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Abstract
o Warning: this paper contains content that
may be offensive or upsetting.

Avoiding to rely on dataset artifacts to pre-
dict hate speech is at the cornerstone of ro-
bust and fair hate speech detection. In this pa-
per we critically analyze lexical biases in hate
speech detection via a cross-platform study,
disentangling various types of spurious and
authentic artifacts and analyzing their impact
on out-of-distribution fairness and robustness.
We experiment with existing approaches and
propose simple yet surprisingly effective data-
centric baselines. Our results on English data
across four platforms show that distinct spuri-
ous artifacts require different treatments to ul-
timately attain both robustness and fairness in
hate speech detection. To encourage research
in this direction, we release all baseline mod-
els and the code to compute artifacts, pointing
it out as a complementary and necessary addi-
tion to the data statements practice.1

1 Introduction

Hate speech in online social communities is a se-
rious and pervasive concern, which requires fair
and robust automated approaches to be tackled at
scale. However, despite the great progress in natu-
ral language processing for detecting hate speech,
current models have shown to be brittle when ap-
plied to real-world data, exhibiting limited out-of-
distribution (OOD) robustness (Vidgen et al., 2019)
and perpetuating and amplifying harmful social bi-
ases (Röttger et al., 2021). Noticeably, hate speech
detection systems are typically trained on data from
limited language varieties such as individual plat-
forms, which inevitably exhibit differences in writ-
ing norms, language use, and hate targets, hamper-
ing generalization (Vidgen and Derczynski, 2020).

One of the main reasons for limited robustness
and fairness of mainstream hate speech detection

1Code and resources are available at https://github.
com/dhfbk/hate-speech-artifacts.

fair robust

what have jews done to you? 7

RT [user]: I’m mad at this 7

All black people literally go there 7 7

Table 1: Posts wrongly labeled as hateful by a fine-
tuned BERT classifier due to the presence of spurious
lexical artifacts (identity and non identity-related) and
their negative impact (7) on fairness and robustness.

systems is largely ascribable to spurious statisti-
cal correlations between surface lexical items and
labels in training data, which models exploit to
derive predictions. These biases are commonly
referred to as lexical dataset artifacts, and have
recently attracted attention in the NLP community,
particularly in natural language inference (NLI)
studies (Belinkov et al., 2019; Gururangan et al.,
2018; Poliak et al., 2018, inter alia). Efforts to
tackle the issue in hate speech detection are instead
rather scattered, and mainly focus on fairness us-
ing datasets from few platforms (Zhou et al., 2021;
Kennedy et al., 2020b, inter alia), leaving the study
on OOD robustness largely unexplored. We instead
argue that fairness and robustness are strongly in-
tertwined aspects (Table 1), and thus should be
studied jointly, with the goal to understand to what
extent these two dimensions are related.

Previous work has shown that state-of-the-art
models overly rely on identity words (e.g., “jews”,
“gay”) to predict hateful content (Zhou et al., 2021;
Kennedy et al., 2020b, inter alia), further de-
moting voices of people from already marginal-
ized groups (Bender et al., 2021). However, non
identity-related lexical items – such as “sport”, “an-
nouncer”, and “football” in Waseem and Hovy
(2016) – are also often spuriously associated with
hate speech due to a biased data collection pro-
cess (Wiegand et al., 2019), undermining OOD
robustness. Despite the recent trend in minimizing
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topic bias in data sampling, we show that some spu-
rious lexical artifacts still remain highly-predictive
on certain distributions even if data has been sam-
pled in a more attentive fashion (e.g., artifacts that
are potentially data- or platform-specific – Figure 1,
highlighted in gray).

We argue that disentangling artifacts into fine-
grained categories by means of a cross-platform
analysis may be beneficial to drive a broader de-
biasing of current hate speech models, ultimately
improving both fairness and robustness to out-of-
distribution data. To this purpose, we critically
analyze artifacts in hate speech detection across
multiple platforms and propose simple yet effective
data-centric baselines exploiting spurious lexical
items. We show that although we achieve substan-
tial improvements in OOD fairness by exploiting
spurious identity-related artifacts, this comes at the
cost of robustness. This confirms that fairness and
robustness are strictly interrelated dimensions that
should be studied together in future research.

Contributions To the best of our knowledge, we
are the first to (i) conduct a thorough investigation
of lexical artifacts across online platforms; (ii) dis-
entangle artifacts into fine-grained categories; and
(iii) propose a viable data-centric approach based
on masking that consistently improves fairness over
all baselines across all platforms. To foster future
research on the topic, we also release (iv) code to
reproduce all experiments, and (v) disaggregated
lexical artifact annotations, more broadly (vi) sug-
gesting the inclusion of dataset artifacts in data
statements (Bender and Friedman, 2018), which
can be easily revealed using our codebase.

