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Abstract

Transformer models pre-trained with a masked-
language-modeling objective (e.g., BERT) en-
code commonsense knowledge as evidenced
by behavioral probes; however, the extent to
which this knowledge is acquired by system-
atic inference over the semantics of the pre-
training corpora is an open question. To an-
swer this question, we selectively inject ver-
balized knowledge into the pre-training mini-
batches of BERT and evaluate how well the
model generalizes to supported inferences af-
ter pre-training on the injected knowledge. We
find generalization does not improve over the
course of pre-training BERT from scratch, sug-
gesting that commonsense knowledge is ac-
quired from surface-level, co-occurrence pat-
terns rather than induced, systematic reasoning.

1 Introduction

Pre-trained Transformers, such as BERT, encode
knowledge about the world (Petroni et al., 2019;
Zhou et al., 2020); e.g., BERT assigns relatively
high probability to “fly” appearing in the context
“robins can .” In this work, we investigate
whether such knowledge is acquired during pre-
training through systematic inference over the se-
mantics of the pre-training corpora; e.g., can mod-
els systematically infer “robins can fly” from the
premises “birds can fly” and “robins are birds?”

Resolving how models acquire commonsense
knowledge has important implications. If models
learn to make systematic inferences through pre-
training, then scaling up pre-training is a promising
direction for commonsense knowledge acquisition.
If, instead, models only ever generalize based on
superficial, surface-level patterns, then the majority
of commonsense knowledge, which is only sup-
ported implicitly, will never be acquired (Gordon
and Van Durme, 2013; Forbes and Choi, 2017).

∗Work conducted while the author was an intern at Mi-
crosoft Research Montréal.

On the one hand, there is cursory evidence that
pre-training might induce the ability to systemat-
ically reason about the world. When fine-tuned
on supervised training sets, pre-trained models can
classify valid inferences better than strong base-
lines (Clark et al., 2020; Talmor et al., 2020b);
and, in zero-shot evaluations, pre-trained models
perform relatively well on reasoning tasks that
may require systematic reasoning, such as number
comparison (Talmor et al., 2020a) and Winograd
schemas (Sakaguchi et al., 2021).

On the other hand, existing works have argued
that pre-training does not generalize by systematic
inference over semantics on the basis of theoreti-
cal or synthetic results (Bender and Koller, 2020;
Merrill et al., 2021; Traylor et al., 2021). Referring
to physical commonsense knowledge acquired by
BERT, Forbes et al. (2019) conclude that “neural
language representations still only learn associa-
tions that are explicitly written down.”

Our main contribution is a direct evaluation of
the training dynamics of BERT’s reasoning ability.
We inject verbalized knowledge, such as “robins
are birds” (where the masked token is the predi-
cate, e.g., “birds”), into the minibatches of BERT
throughout pre-training. We then consider how
well BERT generalizes to supported inferences;
e.g., how does the likelihood of “robins can ”
→ “fly” change?

We find generalization does not improve over the
majority of pre-training which supports the hypoth-
esis that the type of commonsense knowledge stud-
ied is not acquired by systematic inference. Rather,
our findings suggest this knowledge is acquired
from surface-level, co-occurrence patterns.

2 Related Work

Commonsense knowledge acquisition is a long-
standing challenge in natural language processing
(Charniak, 1973; Hwang et al., 2021; Zhang et al.,
2021), and current approaches rely on knowledge
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acquired by pre-trained Transformer language mod-
els (Bosselut et al., 2019; Zhang et al., 2020; West
et al., 2021). The commonsense reasoning ability
of these language models has been evaluated us-
ing behavioral probes (Ettinger, 2020; Misra et al.,
2021; He et al., 2021) and downstream, fine-tuned
evaluations (Banerjee et al., 2021; Zhou et al., 2021;
Tafjord and Clark, 2021). Such works consider the
knowledge encoded by a model after pre-training.

When fine-tuned on supervised datasets, pre-
trained models can learn to make systematic in-
ferences to some extent (Clark et al., 2020; Tafjord
et al., 2021; Gontier et al., 2020; Shaw et al., 2021;
Li et al., 2021). By systematic inferences, we
refer to the ability to learn general rules and ap-
ply them in novel settings, as opposed to learning
only particular instances of the rule (Fodor and
Pylyshyn, 1988; Lake and Baroni, 2018; Bahdanau
et al., 2019).

