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Abstract

We propose a simple yet effective way to gen-
erate pun sentences that does not require any
training on existing puns. Our approach is in-
spired by humor theories that ambiguity comes
from the context rather than the pun word it-
self. Given a pair of definitions of a pun word,1

our model first produces a list of related con-
cepts through a reverse dictionary to identify
unambiguous words to represent the pun and
the alternative senses. We then utilize one-shot
GPT3 to generate context words and then gen-
erate puns incorporating context words from
both senses. Human evaluation shows that our
method successfully generates puns 52% of the
time, outperforming well crafted baselines and
the state-of-the-art models by a large margin.

1 Introduction
Computational humor has garnered interest in the
NLP community (Petrović and Matthews, 2013;
Miller et al., 2017; Zou and Lu, 2019; Garimella
et al., 2020; Yang et al., 2020). In this paper, we
tackle the problem of generating homographic puns
(Miller et al., 2017): two or more meanings of a
word form an intended humorous effect. For exam-
ple, the three puns listed in Figure 1 exploit two
contrasting meanings of the word sentence: 1) a
grammatical string of words and 2) the punishment
by a court assigned to a guilty person.

Due to the lack of sizeable training data, exist-
ing approaches are heavy-weighted in order to not
rely on pun sentences for training. For example,
(Yu et al., 2018) train a constrained neural language
model (Mou et al., 2015) from a general text corpus
and then use a joint decoding algorithm to promote
puns. He et al. (2019) propose a local-global sur-
prisal principle, and Luo et al. (2019) leverage the
Generative Adversarial Nets (Goodfellow et al.,

∗Equal contribution.
†Work done when the author is interning at UCLA.

1We focus on generating homographic puns where two or
more meanings of a word form an intended humorous effect.

Sense 1 
Definition

a string of words that is complete in itself, typically
containing a subject and predicate

Sense 2
Definition

(criminal law) a final judgment of guilty in a 
criminal case and the punishment that is imposed

Ours 1 The sentence is ungrammatical. The jury didn't 
hear it.

Ours 2 I'm sorry I said the sentence was too long but 
punishments are endless.

Human The Judge has got a stutter. Looks like I am not 
getting a sentence.

Figure 1: An illustration of homographic puns. The
target pun word ‘sentence’ and the two sense definitions
are given as input. To make the target word interpretable
in both senses, we propose to include context words
(highlighted in blue and pink) related to both senses.

2014) to encourage ambiguity of the outputs via
reinforcement learning. We, on the other hand,
propose a simple yet effective way to tackle this
problem: encouraging ambiguity by incorporating
context words related to each sense.

Inspired by humor theories (Attardo, 2010), we
hypothesize that it is the contextual connections
rather than the pun word itself that are crucial for
the success of pun generation. For instance, in
Figure 1 we observe that context related to both
senses (e.g., ungrammatical and jury) appear in a
punning sentence. Such observation is important
as the error analysis of the SOTA model (Luo et al.,
2019) shows that 46% of the outputs fail to be puns
due to single word sense, and another 27% fail due
to being too general, both of which can be resolved
by introducing more context.

Specifically, given the two sense definitions of
a target pun word, we first use a reverse dictionary
to generate related words that are monosemous
for both senses. This first step helps us circum-
vent the obstacle of processing pun words with
the same written form. We then propose to use
context words to link the contrasting senses and
make our target pun word reasonable when inter-
preted in both definitions. We explore three dif-
ferent settings: extractive-based, similarity-based,
and generative-based. Finally, we finetune the
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Figure 2: Overview of the approach. We also give an example for pun word ‘sentence’ for each step.

T5 model (Raffel et al., 2020) on general non-
humorous texts to generate coherent sentences
given the pun word and contexts words as input.

