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Abstract

In recent years, NLP has advanced greatly
along with the proliferation of pre-trained lan-
guage models. The pre-trained language mod-
els are also properly adapted to downstream
tasks when there is sufficient labeled data.
However, in real-world applications, we often
encounter the deficiency of labeled data. When
only given a few instances for a new task, ex-
tracting task-aware features from a pre-trained
language model regardless of the adaptation is
a promising alternative. In the study, we pro-
pose a novel embedding transfer method, called
LEA, for leveraging pre-trained language mod-
els with even only few-shot instances. LEA
derives meta-level attention aspects using our
new meta-learning framework. We evaluate
our method on five text classification bench-
mark datasets. The results show that the novel
method robustly provides the competitive per-
formance compared to recent few-shot learning
methods.

1 Introduction

A deficiency of supervised data is often experi-
enced in real-world NLP applications. Few-shot
learning aims to yield an AI-driven NLP model
capable of recognizing unseen tasks using a few
labeled data. Meanwhile, fine-tuning pre-trained
models (PTMs) (Howard and Ruder, 2018; Devlin
et al., 2019; Lan et al., 2019; Liu et al., 2019) has
been the most successful approach in recent years
of NLP. Unfortunately, it is still challenging to uti-
lize PTMs (Lee et al., 2019) in few-shot learning.

To address this subtle problem (Sun et al., 2019),
we propose a meta-knowledge driven self-attentive
embedding transfer method, called LEA (LEarning-
to-Attend), based on a novel meta-learning frame-
work, through which meta-level attention aspects
are derived by encoding how to attend for given
tasks. LEA is an efficient and practical method that
facilitates the utilization of large-sized PTMs in
few-shot learning.

There are the two common transfer learning
paradigms in NLP: feature-based transfer (Cer
et al., 2018) and fine-tuning (Houlsby et al., 2019).
Our approach belongs to the feature-based transfer.

LEA includes two key ideas: (1) construction of
a meta-level attention aspects dictionary and (2) in-
ference of the task-specific attention aspects upon
the arrival of a new task. The former is a process
by which useful meta-level attention aspects across
tasks are derived based on a particular PTM via
our meta-learning framework. The latter refers to
as a task-adaption process, where a subset of task-
specific attention aspects is inferred by determining
the top-k most relevant attention aspects from the
meta-level attention aspects dictionary. While LEA
can be applied to a wide variety of downstream
tasks, we demonstrate LEA on few-shot text classi-
fication problems in the paper.

2 Related Work

Few-shot text classification: In (Geng et al.,
2019), INDUCTION is proposed to build class-
wise embedding to represent each class using a
particular dynamic routing algorithm coalesced
with meta-learning. In (Bao et al., 2019), DS is
introduced to keep track of underlying word distri-
butions across all available classes and to specify
important lexical features for new classes.
Meta-learning: As a metric learning-based
method, (Snell et al., 2017) suggested a deep neu-
ral network, called a prototype network (PROTO),
through which class representations are composed
using a learning similarity metric for members
of the same class. In (Sung et al., 2018), sim-
ilar to PROTO, a deep neural network, called a
relation network, is proposed to learn a non-linear
distance metric rather than the Euclidean distance.
In addition, LEO (Rusu et al., 2018) learns a low-
dimensional latent embedding of the model param-
eters such that the classifiers are generated from the
latent space into which the tasks are mapped. Frog-

99



GNN (Xu and Xiang, 2021) focuses on all query-
support pairs and proposes a multi-perspective ag-
gregation based graph neural network to explicitly
reflect intra-class similarity and inter-class dissimi-
larity.

3 Background

3.1 Problem Setup
Few-shot text classification is a task in which a
classifier must be adapted to accommodate new
classes using only a few labeled examples. In the
literature, this is called a C-way K-shot problem
in which K-labeled examples are given for each
of the C number of classes. In a meta-learning
setting, tasks are divided into a meta-training set
(Str), meta-validation set (Sval), and meta-test set
(Stest) as disjoint sets of classes.

3.2 Model-Agnostic Meta-Learning
Our proposed meta training strategy follows the
overall procedure of optimization-based meta-
learning (Finn et al., 2017). For a parametric model
fθ, MAML seeks to find task-specific parameters
θi for any new task τi sampled from a particular dis-
tribution of tasks. For a particular task τi ∼ p(τ),
the task dataDτi consist ofDtr

τi andDval
τi during the

meta-training phase. MAML alternates between
two update processes during meta-training: (1)
task-adaptation and (2) meta-optimization.

