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Abstract

Probing is a popular method to discern
what linguistic information is contained in
the representations of pre-trained language
models. However, the mechanism of selecting
the probe model has recently been subject to
intense debate, as it is not clear if the probes
are merely extracting information or modeling
the linguistic property themselves. To address
this challenge, this paper introduces a novel
model-free approach to probing, by formulat-
ing probing as a prompting task. We conduct
experiments on five probing tasks and show
that our approach is comparable or better at
extracting information than diagnostic probes
while learning much less on its own. We
further combine the probing via prompting
approach with attention head pruning to
analyze where the model stores the linguistic
information in its architecture. We then
examine the usefulness of a specific linguistic
property for pre-training by removing the
heads that are essential to that property and
evaluating the resulting model’s performance
on language modeling.

https://github.com/rycolab/
probing-via-prompting

1 Introduction

Pre-trained language models such as BERT
(Devlin et al., 2019), GPT-2 (Radford et al., 2019),
and GPT-3 (Brown et al., 2020) have increased
the performance of data-driven natural language
processing (NLP) models on a wide variety of
tasks. Due to their strong performance on many
language-based tasks that require some linguistic
understanding, it is natural to hypothesize that the
models must implicitly encode some linguistic
knowledge. One avenue of research that attempts
to uncover the linguistic knowledge encoded in
these models is called probing (Conneau et al.,
2018; Alain and Bengio, 2018; Tenney et al.,

2019b; Saleh et al., 2020). A common form of
probing is diagnostic probing. Under this approach
a classifier is trained on top of a pre-trained
language model to perform a target linguistic task,
which is closely related to the linguistic property
in question. The predictive accuracy of the
classifier is then taken as an indicator of how much
knowledge about the target linguistic property is
encoded in the language model representations.

However, diagnostic probing has its limitations.
An inherent challenge in the endeavor is discerning
what is encoded in the pre-trained representations
from what is learned by the probe itself (Zhang
and Bowman, 2018; Hewitt and Liang, 2019;
Pimentel et al., 2020a; Cao et al., 2021). The
probe could, in principle, learn the task on top
of random representations. While the probe is
trained to extract linguistic properties from the
representations, there is no simple way to restrain
the probe from learning the task on its own during
training. Previous research tackles the challenge
using random model baselines (Zhang and Bow-
man, 2018) and control tasks (Hewitt and Liang,
2019; Pimentel et al., 2020a). Cao et al. (2021) try
to create a more selective probe using pruning.

In this work, we address the above limitation
with a novel probing framework that we call prob-
ing via prompting (PP). Drawing inspiration from
recent work on prompting (Brown et al., 2020; Liu
et al., 2021), we reformat a suite of probing tasks
into question–answer pairs and instruct the model
to answer the questions with a prefix (Li and Liang,
2021). In effect, prompting acts as a model-free
probe. Thus, the use of prompting instead of a diag-
nostic probe allows us to work around the dilemma
of teasing apart what the representations contain
versus what the probe learns.

In the empirical part of the paper, we conduct
experiments on five linguistic tasks and show
that all these properties are indeed encoded in
the popular pre-trained language model, GPT-2.
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(a) Diagnostic probing (DP). It trains a probe on top
of the contextual representations of the entity span
(“a day”) to predict the label (“DATE”).
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(b) Probing via prompting (PP). We reformulate named entity labeling into
an LM task by concatenating the given span (“a day”) with the sentence.
We then use a prefix to instruct the model to predict the label (“DATE”).

Figure 1: Illustration of different probing paradigms. Here, we show an example of named entity labeling: classi-
fying a given entity span into pre-defined categories.

Furthermore, we show that probing via prompting
appears to lead to insightful probing results. In the
language of Hewitt and Liang (2019), PP obtains
high selectivity, i.e., the results show high accuracy
on the target task, but, as expected, PP does not
work well with random representations. These
results suggest that PP learns little information on
its own and the extracted linguistic properties are
indeed encoded in the model.

At a high level, this work takes the position that
model-free probing methods such as PP are useful
for accurately and faithfully locating and identi-
fying the linguistic properties embedded in these
representations and helping us understand how neu-
ral language models process text. In contrast to
diagnostic probes, which require designing random
model baselines and control tasks to control for
the learning ability of the probe model, model-free
probes like PP are less capable of learning the lin-
guistic task themselves, and thus can naturally be
more selective than diagnostic probes.