Our experimental results show that retrieve-and-
extract context words outperforms the giant few-
shot GPT3 model in terms of generating funny
pun sentences, although the latter has shown to be
much more powerful in many sophisticated tasks
(Brown et al., 2020). Our simple pipeline remark-
ably outperforms all of the more heavy-weighted
approaches. Our code and data is available at
https://github.com/PlusLabNLP/AmbiPun.

2 Methodology
Overview and Motivation Our input is the tar-
get pun word (p) and its two sense definitions (S1,
S2), and the output is a list of humorous punning
sentences. We implement the ambiguity principle
proposed in (Kao et al., 2016): a pun sentence
should contain one or more context words corre-
sponding to each of the two senses.2 The overview
of our approach is visualized in Figure 2.

Given S1 and S2, we first use a reverse dictionary
to generate a list of words that semantically match
the query descriptions. We call them related words
(Section 2.1). However, those related words are
synonyms of the pun word and are rarely observed
as it is in humorous sentences. For example, for the
sentence: “The Judge has got a stutter. Looks like I
am not getting a sentence.”, The word representing
the first sense (i.e. a final judgment of guilty in a
criminal case) is represented by Judge, which could
not be generated using the sense definition.

Considering such nuances, in Section 2.2 we pro-
pose three different methods to obtain the context
words. They are extractive, similarity, and gen-
erative based. Finally, in Section 2.3 and 2.4, we
introduce a keyword-to-text generator to generate
candidate sentences , and a humor classifier to rule
out some of the non-pun sentences. Final sentences
are then randomly sampled for evaluation. All our

2Note that all previous works produce only the best sen-
tence during decoding time, while we aim at generating tens
or hundreds of sentences for a target pun word so that our task
is actually more challenging.

training data is general, non-humorous corpus ex-
cept for the humor classifier.

2.1 Generating Related Words
We aim at differentiating the two senses of a pol-
ysemy by taking the related words, so that each
sense will be represented by a set of monosemous
words. To this end, we leverage the Reverse Dic-
tionary (Qi et al., 2020; Zhang et al., 2020) which
takes as input a description and generates multiple
related words whose semantic meaning match the
query description. For each sense definition, we
generate five words.

2.2 Generating Context Words
For context words, we compare three different ap-
proaches. As an example, we compare the output
of context words for the pun word ‘sentence’ in
Table 5 in the appendix. Refinement of the context
words is mentioned in section A.2 in the appendix.
Method 1: Extractive (TF-IDF) For each related
word, we retrieve sentences from the One Billion
Word dataset containing that word and then extract
keywords using RAKE (Rose et al., 2010) from the
retrieved sentences. Based on this TF-IDF value,
we choose the top 10 context words that are mostly
likely to be used along with the related words and
therefore the pun word.
Method 2: Similarity (Word2Vec) Inspired by
the idea that “a word is characterized by the com-
pany it keeps”, we propose to get context words
from word2vec. (Ghazvininejad et al., 2016) have
also shown that the training corpus for word2vec
plays a crucial role on the quality of generated con-
text words. Hence, we train on Wikipedia which
has a comprehensive coverage of diverse topics.
Method 3: Generative (Few-shot GPT3) For
the generative version, we provide the powerful
language model GPT3 (Brown et al., 2020) with
two examples and generate context words. Details
about the prompt can be found in section E of the
appendix.

2.3 Candidate Sentence generation
After receiving context words for each sense, we
generate humorous puns. We finetune a keyword-
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to-sentence model using T5 (Raffel et al., 2020),
as it is capable of handling text-to-text tasks. The
prompt provides the pun word, and two context
words from each of the two senses. For example
for the word ‘sentence’, a possible prompt can be
generate sentence: sentence, judge, trial, noun,
comma. Moreover, we also investigate whether the
position of the pun word will affect the quality of
generated sentences. We insert the pun word in
the first, third, and fifth place of the prompt. We
discuss our findings in Section 5.

