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Abstract

Bash is a Unix command language used for
interacting with the Operating System. Recent
works on natural language to Bash translation
have made significant advances, but none of
the previous methods utilize the problem’s in-
herent structure. We identify this structure and
propose a Segmented Invocation Transformer
(SIT) that utilizes the information from the con-
stituency parse tree of the natural language text.
Our method is motivated by the alignment be-
tween segments in the natural language text and
Bash command components. Incorporating the
structure in the modelling improves the perfor-
mance of the model. Since such systems must
be universally accessible, we benchmark the in-
ference times on a CPU rather than a GPU. We
observe a 1.8x improvement in the inference
time and a 5x reduction in model parameters.
Attribution analysis using Integrated Gradients
reveals that the proposed method can capture
the problem structure.

1 Introduction

Semantic parsing is one of the central tasks for nat-
ural language understanding (NLU). It is defined
as the task of generating meaning representations
from natural language utterances (Kamath and Das,
2019). Previous works (Yin and Neubig, 2017,
Yaghmazadeh et al., 2017, Kim et al., 2020, Agar-
wal et al., 2021 ) have used high level languages
such as Python, SQL and Bash as meaning repre-
sentations. This work focuses on generating Bash
commands from natural language descriptions of
command-line tasks.

Besides being an essential task for NLU, seman-
tic parsing into a high-level language also has real-
world applications such as helping developers write
programs and making programming universally ac-
cessible. The command-line interface has been
regarded as an invaluable tool due to its expressive-
ness, efficiency and extensibility (Agarwal et al.,

2021). However, it has a learning curve and re-
quires domain knowledge. An interface with the
computer using natural language, on the other hand,
remedies these issues. One need not remember
the syntax of hundreds of Bash utilities, and in-
stead, one can specify the task in natural language.
Such an interface that uses natural language such as
English for specifying command-line tasks makes
computing accessible to people with little domain
knowledge. Therefore, developing a system to gen-
erate Bash commands from English is worth one’s
efforts.

Previous works on this semantic parsing task
(Lin et al., 2018, Gros, 2019, Agarwal et al.,
2020, Agarwal et al., 2021, Bharadwaj and
Shevade, 2021) use various encoder-decoder
style architectures. These methods consider the
natural language component as a sequence of
tokens without utilizing the inherent structure for
this problem. The method proposed in this work
utilizes the information from the constituency parse
tree of the natural language to incorporate this
problem structure into the modelling process. Our
approach is based on the observation that natural
language invocations are complex and can be
broken down into simpler segments that align with
the Bash command components (utilities, flags
and arguments). We incorporate this observation
in our method to provide an inductive bias to the
Transformer model (Vaswani et al., 2017), making
the search space of solutions more aligned with
the task at hand. The models are evaluated on the
NL2Bash dataset (Lin et al., 2018) obtained from
the NeurIPS 2020 Natural Language Context to
Command (NLC2CMD) contest (Agarwal et al.,
2021). The proposed method outperforms the
winning solution from the NLC2CMD contest in
terms of generation accuracy while also achieving
a speedup of 1.8x and reducing the parameter
count by 5x over it. It also performs better
than models like T5 (Raffel et al., 2019) and
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CodeT5 (Wang et al., 2021) which are trained
on a large amount of data and then fine-tuned on
the dataset under study. Our code is available
at https://github.com/Shikhar-S/
Segmented-Invocation-Transformer

Our main contributions are the following:

• We identify the structure for natural language
to Bash generation task and propose a con-
stituency tree based method for incorporat-
ing the structure in the Transformer (Vaswani
et al., 2017) framework. The proposed modifi-
cation improves the performance of the Trans-
former on this task.

• We benchmark the Transformer against the
proposed architecture. Results show a reduc-
tion in inference time and the number of pa-
rameters.

• We conduct attribution analysis using Inte-
grated Gradients (Sundararajan et al., 2017)
to analyze the proposed method’s workings.