2 Probing via Prompting

We now introduce our probing via prompting
framework (PP), illustrated in Fig. 1b.

2.1 Language Models

Let p be a language model with vocabulary Σ. In
the case of an autoregressive language model,1 p
is defined as a distribution over Σ∗ that is locally
normalized, i.e., for any w ∈ Σ∗ we decompose

1Such language models are often called causal language
models to differentiate them from cloze language models.

p(w) according to the chain rule as follows:

p(w) = p(w1) ·
|w|∏

i=2

p(wi | w<i) (1)

Each “local” distribution p(wi | w<i) is defined
over Σ. Traditionally, language models include an
EOS symbol; this means they produce a distribution
over (an infinite number of) finite strings.

In this work, we focus on the case when p is a
Transformer-based language model (Vaswani et al.,
2017)—specifically, we take p to be an instance
of GPT-2 (Radford et al., 2019). In contrast to
most language models, GPT-2 dispenses with the
EOS symbol and therefore yields a distribution
over infinite strings.2 As it will be necessary for
later discussion, we further introduce notation to
discuss the internal workings of the Transformer.
We denote the layer activations A(0), . . . , A(L),
where L is the total number of layers; the 0th

layer corresponds to the embedding layer. Here,
A(`) =

[
a
(`)
0 , . . . ,a

(`)
|w|

]
denotes the activation ma-

trix of the `th layer and a
(`)
i is the activation vector

for the token at position i. The activation at the
last layer is used to compute the distribution for the
next token:

p(wi+1 | w≤i) = softmax(W a
(L)
i ) (2)

where W is a matrix that maps activations to logits
over the vocabulary.

2.2 Edge Probing via Prompting
The edge probing framework (Tenney et al.,
2019a,b) decomposes many common structured-

2This yields a distribution over the ω language Σω .
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Task Context Target Label

POS x SEP brand EOS NN
Const. x SEP is a global brand EOS VP
Entity x SEP Disney EOS ORG
SRL x SEP is SEP The important thing about Disney EOS ARG1
Coref. x SEP Disney SEP it EOS True

Table 1: Example prompt and target label for each task. x =“The important thing about Disney is that it is a global
brand.” The continuous prefix is neglected for simplicity.

prediction tasks into a common format of multi-
class classification. In an edge probing task, a sen-
tence x ∈ Σ∗ and spans3 s1, s2 in x are provided
as inputs, and the goal is to select a correct label y
among a set of candidate labels Y . We have inten-
tionally kept the definition of Y abstract because it
is task-specific. E.g., in named entity labeling, Y
will be a set of entity types, whereas in semantic
role labeling Y will be a set of semantic roles.4

Now we introduce how to perform edge probing
via prompting. We follow the naming convention of
Schick and Schütze (2021a) and begin describing
our prompting approach by introducing a pattern–
verbalizer pair.

Pattern. We convert x, s1, s2 into a string,
called the pattern, as follows

p = x ◦ SEP ◦ s1 ◦ SEP ◦ s2 ◦ EOS (3)

where ◦ is string concatenation. Note that now
p ∈ (Σ ∪ {SEP, EOS})∗.
Verbalizer. Next, we define a verbalizer func-
tion vb : Y → Σ that maps each label to a
token.5 In our implementation, we introduce
a distinguished symbol CLS[y] for each label
y. Thus, our verbalizer becomes vb : Y →
{CLS[1], . . . , CLS[|Y|]}, where |Y| is the number
of candidate classes.