Task adaptation (or inner update): Each task
learner updates its own parameters through a gra-
dient descent using the loss evaluated based on its
own training dataDtr

τi with the initial parameter θm
given by the outer meta-optimization process. The
task-adaptation process is formulated as in Equa-
tion 1.

θ
′
τi ← θm − α▽θm Lτi

(
fθm ,Dtr

τi

)
, (1)

Meta-optimization (or outer update): The meta-
learner updates its parameters through a gradient
descent using the loss evaluated by Dval

τi with re-
spect to the task-specific parameters θ

′
τi . The meta-

optimization process is formulated as in Equation
2:

θm ← θm−β▽θm

∑

τi∼p(τ)
Lτi

(
fθ′τi

,Dval
τi

)
, (2)

where Lτi denotes a loss function for a task
τi, and the inner and outer updates are applied
through their own standard gradient descent with

Figure 1: The overall architecture of LEA.

fixed learning rates α and β, respectively, which
are given as hyperparameters.

In the meta-testing phase, the meta-learner pro-
vides the initial parameters for task-specific model
learners. Subsequently, each task learner is indi-
vidually tailored to find the optimal parameters θ

′
τi

by applying the above task adaptation process. In
this meta-testing, the dataset of task τi is given as
Dτi =

(
Dtr

τi ,Dte
τi

)
.

3.3 Pre-Trained Models
We conducted all experiments with BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) as the
underlying PTMs in the study. Given a text input,
a dummy token (CLS) is added to the beginning of
the input, and another token (SEP) is added to the
end of a sentence. The PTMs end up with providing
the corresponding embedding vectors (i.e., denoted
as [CLS] and [SEP]) for the artificial tokens as well
as embeddings for original tokens for the input text.
For downstream classification tasks, the special
embedding vector [CLS] is typically used to make
a prediction as the representative of an text instance.
In this study, the [CLS] vector plays an important
role in probing the distinctive properties for an
incoming task. In manufacturing a task-specific
embedding, we especially utilize the token-level
output embeddings of the individual tokens of the
jth text instance under a particular task τi, which
we denote as Hτi

j = [hτij,1, . . . , h
τi
j,L]. Likewise, the

corresponding [CLS] embedding is denoted as cτij .

4 Proposed Method

The overall architecture of LEA is shown in Figure
1. It represents our meta learning framework for
the task-specific feature extraction. It is trained in
an end-to-end manner using our proposed meta-
learning strategy. The meta training alternates two
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Algorithm 1 Our Proposed Meta-Training
Require: Meta training set Str ∈ τ

Require: Learning-rates α (inner-update), β (outer-update)
Output: WA: Meta-attention-aspects
Output: Wg ,Wn: Noisy top-k gating network parameters
Output: θm, θe, θr, θa: model parameters
1: Randomly initialize WA,Wg ,Wn

2: Randomly initialize θm, θe, θr, θa
3: Let ϕ = {WA,Wg ,Wn, θm, θe, θr, θa}
4: while not converged do
5: for number of tasks in batch do
6: Sample task instance τi ∼ Str
7: Decide top-k weights gτi using cτi

8: Generate τi-attention aspects W τi
A using gτi

9: Generate document embeddings (Etrτi , Evalτi
) using Hτi

10: Initialize θ
′
τi

= θm
11: for number of adaptation steps do

12: Compute Task-Adaptation loss Ltrτi
(
f
θ
′
τi

, Etrτi
)

13: Perform gradient step w.r.t. θ
′
τi

14: θ
′
τi
← θ

′
τi
− α▽

θ
′
τi

Ltrτi
(
f
θ
′
τi

, Etrτi
)

15: end for
16: Compute Meta-Optimization loss Lvalτi

(f
θ
′
τi

)

17: end for
18: Perform gradient step w.r.t ϕ

19: ϕ← ϕ− β ▽ϕ
∑

τi
Lvalτi

(
f
θ
′
τi

, Evalτi

)
+ λ · Ω

20: end while

processes: (1) deriving all valid meta-attention as-
pects across tasks (namely, meta-optimization), and
(2) choosing a task-specific subset from all the
meta-attention aspects for each task (called, task
adaptation). The high-level operation is described
in Algorithm 1.