2.4 Humor Classification
Finally, we introduce a classification model to as-
sist us in selecting (i.e., ranking) punning sentences.
Since we do not have sizable training data for puns,
we propose to train our classification model on hu-
morous dataset in a distantly supervised fashion.
Specifically, we train BERT-large (Devlin et al.,
2018) on the ColBERT dataset (Annamoradnejad
and Zoghi, 2020) that contains 200,000 jokes and
non-jokes used for humor detection. We use the
probability produced by the classification model to
rank our candidate sentences.

Our error analysis in section Appendix.B shows
that our classifier can successfully rule out the bad
generations, i.e., non-puns, as puns are humorous
by nature. However, the model is not great at choos-
ing the best samples. Therefore, we use this clas-
sifier only to remove the bottom third candidates.
We leave this for open future work to accurately
pick out high-quality punning sentences instead of
funny sentences.

3 Experiments
3.1 Datasets
Training: For the context word generation step,
we use the One Billion word dataset (Chelba et al.,
2013) to retrieve sentences for a given word and
calculate TF-IDF values. This dataset contains
roughly 0.8B words and is obtained from WMT
2011 News crawl data. For the humor classifier
and candidate generation module, we use ColBERT
dataset (Annamoradnejad and Zoghi, 2020). It con-
tains 100k jokes and 100k non-jokes.
Evaluation dataset: Following other pun gen-
eration works, we use the SemEval 2017 Task 7
(Miller et al., 2017) for evaluation. The dataset
contains 1,163 human written punning jokes with a
total of 895 unique pun words. Each sentence has
the target pun word, location of the pun word and
the WordNet sense keys of the two senses.

Model Avg
Seq
Len

Corpus-Div Sentence-Div

Dist-1 Dist-2 Dist-1 Dist-2

Few-shot GPT3 12.3 37.1 80.4 94.5 85.7
Neural Pun 12.6 30.2 73.0 91.3 90.5
Pun GAN 9.7 34.6 71.9 90.2 87.6

Sim AMBIPUN 13.4 32.4 77.1 92.9 91.2
Gen AMBIPUN 13.5 32.8 77.8 93.6 91.2
Ext AMBIPUN 14.0 31.7 78.7 96.3 92.3

Human 14.1 36.6 81.9 95.5 92.4

Table 1: Results of automatic evaluation on average se-
quence length, sentence-level and corpus-level diversity.
Boldface denotes the best performance and underline
denotes the second best performance among systems.

Model Success
Rate Fun Coherence

Few-shot GPT3 13.0% 1.82 3.77
Neural Pun 35.3% 2.17 3.21
Pun GAN 35.8% 2.28 2.97

Sim AMBIPUN 45.5% 2.69 3.38
Gen AMBIPUN 50.5% 2.94 3.53
Ext AMBIPUN 52.2%* 3.00* 3.48

Human 70.2% 3.43 3.66

Table 2: Human evaluation results on all the pun gener-
ation systems. We show the success rates, and average
scores of funniness and coherence. Overall, Ext AM-
BIPUN performs the best. The superiority of our model
in terms of success rate and funniness is statistically
significant over the best baseline and is marked by *.

3.2 Baselines
Neural Pun Yu et al. (2018) propose the first neu-
ral approach to homographic puns based on a con-
strained beam search algorithm to jointly decode
the two distinct senses of the same word.
Pun-GAN The SOTA introduced by Luo et al.
(2019) that adopts the Generative Adversarial Net
to generate homographic puns.
Few-shot GPT3 We generate puns with a few
examples feeding into GPT3 davinci-instruct-beta,
the most capable model in the GPT3 family for
creative generation. We provide the target pun
word and its two senses in our prompt, along with
the instruction to generate puns.
Ablations of our own models We also compare
three methods proposed by us to obtain the context
words (described in Section 2.2). We call them Ext
AMBIPUN, Sim AMBIPUN, and Gen AMBIPUN.