First, we formally describe the problem state-
ment. Section 2 describes the structure for the
problem, and Section 3 describes our approach to
model the structure and expected gains in the infer-
ence time via a complexity analysis of the decoding
phase. Section 4 describes the dataset used and its
preprocessing. In Section 5, we describe the ex-
periments conducted for checking the correctness
and efficiency of our approach and analyzing the
results. Section 6 compares our work with other
related works. Finally, in Section 7 we conclude
and discuss some directions for future work.

Problem Statement. Let I be the set of all natu-
ral language invocations, C be the set of all Bash

Figure 1: Segmenting Invocation: First, the raw invocation is normalized to remove patterns and file paths. This
normalized invocation is then parsed to obtain a constituency tree. Then, the tree is cut at a threshold height to
create subtrees. The leaves of each subtree form tokens in the segments.
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commands and D := {(nlc, c)} be a parallel nat-
ural language invocation-Bash command dataset,
where nlc ∈ I and c ∈ C.

The task is to design an algorithm that, given an
invocation nlc ∈ I and dataset D, outputs a set of
Bash command-confidence pairs (ĉ, δ) such that

• ĉ ∈ C is the predicted Bash command that
performs the task specified in nlc, and

• δ ∈ [0, 1] is the associated confidence score.

For example,
nlc = Delete files with inode number specified by
REGEX under current directory.
c = f i n d . −inum REGEX − exec rm − i {} \ ;

2 Problem Structure

On conducting a manual analysis of a few examples
from the training data, it was observed that natural
language invocations are often complex and can
be broken down into simpler descriptive segments
needed for the task. These segments would often
map directly to a Bash command component- a
utility, a flag or an argument. For instance, consider
Invocation

| Delete | files | with | inode number | specified |
by REGEX | under current directory.|
BashCommand

f i n d . −inum REGEX − exec rm − i {} \ ;

Invocation segment Bash command component
Delete rm
inode number -inum
by REGEX REGEX
under current directory .

Table 1: Segments from natural language invocation
that align with Bash command components (utilities,
flags and arguments).

Table 1 lists the segments of the invocation that
map to the command components. These segments
represent meaningful self-contained constituents
of a complex invocation. In the above instance,
"under current directory" and "by REGEX" are
segments representing single concepts.

3 Method

We frame the problem as a translation task from
English to Bash. In Section 3.1 we describe our
approach to incorporate the structure in modelling

natural language invocations. Section 3.2 describes
the proposed architecture and an analysis of its
computational complexity at inference time.

3.1 Segmenting Invocation using Constituency
Tree

The constituency tree represents the syntactic struc-
ture of a sentence based on phrase structure gram-
mar (Chomsky, 1956). We propose a simple
method that utilizes the constituency tree for seg-
menting natural language invocations. Our method
is outlined in Figure 1. First, we normalize the in-
vocation to replace patterns and file paths with their
types. Next, we parse the normalized English invo-
cation to obtain its constituency parse tree. For all
the experiments reported in this work, we use the
Stanford CoreNLP parser (Manning et al., 2014).
Let the height of a node be defined as the number
of edges on the longest path from the node to a leaf
in the node’s subtree (as shown in Figure 1). Then
we perform a depth-first traversal on the tree in
the left to right order of nodes. While performing
the depth-first traversal, we cut the tree at the first
node with a height less than a threshold and do not
expand the search on this node further. As a result,
we obtain various subtrees, where each subtree cor-
responds to a segment composed of the tokens in
the leaves of the subtree. Finally, all segments are
collected from the subtrees to obtain the segmented
invocation.

3.2 Segmented Invocation Transformer
Let the nlc = [t1, t2, . . . tn] be composed of
n tokens. The invocation segmentation proce-
dure takes the constituency tree for nlc and the
threshold height as inputs and returns k seg-
ments [s1, s2, . . . sk], where each segment si =
[tj , tj+1, . . . tj+ni−1] is composed of ni tokens
such that

∑k
i=1 ni = n.

