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Abstract

The softmax layer in neural machine transla-
tion is designed to model the distribution over
mutually exclusive tokens. Machine transla-
tion, however, is intrinsically uncertain: the
same source sentence can have multiple se-
mantically equivalent translations. Therefore,
we propose to replace the softmax activation
with a multi-label classification layer that can
model ambiguity more effectively. We call our
loss function Single-label Contrastive Objec-
tive for Non-Exclusive Sequences (SCONES).
We show that the multi-label output layer can
still be trained on single reference training data
using the SCONES loss function. SCONES
yields consistent BLEU score gains across six
translation directions, particularly for medium-
resource language pairs and small beam sizes.
By using smaller beam sizes we can speed up
inference by a factor of 3.9x and still match
or improve the BLEU score obtained using
softmax. Furthermore, we demonstrate that
SCONES can be used to train NMT mod-
els that assign the highest probability to ade-
quate translations, thus mitigating the “beam
search curse”. Additional experiments on syn-
thetic language pairs with varying levels of un-
certainty suggest that the improvements from
SCONES can be attributed to better handling
of ambiguity.

1 Introduction

Conventional neural machine translation (NMT)
models learn the probability P (y|x) of the target
sentence y given the source sentence x (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014).
This framework implies that there is a single
best translation for a given source sentence: if
there were multiple valid translations y1 and y2

they would need to share probability mass (e.g.
P (y1|x) = 0.5 and P (y2|x) = 0.5), but such

1https://en.wikipedia.org/wiki/Cream_
tea#Variations

a distribution could also represent model uncer-
tainty, i.e. the case when either y1 or y2 are correct
translations. Therefore, learning a single distri-
bution over all target language sentences does not
allow the model to naturally express intrinsic uncer-
tainty2 (Padó et al., 2009; Dreyer and Marcu, 2012;
Ott et al., 2018; Stahlberg et al., 2022), the nature
of the translation task to allow multiple seman-
tically equivalent translations for a given source
sentence. A single distribution over all sequences
represents uncertainty by assigning probabilities,
but it cannot distinguish between different kinds of
uncertainty (e.g. model uncertainty versus intrinsic
uncertainty).

Therefore, in this work we frame ma-
chine translation as a multi-label classification
task (Tsoumakas and Katakis, 2007; Zhang and
Zhou, 2014). Rather than learning a single distribu-
tion P (y|x) over all target sentences y for a source
sentence x, we learn binary classifiers for each sen-
tence pair (x,y) that indicate whether or not y is
a valid translation of x. In this framework, intrin-
sic uncertainty can be represented by setting the
probabilities of two (or more) correct translations
y1 and y2 to 1 simultaneously. The probabilities
for each translation are computed using separate
binary classifiers, and thus there is no requirement
that the probabilities sum to one over all transla-
tions. In practice, the probability of a complete
translation is decomposed into a product of the
token-level probabilities. Thus we replace the soft-
max output layer in Transformer models (Vaswani
et al., 2017) with sigmoid activations that assign a
probability between 0 and 1 to each token in the
vocabulary at each time step. We propose a loss
function, Single-label Contrastive Objective for
Non-Exclusive Sequences (SCONES) that allows
us to train our models on single reference training
data. Our work is inspired by noise-contrastive es-

2This is sometimes referred to as aleatoric uncertainty in
the literature (Der Kiureghian and Ditlevsen, 2009).
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timation (NCE) (Gutmann and Hyvärinen, 2010;
Mnih and Teh, 2012). Unlike NCE, whose primary
goal was to efficiently train models over large vo-
cabularies, our motivation for SCONES is to model
non-exclusive outputs.

We demonstrate multiple benefits of training
NMT models using SCONES when compared to
standard cross-entropy with regular softmax. We re-
port consistent BLEU score gains between 1%-9%
across six different translation directions. SCONES
with greedy search typically outperforms softmax
with beam search, resulting in inference speed-ups
of up to 3.9x compared to softmax without any
degradation in BLEU score.

SCONES can be tuned to mitigate some of the
pathologies of traditional NMT models. Softmax-
based models have been shown to assign the high-
est probability to either empty or inadequate transla-
tions (modes) (Stahlberg and Byrne, 2019; Eikema
and Aziz, 2020). This behavior manifests itself
as the “beam search curse” (Koehn and Knowles,
2017): increasing the beam size may lead to worse
translation quality. We show that SCONES can
be used to train models that a) assign the highest
probability to adequate translations and b) do not
suffer from the beam search curse.