Inference. Now we augment the language model
p such that every conditional probability is over
Σ ∪ {SEP, EOS, CLS[1], . . . , CLS[|Y|]} (instead of
just Σ), so we expand W correspondingly to incor-
porate the enlarged vocabulary. The newly added

3Spans are contiguous substrings.
4The span s2 is to be omitted for single-span tasks such as

entity labeling.
5While one might think that an easy solution is to directly

use category names as verbalizers, category names in edge
probing tasks are often out-of-vocabulary words (e.g., ARG0)
that have to be decomposed into multiple sub-tokens. Thus, it
is easier to simply introduce new symbols into the vocabulary
for each class label.

rows in W and the embeddings of the newly added
symbols are both randomly initialized from a nor-
mal distribution with a mean of 0 and a variance
of 0.02 and not updated during training. To make
a prediction, we select the class whose verbalizer
has the highest next-token probability:

ŷ = argmax
y′∈Y

p
(
w|p|+1 = vb

(
y′
)
| w≤|p|

)
(4)

This completes our formalization of edge probing
as prompting.

2.3 Prefix Tuning
To better instruct the language model to perform
the target task, we prepend the pattern p with a
prefix that is task-specific and independent of x,
s1 and s2. Intuitively, we aim to steer a pre-trained
language model to generate predictions using an
instructive prefix. For instance, a prefix for named
entity labeling could be an additional string in Σ∗,
e.g., “classify the named entity into the following
categories: person, organization . . . ” However, in
preliminary experiments, we found that discrete
prefixes perform poorly on GPT-2—the prime ob-
ject of our study in this paper.6 Thus, we resort
to a continuous prefix (Li and Liang, 2021). The
technical details of performing continuous prefix
tuning in the case of a Transformer language model
are given in App. A.

3 Experiments

We empirically benchmark our pruning method
against several previously proposed works.

3.1 Tasks
We experiment on five tasks derived from
OntoNotes 5.0 (Weischedel et al., 2013): part-
of-speech tagging (POS), constituent labeling

6This replicates the findings of Li and Liang (2021), who
also found that discrete prefixes performed poorly when ap-
plied to GPT-2 and BART; in their report, GPT-3 was the only
exception.
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(const.), named entity labeling (entity), semantic
role labeling (SRL), and coreference (Coref.).
They are simplified versions of the original tasks
in OntoNotes that are made compatible with the
edge probing framework. An example for each
task is shown in Tab. 1.

3.2 Diagnostic Probing
We compare PP with diagnostic probing (DP), and
consider two types of diagnostic probes: a logistic
regression probe (LR) and a multilayer perceptron
probe (MLP). The idea behind diagnostic probing
is illustrated in Fig. 1a. In this paper, we train a
DP to predict a label y ∈ Y for the given span(s)
s1 (and optionally s2) of a sentence x, taking the
contextual representations of the span(s) produced
by the pre-trained model as inputs.

3.2.1 Contextual Representations.
DP takes a single vector as input, which represents
the span(s) of interest under the context of the sen-
tence. In this section, we introduce how to obtain
such a vector from a pre-trained model. For an
input sentence x of length |x|, we again denote the
layer activations produced by the language model
as A(0), . . . , A(L) and A(`) =

[
a
(`)
0 , . . . ,a

(`)
|x|

]
.

Following Peters et al. (2018a), we pool the
representations of the different layers into a
scalar-mixed representation as follows. We
define the matrix A =

[
a0, . . . ,a|x|

]
with ai

computed thusly:

ai =
L∑

`=1

nMLP(`) · a(`)i (5)

where nMLP is a distribution over the layers
{1, . . . , L} that is learned during training.7 In case
a span consists of multiple tokens, the per-token
vectors (either the scalar-mixed vector ai or the
last layer activation a

(L)
i ) are combined into a span

representation using self-attention pooling (Lee
et al., 2017). If more than one span exists, the span
representations are concatenated into one.

3.2.2 Baselines
DP (LR). The first diagnostic probe we consider
is a multinomial logistic regression probe that
resembles the classification head in Cao et al.
(2021). Following Cao et al. (2021), we compute
the span representations using the activations

7Note that we ignore the 0th layer (embedding layer) for
easier comparison in § 4.1.

Task Method Pre-trained Random

POS PP 94.28 13.14
DP (MLP) 94.01 47.89
DP (LR) 89.56 38.84

Majority 12.58
Chance 2.08

Const. PP 86.66 35.98
DP (MLP) 82.09 45.24
DP (LR) 71.32 42.67

Majority 35.66
Chance 3.33

Entity PP 93.81 15.91
DP (MLP) 88.43 35.87
DP (LR) 87.81 29.81

Majority 15.91
Chance 5.56

SRL PP 85.46 33.36
DP (MLP) 84.13 53.05
DP (LR) 77.43 47.99

Majority 33.36
Chance 1.52

Coref. PP 90.54 78.33
DP (MLP) 87.05 78.33
DP (LR) 81.21 78.33

Majority 78.33
Chance 50.00

Table 2: Accuracy (%) for pre-trained GPT-2 (Pre-
trained) and random GPT-2 (Random).