We use a Transformer (Vaswani et al., 2017)
based architecture and modify the Transformer en-
coder to capitalize on the segmentation informa-
tion obtained from the constituency tree. Specifi-
cally, an averaging layer is introduced before the
Transformer encoder to capture the local structure
(Section 2). From the embedded token sequence
comprising of n vectors, the averaging layer com-
putes a sequence of k segment embeddings. The
input to the averaging layer consists of n vectors,
each resulting from the sum of token embedding
and the corresponding sinusoidal position embed-
ding. These are grouped into k segments, and the
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averaging layer then computes the mean over each
segment to produce a sequence of k embedding
vectors, one for each segment. On the decoder
side, we use the standard Transformer decoder. We
name this architecture Segmented Invocation Trans-
former (SIT), and it is shown in Figure 2. The
model is trained by back-propagation on the cross-
entropy loss with label smoothing of 0.1.

Complexity Analysis Next, we analyze the com-
putational complexity of the cross-attention of the
decoder during inference to point out the improve-
ment over the vanilla Transformer. The decoding
occurs in discrete time steps. We shall consider
a single time step in this analysis. At each time
step, in the cross-attention layer of the decoder, we
first construct the keys, query and values and then
perform a softmax over the product of keys ma-
trix with the query vector to get the cross-attention
scores. Let the dimension of the embedding vectors
be d. Considering a single head for simplicity, the
construction of values matrix takes O(kd2) time
(from the multiplication of Rk×d and Rd×d matri-
ces), where k is the number of segments. Similarly,
the construction of query vector takes O(d2) time
(from the multiplication of a Rd vector with Rd×d

matrix). Multiplying keys matrix (Rk×d) with the
query vector (Rd) followed by a softmax (over k
attention scores) takes O(kd+k) time. This step is
followed by a weighted aggregation of the k values,
each being d-dimensional, in O(kd) time. Hence,
the overall complexity for cross-attention layer is
O(kd2 + d2 + kd). Since the dimension d is a
constant, this can be simplified to O(k). A vanilla
Transformer would incur O(n) time. Therefore,
our method provides a constant factor improvement
per decoding time step. This advantage adds up
due to multiple decoding time steps needed during
the inference phase. The time benchmarks (Sec-
tion 5.2) show these differences in practice.

4 Data and Preprocessing

For evaluating our method, we used the NL2Bash
dataset (Lin et al., 2018) provided by the
NLC2CMD contest (Agarwal et al., 2021) from
NeurIPS 2020. It consists of approximately 10k
paired English invocations and Bash commands
scraped from Stack Overflow covering over 100
Bash utilities. The dataset was partitioned into five
folds. We performed five runs. In each run, we
split one fold equally for validation and testing.
The remaining four folds were pooled to create the

Figure 2: Segmented Invocation Transformer (SIT): We
introduce an averaging layer to generate embeddings
for each segment. These embeddings are then fed into a
standard Transformer that outputs the bash command.

training set for the run. All results mentioned in
Table 3 are averaged over these five runs. Invo-
cations and bash commands for all the models to
remove file paths and regex. We used the natural
language toolkit1 and the Bash parser2 shared by
the NLC2CMD competition organizers for prepro-
cessing.

5 Experiments

Section 5.1 describes the experiments conducted
to measure our method’s accuracy. Section 5.2 de-
scribes the time benchmark. Section 5.3 describes
the analysis using Integrated Gradients.

5.1 Translation Accuracy

Section 5.1.1 explains the accuracy metric pro-
posed in the NLC2CMD competition. Section 5.1.2
lists the baselines our method is compared with.
Section 5.1.3 lists the hyper-parameters and Sec-
tion 5.1.4 contains a discussion of the results.

5.1.1 NLC2CMD Competition Metric
Agarwal et al. (2021) pointed out the shortcomings
of existing evaluation metrics like BLEU score (Pa-
pineni et al., 2002), Exact Match accuracy and Tem-
plate accuracy (Lin et al., 2018) in the context of
natural language to Bash generation and proposed a
new scoring mechanism for the NLC2CMD compe-
tition. This score incentivizes precision and recall
of correct utility and flags weighted by the reported

1https://github.com/IBM/clai/tree/
nlc2cmd/tellina-baseline/src/submission_
code/nlp_tools

2https://github.com/IBM/clai/tree/
nlc2cmd/utils/bashlint
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system confidence (δ). It ignores command argu-
ments but considers utilities’ order and flags. The
translation system is also penalized for producing
redundant flags.