Finally, we use SCONES to train models on syn-
thetic translation pairs that we generate by sam-
pling from the IBM Model 3 (Brown et al., 1993).
By varying the sampling temperature, we control
the level of ambiguity in the language pair. We
show that SCONES is effective in improving the
adequacy of the highest probability translation for
highly ambiguous translation pairs, confirming our
intuition that SCONES can handle intrinsic uncer-
tainty well.

2 Training NMT models with SCONES

We denote the (subword) vocabulary as V =
{w1, . . . , w|V|}, the special end-of-sentence sym-
bol as w1 = </s>, the source sentence as
x = 〈x1, . . . , x|x|〉 ∈ V∗, a translation as y =
〈y1, . . . , y|y|〉 ∈ V∗, and a translation prefix as
y≤i = 〈y1, . . . , yi〉. We use a center dot “·” for
string concatenations. Unlike conventional NMT
that models a single distribution P (y|x) over all
target language sentences, SCONES learns a sepa-
rate binary classifier for each sentence pair (x,y).
We define a Boolean function t(·, ·) that indicates

whether y is a valid translation of x:

t(x,y) :=

{
true if y is a translation of x
false otherwise

.

(1)
We do not model t(·, ·) directly. To guide decoding,
we learn variables zx,y which generalize t(·, ·) to
translation prefixes:

zx,y :=

{
1 ∃y′ ∈ V∗ : t(x,y · y′) = true

0 otherwise
,

(2)
i.e. zx,y is a binary label for the pair (x,y) consist-
ing of source sentence x and the translation prefix
y: zx,y = 1 iff. y is a prefix of a valid translation
of x. We decompose its probability as a product of
conditionals to facilitate left-to-right beam decod-
ing:3

P (zx,y = 1|x) :=
|y|∏

i=1

P (zx,y≤i = 1|zx,y<i = 1,x)

=

|y|∏

i=1

P (zx,y≤i = 1|x,y<i).

(3)
We assign the conditional probabilities by applying
the sigmoid activation function σ(·) to the logits:

P (zx,y<i·w = 1|x,y<i) = σ(f(x,y<i)w), (4)

where w ∈ V is a single token, f(x,y<i) ∈ R|V|
are the logits at time step i, and f(x,y<i)w is the
logit corresponding to token w. The only architec-
tural difference to a standard NMT model is the
output activation: instead of the softmax function
that yields a single distribution over the full vo-
cabulary, we use multiple sigmoid activations in
each logit component to define separate Bernoulli
distributions for each item in the vocabulary (Fig.
1). However, using such a multi-label classifica-
tion view requires a different training loss function
because, unlike the probabilities from a softmax,
the probabilities in Eq. 4 do not provide a normal-
ized distribution over the vocabulary. An additional
challenge is that existing MT training datasets typi-
cally do not provide more than one reference trans-
lation. Our SCONES loss function aims to balance
two token-level objectives using a scaling factor
α ∈ R+:

L(x,y) = 1

|y|

|y|∑

i=1

LSCONES(x,y, i), (5)

3As a base case we define P (zx,ε = 1|x) = 1 for the
empty translation prefix.
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Figure 1: Multi-way NMT Transformer architecture for non-exclusive target sequences.

where

LSCONES(x,y, i) = L+(x,y, i) + αL−(x,y, i).
(6)

L+(·) aims to increase the probability P (zx,y≤i =
1|x,y<i) of the gold label yi since it is a valid
extension of the translation prefix y<i:

L+(x,y, i) = − logP (zx,y≤i = 1|x,y<i)
= − log σ(f(x,y<i)yi).

(7)

L−(·) is designed to reduce the probability
P (zx,y<i·w = 1|x,y<i) for all labels w except
for the gold label yi:

L−(x,y, i) = −
∑

w∈V\{yi}
logP (zx,y<i·w = 0|x,y<i)

= −
∑

w∈V\{yi}
log(1− σ(f(x,y<i)w)).

(8)
Appendix C provides an implementation of
SCONES in JAX (Bradbury et al., 2018).