A(L) from the last layer. The span representations
are directly fed into a linear layer followed by a
softmax output layer.

DP (MLP). The second diagnostic probe we
consider is the MLP probe introduced by Tenney
et al. (2019b). Here, we use the scalar-mixed rep-
resentations of A to compute span representations,
which are then fed into an MLP followed by a
softmax output layer.

Majority. Some tasks are highly imbalanced.
For instance, over one third of the constituents
(Const.) in the training set are adjective phrases
(ADJP). Therefore, for reference, we implement
a majority baseline that always predicts the most
frequent class.
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3.3 Experimental Setup

We investigate GPT2SMALL (which we refer to as
simply GPT-2 in this paper), a Transformer model
with 12 layers and 117M parameters pre-trained
on a dataset of 8 million web pages (Radford
et al., 2019). We also examine the probes on a
random model with the same architecture as pre-
trained GPT-2, but the parameters are randomly re-
set. Since the goal of probing is to inspect the infor-
mation acquired during pre-training, an ideal probe
should have low accuracy on the random model.

For PP, we set the prefix length to 200 virtual
tokens for tasks with unary edges (POS, Const.,
and entity) and 20 for those with binary edges
(SRL, Coref.). For DP (MLP), we use a two-layer
MLP with 512 hidden units. Following Tenney
et al. (2019b), we linearly project the per-token
representations ai into 256 dimensions before
self-attentional pooling to improve performance.
All models are trained for one epoch using
the Adam optimizer (Kingma and Ba, 2015).
Our implementation is based on Hugging Face
Transformers (Wolf et al., 2020). Experiments are
conducted on 8 Titan RTX GPUs.

In our experiments, we only study English.
Results may vary for other languages. The English
split contains 116K/16K/12K examples in the
train/development/test sets, respectively. We train
on the train set, experiment on the development
set, and report final results on the test set.

3.4 Results

We compute the classification accuracy on each
task and present the results in Tab. 2. We observe
that when GPT-2’s parameters are randomly reset,
PP performs substantially worse than the two
diagnostic probes. Remarkably, the accuracy of
PP only exceeds a majority-class classifier by
a negligible amount on POS and Const., and is
even identical to a majority-class classifier on
entity, SRL and Coref. On the other hand, both DP
(MLP) and DP (LR) outperform the majority-class
baseline on all the tasks except for Coref., where
the majority-class baseline already performed
exceptionally well already. This result suggests
that PP learns much less about the task on its own
than DP, which makes it a better probe in terms
of selectivity (Hewitt and Liang, 2019).

Meanwhile, when we consider pre-trained GPT-
2, PP has higher accuracy on all the five probing
tasks than DP (MLP) and DP (LR). We take these

Model Probe POS POSC ∆

Pre-trained PP 94.28 74.48 19.80
DP (MLP) 94.01 69.58 24.43
DP (LR) 89.56 48.75 40.81

Random PP 13.14 7.66 5.48
DP (MLP) 47.89 45.71 2.18
DP (LR) 38.84 35.76 3.08

Majority 12.58 6.58
Chance 2.08 2.08

Table 3: POS and POSC accuracy of various methods
on pre-trained GPT-2.

results to indicate that prompting works quite
well at extracting linguistic knowledge. The fact
that our more selective probe still performs well
on linguistic tasks confirms that the considered
linguistic information is indeed encoded in the
pre-trained model.

3.5 Control Tasks
Hewitt and Liang (2019) propose control tasks to
estimate a probe’s selectivity in complement with
random model baselines. A control task associates
the inputs of a given linguistic task with random
outputs. The key idea is that the control task can
only be learned by the probe itself, so a selective
probe should have high linguistic task accuracy but
low control task accuracy. They further measure se-
lectivity using a metric ∆ as the difference between
linguistic task accuracy and control task accuracy.