Similar to our experiments, recent work has con-
sidered the training dynamics of pre-trained mod-
els (Brown et al., 2020; Kaplan et al., 2020). No-
tably, Liu et al. (2021) evaluate the zero-shot per-
formance of RoBERTa on the oLMpics reasoning
tasks throughout pre-training, but find the knowl-
edge studied is never learned. In contrast, we ex-
plore how learned knowledge is acquired.

Close in spirit to our work, Kassner et al. (2020)
pre-train a masked language model on a synthetic
dataset to isolate reasoning ability. Wei et al. (2021)
also intervene on BERT’s pre-training data in a
syntactic evaluation and conclude that subject-verb
agreement is sometimes inferred from systematic
rules for frequent words.

Finally, De Cao et al. (2021) explore how knowl-
edge encoded in BERT is affected by gradient up-
dates when fine-tuning on a downstream classifi-
cation task. Hase et al. (2021) build on this work
and explore how gradient updates on verbalized
premises affect models’ performance on supported
inferences. In contrast, we focus on knowledge
obtained by the pre-training objective itself.

3 Method

The purpose of our evaluation is to answer the
question: does BERT systematically infer common-
sense knowledge from premises present in the pre-
training corpora?

We focus on one specific type of common-
sense knowledge that BERT is known to encode,
namely entity properties annotated in CONCEPT-

Type Example

Super-statement A boat has a . → hull
Sub-statement A canoe has a . → hull
Class Relation A canoe is a . → boat

Table 1: An example of the three knowledge types as
masked-token prediction.

NET (Speer et al., 2017). This knowledge can be
represented abstractly as (subject, relation,
object) triples. We verify BERT’s encoding of
knowledge by the ability to predict the object
conditioned on a verbalization of the knowledge
containing only the subject and relation;
e.g., for (robin, capable-of, fly), we eval-
uate the ability to predict “fly” appearing in the
context “robins can .”

Such knowledge may be supported by simple
co-occurrence patterns (such as “robins” and “fly”
having high co-occurrence), but we are interested
in the extent to which knowledge might also be
supported by induced, systematic inference. We
focus on the inference of downward monotonicity
(A is-a B ∧ B has-property C ⊨ A has-property C).
We refer to the hypernym property (B has-property
C) as the super-statement, the hyponym property
(A has-property C) as the sub-statement, and the
hypernymy relation (A is-a B) simply as the class
relation (Table 1).

We can then evaluate, for example, whether
“robins can fly” is influenced by the inference
“robins are birds” ∧ “birds can fly” ⊨ “robins can
fly.” For this evaluation, we inject a supporting
premise into a pre-training minibatch (i.e., we re-
place one of the sentences in the minibatch with
the premise) and then evaluate BERT’s knowledge
of the supported inference after a gradient update
on the minibatch containing the premise.

We run this evaluation at intervals throughout
the entire pre-training procedure, from random ini-
tialization to a fully pre-trained BERT model. If
pre-training induces the ability to systematically
make the downward monotonicity inference, one
would expect that generalization from premise to
inference will improve as pre-training progresses.

3.1 Metrics
Let θi be the parameterization of BERT at pre-
training iteration i, and let w = {x, y, z} be a set
of knowledge triples where x is a super-statement,
y is the corresponding sub-statement, and z is the
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Figure 1: The prior log-probability of each knowledge type estimated by BERT across pre-training iterations.

corresponding class relation.
Take u to be any logical premise (i.e., u ∈

{x, y, z}). Let θui be θi after one gradient update
on a minibatch containing u. For a hypothesis
h ∈ {x, y, z}, we consider:

(1) Prior log-probability: log p(h|θi)
(2) Posterior log-probability: log p(h|θui )
(3) PMI: log p(h|θui )− log p(h|θi)

Intuitively, (1) describes the model’s prior knowl-
edge of h at step i, and (3) describes how a pre-
training update on u affects the knowledge of h. We
also consider standard information retrieval metrics
such as mean reciprocal rank (MRR).

4 Experiments

4.1 Inference Dataset

We evaluate on the Leap-of-Thought dataset pre-
sented by Talmor et al. (2020b). This is a dataset
of 30K true or false downward-monotonic infer-
ences which are verbalized using manually written
templates. The hypernymy relations are derived
from WordNet (Miller, 1995), while the properties
are derived from both WordNet and CONCEPTNET

(Speer et al., 2017).
We reformulate this supervised, classification

dataset as a zero-shot, cloze-style task. First, we fil-
ter the dataset by removing partial examples where
one type of knowledge is withheld. Then, we fil-
ter out the randomly-generated, negated examples,
and those where the object is longer than one word-
piece.1 The filtered dataset consists of 711 exam-
ples. Each example is converted into a cloze task
by masking the object.