During inference we search for the translation y∗

that ends with </s> and has the highest probability
of being a translation of x:

y∗ = argmax
y∈{w·</s>|w∈V∗}

P (zx,y = 1|x)

Eqs. 3, 4
= argmax

y∈{w·</s>|w∈V∗}

|y|∑

i=1

log σ(f(x,y<i)yi).

(9)
We approximate this decision rule with vanilla
beam search. The same inference code is used
for both our softmax baselines and the SCONES-
trained models. The only difference is that the

Parameter Value
Attention dropout rate 0.1
Attention layer size 512
Dropout rate 0.1
Embedding size 512
MLP dimension 2,048
Number of attention heads 8
Number of layers 6
Training batch size 256
Total number of parameters 121M

Table 1: Transformer hyper-parameters.

Language pair #Training sentence pairs
Unfiltered Filtered

German-English 39M 33M
Finnish-English 6.6M 5.5M
Lithuanian-English 2.3M 2.0M

Table 2: MT training set sizes.

logits from SCONES models are transformed by
a sigmoid instead of a softmax activation, i.e. no
summation over the full vocabulary is necessary.

Relation to noise-contrastive estimation Our
SCONES loss function is related to noise-
contrastive estimation (NCE) (Gutmann and
Hyvärinen, 2010; Mnih and Teh, 2012) because
both methods reformulate next word prediction as a
multi-label classification problem, and both losses
have a “positive” component for the gold label,
and a “negative” component for other labels.4 Un-
like NCE, the negative loss component (L−(·)) in
SCONES does not require sampling from a noise
distribution as it makes use of all tokens in the

4Technically, SCONES could be written as an instance of
NCE with a scaling factor α and an exhaustive enumeration
of negative NCE samples.
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Greedy search Beam search (beam size = 4)
de-en en-de fi-en en-fi lt-en en-lt de-en en-de fi-en en-fi lt-en en-lt

Softmax 38.8 38.7 26.9 18.5 26.3 11.5 39.6 39.4 27.7 19.0 26.9 12.0
SCONES 39.9 39.1 27.6 19.5 27.7 12.5 40.3 39.8 28.4 20.0 28.9 12.6
Rel. improvement +2.7‡ +1.2 +2.8† +5.4‡ +5.3‡ +8.5‡ +1.7† +0.9 +2.7† +5.5‡ +7.4‡ +5.7

Table 3: BLEU score gains from SCONES over our NMT softmax baselines with tuned α-values (Table 5). Using
a paired bootstrap method (Koehn, 2004), we highlight improvements that are statistically significant either at a
.05 level (†) or a .01 level (‡).

Greedy search Beam search (beam size = 4)
de-en en-de fi-en en-fi lt-en en-lt de-en en-de fi-en en-fi lt-en en-lt

Softmax 70.44 68.08 68.93 66.16 68.52 56.68 70.78 68.48 69.56 66.44 69.20 57.61
SCONES 70.69 67.55 69.28 67.32 68.96 58.68 70.88 67.99 69.72 67.91 69.95 59.48

Table 4: BLEURT (Sellam et al., 2020) scores (BLEURT-20 checkpoint) for SCONES and our NMT softmax
baselines with tuned α-values (Table 5).

Language pair α
de-en 0.5
en-de 0.5
fi-en 0.7
en-fi 1.0
lt-en 0.7
en-lt 0.9

Table 5: Values of α that yield the best greedy BLEU
scores on the respective development sets.

vocabulary besides the gold token. This is possi-
ble because we operate on a limited 32K subword
vocabulary whereas NCE is typically used to effi-
ciently train language models with much larger
word-level vocabularies (Mnih and Teh, 2012).
NCE has a “self-normalization” property (Gutmann
and Hyvärinen, 2010; Pihlaja et al., 2010; Mnih
and Teh, 2012; Goldberger and Melamud, 2018)
which can reduce computation by avoiding the ex-
pensive partition function for distributions over the
full vocabulary. To do so, NCE uses the multi-label
classification task as a proxy problem. By contrast,
in SCONES, the multi-label classification perspec-
tive is used to express the intrinsic uncertainty in
MT and is not simply a proxy for the full softmax.
Thus the primary motivation for SCONES is not
self-normalization over the full vocabulary.