In our experiments, we also create a control task,
abbreviated POSC, for POS, where we randomly
assign a POS tag for each distinct word. The re-
sults are shown in the first three rows in Tab. 3. To
our surprise, we find that PP performs quite well
on POSC, having an accuracy of 74.48%, which
is only 19.80% lower than its accuracy on POS. In
contrast, the ∆ metric for DP (MLP) and DP (LR)
are 24.43% and 40.81% respectively. Therefore, if
we were to use control tasks to measure selectiv-
ity, this result would suggest that PP is the least
selective probe, which would be contradictory to
our results in § 3.4, where we show the opposite.

To resolve the contradiction, we re-examine the
implicit assumption behind control tasks: Random-
ness excludes the possibility of representations en-
coding the information of a control task, so that
the control task accuracy can be solely attributed
to the probe itself. If this were true, then the probe
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Figure 2: Layer distribution (n) for PP, DP (MLP), and DP (LR).

should be able to learn the task regardless of the
representations it probes. To test that, we run the
same experiments on the random model. The re-
sults are shown in rows 4–6 of Tab. 3. It is clear
that accuracy on POSC under all three methods
drops substantially when switching to the random
model, which means the accuracy of a control task
depends not only on the expressivity of the probe
but essentially also on the representations.

3.6 Discussion

Since we found manually crafted prompts do
not work well in our preliminary experiments,
we resorted to prefix tuning. As a result, our
prompting approach is not fully parameter-free.
PP still involves learning parameters, and thus, we
still run the risk of the prefix learning the target
task on its own. Even though PP’s performance
on randomly initialized GPT-2 is barely better
than that of the majority-class baseline, it is still
much higher than chance, which indicates that PP
still learns from the training set—for instance, it
appears to learn the majority-class label. This is
in line with the findings of Zhong et al. (2021) that
an automatically optimized prompt can identify
the majority-class label.

Further study is needed to determine why PP
performs worse on the random model but equally
well or even better on the pre-trained model. PP
is not simply less expressive because a less ex-
pressive model should perform worse on both pre-
trained and random models, e.g., DP (LR) is less
expressive than DP (MLP), but PP is the best on

the pre-trained model and the worst on the random
model. He et al. (2022) offer an interesting insight
that continuous prompts and, in particular, prefix
tuning can be regarded as adapters. Therefore, a
possible explanation is that the adapter modules
that are interlocked with the Transformer layer are
more convoluted with the information encoded in
the model than an external probe on top. When the
model is pre-trained, they are able to apply modi-
fications to the latent representations and steer the
model on the fly to perform various tasks (Rebuffi
et al., 2017), but if the model is randomly initial-
ized, the noise hinders the learning of the task.

4 Analysis

Now that we have demonstrated the basic utility
of PP, we attempt to use our methodology to deter-
mine where in the representations the information
is encoded. Thus, following Cao et al. (2021), we
search for a subnetwork that optimizes the perfor-
mance on the task of interest and analyze the re-
sulting subnetwork. Since it has been shown that
different attention heads in the Transformer cap-
ture different linguistic phenomena (Clark et al.,
2019; Voita et al., 2019), we prune attention heads
instead of individual weights. Concretely, we use
differentiable subset pruning (DSP) proposed by
Li et al. (2021), which allows us to directly control
the number of heads to keep. Pruning is performed
jointly with prefix tuning.

Essential and Non-essential Heads. We call the
K heads that survive pruning essential heads for
the task, and those that are removed non-essential
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Figure 3: Center of gravity for PP, DP (MLP), and DP
(LR).

heads. With nPP(`), we denote the distribution that
is proportional to the number of essential heads
in each layer ` under the PP scheme. We define
nLR(`) analogously.

4.1 Subnetwork Analysis
We now investigate how the essential heads of dif-
ferent tasks are distributed in the model. To do so,
we make use of the center of gravity as a sum-
mary statistic introduced in (Tenney et al., 2019a).
For any given layer distribution n, we compute the
expected layer:

En[`] =
L∑

`=1

n(`) · ` (6)

A higher center of gravity means the information
for the task is encoded in higher layers. In
our experiments, we keep K = 96 (out of
12 × 12 = 144) heads in GPT-2 and we report
the average of 5 runs with different random seeds.
Fig. 2 depicts the layer distributions and Fig. 3
reports the centers of gravity.