2 Lexical Artifacts are not all the Same

We conceptualize dataset artifacts at the lexical
level as emergent correlations between tokens and
labels in input data, consistently to lexical annota-
tion artifacts in NLI (Gururangan et al., 2018). As
such, given a target class c, we formally define lexi-
cal artifacts Lc as the set of highly-discriminating2

tokens for c, which comprise authentic artifacts
Ac – items that potentially carry useful information
for the class at hand – and spurious artifacts Sc
– items that are spuriously (or undesirably) associ-
ated to the target class – such that Lc = Ac∪Sc. In
the context of hate speech detection, we consider

2Highly-discriminating tokens can be computed and fil-
tered using information theory and statistics measures.

Figure 1: Illustration of lexical artifacts in hate speech
detection, including relevant examples. AI : authentic
artifacts, identity-related; A¬I : authentic artifacts, non
identity-related; SI : spurious artifacts, identity-related;
S¬I : spurious artifacts, non identity-related. Items
highlighted in gray are potentially platform-specific.

the hateful class as c unless otherwise specified and
simplify the notation (i.e., from “·c” to “·”).

We build our definitions on top of the categories
of lexical biases by Zhou et al. (2021), which origi-
nally identify three bias groups: i) minority identity
mentions which are not offensive, ii) minority iden-
tity mentions which are potentially offensive, and
iii) non-identity mentions which are possibly offen-
sive. We enrich this categorization by introducing
a high-level separation into spurious (i.e., group i)
in Zhou et al. (2021)) and authentic artifacts (i.e.,
group ii) and iii)), and including an additional spu-
rious, non identity-related category (Section 2.2).

Indeed, given the broad nature of authentic and
spurious artifacts, we further categorize them in
Section 2.1 and 2.2 (see Figure 1 for an overview).

2.1 Authentic artifacts

We define authentic lexical artifacts A as the sub-
set of highly-discriminating tokens which poten-
tially convey hatefulness, profanity, or are other-
wise frequently associated with hateful contexts.
Intuitively,A is the set of artifacts which is likely to
be informative to detect hate speech across distribu-
tions. Authentic artifacts enclose minority identity-
related artifacts AI and non-identity artifacts A¬I .

Identity-related (AI ) Potentially offensive or
stereotyping terms towards minority identities (e.g.,
“n*gro”, “f*ggot”, “k*ke”, “wh*re”), as well as re-
claimed slurs (e.g., “n*gga”) (Figure 1, top left).

Non-identity related (A¬I ) Swear words and
profanities (e.g., “f*ck”, “sh*t”) as well as broad
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terms typically associated with hateful contexts
(e.g., “kill”, “idiots”) (Figure 1, bottom right).

2.2 Spurious artifacts

Spurious lexical artifacts S broadly enclose all to-
kens which we do not expect to be predictive for
the target class at hand. As such, we postulate that
those artifacts are a main reason for insufficient
robustness and fairness of current hate speech de-
tectors, and thus may play a positive role in lexical
debiasing. We specifically focus on these artifacts
in our experiments. As for authentic artifacts, spu-
rious items can be grouped into minority identity-
related artifacts SI and non-identity artifacts S¬I ,
the latter being currently disregarded in research
investigating fairness only (Zhou et al., 2021).

Identity-related (SI ) Terms describing a social
minority, which are typically associated to hate
speech due to their frequency on offensive state-
ments on online fora (e.g., “muslim”, “woman”,
“Islam”, “nigerian”, “LGBT”) (Figure 1, top right).

Non-identity related (S¬I ) All non-identity to-
kens which are unexpectedly associated to hate
speech, e.g., due to platform-specificity, bias in
collection timeframe, etc. (e.g., “people”, “RT”,
“streets”, “Trump”, “yeah”) (Figure 1, bottom left).

3 Data

In this work we focus on hate speech, i.e., messages
whose content spreads hatred or incites violence,
or threatens people’s freedom, dignity and safety,
and whose target is a protected group, or an indi-
vidual targeted for belonging to such a group and
not for his/her individual characteristics (Poletto
et al., 2021). Hate speech typically encompasses
serious cases of offense with severe moral and legal
implications, i.e., those cases that are of primary
importance for content moderation.

We collect hate speech corpora that meet the fol-
lowing criteria: (i) they minimize topic and author
biases in data collection (Wiegand et al., 2019), us-
ing alternatives to keyword and user searches such
as pure or boosted random sampling, (ii) they per-
tain to different social media platforms, and (iii)
they follow similar annotation guidelines, where
hate speech is clearly defined and separated from
other types of offensive language. For each corpus
we create hateful and non-hateful examples. All
datasets follow consistent preprocessing, deduplica-
tion, and anonymization (Appendices A.1 and A.2).