3 Experimental setup

In this work our focus is to compare NMT models
trained with SCONES with well-trained standard
softmax-based models. Thus we keep our setup
simple, reproducible, and computationally econom-
ical. We trained Transformer models (Table 1) in
six translation directions – German-English (de-
en), Finnish-English (en-fi), Lithuanian-English
(lt-en), and the reverse directions – on the WMT19

(Barrault et al., 2019) training sets as provided by
TensorFlow Datasets.5 We selected these language
pairs to experiment with different training set sizes
(Table 2). The training sets were filtered using lan-
guage ID and simple length-based heuristics, and
split into subwords using joint 32K SentencePiece
(Kudo and Richardson, 2018) models. All our mod-
els were trained until convergence on the develop-
ment set (between 100K and 700K training steps)
using the LAMB (You et al., 2020) optimizer in
JAX (Bradbury et al., 2018). Our softmax baselines
are trained by minimizing cross-entropy without
label smoothing. Our multi-way NMT models are
trained by minimizing the SCONES loss function
from Sec. 2, also without label smoothing. We eval-
uate our models on the WMT19 test sets (Barrault
et al., 2019) with SacreBLEU (Post, 2018),6 using
the WMT18 test sets as development sets to tune α.

4 Results

4.1 Translation quality

Table 3 compares our SCONES-based NMT sys-
tems with the softmax baselines when α is tuned
based on the BLEU score on the development set
(Table 5). SCONES yields consistent improve-
ments across the board. For four of six language
pairs (all except en-de and fi-en), SCONES with
greedy search is even able to outperform the soft-
max models with beam search. The language
pairs with fewer resources (fi↔en, lt↔en) bene-
fit from SCONES training much more than the
high-resource language pairs (de↔en). SCONES
still yields gains for all language directions except

5https://www.tensorflow.org/datasets/
catalog/wmt19_translate

6Comparable to http://wmt.ufal.cz/.
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Figure 2: BLEU scores as a function of GPU decoding speeds (median over five runs) for softmax and SCONES
with greedy search and beam search with beam sizes 2, 4, and 8 (annotated with ×).

English-German when we use BLEURT (Sellam
et al., 2020) instead of BLEU as the evaluation
measure (Table 4).

4.2 Decoding speed
Our softmax-based models reach their (near) op-
timum BLEU score with a beam size of around 4.
Most of our SCONES models can achieve similar
or better BLEU scores with greedy search. Replac-
ing beam-4 search with greedy search corresponds
to a 3.9x speed-up (2.76 → 10.64 sentences per
second) on an entry-level NVIDIA Quadro P1000
GPU with a batch size of 4.7 Fig. 2 shows the
BLEU scores for all six translation directions as a
function of decoding speed. Most of the speed-ups
are due to choosing a smaller beam size and not
due to SCONES avoiding the normalization over
the full vocabulary. We expect further speed-ups
when comparing models with larger vocabularies.

7As an additional optimization, our greedy search imple-
mentation operates directly on the logits without applying the
output activations.

4.3 Mitigating the beam search curse

One of the most irksome pathologies of traditional
softmax-based NMT models is the “beam search
curse” (Koehn and Knowles, 2017): larger beam
sizes improve the log-probability of the transla-
tions, but the translation quality gets worse. This
happens because with large beam sizes, the model
prefers translations that are too short. This phe-
nomenon has been linked to the local normaliza-
tion in sequence models (Sountsov and Sarawagi,
2016; Murray and Chiang, 2018) and poor model
calibration (Kumar and Sarawagi, 2019). Stahlberg
and Byrne (2019) showed that modes are often
empty and suggested that the inherent bias of the
model towards short translations is often obscured
by beam search errors. Stahlberg et al. (2022) pro-
vided strong evidence that this length deficiency
is due to the intrinsic uncertainty of the MT task.
Given that models trained with SCONES explicitly
take into account inherent uncertainty, we ran an
experiment to determine whether these models are
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Figure 4: German-English length ratio (hypothesis
length / reference length) as a function of beam size.

more robust to the beam search curse compared to
softmax trained models.