Tenney et al. (2019a) find that BERT encodes
linguistic knowledge in an order that follows the
classical NLP pipeline: syntactic information is
stored in earlier layers than semantic information.
As shown in Fig. 3, we are able to reproduce their
results on GPT-2 using DP (MLP). Specifically, the
tasks are encoded from the bottom of the model to
the top in the following order: POS→ Const. →
SRL→ entity→ Coref. Cao et al. (2021) also find
that entity is localized in higher layers than POS.
We obtain the same results using DP (LR).

Essential Non-essential Majority

POS 93.21 1.9 12.58
Const. 84.61 7.66 35.66
Entity 90.00 4.50 15.91
SRL 70.34 1.74 33.36
Coref. 85.50 58.14 78.33

Table 4: Accuracy (%) of PPP models with only essen-
tial heads or non-essential heads.

However, the other three tasks (SRL, Const.,
Coref.) all have lower centers of gravity than POS,
which contradicts the order of Tenney et al. (2019a)
as POS is believed to be the most basic syntactic
information and should appear the earliest. More-
over, PP produces an order that is entirely different
from both DP methods: SRL→ Coref. → Const.
→ entity→ POS. Noticeably, according to PP, syn-
tactic information (POS and Const.) is captured in
higher layers on average than what is discovered by
DP (MLP). This is in agreement with findings from
recent unsupervised probing works (Gupta et al.,
2020; Zhou and Srikumar, 2021).

In conclusion, we find that different probing and
analysis methods can lead to drastically different
results. Since the choice of probing methodology
influences the resulting ordering, we believe that
future work should be cautious in making claims
based on a single interpretation approach. Instead,
a number of probing methods should be considered.

4.2 Amnesic Probing

Ravichander et al. (2021) and Lasri et al. (2022)
argue that a high-accuracy probe does not necessar-
ily mean the information is important or used by
the model. For instance, linguistic properties can
be spuriously encoded. To investigate whether a
property is actually used by the model in prediction,
Elazar et al. (2021) propose amnesic probing,
which neutralizes some information from the repre-
sentation and measures the influence of that inter-
vention. In the same spirit, we remove the informa-
tion of a given property by discarding the essential
heads from GPT-2, evaluate the pruned model on
the WikiText-103 LM dataset (Merity et al., 2017),
and quantify the importance of that property with
the absolute increase in cross-entropy. By keeping
the number of pruned heads constant, we control
for the amount of information removed on each
task. Note that the performance degradation of
the LM cannot be solely attributed to the inspected
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property, as additional confounding information
may also be removed when we discard essential
heads for a property. Yet, it is still an indicator of
the relative importance of different properties.

In order to make sure the information for the
targeted properties is eliminated from the model,
we first evaluate PP models with only non-essential
heads on the linguistic tasks. We keep 144− 96 =
48 non-essential heads in the model. Again, the
average of five runs with different random seeds is
reported. Tab. 4 shows that the models with only
non-essential heads perform substantially worse
than the models with essential heads and even the
majority baseline, which shows that the model has
lost its ability to predict a property after the tar-
get property’s essential heads are removed. Next,
we inspect how much impact it would have on the
pre-training task. The results of LM loss are sum-
marized in Tab. 5. For reference, we also evaluate
the model with 48 random heads (Random). Gen-
erally, all five linguistic properties are useful for
LM, as leaving out their essential heads all lead to a
bigger increase in LM loss than Random. Entity is
clearly the most important property, as removing its
essential heads leads to an increase of 4.22 in LM
loss. Coref. is the second, accounting for 3.97 loss
increase. POS and Const. are almost equally impor-
tant. SRL is the least important factor, causing only
0.1 more damage than Random. Our results demon-
strate that probing accuracy in Tab. 2 (POS > entity
> Coref. > Const. > SRL) is not reflective of the
property’s importance according to Tab. 5 (entity
> Coref. > POS > Const. > SRL), which is con-
sistent with the findings of Elazar et al. (2021).