3.3 Evaluation
Automatic Evaluation We follow Luo et al.
(2019); Yu et al. (2018) to calculate distinct un-
igram and bigrams as the diversity (Li et al., 2016)
in terms of sentence level and corpus level. We also
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Pun word Irrational
Sense 1 Real but not expressible as the quotient of two integers
Sense 2 Not consistent with or using reason

Model Example Pun Funny
GPT3 I can’t make a decision with all this irrationality going on. No 1.4
Neural Pun Note that this means that there is an irrational problem. Yes 2.4
Pun-GAN It can be use the irrational system. No 1.2
Ext AMBIPUN I have an irrational

::::::
paranoia about mathematical integers. Yes 3.8

Gen AMBIPUN My calculator is unjust and
:::::
illogic. It’s irrational. Yes 3.4

Human Old math teachers never die, they just become irrational. Yes 3.8

Pun word Drive
Sense 1 A journey in a vehicle (usually an automobile)
Sense 2 The trait of being highly motivated

Model Example Pun Funny
GPT3 I am exhausted, I need a nap before I can drive any more. No 2.0
Neural Pun It is that it can be use to drive a variety of function? No 1.6
Pun-GAN In he drive to the first three years. No 1.2
Ext AMBIPUN What do you call a

:::::
genius with cunning drive? racecar driver. Yes 3.6

Gen AMBIPUN I have the determination to
::::
travel to my

::::::::
destination. But i don’t have the drive. Yes 4.0

Human A boy saving up for a car has a lot of drive. Yes 4.2

Table 3: Generated sentences for the word ‘Irrational’ and ‘Drive’and their sense definitions. We underline the
context words that are related to each sense. All the generations are evaluated by external annotators, not the authors.

report the the average sentence length produced.
Human Evaluation We randomly select 100 sen-
tences and collected our human ratings on Amazon
Mechanical Turk (AMT). For each sentence, three
workers are explicitly given the target pun word
and its two sense definitions provided by the Sem-
Eval 2017 Task 7. We first ask them to judge if a
given sentence is a successful pun sentence. Then,
they are asked to rate the funniness and coherence
on a scale from 1 (not at all) to 5 (extremely). Be-
sides detailed instructions and explanation for each
criteria, we also adopt attention questions and quali-
fication types to rule out irresponsible workers. We
conduct paired t-test for significance testing. The
difference between our best performing model and
the best baseline is significant.

4 Results and Analysis
4.1 Pun Generation Results
Automatic Evaluation Results of the automatic
evaluation can be seen in Table 1. The average
sentence length of our model is closest to human
and gets the highest sentence-level diversity. Al-
though our baseline Pun-GAN and Few-shot GPT3
have higher distinct unigram ratios at the corpus
level, that is because all baseline models gener-
ate one sentence per pun word, while AMBIPUN

generates tens of sentences per pun word, which
inevitably sacrifices topical diversity. Neverthe-
less, AMBIPUN achieves the highest corpus-level
bi-gram diversity.
Human Evaluation Results from the automatic
evaluation can be seen in Table 2. We evaluate
the success rate, funniness, and coherence of the

generated outputs. The superiority of our models
are obvious. For significance testing, we conducted
paired t-test, where our systems outperformed the
best baseline in terms of success rate and funniness
(p-value < 0.05). On the other hand, GPT3 could
generate even more coherently than humans.
Analysis between extractive and generative
method. Interestingly, the extractive method has
higher success rates (p-value < 0.05) and is funnier
(p-value < 0.07) than the generative method, indi-
cating that extracting salient words from human
written sentences could introduce more surprising
and uncommon words than language models. We
posit that those atypical words refresh people’s eyes
and thus boost the pun success rate as well as the
funniness score. On the other hand, we also tried to
equip GPT3 with greater creatively by top-k sam-
pling with a large temperature T . However, larger
T s also result in arbitrary responses that humans
may find unreadable. We hope our discovery could
draw the community’s attention to those traditional
techniques for creative generation.

