined witness conditions
for for every taxon t.

Briefly, we will show that this definition meets
each of our desiderata. In the following, let
〈g, {s1, ..., sn}〉 be a distinction. Without loss of
generality, we consider the case of Tsi .

We get (4) directly from (6), since 0 ≤ p(a :
T ′si) ≤ 1. As a result of (4) we may write Tsi v
Tg—i.e., that Tsi is a subtype of Tg (Cooper et al.,
2015). Furthermore, this has the consequence that

p(a : Tg|a : Tsi) = 1 (7)

From Bayes Theorem and (7), we can prove (3):

p(a : Tsi | a : Tg)

=
p(a : Tg | a : Tsi) · p(a : Tsi)

p(a : Tg)

=
p(a : Tsi)

p(a : Tg)

=
p(a : T ′si · p(a : Tg)

p(a : Tg)

=p(a : T ′si)

Finally, (5) follows from (3) and the fact that∑
i≤nCd(a)(si) = 1.

4 Empirical comparison

To investigate how well the classification system
performs in practice, we compare it with two other
plausible methods of combining classification with
taxonomical hierarchy. We put aside type theory

7Note that Tsi has different witness conditions from that
of the meet type T ′si ∧ Tg , as defined in Cooper et al. (2015),
since the witness condition for the meet type is defined by the
classical Kolmogorov (1950) equation for conjunction:

p(a : T ′si ∧ Tg) = p(a : T ′si) · p(a : Tg | a : T ′si),

which is different since we can’t assume that Cd[si] is proba-
bilistically independent from Cd′ [g], where d′ is the distinc-
tion of which g is a species.



Precision Recall F1

per-distribution 0.93 0.90 0.90
marginalization 0.90 0.86 0.82
hierarchy-agnostic 0.80 0.84 0.81

Table 1: Macro-averaged precision, recall, and F1 score
for the three methods of incorporating hierarchy in clas-
sification.

for the moment and make a comparison based
on metrics that are traditionally used for machine
learning classification.

Dhall et al. (2020), proposes several possible
methods of incorporating hierarchical information,
including the hierarchy agnostic and marginaliza-
tion methods that we compare against.8

The hierarchy agnostic method is the simplest
and most common way of dealing with a taxonomi-
cally organized label set. Every label is considered
by a single multi-label classifier, without respect to
taxonomical hierarchy. There is thus no guarantee
that the predicted probabilities will be consistent—
the probability assigned to a genus label could be
lower than the probability assigned to one of its
species, for example. Hopefully the hierarchical re-
lations inherent in the data encourages the classifier
to learn a function that approximates the taxonomy.

In the marginalization method, a bottom-up
classifier, is trained on the leaf nodes in the tax-
onomy. Labels at higher levels are predicted by
marginalizing the leaf node probabilities—the prob-
ability of a genus label is computed as the sum of
the probability of its species labels. Note that this
method assumes that the leaf labels are disjoint,
meaning that it only works for taxonomies in which
there is on distinction per genus.

The system described in Section 3 is will be
referred to as the per-distinction method. As de-
scribed there, we train a classifier for each distinc-
tion and compute the probability of a given label
as the product of the classifier output and the prob-
ability assigned to its parent label.

We test each method on a simple synthetic
dataset shapes with different colors and sizes. The
data was generated with a hierarchical stochastic

8Dhall et al. (2020) also tests a per-level and masked per-
level method, which are arguably most similar to what we pro-
pose here. We do not reproduce those tests because marginal-
ization tended to out-perform them in Dhall et al. (2020)’s
experiments. Like marginalization, the per-level and masked
per-level methods assume that there is a single distinction per
genus.

process reflected in the taxonomy of the labels
given to each item. Images were encoded with a
convolutional autoencoder, which was pre-trained
on images from a larger unstructured sample space.