Fig. 3 plots the BLEU score as a function of the
beam size. The sharp decline of the green curve
for large beam sizes reflects the beam search curse
for the softmax baseline. SCONES seems to be
less affected at larger beam sizes, particularly for
small α-values: the BLEU score for SCONES with
α = 0.2 (solid purple curve) is stable for beam
sizes greater than 100. Fig. 4, which displays the
length ratio (the hypothesis length divided by the
reference length) versus beam size, suggests that
the differences in BLEU trajectories are partly due
to translation lengths. Translations obtained us-
ing softmax become shorter at higher beam sizes
whereas for SCONES with α = 0.2, there is no
such steep decrease in length. To study the impact
of α in the absence of beam search errors we ran
the exact depth-first search algorithm of Stahlberg
and Byrne (2019) to find the translation with global
highest probability.8 The adequacy of the transla-

8The maximum number of explored states per sentence
was set to 1M. This threshold was reached for less than 1.45%
of the German-English sentences. See Appendix A for other
language directions.
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Figure 6: Mean and standard deviation (error bars) of
log-probabilities of the global highest probability trans-
lations (found using exact search) and the empty trans-
lations for German-English.

tions found by exact search depends heavily on α
(Fig. 5). With exact search, small α-values yield
adequate translations, but α ≈ 1.0 performs similar
to the softmax baseline: the BLEU score drops be-
cause hypotheses are too short. Table 6 shows that
SCONES with α = 0.2 consistently outperforms
the softmax baselines by a large margin with exact
search. Fig. 6 sheds some light on why SCONES
with small α does not prefer empty translations.
A small α leads to a larger gap between the log-
probabilities of the exact search translation and
the empty translation that arises from higher log-
probabilities for the exact-search translation along
with smaller variances. Intuitively, a small α re-
duces the importance of the negative loss compo-
nent L−(·) in Eq. 6, and thus biases each binary
classifier towards predicting the true label.

4.4 Reducing the number of beam search
errors

Fig. 7 displays the percentage of beam search er-
rors, the fraction of sentences for which beam
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Beam search (beam size = 4) Exact search
de-en en-de fi-en en-fi lt-en en-lt de-en en-de fi-en en-fi lt-en en-lt

Softmax 39.6 39.4 27.7 19.0 26.9 12.0 23.7 15.6 16.7 10.1 14.2 7.1
SCONES (α = 0.2) 39.3 38.9 27.7 19.6 27.9 12.7 39.1 37.2 26.7 18.7 25.6 12.1

Table 6: BLEU scores of beam search and exact search for all six translation directions.
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Figure 7: Number of beam search errors for German-
English as a function of the beam size.

search did not find the global best translation, as
a function of beam size. We confirm the findings
of Stahlberg and Byrne (2019) for softmax mod-
els: the percentage of search errors remains at a
relatively high level of around 20% even for very
large beam sizes. Increasing the beam size is most
effective in reducing the number of search errors
for SCONES with a small value of α. However,
a small α does not always yield the best overall
BLEU score (Fig. 3). Taken together, these ob-
servations provide an insight into model errors in
NMT: If we describe the “model error” as the mis-
match between the global most likely translation
and an adequate translation (following Stahlberg
and Byrne (2019)), a small α would simultaneously
lead to both fewer search errors (Fig. 7) and fewer
model errors (Tab. 6). Counter-intuitively, how-
ever, BLEU scores peak at slightly higher α-values
(Tab. 5). A more sophisticated notion of model
errors and search errors is needed to understand the
complex inherent biases of beam search for neural
sequence-to-sequence models.

5 Experiments with synthetic language
pairs

Our main motivation for SCONES is to equip the
model to naturally represent intrinsic uncertainty,
i.e. the existence of multiple correct target sen-
tences for the same source sentence. To examine
the characteristics of SCONES as a function of un-
certainty, we generated synthetic language pairs
that differ by the level of ambiguity. For this pur-
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Figure 8: BLEU scores with beam search (beam size
of 4) for German-to-synthetic-English translation with
different IBM-3 sampling temperatures.