4.2 Case Study

To better understand the advantages of our method,
we conduct a case study for the pun word “Irra-
tional” and “Drive” in Table 3. For both target
pun words, at most one of the baselines success-
fully generates a punning sentence. As discussed
earlier, one possible reason is the absence of both
senses. On the other hand, both Ext AMBIPUN and
Sim AMBIPUN introduce context words for the two
senses and thus are able to generate of high quality
puns that almost match the human written puns in
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Success Rate
Beginning 46.7%
Middle 52.0%
End 54.7%

Table 4: The pun success rate sentences based on their
position annotated by human.

terms of the funniness score.

5 The Position of Pun Words
As is mentioned in Section 2.3, we play with the
position of the pun word in the prompt given to the
candidate sentence generation model. We try three
variants by putting the target pun word at the start,
in the middle, and at the end. For each variant,
we ask Mechanical Turkers to judge if the given
sentences are puns. Again, each sentence is rated
by three Turkers and we take the majority answer
if the workers disagree. Results from this analysis
can be seen in Table 4. We observe that people find
a sentence more likely to be a pun when the target
word appears at the end.

To verify such hypothesis, we also calculate the
position of the pun words of 1,163 human written
pun sentences from SemEval 2017 Task 7 and re-
port the distribution in Figure 3 in the Appendix.
The histogram corroborates with the human anno-
tated samples in that both suggest that keeping the
pun word at the end of the sentence generates fun-
nier puns. Theory of humor which says that the
"joke" in a funny sentences some towards the end
of the sentence (Shahaf et al., 2015) validates our
analysis.

6 Related Works
6.1 Creative Text Generation
Pun generation. Many of the previous works
on pun generation have focused on phonological
or syntactic pattern rather than semantic pattern
(Miller and Gurevych, 2015; Hong and Ong, 2009;
Petrović and Matthews, 2013; Valitutti et al., 2013)
thus lacking creativity and flexibility. He et al.
(2019) make use of local-global surprisal principle
to generate homophonic puns and Yu et al. (2020)
uses constrained lexical rewriting for the same task.
Hashimoto et al. (2018) use a retrieve and edit ap-
proach to generate homographic puns and Yu et al.
(2018); Luo et al. (2019) propose complex neural
model architecture such as constrained language
model and GAN, and do not put emphasis on the
linguistic structure of puns. We identify their ab-
sence of both the senses as a shortcoming and build
our approach from there.

Humor generation. Humor generation still re-
mains an unsolved problem, and is usually studied
in a specific setting. Petrović and Matthews (2013)
generates joke of the type ‘I like my X like I like my
Y, Z’. Garimella et al. (2020) develops a model to
fill blanks in madlibs format and Yang et al. (2020)
edit headlines to make them funny. More research
is required to generate humorous sentences that are
not constrained by their semantic structure.

Figurative language generation. In addition to
pun, there are many attempts to generate figurative
language such as metaphor, simile (Chakrabarty
et al., 2020b), sarcasm, etc. Yu and Wan (2019) use
metaphorically used verbs to generate metaphors
in an unsupervised fashion, while Chakrabarty et al.
(2021); Stowe et al. (2021) generate metaphors us-
ing symbolism and discriminative and conceptual
mapping. Mishra et al. (2019) propose a modular
architecture for unsupervised sarcasm generation,
and Chakrabarty et al. (2020a) use commonsense
knowledge for the same task. Tian et al. (2021) on
the other hand are the first leverage semantic struc-
ture and commonsense and counterfactual knowl-
edge to generate hyperboles.

6.2 Pun detection

SemEval 2017 Task 7 (Miller et al., 2017) intro-
duced the challenge of pun detection, location de-
tection and sense interpretation for homographic
and homophonic puns. Diao et al. (2019) make
use of Gated Attention network to detection ho-
mophonic puns. Zou and Lu (2019) introduces a
tagging schemes which lets them detect puns as
well as their location. They apply this approach to
both homophonic and homographic puns.