4.1 Meta Attention Aspects Dictionary
In this study, the meta-level knowledge dictionary
maintains all attention aspects derived across tasks
τi ∼ p(τ). The concept was inspired by (Lin et al.,
2017). The meta-attention aspects in the dictionary
are established throughout the meta-optimization
process during which it seeks to learn how to attend
according to the distribution of tasks. Herein, we
define a matrix WA ∈ RAN×u as the meta-level
attention aspect dictionary. In addition, AN and
u are the total number of attention aspects and
dimension of the attention aspect, respectively.

4.2 Top-k Attention Aspects Selection through
Gate Network

When a novel task τi is given, its related attention
aspects, denoted by W τi

A , are selectively obtained
by assigning the corresponding weights to mem-
bers of the meta-level attention aspects WA in the
task-adaptation process. Here, W τi

A ∈ Rk×u indi-
cates the selected k attention aspects of the task τi.

Note that k and K are different in that the former
is the number of topmost relevant attention aspects,
whereas the latter, indicates as K-shot, refers to
the number of samples in few-shot learning. To do
so, we assess the relevance of the task among the
meta-level attention aspects WA. First, each task is
fed into an encoding process, which is formulated
as follows:

eτin =
1

NK2

K∑

kn=1

N∑

m=1

K∑

km=1

fθr
(
fθe(c

τi
kn

), fθe(c
τi
km

)
)
,

(3)

where eτin is the representative embedding for the
particular class n under a given task τi, fθr indi-
cates the relation network (Sung et al., 2018), and
fθe is an encoder network that transforms the dele-
gate embedding [CLS] (denoted as cτij for the case
of the jth text instance of a specific task τi) of a
text instance in PTMs (Devlin et al., 2019; Lan
et al., 2019; Liu et al., 2019). As a result, the class
embedding eτin is enforced to encode the pairwise
relationship with other classes.

Using the aforementioned class embedding, we
attempt to selectively (i.e., top-k) collect task-
specific attention aspects for a given task by em-
ploying a gating mechanism (Shazeer et al., 2017).
The gating output vector is calculated through the
following formulation:

gτin = softmax (G(eτin ;Wg,Wn, k)) , (4)

where gτin is the gating output vector whose num-
ber of dimensions must be the same as the size of
the meta-attention-aspects dictionary. The gating
process G produces a sparse output vector by be-
ing parameterized with {Wg ∈ RAN×AN ,Wn ∈
RAN×AN , k}, where the remaining values except
for the k elements are forced to become zeros, and
the top-k weights are finally generated through a
softmax function.

As a result, we can extract the top-k task-specific
attention aspects for the task τi. This is formulated
as follows:

W τi
A = ((WA)

T gτin )
T . (5)

4.3 Task-Specific Self-Attentive Document
Embedding

Here, we perform the self-attentive feature extrac-
tion using the aforementioned top-k task-specific
attention aspects for a task. We then apply it into
the generation of document embeddings for text
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Table 1: Results of 5-way 1-shot classification.
20 Newsgroup HuffPost Reuters RCV1 Amazon

MAML (Finn et al., 2017) 43.58% 35.27% 43.82% 36.69% 48.12%
PROTO (Snell et al., 2017) 34.78% 28.62% 46.78% 34.40% 36.42%
LEO (Rusu et al., 2018) 36.42% 28.75% 35.37% 32.26% 39.54%
INDUCTION (Geng et al., 2019) 43.04% 35.62% 42.73% 36.24% 36.33%
DS (Bao et al., 2019) 41.79% 25.52% 52.32% 44.35% 46.32%
Frog-GNN (Xu and Xiang, 2021) - 54.1 % - - 71.5 %

LEA
BERTBASE 53.47% 48.43 % 71.64% 51.96% 63.6%
RoBERTaBASE 45.97% 42.16% 63.2% 45.16% 67.61%
fastText 54.07% 46.15% 69.01% 42.83% 66.53%

Note: The highest performance in each dataset is highlighted in Bold.