1Evaluating only objects that are a single word-piece fol-
lows the procedure of the LAMA evaluation (Petroni et al.,
2019) and allows us to evaluate BERT in a zero-shot setting.

To evaluate relative performance, we also gen-
erate a control entity (CE) for each example by
randomly sampling a WordNet sibling of the super-
statement hypernym as a pseudo-negative (e.g., “A
robin is a .” → “fish”). For the super and sub-
statements, we take the predicate of the CE under
the same relation to be a control (e.g., “Robins can

.” → “swim”).

4.2 Model

We consider the training dynamics of a BERT-
base model from random initialization to fully pre-
trained, replicating details of the original BERT
implementation (Devlin et al., 2019).

Specifically, we pre-train the model for 1 mil-
lion steps on a concatenation of English Wikipedia
and the Toronto Book Corpus (Zhu et al., 2015)
as released by Huggingface datasets (Lhoest et al.,
2021). Training details are given in Appendix A
and differ from the original BERT release only in
that: 1) we use whole-word masking; 2) we use
sentence-order prediction instead of next-sentence
prediction as the auxiliary loss (Lan et al., 2020);
and, 3) pre-training sentences are extracted using
the NLTK Punkt tokenizer (Loper and Bird, 2002)
instead of taking random spans of text.

Every 50K pre-training steps, we save a check-
point of the model’s weights and optimizer state. At
each checkpoint, we perform the pre-training inter-
vention experiment: we inject 20 random premises
into a minibatch and perform one gradient update
on this minibatch using the saved optimizer and a
constant learning rate of 1e-4 (to control for the
effects of the learning rate scheduler). We then
evaluate the change in likelihood of h. We per-
form this evaluation 200 times at each checkpoint
so that each of the 711 Leap-of-Thought examples
has been evaluated in five separate minibatches.
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Figure 2: BERT’s generalization from premise to hypothesis across pre-training iterations. Each sub-figure, labelled
as P → H , considers how pre-training on sentences of knowledge type P changes BERT’s encoding of supported
knowledge of type H . For example, how does a pre-training update on the class relation “robins are ” → “birds”
affect knowledge of the sub-statement “robins can ” → “fly”?

5 Results

5.1 Model Validation

We first run Talmor et al. (2020b)’s original fine-
tuning evaluation on our final BERT checkpoint in
order to validate the pre-training procedure. The fi-
nal implicit reasoning accuracy of our BERT model
is 0.89, slightly higher than Talmor et al. (2020b)
report for RoBERTa-large. Additional details are
presented in Appendix B.

5.2 Pre-training Interventions

Prior prob. Figure 1 shows the prior log-
probability of each knowledge type across pre-
training. In general, the difference between the
correct and control predicates increases during pre-
training, suggesting that the knowledge is acquired
by BERT. The trend is non-monotonic, however,
and interestingly the prior-probability of the cor-
rect predicate peaks early in training for all three
knowledge types.

Interventions. We evaluate all combinations of
knowledge types for premise u and hypothesis
h. Some of these inferences are logically sound
(e.g., deducing the sub-statement from the super-
statement) while others are not (e.g., inducing the

super-statement from the sub-statement). We are
interested to see when BERT generalizes from u
to h as we expect the semantics of the premise to
always support the plausibility of the hypothesis
relative to the random control.

In Figure 2, we consider PMI for evaluating
generalization. When BERT is updated on a pre-
training minibatch containing a super-statement,
this unsurprisingly increases the probability of the
super-statement predicates (Figure 2b) and, as one
would expect, there is a similar trend for the class
relation (Figure 2f). The control predicates also
increase in probability in these cases, but to a lesser
extent than the correct predicates.

Less intuitively, however, the PMI of the cor-
rect sub-statement predicate is the same as for the
control predicate during the final iterations of pre-
training (Figure 2a). What’s more, the PMI of the
class-relation control predicate is higher than the
correct predicate during the entire second half of
pre-training (Figure 2c). We also see that the con-
trol predicate has a higher PMI than the correct
predicate when training on the class relation and
evaluating on another knowledge type (Figures 2d
and 2e).