7 Conclusion
We propose a novel approach towards homographic
puns generation. Unlike previous works that are
mathematically heavy, our approach is backed by
the humor theory that ambiguity is achieved by the
context. Automatic and human evaluations show
that our model AMBIPUN outperforms the current
state-of-the-art model by a large margin.
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Appendix
A Details in Experiments

A.1 An Example of Context Words

We list the output of context words for the pun
word ‘sentence’ in Table 5. The table lists two
sense definitions and the related words obtained
from the sense definitions using reverse dictionary.
We then obtain context words using three different
mechanisms: TF-IDF, Word2Vec, and GPT3.

A.2 Implementation Details

Experimental Settings For the word2vec model
we train a continuous-bag-of-words model with
window size 40 and word vector dimension 200.
For the candidate generation module, we train the
T5-base model on 10 epochs and select the best
performing model based on validation loss. Max
sequence length for target and source is set to 30.
Batch size is set to 64.

Data Refinement The process to generate both
related and context words can entail many words
that are not ideal. Continuing with these words
would further propagate and enlarge the noise.
Hence, to minimize this noise, we implement the
following data refinement steps to ensure the key-
words stick to our standards: we avoid using polyse-
mous words as keywords during intermediate steps
because their perceived sense is highly ambigu-
ous. We also disregard any numbers and special
characters produced by our systems.

A.3 Human Evaluation

The workers are paid $20 per hour. For pun success
judgement (yes/no question), we take the majority
vote among three workers, while for funniness and
coherence (1 to 5), we take the average ratings. We
then use the pairwise kappa coefficient to measure
the inter-annotator agreement (IAA). The average
inter-annotator agreement of all raters for pun suc-
cess, funniness and coherence are 0.55, 0.48 and
0.40, meaning that annotators moderately agree
with each other. Considering the subjectivity of
this task (Braslavski et al., 2018), and the higher
IAA in terms of pun success and funniness over
coherence, we argue that our collected results are
reasonably reliable for the purpose of pun genera-
tion. Besides, we conducted paired t-test and show
that the success rate and funniness ratings of our
systems differentiate from the best baseline model
with statistical significance (p-value < 0.5).

Figure 3: Analysis of the position of pun word in 1,163
human written puns. The y-axis indicates the number
of sentences and the x-axis indicates the position of pun
word on a scale from 0 (start) to 1 (end).

B Humor Classifier Results for Selecting
Puns

To further discuss the accuracy and recall of our hu-
mor classifier, we show a representative output in
Table 6. The table contains a few selected sentences
ranked my the humor classifier. We also label each
sentence as yes, no, and maybe to indicate if it is a
pun or not. As discussed in the methodology, we
train our classifier on humor dataset. As puns are
an important part of humor generation, this model
can help rule out some options. Basic theories of
humor such as incongruity and surprise apply to
both of them. As can be seen in the table, our
classifier is able to successfully pull aside unfunny
or non-coherent sentences. Looking at the exam-
ples at the top and the middle, it can be observed
that some better examples are classified lower than
others. Making this observation across many pun
words, we decided to use the classifier only to rule
out the bottom third samples. For the rest of the
generations, we randomly sample them.

On manual observation, we realised that when
we as humans peruse the generated candidates,
there are many sentences that meet our expecta-
tions. Therefore, building a classifier that can ac-
curately find these sentences can increase the accu-
racy by a large margin. We treat this as an opportu-
nity for future work.