Table 2: Results of 5-way 5-shot classification.
20 Newsgroup HuffPost Reuters RCV1 Amazon

MAML (Finn et al., 2017) 52.73% 44.22% 56.96% 40.47% 63.71 %
PROTO (Snell et al., 2017) 55.07% 45.56% 51.22% 44.05% 49.54 %
LEO (Rusu et al., 2018) 52.17% 42.25% 54.07% 47.42% 52.47 %
INDUCTION (Geng et al., 2019) 53.11% 44.22% 48.00% 45.76% 40.96 %
DS (Bao et al., 2019) 52.5% 37.01% 80.80% 68.52% 70.43 %
Frog-GNN (Xu and Xiang, 2021) - 69.6% - - 83.6%

LEA
BERTBASE 65.88% 71.6% 83.07% 73.81% 82.69 %
RoBERTaBASE 59.20% 68.35% 85.38% 69.08% 85.12 %
fastText 60.18% 65.75% 89.01% 71.13 % 83.51 %

Note: The highest performance in each dataset is highlighted in Bold.

classification. For a text input, we utilize the corre-
sponding embedding vectors for the individual to-
kens, which are denoted as Hτi

j = [hτij,1, . . . , h
τi
j,L]

for the jth text example of the task τi. This is
formulated as follows:

Eτij = W τi
A Hτi

j , (6)

where Eτij ∈ Rk×L is the self-attentive document
embedding of the jth input of the task τi, and
Hτi

j ∈ Ru×L is a set of token embedding vectors
for the jth instance with L tokens in the task τi.

For the text classification, we sum Eτij column-
wise and then feed it into a fully connected neural
network (denoted as FCθ′τi

) with the parameters

θ
′
τi , which are optimized in the task-adaptation step

to make the final predictions.

4.4 Meta-Training Objectives
As noted in Algorithm 1, LEA alternates the fol-
lowing two update steps: (1) task adaptation (or
inner-update) and (2) meta-optimization (or outer-
update). The former proceeds as follows:

θ
′
τi ← θ

′
τi − α▽θ′τi

Ltrτi
(
fθ′τi

, E trτi
)
, (7)

where θ
′
τi indicates the task model parameters, and

Ltrτi is the classification loss by relying on E trτi de-
rived from Dtr

τi .
During the meta-optimization step, the groups

of parameters {WA,Wg,Wn, θm, θe, θr, θa} are
trained in the outer loop with Dval

τi . This is for-
mulated as follows:

ϕ← ϕ−β▽ϕ

∑

τi

Lvalτi

(
fθ′τi

, Evalτi ,
)
)+λ·Ω (8)

Figure 2: The 5-way 5-shot prediction accuracy depend-
ing on the number of top-k attention aspects.

where, Ω, as a regularization, includes the term
that encourages all attention aspects to have equal
importance (Shazeer et al., 2017), and λ is its asso-
ciated coefficient as usual.

5 Experimental Results

We evaluated LEA on five text datasets — 20 News-
group(Lang, 1995), Huffpost headline(Misra and
Grover, 2021), Reuters-21578(Lewis., 1997), RCV-
1(Lewis et al., 2004), and Amazon product reviews
(He and McAuley, 2016) — and compared it with
current state-of-art methods. We conducted two
different experiments: 5-way 1-shot and 5-way 5-
shot all over datasets. The details of the datasets
are introduced in Appendix A.1.

5.1 Baselines

In this experiment, we evaluate and compare LEA
with six state-of-art methods as follows: Here,
MAML (Finn et al., 2017) denotes the represen-
tative optimization-based meta-learning algorithm,
PROTO (Snell et al., 2017) indicates the proto-
type network, LEO (Rusu et al., 2018) denotes the
meta-learning algorithm using latent embedding op-
timization, INDUCTION indicates the induction
network (Geng et al., 2019), DS (Bao et al., 2019)
denotes few-shot text classification algorithm using
the underlying word distributions, and Frog-GNN
(Xu and Xiang, 2021) denotes the multi-perspective
aggregation based graph neural network.

5.2 Overall Performance

We performed all experiments on a frozen
BERTBASE (Devlin et al., 2019) as a represen-
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(a) (b) (c)

Figure 3: t-SNE plot of task-specific embedding space after task adaptation. (a) Embedding space of seven top-level
domains. (b) Same as (a) but highlighted by the four classes in ‘recreation’ domain. (c) Same as (a) but highlighted
by the four classes in ‘science’ domain.

tative PTM for LEA and all baselines. As in LEA,
DS is given the [CLS] embedding and the token em-
beddings from BERT’s last layer, whereas the other
algorithms used the [CLS] embedding of BERT.
For the comparison with Frog-GNN, we referred
to the reported results from (Xu and Xiang, 2021).
We additionally applied LEA on RoBERTaBASE

(Liu et al., 2019) and fastText (Bojanowski et al.,
2017) to verify the applicability of LEA. All perfor-
mance scores are reported as the average for three
repetitions.