5 Related Work

Probing. There has been a plethora of research
papers analyzing the neural representations of NLP
models. One of the primary goals of such research
is to understand whether the linguistic information
commonly believed to be important for represent-
ing language is actually captured in the represen-
tations. The most popular approach for associ-
ating network components with linguistic proper-
ties is to train an auxiliary model to predict such
properties from activations of neural networks (Be-
linkov and Glass, 2019). This technique is now
commonly referred to as probing (Conneau et al.,
2018; Alain and Bengio, 2018; Saleh et al., 2020;
Tenney et al., 2019b), but has also been known as
auxiliary prediction (Adi et al., 2016; Zhang and

LM Loss ∆

Vanilla 3.42 —

Random 6.94 3.52

POS 7.21 3.79
Const. 7.17 3.75
Entity 7.64 4.22
SRL 7.04 3.62
Coref. 7.39 3.97

Table 5: LM loss on WikiText-103 of vanilla GPT-2
(Vanilla), GPT-2 whose heads are randomly removed
(Random), and GPT-2 whose essential heads for differ-
ent properties are removed.

Bowman, 2018), diagnostic classification (Veld-
hoen et al., 2016; Hupkes and Zuidema, 2018; Giu-
lianelli et al., 2018), and others (Belinkov et al.,
2017; Peters et al., 2018b; Naik et al., 2018). How-
ever, the interpretation of probing results has been
called into question (Hewitt and Liang, 2019): Do
the representations encode the linguistic informa-
tion or does the probe learn the task on its own?
A commonly held belief (Alain and Bengio, 2018;
Liu et al., 2019; Hewitt and Manning, 2019) is a
simple model (e.g. a linear one) is not capable of
learning the task itself and thus is preferred, but
Pimentel et al. (2020b) argues that one should al-
ways choose the best possible probe because it
reveals the most linguistic information present in
the representations. Pimentel et al. (2020a); Voita
and Titov (2020) explicitly model the trade-off be-
tween accuracy and model complexity. Cao et al.
(2021) propose to search for a subnetwork within
the model rather than train an auxiliary model, but
a task-specific classification head is still required.

Prompting. The deep contextual word represen-
tations are typically derived from either an LM (Pe-
ters et al., 2018a; Radford and Narasimhan, 2018)
or a masked LM (Devlin et al., 2019). A common
use of these pre-trained language models is fine-
tuning. However, an alternative approach called
prompting has recently gained much popularity.
Instead of accommodating a language model for
downstream tasks, prompting adapts downstream
tasks to be more like LM with the aid of a prompt.
In this way, the pre-trained model can be used
to perform few-shot or even zero-shot learning
(Petroni et al., 2019; Brown et al., 2020; Raffel
et al., 2020; Schick and Schütze, 2021a,b). Most pa-
pers construct templates with blanks for the model
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to fill. For example, LAMA (Petroni et al., 2019)
creates cloze-style templates to probe knowledge;
Brown et al. (2020) put task descriptions and exam-
ples in the prefix and then the model performs vari-
ous tasks by finishing the sentence; Cui et al. (2021)
enumerate every possible text span in a sentence,
create a template for each of them, and fine-tune the
model to perform named entity recognition (NER).
However, creating such templates requires a large
amount of time and human expertise, and does not
necessarily do well on the task of interest. There-
fore, many researchers focus on generating prompts
automatically (Jiang et al., 2020; Shin et al., 2020;
Haviv et al., 2021; Gao et al., 2021). The prompts
must not consist of natural language, but can also
be continuous vectors (Li and Liang, 2021; Qin and
Eisner, 2021; Lester et al., 2021; Hambardzumyan
et al., 2021). We refer the reader to Liu et al. (2021)
for a more thorough survey about prompting. In
this work, we apply the method of (Li and Liang,
2021) to learn continuous prompts to instruct the
model to predict linguistic structure.