Now, we formally describe the competition met-
ric3 from Agarwal et al. (2021). Let model A out-
put top-5 translations as follows: A : nlc 7→
{q|q = (ĉ, δ)}. Here the tuple (ĉ, δ) represents the
predicted command ĉ with associated confidence
score δ. We consider |A(nlc)| ≤ 5 and assume
that there is only one ground truth command c cor-
responding to an invocation nlc. Then, the normal-
ized score of a single prediction is:

S(q) =
∑

i∈[1,T ]
δ
T ×

(
I(U(ĉ)i = U(c)i) ×

1
2

(
1+ 1

Ni

(
2×|F (U(ĉ)i)∩F (U(c)i)|−|F (U(ĉ)i)∪

F (U(c)i)|
))

− I(U(ĉ)i ̸= U(c)i)

)

Here, I(·) is the indicator function, U(c) is
the sequence of Bash utilities in the command c,
F (u) is the set of flags for utility u in respec-
tive command, T = max

(
|U(c)|, |U(ĉ)|

)
and

Ni = max
(
|F (U(c)i)|, |F (U(ĉ)i)|

)
.

Total score of the prediction is defined as:

Score =





if S(q) > 0
maxq∈A(nlc) S(q), for some

q ∈ A(nlc);
1

|A(nlc)|
∑

q∈A(nlc)

S(q), otherwise.

5.1.2 Baselines
We compare our method with the following base-
lines:

• T5 (Raffel et al., 2019): T5 is a Transformer-
based model trained on large amount of data.
We fine-tuned the T5-small checkpoint by hug-
gingface (Wolf et al., 2020) on our dataset.
The input to the model was "translate En-
glish to Bash:" followed by the invocation.
T5-small and T5-base were tested. T5-small
performed better. Results for the same are
reported.

• Code-T5 (Wang et al., 2021): CodeT5 is a
T5 derivative proposed to improve the perfor-
mance on both code understanding and code
generation tasks. It is pre-trained on eight pro-
gramming languages- Java, Ruby, Javascript,

3https://github.com/IBM/clai/tree/
nlc2cmd/utils/metric

Go, PHP, Python, C and Cpp. We fine-tuned
the CodeT5-small checkpoint by huggingface
(Wolf et al., 2020) on our dataset. The input
to the model was "translate English to Bash:"
followed by the invocation. CodeT5-small
and CodeT5-base were tested. CodeT5-small
performed better. Results for the same are
reported.

• Seq2Seq (Bahdanau et al., 2015): This is an
attention enhanced encoder-decoder architec-
ture with a bidirectional LSTM encoder and a
unidirectional LSTM decoder.

• Explainable-NL2BashAST (Bharadwaj
and Shevade, 2021): A natural language
to Bash translation model that generates
explanations besides Bash commands and
uses Abstract Syntax Tree information. It
also uses Bash utility description besides
the parallel NL2Bash data. We use the
code shared by the authors at https:
//www.github.com/Shikhar-S/
Explainable-NL-to-Bash-AST.

• Magnum (Agarwal et al., 2021): This is the
winner’s model from the NLC2CMD contest
and the state of the art on this problem. The
original system is an ensemble of multiple
Transformers (Vaswani et al., 2017) trained
with different seeds and batch sizes. We com-
pare with a single model from the ensemble
for fair comparison.

5.1.3 Hyper-parameters
SIT uses an embedding dimension of 256 and has
3 encoder layers with 4 attention heads each and 6
decoder layers with 8 attention heads each. It has
feed-forward networks with a dimension of 1024
in both encoder and decoder layers. It is trained
with a batch size of 499 tokens and gradient accu-
mulation over 150 batches. The height threshold
for cutting the subtrees, set to 4, is tuned using
the performance on the validation set. Magnum
takes in an embedding vector of size 512 and has
6 layers in both encoder and decoder, each with 8
attention heads. Magnum is trained for 2500 steps,
with each batch containing 14000 tokens with gra-
dient accumulation over 2 batches and a warm-up
scheduler. Seq2Seq has two 256 dimensional bidi-
rectional LSTM layers in the encoder and two 256
dimensional LSTM layers in the decoder with atten-
tion between encoder and decoder. T5-small and
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Model CPU Threads Mean (sec) Median (sec) Interquartile Range (sec)