Each method used simple single-layer linear
classifiers trained by stochastic gradient descend
through backpropagation. The marginalization and
per-distinction classifiers use softmax activations
with categorical cross-entropy as the loss function,
and the hierarchy agnostic classifier uses a sigmoid
activation and binary cross entropy with the indi-
cator function of the item’s actual label set. Table
1 gives a summary of the results of the classifiers
in a few-shot classification scenario with 5 training
instances and 100 testing instances for each leaf
label. A separate set of 100 development items
were used to choose the best model after 10 epochs
of training. For the precision, recall and F1 met-
rics, the predicted classes were chosen in a greedy
fashion from the top of the taxonomy, taking the
label with the highest probability consistent with
the label chosen at the previous level.

Consistent with Dhall et al. (2020), we find that
both methods that explicitly take the label hierarchy
into account out-perform the hierarchy agnostic
method. In the few-shot experiment reported here,
our per-distribution method performed best, though
we note that this advantage is less pronounced with
more training examples.

5 Conclusion

In this paper we have focused on the problem of
integrating perceptual and logical meaning on a
lexical level. To do this, we have embedded percep-
tual classifiers as witness conditions for types in a
type system that respects a taxonomical structure.
Our method for doing this is based on the intuition
that such a taxonomy gives rise to a collection of
distinctions, whose content can be defined by multi-
class classifiers. We have compared our method of
embedding classifiers at each node in a taxonomy
to other strategies for classifying in a taxonomi-
cally structured label space suggested by (Dhall
et al., 2020). Future work should also consider the
possibility of learning the label hierarchy on the fly,
as Bengio et al. (2010) does. Embedding such a
hierarchy in a type system may present additional
challenges, but allowing for changes to the taxon-
omy would be necessary to full model the plasticity
of the lexical semantic structures used by natural
language speakers.



We have also left open the looming question
of compositional semantics. We presented clas-
sification systems as a rich type system in order
to suggest a way forward in this regard. Our pro-
posal is compatible with Type Theory with Records
(TTR), which can be used to define version of com-
positional semantics (Cooper et al., 2015). Indeed,
TTR has been used for compositional semantics
with perceptual classifier-based meaning (Larsson,
2013, 2017). The issue remains, however of how
to compose the types we define in Section 3.

Composing classifiers-as-functions is no easy
task.9 For a given object a, one can compute the
probability that a witnesses both T1 and T2 sim-
ply by taking judgments for T1 and T2 separately.
The difficulty comes when one needs to reason hy-
pothetically, as is necessary in NLI. What is the
likelihood that some object of type T1 is also of
type T2? One way forward is to find a way to
compose the classifiers for T1 and T2 directly, as
Monroe et al. (2017) does for color terms. Another
option is to use the classifiers to to sample from
conditioned space of objects. Something like this
is the basis of the system proposed by Bernardy
et al. (2019), though it is not perceptually grounded.
In order for that to work, the embedding space of
PerceptualData would have to be regularized in
such a way that admits sampling, which could po-
tentially be achieved by using a variational autoen-
coder (Kingma and Welling, 2014).

Aside from compositionality, there remain many
questions on the side of lexical representation, such
as that of polysemy. It would seem that certain
words may appear in multiple places in a taxonomy.
The meaning of a word may be ambiguous among
a set of such corresponding types. So far we have
only discussed predicative nouns. Adjectives, and
verbs, including transitive verbs admit a similar
treatment, but that leaves quantifiers and function
words, among others.

Finally, we only discuss perceptual and taxo-
nomical aspects of meaning, but there are other
aspects of meaning, including other inferential as-
pects. How would we represent, for example, that
being from the Champagne region is an aspect of
the meaning of champagne (the beverage)? In Mar-
coni (1997)’s schema, this fact would be treated
as an aspect of inferential competence. Certainly
we should not expect the inference to be deriva-

9Importantly, it is a different task from the one of compos-
ing distributed representations learned through classification.
See Moro et al. (2019) for more on that task.

tive of a perceptual classifier for champagne, but
it does not fit neatly as taxonomical information
either. A more sophisticated type system is needed
to incorporate lexical information of this kind.
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