pose, we trained an IBM-3 model (Brown et al.,
1993) on the German-English training data after
subword segmentation using MGIZA (Gao and Vo-
gel, 2008). IBM-3 is a generative symbolic model
that describes the translation process from one lan-
guage into another with a generative story, and was
popular for finding word alignments for statistical
(phrase-based) machine translation (Koehn, 2009).
The generative story consists of different steps such
as distortion (word reordering), fertility (1:n word
mappings), and lexical translation (word-to-word
translation) that describe the translation process.
The parameters of IBM-3 define probability distri-
butions for each step. In this work we do not use
IBM-3 for finding word alignments. Instead, for
the original German sentences we sample synthetic
English-like translations from the model with dif-
ferent sampling temperatures to control the ambi-
guity levels of the translation task. A low sampling
temperature generates sentence pairs that still cap-
ture some of the characteristics of MT such as word
reorderings, but the mapping is mostly determin-
istic (i.e. the same source token is almost always
translated to the same target token). A high temper-
ature corresponds to more randomness, i.e. more
intrinsic uncertainty. Appendix B contains more
details about sampling from IBM-3. We train NMT
models using either softmax or SCONES on the
synthetic corpora.

Fig. 8 shows that softmax and SCONES perform
similarly using beam search: high IBM-3 sampling
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temperature translation tasks are less predictable,
and thus lead to lower BLEU scores. The differ-
ence between both approaches becomes clear with
exact search (Fig. 9). While the translations with
the global highest probability for high IBM-3 sam-
pling temperatures are heavily degraded for soft-
max and SCONES with α = 1, the drop is much
less dramatic for SCONES with α = 0.2 (solid
purple curve). Setting α to a low value enables
the model to assign its highest probability to ade-
quate translations, even when the translation task
is highly uncertain.

6 Related work

Our approach draws insights from multi-label clas-
sification (MLC) (Tsoumakas and Katakis, 2007;
Zhang and Zhou, 2006, 2014). One of the ear-
liest approaches for MLC was to transform the
problem into multiple binary classification prob-
lems while ignoring the correlations between labels
(Boutell et al., 2004). More recent work has mod-
eled MLC in the sequence-to-sequence framework
with a decoder that generates the labels sequen-
tially, thus preserving the inter-label correlations
(Yang et al., 2018). Most prior work in MLC fo-
cuses on classification and is not directly applicable
to MT. In contrast, our training strategy is tailored
for sequence-to-sequence problems. Unlike prior
work (Yang et al., 2018), SCONES allows us to
perform MLC style training with any underlying
NMT architecture by simply changing the loss func-
tion. By jointly training all label-specific binary
classifiers, our strategy is able to account for label
correlations.

Ma et al. (2018) used an MLC objective to im-
prove machine translation. Unlike our approach,
they attempted to predict all words in the target
sentence with a bag-of-words loss function. We
formulate the next word prediction at each time
step as an MLC problem to handle intrinsic uncer-
tainty, but our models are predicting ordered target
sequences, not bags of words.

The speed-ups from SCONES can be partially
attributed to avoiding the normalization of the out-
put over the full vocabulary. The same idea mo-
tivated earlier work on self-normalized training
(Gutmann and Hyvärinen, 2010; Mnih and Teh,
2012; Devlin et al., 2014; Goldberger and Mela-
mud, 2018). As described in Sec. 2, unlike work
on self-normalization, SCONES does not try to ap-
proximate a distribution over the full vocabulary.
Rather, its output consists of multiple binary classi-
fiers that do not share probability mass by design
to be able to better represent intrinsic uncertainty.

7 Conclusion

Machine translation is a task with high intrinsic
uncertainty: a source sentence can have multiple
valid translations. We demonstrated that NMT
models and specifically Transformers, can learn
to model mutually non-exclusive target sentences
from single-label training data using our SCONES
loss function. Rather than learn a single distribution
over all target sentences, SCONES learns multiple
binary classifiers that indicate whether or not a tar-
get sentence is a valid translation of the source sen-
tence. SCONES yields improved translation qual-
ity over conventional softmax-based models for six
different translation directions, or (alternatively)
speed-ups of up to 3.9x without any degradation in
translation performance. We showed that SCONES
can be tuned to mitigate the beam search curse
and the problem of inadequate and empty modes
in standard NMT. Our experiments on synthetic
language translation suggest that, unlike softmax-
trained models, SCONES models are able to assign
their highest probability to adequate translations
even when the underlying task is highly ambigu-
ous.