Magnum (Single Model) 1 145.70 144.51 1.98
SIT 1 59.07 59.22 1.87

Magnum (Single Model) 2 105.60 102.92 4.24
SIT 2 51.52 51.80 1.43

Magnum (Single Model) 3 94.57 92.17 2.26
SIT 3 47.63 47.62 1.82

Magnum (Single Model) 4 89.01 87.16 3.94
SIT 4 45.78 45.62 2.48

Magnum (Single Model) 5 86.73 86.01 0.72
SIT 5 46.49 46.36 2.35

Magnum (Single Model) 6 84.80 83.89 3.83
SIT 6 45.68 45.83 1.84

Table 2: Time Benchmarks: Time taken to run inference on 1K examples from the test set. Each entry is computed
from 25 repeated runs. System configuration is mentioned in Section 5.2.

CodeT5-small are trained with a batch size of 32 ex-
amples, and the number of epochs is tuned based on
the validation set performance. The unit of vocab-
ulary for T5 and CodeT5 are subtokens, whereas,
for all other models, the vocabulary is built from
the whitespace-separated words in the NLC2CMD
dataset. For all models, we use beam search with
10 beams and top-5 predictions to generate final
Bash commands. We use 1 as the confidence score
(δ) for top p predictions and exp(beam_score)/2
for the remaining 5-p. This parameter p is tuned
separately on the validation set for each model con-
sidered.

5.1.4 Results

Results are reported in Table 3. SIT performs bet-
ter than all other models. T5 performs the worst,
probably due to the large predefined vocabulary of
standard T5 models. For every other model, the
vocabulary is limited to the NLC2CMD dataset.
The winners of NLC2CMD also report that a de-
crease in vocabulary size increases performance for
this task. There is no straightforward way to adapt
the vocabulary of T5 and CodeT5 for this dataset.
Seq2Seq performs better than T5 and CodeT5. We
hypothesize that this is due to the smaller target
side vocabulary learned from the data. CodeT5,
trained on a large amount of code and natural lan-
guage data, performs better than T5 but still lags
behind SIT. Explainable-NL2BashAST performs
better than T5 and Sequence to Sequence but lags
behind Magnum because it is developed for com-
mands with a single utility, and it constructs a target
sequence that is twice as long as a Bash command.
This makes the decoding using beam search less
efficient.

Model Test score

T5 (Raffel et al., 2019) 0.316± 0.021
CodeT5 (Wang et al., 2021) 0.355± 0.025
Seq2Seq (Bahdanau et al., 2015) 0.362± 0.012
Explainable-NL2BashAST (Bharadwaj and Shevade, 2021) 0.390± 0.012
Magnum (Single Model) (Agarwal et al., 2021) 0.428± 0.010
SIT (Proposed Method) 0.438 ± 0.018

Table 3: NLC2CMD Competition metric on the test set.
Values range from -1 to 1 with higher being better. All
entries are averaged over 5 runs and in the form mean
± standard deviation.

Parameter Efficiency. SIT has 9M parameters,
whereas Magnum has 45M parameters. This re-
sults from SIT’s encoder being much smaller than
Magnum’s encoder, which is expected since we use
the constituency parse tree information to model
the natural language sequence. The 5x gain in pa-
rameter efficiency is especially important for this
task since it will allow the proposed method to be
employed in real-world systems with significantly
less memory and power consumption.

5.2 Time Benchmark

Configuration. We consider a relatively inex-
pensive system configuration without access to
a Graphics Processing Unit because we expect
the users of our system to run it on a standard
development machine. We benchmark the infer-
ence time for Magnum (Agarwal et al., 2021)
and SIT (excluding constituency parsing) on
the test set. The benchmarks are run on a 6
core Intel(R) Core(TM) i5-10400 CPU, using
torch.utils.benchmark available in Py-
Torch (Paszke et al., 2019). We report results from
25 runs for each setting in Table 2. We benchmark
a single model from the Magnum ensemble for

3164



Figure 3: Alignments from Attribution Scores: Normalized invocation is on the left and normalized command is at
the bottom.

comparison with a single SIT model.