As shown in Table 1 and 2, LEA exhibits the
competitive performance in both the 5-way 1-shot
and 5-way 5-shot, compared to the state-of-the-arts
for all the datasets. Namely, the results demonstrate
that LEA quickly recognizes how to attend for new
tasks using the established meta-attention aspects
and provides a robust performance in few-shot text
classification problems.

5.3 Hyperparameter Study: Effect of the
Number of Top-k Attention Aspects

We also investigate the impact of the number (i.e.,
k) of task-specific attention aspects. This spe-
cific study was conducted on the same frozen
BERTBASE as the underlying PTM with the 5-way
5-shot experiment for the all datasets. We fixed
the size of the meta attention aspects dictionary to
150 and measured the performances by gradually
scaling the k up to 1, 10, 20, 30, 50, 75, 150. As
shown in Figure 2, all the datasets exhibit their
best performance when setting the top-k attention
aspects to 20. This empirical result indicates that
each task derives its optimal document embedding

by referring only to the most relevant subset rather
than exploiting all meta-level attention aspects.

5.4 Task-Specific Document Embedding
Visualization

In addition, we plots the task-specific document
embeddings and observe the relationships among
classes on 20 Newsgroups dataset. To qualitatively
characterize the task-specific document embedding
space, we split 20 Newsgroup into seven top-level
domains, that is, ‘atheism’, ‘computer’, ‘for-sale’,
‘recreation’, ‘science’, ‘religion’, and ‘talk’ and pro-
jected them via t-SNE as shown in Figure 3a. Fig-
ure 3b shows the relationships between the ‘recre-
ation’ domain composed of four classes and the
rest on the space. Figure 3c shows the relationships
between the four classes of the ‘science’ domain
and the others on the space. These plots demon-
strate that LEA produces a structured task-specific
embedding space after our task-adaptation step.

6 Conclusion

We hypothesized that a type of task-specific self-
attentive mechanism might improve few-shot learn-
ing performance, especially when it is prohibitive
to fine-tune a large-sized PTM. We have attempted
to design a novel embedding transfer method for
deriving a meta-level attention aspects dictionary
to enable a new task to simply borrow the most
relevant attention aspects from the dictionary. As a
result, we proposed a novel meta-learning frame-
work for the learning-to-attend and showed that
LEA is an effective method that facilitates the uti-
lization of large-sized PTMs in few-shot learning.
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Table 3: Architecture details
Module Name Architecture Shape of (input, output) The number of Params
Encoder (Eq.3, fθe ) linear (768, 200) 153.6K

Relation Network (Eq.3, fθr ) 2-layer MLP with ReLU

First layer : (2 × 200, 2 X200)
ReLU
Second layer : (2 × 200, 150)
ReLU

700K

Gating Network (Eq.4, fθr ) linear (150, 150) 22.5K
Meta Attention Aspects (Eq.5, WA ) matrix (150, 768) 115.2K
Task-Specific Attention Aspects (Eq.6, Eτij ) linear (20, 768) 15.36K

Task Classifier 1-layer MLP with ReLU
First layer : (768, 300)
ReLU
output layer : (300, 5)

231.9K

A Appendix

A.1 Datasets
We introduce the datasets and the split (i.e.,
train/val/test) which had been maintained in our
experiments.

20 Newsgroups is a collection of discourses in
newsgroup posts for 20 topics (Lang, 1995).

Huffpost Headlines is a collection of news head-
lines published in the Huffington Post from 2012
to 2018 (Misra and Grover, 2021). It is composed
of 41 topics.

Reuters-21578 is composed of documents that
appeared on the Reuters newswire in 1987 (Lewis.,
1997). In addition, we use the ApteMod version
and discard documents with more than one label to
avoid ambiguity, and thus 31 classes remain.

RCV-1 is a set of newswire stories published by
Reuters journalists from 1996 to 1997 (Lewis et al.,
2004) and comprises 71 topic classes.

Amazon data is a real-world dataset collected
from Amazon.com as a set of customer reviews
from 24 types of product categories(He and
McAuley, 2016). Our goal is to match reviews
to their own corresponding product categories.