C Analysis of Human Written Puns
we calculate the position of the pun words of 1,163
human written pun sentences from SemEval 2017
Task 7 and report the distribution. The histogram
corroborates with the human annotated samples in
that both suggest that keeping the pun word at the
end of the sentence generates funnier puns. Theory
of humor which says that the “joke” in a funny
sentences some towards the end of the sentence
validates our analysis.
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Sense 1 Sense 2

Definition a string of words satisfying
the grammatical rules of a language

a final judgment of guilty in a
criminal case and the punishment

that is imposed

Related words syllable, syntax, lexicon, thesaurus,
grammatical

punishment, verdict, sentencing,
retrial, penalty

TF-IDF syllables, words, three, spelling,
even, said, describe, typos

cruel, expected, end, court,
scheduled, set, spector, seeking

Word2Vec syllable, pronounced, words, rhyme,
verbs, meaning, hence, example

punished, crimes, offender, torture,
moral, guilt, abuse, offender

GPT3 words, letters, punctuation, grammar,
synonym, dictionary, meaning, comma

prison, judge, jury, trial,
justice, lawyer, court, evidence

Table 5: Comparison of the three different context word generation mechanism for the pun word ‘sentence’. The
table lists two sense definitions and the related words obtained from the sense definitions using reverse dictionary.
For these related words, we obtain context words using three different mechanisms.

Sentence Rank Pun

What’s the interest rate on a home mortgage? No interest. 1 Yes
My bank said I think they’re interested in me. I said no. 2 No
My girlfriend said she had an interest in banking so i loan her a quarter 3 Yes
I have no interest in being a guardian. It’s free. 4 Maybe
I’ve never had interest placed on borrowings. It’s a waste of time. 5 Yes
Why did the republican attack the bank? Because it was in its interest. 6 Maybe
What is the republican’s strategy? The interest rate. 7 No
What is the most dispensable interest in investment? 8 No
If trump had an interest in president he would make it an president-of-interest. 9 No

Table 6: An example of candidate pun sentences ranked by the humor classifier. As can be seen, the model is able to
rule out non-pun sentences but fails to pick out high-quality ones.

D More Examples of Generated Puns
We compile more examples generated by AM-
BIPUNin Table 7 for the following pun words: sen-
tence, case, bugs, delivery. This table further sup-
ports our claim that our approach would benefit
from a better classification module to select human-
like sentences.
E GPT3 for context words generation
We make use of few shot GPT3 to generate con-
text words. The prompy to GPT3 included 2 pair
of prompt and its completion. One example of a
pair would be “generate seven keywords for laptop:
battery, macbook, internet, technology, keyboard,
technology, portable”. These example are followed
by the prompt “generate seven keywords for X:”
where X is a related word. This way we generate
seven keywords for each related word.
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Target word sentence

Sense 1 A string of words satisfying the grammatical rules of a language
Sense 2 (Criminal law) a final judgment of guilty in a criminal case and the punishment that is imposed

1 The word jail is a sentence.
2 What’s the punishment for using antonyms in a sentence syntax is it a sentence?
3 I’m sorry I said the sentence was too long but punishments are endless.
4 The sentence in the dictionary doesn’t sound very guilty.

Target word case
Sense 1 A portable container for carrying several objects
Sense 2 A statement of facts and reasons used to support an argument

1 What’s the most durable luggage for a detective? jury case
2 A jury just found a container of leather there’s no reason to argue it’s a case
3 What do you call a container used for investigation research? a case study
4 Why did the cardboard get into a trial? because it was an investigation case

Target word bugs

Sense 1 General term for any insect or similar creeping or crawling invertebrate
Sense 2 A fault or defect in a computer program, system, or machine

1 Why did the garden restart its computer? it had bugs in it.
2 What do you call a pest that’s slow programmer? bugs bug
3 Why did the compost crash? it had bugs in it.
4 What do you call a bug that’s disgusting? a glitch in the internet

Target word delivery

Sense 1 the act of delivering or distributing something (as goods or mail)
Sense 2 your characteristic style or manner of expressing yourself orally

1 What did the letter say to the parcel? clear delivery!
2 What do you call a trucking truckdriver with no articulation? delivery driver.
3 The distribution center has a pronunciation dictionary. it’s a delivery service
4 What do you call a parcel with no dialogue and an accent? delivery service.

Table 7: More examples generated by Ext AMBIPUN.
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