Results. Results are reported in Table 2. We ob-
serve that SIT achieves a median time speedup of
almost 1.8x over Magnum. These empirical re-
sults are in line with the complexity analysis from
Section 3.2. On profiling the code, we find that a
significant time spent during inference is to run the
decoder, which is expected as the decoder runs in a
step-wise fashion. Also, we note that the most time-
consuming operations are computing self-attention
and cross-attention matrices from keys, queries and
values. As described in Section 3.2, SIT has fewer
keys and values in the decoder cross-attention layer.
Therefore, it leads to an increase in speed during
inference.

5.3 Attribution Analysis
To assess if SIT attributes the probability of target
tokens to correct invocation segment, we conduct
an attribution analysis using Integrated Gradients
(IG) (Sundararajan et al., 2017). 4 The IG method
computes attribution scores that represent each in-
vocation segment’s contribution in predicting a
command token. IG takes in the trained model,
a baseline invocation and an input invocation as in-
put. The baseline invocation denotes an absence of
signal to the model. We use a sequence of [PAD]
tokens, corresponding to a sequence of zero embed-
ding vectors as the baseline. Integrated Gradients
are defined as the path integral of the gradients
along the straightline path from the baseline to the

4We use the Integrated Gradient implementation provided
by the Captum library - https://www.github.com/
pytorch/captum

input. These are approximated by adding up the
gradients along sufficiently small intervals on this
straightline path. We used 5K steps for approx-
imating the integral since the network is highly
nonlinear.

We clipped the negative attribution scores to
zero to draw attention to positive attributions that
corresponds to alignments. Some resulting ma-
trices from the test set are plotted as heatmaps
and shown in Figure 3. The matrix on the left
shows the alignment matrix for the input invoca-
tion ’Sources script incl.sh in folder where current
script is located’. The corresponding command is
source $(dirname $0)/incl.sh. This is
a Bash command substitution pattern. The inner
command first finds the directory name of the di-
rectory containing the currently running script with
the dirname utility. It then executes the incl.sh
file in that directory with source utility. One can
observe that the bash command source aligns
with the invocation segment sources script, and the
token $(dirname aligns with segments in folder
and where from the invocation.

Similarly, Figure 3 (matrix on the right)
shows the alignment matrix for input invoca-
tion ’Recursively change owner and group to
"$JBOSS_AS_USER" of "$JBOSS_AS_DIR"’,
with the corresponding command chown
-R $JBOSS_AS_USER:$JBOSS_AS_USER
$JBOSS_AS_DIR . The alignment matrix
depicts the correspondence between the invocation
segment recursively and the command flag -R. In
this instance, we also see that some command com-
ponents are erroneously attributed. For instance
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Command Component Total Count Attributed Correctly
Utility 129 94 (72.87%)
Flag 160 110 (68.75%)
Argument 244 84 (34.43%)

Table 4: Results from the evaluation of attributions pro-
duced by Integrated Gradients for 100 random examples
from the test set.

-R is also attributed to REGEX of REGEX.
We sample 100 examples5 from the test set

and manually evaluate the attribution matrices pro-
duced by the IG method. Attribution for a com-
mand component is labelled as correct if one can
look at only the positively attributed invocation seg-
ments to determine the presence of the command
component in the output command. For instance,
consider the attribution matrix on the right in Fig-
ure 3. Here, the counts of correctly attributed utili-
ties, flags and arguments will be 0,1 and 0 respec-
tively. Only the flag -R can be figured out from
the positively attributed input segment recursively.
There is a positive attribution on the invocation seg-
ment owner and group. However, in the absence
of a positive attribution on change, one can not
conclude that the utility chown would be used.

The results of the attribution analysis are shown
in Table 4. We observe that utilities and flags have
higher attribution accuracy than the arguments.
This is due to the preprocessing which normalizes
all file paths and regex expressions. It is also ob-
served that sometimes multiple utilities are needed
to perform the task in the invocation. There is little
alignment between the utilities and invocation seg-
ments in such cases. For instance, when utilities
like sed and awk are connected using the pipe
operator (|) to modify the output of other utilities.
Such implicit need for some utilities results in in-
correct attribution by SIT. Similarly, it is observed
that flags like -and and -or cannot be explicitly
aligned to the invocation segments.