To train and evaluate the models, we divided
each of the aforementioned datasets into a meta-
training set (Str), meta-validation set (Sval), and
meta-test set (Stest) as disjoint sets of classes
within the experimental setting. In this work, we
used the same split of classes as in (Bao et al., 2019)
for the Huffpost headline(Misra and Grover, 2021),
Reuters-21578(Lewis., 1997), and RCV-1(Lewis
et al., 2004) datasets. Hence, the Huffpost headline
is divided into 20, 5, and 16 disjoint classes for
meta-training, validation, and test sets.

In terms of Reuters-21678, 15, 5, and 11 disjoint
classes are used for meta-training/validation/test
sets and 37, 10, and 24 disjoint classes for RCV-1.
In Amazon product data, we split the data using
rules in (Bao et al., 2019), and its training and

Table 4: Data Splitting
Dataset # of tr. cls. # of val. cls. # of test cls.
20 Newsgroup 10 5 5
HuffPost 20 5 16
Reuters 15 5 11
RCV-1 37 10 24
Amazon 10 5 9

Table 5: Hyperparameters for training process
Hyperparameters

meta-training set
# of tasks 8
# of queries 15

meta-validation set
# of tasks 15
# of queries 15

meta-test set
# of tasks 15
# of queries 15

α (learning rates in Eq.7) 1
β (learning rates in Eq.8) 0.001
λ (regularization weight in Eq.8) 0.0001
number of adaptation steps 40

validation sets are used for meta-training set. As
a result, Amazon product data is divided into 15,
and 9 disjoint classes for meta-training and test
sets and meta-validation set is not used in Amazon
product data. For the 20 Newsgroup dataset, we
randomly selected 20 topic classes, and the meta-
training set, meta-validation set, and meta-test set
contained 10, 5, and 5 disjoint classes, respectively.
We summarize the above information in Table 4.

A.2 Implementation Details

We share the breakdown of LEA’s implementa-
tion. In the encoding process of our experiments,
the 768-dimensional [CLS] vector, which is of the
same size of the output of the pre-trained BERT-
base-uncased, is linearly transformed through fθe
into a 300-dimensional vector. The relation net-
work, fθr is composed of two-layers neural net-
work with ReLU activation and input size is two
times of encoder outputs and the size of output
is the number of meta-attention-aspects, i.e., 150.
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Figure 4: Visualization of attention weights generated by our model. The texts in (a) and (b) are different samples
under a topic Corporate and Industrial. (c) and (d) are related to Markets and Economics.

The gating network, Wg is linear transformation
and its size is the number of meta-attention-aspects.
For each task classifier, that is, fθ′τi

, it is designed
as single-layer fully connected neural network. We
set the size to 150 for the meta-attention-aspects
dictionary, and importantly fixed the number of
top-k attention aspects to 20. Table 3 summarizes
the above model parameters.

A.3 Training Details and Hyperparameter
Tuning

In our work, we train all experiments on a single
NVIDIA A100 32G GPU. During the meta-training
process, we sampled four tasks with 15 queries
from Str, and it leads to performing task adaptation
four times per each meta-optimization update and
early stop when the validation loss fails to improve
for 20 steps. In validation and test process, we
sampled 30 tasks with 15 queries from Sval and
Stest, and only performed task adaptation using
K-shots. After that, the performance of the adapted
task model is obtained using queries. We used
the Adam optimizer with learning rates of 0.1 and
0.001 in the inner and outer updates, that is, α and
β in , respectively. In addition, the coefficient λ
of the regularization term was set as 0.0001. We
summarize the hyperparameters in Table 5.

A.4 Case Study: Visualization of Attention
Weights on Text

Herein, we visualize the heatmaps in some cases to
investigate how to assign attention weights to text.
Figure 4b demonstrates a termination of stock sale

pact, and Figure 4a shows a company growth in
terms of consumer products. These were extracted
under the Corporate and Industrial topic in the
RCV-1 dataset and some seminal words such as
“agreement”, “contractual” and “receivership” are
highlighted to appear in the topic. Figure 4c shows
that the Turkish market was closed related to the
Market topic, and its relevant words such as “Turk-
ish,” “markets,” and “closed” are highly attended
as expected. Figure 4d talks about the authority of
platinum and gold coins under the Economics topic,
and the words “US,” “Mint,” “authority,” “gold,”
“platinum,” and “coin” are hence highlighted. As
shown in these cases, LEA properly captures im-
portant words under a certain topic and assigns
attention weights to a given text.
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