The SCONES loss function is easy to imple-
ment. Adapting standard softmax-based sequence-
to-sequence architectures such as Transformers re-
quires only replacing the cross-entropy loss func-
tion with SCONES and the softmax with sigmoid
activations. The remaining parts of the training
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and inference pipelines can be kept unchanged.
SCONES can be potentially useful in handling un-
certainty for a variety of ambiguous NLP prob-
lems beyond translation, such as generation and
dialog. We expect this work to encourage research
on modeling techniques that can address ambiguity
in much better ways compared to current models.
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A Time complexity of exact search

The exact search algorithm of Stahlberg and Byrne
(2019) we used in the paper is guaranteed to find
the global best translation. Its runtime, however,
varies greatly between language pairs and source
sentences. Therefore, we limit the number of ex-
plored states per sentence by 1M to keep the de-
coding time under control. If the 1M threshold is
reached, the optimality of the found translation is
not guaranteed anymore. Fortunately, for most of
our models and test sets, exact search was able to
find and verify the global best translation earlier.
Table 7 lists the runs for which a fraction of the
sentences did not terminate before 1M steps. In
these rare cases, we use the best translation found
thus far by exact search as an approximation to the
global best translation.

B Sampling from IBM-3

The parameters of the IBM-3 model (Brown et al.,
1993) are composed of a set of fertility probabilities
n(·|·), p0, p1, a set of translation probabilities t(·|·),
and a set of distortion probabilities d(·|·). Accord-
ing to the IBM Model 3, the following generative

Languages Run #incomplete sent.
de-en SCONES (α = 0.2) 1.45%
de-en SCONES (α = 0.5) 0.90%
de-en SCONES (α = 0.7) 0.05%
en-de SCONES (α = 0.2) 4.01%
fi-en SCONES (α = 0.2) 1.30%
en-fi Softmax 0.10%
en-fi SCONES (α = 0.2) 3.20%
lt-en Softmax 0.20%
lt-en SCONES (α = 0.2) 5.20%
en-lt Softmax 0.10%
en-lt SCONES (α = 0.2) 5.31%
synthetic-0.1 Softmax 1.05%
synthetic-0.1 SCONES (α = 0.2) 0.55%
synthetic-0.1 SCONES (α = 0.5) 1.10%
synthetic-0.1 SCONES (α = 1.0) 1.25%
synthetic-0.2 Softmax 1.00%
synthetic-0.2 SCONES (α = 0.2) 5.10%
synthetic-0.2 SCONES (α = 0.5) 7.65%
synthetic-0.2 SCONES (α = 1.0) 2.65%
synthetic-0.3 Softmax 0.10%
synthetic-0.3 SCONES (α = 0.2) 12.6%
synthetic-0.3 SCONES (α = 0.5) 17.3%
synthetic-0.3 SCONES (α = 1.0) 1.80%
synthetic-0.5 SCONES (α = 0.2) 25.0%
synthetic-0.5 SCONES (α = 0.5) 25.2%
synthetic-0.7 SCONES (α = 0.2) 25.9%
synthetic-0.7 SCONES (α = 0.5) 20.3%

Table 7: Fraction of sentences for which exact search
did not terminate before 1M steps. For runs that are not
listed here, exact search terminated within 1M steps for
all sentences.

process produces the target language sentence y
from a source language sentence x (Knight, 1999):

1. For each source word xi indexed by i =
1, 2, . . . , |x|, choose the fertility φi with prob-
ability n(φi|xi).

2. Choose the number φ0 of “spurious” target
words to be generated from x0 = NULL, using
probability p1 and the sum of fertilities from
step 1.

3. Let m =
∑|x|

i=0 φi.

4. For each i = 0, 1, 2, . . . , |x| and each k =
1, 2, . . . , φi, choose a target word τik with
probability t(τik|xi).

5. For each i = 1, 2, . . . , |x| and each k =
1, 2, . . . , φi, choose a target position πik with
probability d(πik|i, |x|,m).

6. For each k = 1, 2, . . . , φ0, choose a position
π0k from the φ0 − k + 1 remaining vacant
positions in 1, 2, . . . ,m, for a total probability
of 1

φ0!
.