From the attribution analysis, we find that the
proposed architecture is indeed able to capture the
synchronous structure between natural language
segments and Bash command components.

6 Related Work

Early works on semantic parsing explored meaning
representations like first-order logic, lambda cal-

5Attribution matrices for the sampled instances are
available at https://github.com/Shikhar-S/
Segmented-Invocation-Transformer/blob/
main/jup_notebook/attribution_viz.ipynb

culus enhanced first-order logic (Carpenter, 1997),
database query languages and operated on hand-
crafted rules (Johnson, 1984). These were followed
by statistical models that were able to learn rules
from input-output parallel data (Thompson, 2003,
Zettlemoyer and Collins, 2007, Kwiatkowksi et al.,
2010).

Recently, there have been many advancements
in generating high-level programming languages.
Dong and Lapata (2016) and Ling et al. (2016)
propose general attention based encoder-decoder
style methods for semantic parsing. Rabinovich
et al. (2017) propose Abstract Syntax Networks
with a dynamically determined modular decoder
structure that parallels the structure of the output
tree. Yin and Neubig (2017) propose an architec-
ture enhanced by a grammar model that explicitly
captures the target language syntax as prior knowl-
edge. Most of the innovations in this area utilize
recurrent neural networks (RNN) for modelling
natural language input. The method proposed in
this work enhances the Transformer encoder with
constituency parsing information.

For natural language to Bash, in particular, Lin
et al. (2018) created a dataset and proposed an
encoder-decoder based architecture. Gros (2019)
explore several sequence to sequence models, Ab-
stract Syntax Networks and Nearest Neighbor
based models for this task on a custom dataset.
Agarwal et al. (2020) proposed a command-line
AI assistant for this task. Agarwal et al. (2021)
organized a contest in NeurIPS 2020 for natural
language to Bash translation and provided a report
on the state of the art architectures developed in
the contest. Bharadwaj and Shevade (2021) ex-
plored the use of Linux manual pages and Abstract
Syntax Tree for developing an explainable natural
language to Bash translation system. In contrast to
these methods, our work explores the synchronous
structure of this problem and uses the constituency
tree to better model natural language input.

Constituency parse tree of natural language has
been used in earlier machine translation and seman-
tic parsing literature. Nguyen et al. (2019) note
that the Transformer (Vaswani et al., 2017) strug-
gles to encode hierarchical structures and propose a
hierarchical accumulation mechanism that utilizes
constituency parse tree to capture this structure for
neural machine translation. They achieve this by
adding additional parameters that capture the con-
stituency structure of sentences. Our method, in
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contrast, uses constituency tree information in a pa-
rameter efficient manner. Xu et al. (2018) construct
a syntactic graph from constituency and depen-
dency parse tree and employ a graph to sequence
neural network using an RNN decoder. They report
improvement over the sequence to sequence model
proposed by Dong and Lapata (2016) showing that
additional syntactic information helps in seman-
tic parsing. We use a Transformer and show that
segmentation structure aids in natural language to
Bash translation.

7 Conclusion and Future Work

We propose a method that utilizes information from
the constituency tree to better model the structure
of natural language to Bash task. Our experiments
on the NLC2CMD data show that incorporating
the problem structure in the model architecture im-
proves both performance and parameter efficiency.
We also run inference time benchmarks and find
that the proposed method is faster. Attribution anal-
ysis is also conducted to analyze the method.

In this work, we focus on Bash as the meaning
representation and identify the structure for natural
language to Bash translation. However, we expect a
similar structure for other meaning representations
like SQL. Applying our method to natural language
to SQL task is left for future work. Our method
relies on Stanford CoreNLP parser (Manning et al.,
2014) for constituency parsing. This is a bottleneck
for fully utilizing the efficiency of our approach. It
will be interesting to test faster constituency parsers
(Zhang et al., 2020a, Zhang et al., 2020b) which
can parse around 1K sentences per second.
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