If knowledge was acquired by induced down-
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Figure 3: The difference in MRR of predicates before
and after updating BERT at each pre-training check-
point. In this case, we consider MRR of correct and
control sub-statement predicates after updating on the
corresponding super-statements.

ward monotonicity over semantics, we would ex-
pect generalization from class relation to sub-
statement to improve over time. The opposite trend
suggests knowledge is not being acquired from this
semantic inference.

The higher PMI of the control predicate could be
in part explained by their lower initial probability,
so we also consider changes in MRR (Figure 3). In
considering MRR, the difference between predict-
ing the correct and control predicate seems indis-
cernible across pre-training checkpoints.

6 Conclusion

We show that the ability of BERT to acquire com-
monsense knowledge from premises and learned
inferences does not improve across pre-training,
suggesting that the studied knowledge is not ac-
quired from induced semantic inferences.

These results suggest that an explicit reasoning
mechanism may be necessary to acquire certain
commonsense knowledge.

6.1 Limitations and Future Work

In this work, we only consider one inference type
(downward monotonicity) where knowledge is eval-
uated in one particular way (predicting the pred-
icate) and interventions consist of a single pre-
training update. Future work could explore the
affects of these experimental design decisions by
expanding evaluations to diverse datasets of com-
monsense inferences and by pre-training for addi-
tional steps.
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A BERT Hyperparameters

We train the BERT-base architecture (12 layers,
12 attention heads, hidden size of 768) following
the original pre-training hyperparameters: a batch
size of 256, sequence length of 128, and train for
1 million steps. We use the Adam optimizer and
linearly warmup the learning rate to 1e-4 over the
first 10,000 steps of pre-training, and then linearly
decay the learning rate.

Our code builds on the Huggingface Transform-
ers (Wolf et al., 2020) and MegatronLM (Shoeybi
et al., 2019) implementations of BERT. The pre-
training corpus is uncased and pre-processed using
the MegatronLM pre-processing. Training takes
four days on eight V100 GPUs.

Our conclusions are based on the training dy-
namics of BERT-base, and future work might in-
vestigate if scaling model size allows for more sys-
tematic inferences.

B Leap-of-Thought Fine-tuning Results

The original Leap-of-Thought evaluation consists
of fine-tuning BERT to classify if a sub-statement
is true given supporting premises. In the explicit
reasoning evaluation, all supporting premises are
given at test time (e.g., the model must determine if
“robins can fly” is true given the context “robins are
birds and birds can fly.”). In the implicit reasoning
evaluation, the class relation is withheld (e.g., the
model must determine if “robins can fly” given only
the context that “birds can fly.” This inference relies
on the implicit knowledge that robins are birds).
We fine-tune for four epochs following Talmor et
al. and otherwise use default hyperparameters.

Our main purpose in running this evaluation is
to validate our pre-training procedure; however, we
also evaluate all intermediate BERT checkpoints in
order to understand how the performance changes
across pre-training. Interestingly, we find perfor-
mance increases log-linearly with pre-training itera-
tions in the implicit reasoning test, but performance
of the explicit reasoning evaluation peaks at just
15% of pre-training (Figure 4). Numerical results
are presented in Table 2.
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Figure 4: Accuracy on Talmor et al. (2020b)’s original
Leap-of-Thought evaluation across pre-training itera-
tions (from 50K to 1M).

Iteration Implicit Explicit

0 0.507 0.493
5000 0.507 0.493
10000 0.490 0.490
15000 0.571 0.621
20000 0.625 0.636
30000 0.710 0.763
40000 0.798 0.900
50000 0.814 0.965

100000 0.838 0.971
150000 0.860 0.992
200000 0.843 0.953
250000 0.855 0.973
300000 0.870 0.958
350000 0.863 0.978
400000 0.850 0.931
450000 0.867 0.937
500000 0.859 0.933
550000 0.874 0.951
600000 0.867 0.943
650000 0.880 0.931
700000 0.877 0.937
750000 0.874 0.929
800000 0.872 0.949
850000 0.877 0.979
900000 0.875 0.967
950000 0.894 0.945

Table 2: Fine-tuning accuracy on the original
Leap-of-Thought evaluation across pre-training check-
points.

4557

https://aclanthology.org/2021.emnlp-main.598
https://aclanthology.org/2021.emnlp-main.598
https://doi.org/10.1609/aaai.v34i05.6523
https://doi.org/10.1609/aaai.v34i05.6523