7. Output the target sentence with words τik in
positions πik (0 ≤ i ≤ |x|, 1 ≤ k ≤ φi).

First, we estimate the IBM-3 model parameters
using the MGIZA (Gao and Vogel, 2008) word
alignment tool. Then, we sample English-like tar-
get sentences for the German source sentences fol-
lowing the generative story above. To control the
level of uncertainty in the synthetic translation task
we alter the entropies of the n(·|·), t(·|·), and d(·|·)
distributions by choosing different sampling tem-
peratures γ ∈ R+. Instead of sampling directly
from a categorical distribution P (·) over categories
C, temperature sampling uses the following distri-
bution:

Pγ(c) =
elogP (c)/γ

∑
c′∈C e

logP (c′)/γ
(10)

for each c ∈ C. A low temperature amplifies large
differences in probabilities, and thus leads to a
lower entropy and less ambiguity.

C Implementation of SCONES in JAX

Fig. 10 provides an implementation of the
SCONES loss function (Sec. 2) in JAX (Brad-
bury et al., 2018). We bound the inverse model
probability (false_logprob) by e−30 in line 12
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1 from f l a x import l i n e n as nn
2 import j a x
3 import j a x . numpy as j n p
4
5 def c o m p u t e _ s c o n e s _ l o s s (
6 l o g i t s , # 3D f l o a t t e n s o r [ b a t c h _ s i z e , max_sequence_ leng th , v o c a b _ s i z e ]
7 t a r g e t s , # 2D i n t t e n s o r [ b a t c h _ s i z e , m a x _ s e q u e n c e _ l e n g t h ]
8 l = 0 . 0 , # Labe l smoo th ing c o n s t a n t ( lambda )
9 a = 1 . 0 , # S c a l i n g f a c t o r a lpha

10 ) :
11 t r u e _ l o g p r o b = nn . l o g _ s i g m o i d ( l o g i t s )
12 f a l s e _ l o g p r o b = j n p . l o g ( j n p . maximum ( 1 . 0 − j n p . exp ( t r u e _ l o g p r o b ) , 1 . 0 e−30))
13 g a t h e r = j a x . vmap ( j a x . vmap ( lambda s , t : s [ t ] ) )
14 t g t _ t r u e _ l o g p r o b = g a t h e r ( t r u e _ l o g p r o b , t a r g e t s ) # [ b a t c h _ s i z e , m a x _ s e q _ l e n g t h ]
15 t g t _ f a l s e _ l o g p r o b = g a t h e r ( f a l s e _ l o g p r o b , t a r g e t s ) # [ b a t c h _ s i z e , m a x _ s e q _ l e n g t h ]
16 t g t _ t r u e _ x e n t = −(1.0 − l ) ∗ t g t _ t r u e _ l o g p r o b − l ∗ t g t _ f a l s e _ l o g p r o b
17 t g t _ f a l s e _ x e n t = −(1.0 − l ) ∗ t g t _ f a l s e _ l o g p r o b − l ∗ t g t _ t r u e _ l o g p r o b
18 a l l _ f a l s e _ x e n t = −(1.0 − l ) ∗ f a l s e _ l o g p r o b − l ∗ t r u e _ l o g p r o b
19 l o s s = a ∗ ( j n p . sum ( a l l _ f a l s e _ x e n t , a x i s =−1) − t g t _ f a l s e _ x e n t ) + t g t _ t r u e _ x e n t
20 w e i g h t s = j n p . where ( t a r g e t s > 0 , 1 , 0 ) . a s t y p e ( j n p . f l o a t 3 2 ) # PAD ID i s 0 .
21 re turn l o s s ∗ w e i g h t s / w e i g h t s . sum ( )

Figure 10: JAX implementation of the SCONES loss function.

for numerical stability. The JAX implementation
generalizes the SCONES loss defined in the main
paper in Eq. 6 with a label smoothing (Szegedy
et al., 2016) factor λ ∈ [0, 1] (l in Fig. 10) such
that the positive loss component L+(·) becomes
the following cross-entropy:

L+(x,y, i) =− (1− λ) logP (zx,y≤i = 1|x,y<i)
− λ logP (zx,y≤i = 0|x,y<i).

(11)
Similarly, the negative loss component L−(·) with
label smoothing can be written as:

L−(x,y, i) =−
∑

w∈V\{yi}

(

(1− λ) logP (zx,y<i·w = 0|x,y<i)
+ λ logP (zx,y<i·w = 1|x,y<i)

)
.

(12)
The label smoothing extension is provided for the
sake of completeness – we did not use label smooth-
ing in any of the experiments in the main paper
since it did not yield improvements in our setups.
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