Pruning. Neural network pruning aims to reduce
the model size and increase inference speed by re-
moving redundant network components, such as
individual parameters (LeCun et al., 1990; Hassibi
et al., 1994; Han et al., 2015), convolutional chan-
nels (Liu et al., 2017; Luo et al., 2017; He et al.,
2017), and attention heads (Michel et al., 2019;
Voita et al., 2019; Li et al., 2021). In addition to
model compression, pruning has also been used
for analysis: Voita et al. (2019) analyze the lin-
guistic roles the unpruned heads play; Cao et al.
(2021) look at the location of unpruned weights.
Similarly, we examine the network components
that survive pruning, but we apply head pruning
(Li et al., 2021) instead of weight pruning (Louizos
et al., 2018) since attention heads are believed to
be more linguistically interpretable than weights.

6 Conclusion

With the growing popularity of probing, there have
been increasing concerns that high probing perfor-
mance on a linguistic property cannot be attributed
to representations encoding the property, since the
probe can learn the probing task on its own. In
this work, we propose a novel probing via prompt-
ing method, which drastically reduces the probe’s
ability to learn and, thus, mitigates this problem.

We conduct experiments on five linguistic tasks
and show that these properties are indeed encoded

in one popular pre-trained language model, GPT-2.
However, they might not be encoded in a natural
progression in the model as previously believed.
For further study, we hope to develop tools that can
more accurately and faithfully locate and identify
the linguistic properties embedded in the model
and help us understand the way neural language
models process text.

Ethical Considerations

The OntoNotes 5.0 dataset (Weischedel et al.,
2013), licensed through LDC, annotates various
genres of texts in three languages (English, Chi-
nese, and Arabic) with structural information and
shallow semantics. OntoNotes 5.0 inevitably con-
tains personal information and offensive content.
However, we only run experiments on the dataset
and do not disseminate it or our trained models,
which are only available upon request. We also
make sure the examples shown in our paper are
anonymized. The pre-trained language model GPT-
2 can also encode certain social biases (Liang et al.,
2021). Our research in probing could help us un-
derstand and mitigate these biases.
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A Prefix Tuning

A.1 Background: Transformer
Recall that in a Transformer-based causal language model (Vaswani et al., 2017; Radford et al., 2019), each
layer consists of two sub-layers: a multi-head self-attention mechanism and a fully connected feed-forward
network. Each sub-layer is short-circuited with a residual connection, followed by layer normalization.
Now we zoom in on the self-attention mechanism. For the sake of illustration, we assume there is only
one head in each sub-layer. In self-attention, each activation vector a(`)i is first linearly projected into
three vectors: query q

(`)
i = W

(`)
q a

(`)
i ∈ Rd, key k

(`)
i = W

(`)
k a

(`)
i ∈ Rd, and value v

(`)
i = W

(`)
v a

(`)
i ∈ Rd.

Then we compute the output z(`)i as the sum of values weighted by a compatibility score between query
and key.

z
(`)
i =

i∑

j=0

softmax


q

(`)
i

>
k
(`)
j√

d




j

v
(`)
j (7)

The upper bound i in the summand makes sure it can not attend to subsequent positions, and thereby the
prediction for the next token at position i + 1 can only depend on the tokens at positions up to i. We
abstract the feed-forward sub-layer, residual connections, and layer normalizations with a function f and
so we have

a
(`+1)
i = f

(
a
(`)
i , z

(`)
i

)
(8)

A.2 Prefix Tuning
Prefix tuning prepends the pattern p a prefix of length T , which we index from −T to −1. Then (7)
becomes

z̃
(`)
i =

i∑

j=−T
softmax


q

(`)
i

>
k
(`)
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d




j

v
(`)
j (9)

and the layer activations are modified accordingly:

ã
(`+1)
i = f

(
ã
(`)
i , z̃

(`)
i

)
(10)

The 0th layer is left unchanged: ã(0)i = a
(0)
i . Note that we never compute activations a(`)i for the prefix

(i < 0), so we do not need queries q(`)
i for them, and the key–value pairs k(`)

i ,v
(`)
i cannot be obtained

through projection from a
(`)
i . Instead, they are learned directly. During training, only k

(`)
i ,v

(`)
i for prefix

are learned while the parameters of the language model are frozen. During inference, the modified
activations are now used:

p̃(w|p|+1 | w<|p|+1) = softmax(W ã
(L)
|p| ) (11)

ŷ = argmax
y′∈Y

p̃
(
w|p|+1 = vb

(
y′
)
| w<|p|

)
(12)
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