REDDIT ( \ ) We use the recently introduced
Reddit dataset (v1.1) by Vidgen et al. (2021) which
preserves a variety of grammar, topic, and style fea-
tures due to a community-based sampling approach.
The corpus contains 27,494 entries annotated fol-
lowing a hate speech taxonomy comprising abu-
sive (identity-directed, affiliation-directed, person-
directed) and non-abusive labels (non-hateful slurs,
counter speech, and neutral). We follow the widely
accepted definition of hate speech as “abuse target-
ing a protected group or its members for being a
part of that group”3 (Röttger et al., 2021; Banko
et al., 2020; Vidgen et al., 2019, inter alia) to create
the hateful label from identity-directed examples,
and the non-hateful label from the remaining exam-
ples. For the purpose of this study, we discard in-
stances marked as requiring previous content to be
interpreted.4 The final dataset after preprocessing
consists of 1,688 hateful and 19,888 non-hateful
examples, for a total of 21,576 unique instances.

TWITTER ( 7 ) We select a widely used hate
speech dataset which has been collected follow-
ing a bootstrap random sampling approach (Founta
et al., 2018). The dataset consists of 99,996 tweets
annotated as hateful, abusive, spam, and normal.
Similarly to previous work, we discard the spam
category (Zhou et al., 2021), forming the hateful
class following the original classification provided
by the authors. This led to 3,937 hateful and 70,554
non-hateful examples, for a total of 74,491 tweets.

GAB ( ) We use the GAB hate corpus
by Kennedy et al. (2020a), whose data has been
sampled purely randomly due to the frequency of
hate speech of the “free speech-preserving” (Zan-
nettou et al., 2018) GAB social network. The cor-
pus (v.2021-03-03) consists of 27,546 posts anno-
tated with (assault on) human dignity, call for vio-
lence, and vulgarity/offensive labels. Similarly to
previous work, we take the union of human dig-
nity and call for violence labels for the hateful
class (Kennedy et al., 2020b), whereas we create
the non-hateful class from the remaining examples.
We also leverage target annotations and consider
messages towards ideology/political groups as non-
hateful, to ensure consistency among datasets. As

3Groups based on age, disability, familial status, gender
identity, national/ethnic origins, pregnancy, race, religion, sex
or sexual orientation, as defined in Röttger et al. (2021), which
in turn reflects the US 1964 Civil Rights Act, the EU’s Charter
of Fundamental Rights, and the UK’s 2010 Equality Act.

4We leave the investigation of lexical artifacts in context-
aware hate speech detection for future work.
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a result, the final dataset is made up of 27,014 mes-
sages: 1,785 hateful and 24,829 non-hateful.

STORMFRONT ( Ê ) We use the dataset pertain-
ing to a white supremacist web forum collected
by de Gibert et al. (2018) following a random sam-
pling procedure. It consists of a total of 10,944
messages with annotations for hate, no-hate, re-
lation, and skip labels. We remove relation and
skip examples, since they require previous context,
or they represent spam / content written in other
languages, respectively. We then use the hate exam-
ples for the hateful class, and the no-hate instances
for the non-hateful class. This led to a total of
10,448 examples, 1,192 hateful and 9,256 normal.

4 Disentangling Lexical Artifacts

In order to disentangle lexical artifacts, we first
compute the correlation between each token and the
hateful class for each dataset (Section 4.1), then as-
sessing the cross-distribution indicativeness of each
token (Section 4.2). For segmenting texts into to-
kens, we rely on the training portion of each dataset
only (Section 5) and employ the WordPiece (Schus-
ter and Nakajima, 2012) subword tokenizer as used
in BERT (Devlin et al., 2019).5 Finally, we perform
lexical artifacts annotation (Section 4.3) following
the categories defined in Section 2.

4.1 In-distribution artifacts
We follow Gururangan et al. (2018) and employ
pointwise mutual information (PMI; Fano, 1961)
to compute the discriminativeness of each token to
the target class.6 Since lexical artifacts are meant
to be used for downstream debiasing, we argue that
tokens should be consistent with inputs to the end
model. As a result, we use tokens as given by the
WordPiece subword tokenizer, the same tokenizer
used by models employed in our experiments (Sec-
tion 5). Formally, given a token t and a class c, the
PMI is defined as follows:

PMI(t, c) = log
p(t, c)

p(t|·)p(·|c) (1)

We further apply reweighting to emphasize
highly-discriminative token-class correlations, and
normalize ≤ 0 values to zero since negative PMI

5In preliminary experiments we found similar results when
using the byte-level BPE tokenizer (Sennrich et al., 2016) as
used in RoBERTa (Liu et al., 2019).

6A comparative assessment of different metrics for com-
puting token-class correlations is out-of-scope in this study
and will be investigated in future work.

Rank \ 7 Ê Avg.

1 ##tar ##gga white n*gro ##s
2 ##ded hate jews white white
3 ##s rt ##gger black black
4 fa ##s ##s ##s jews
5 b*tch [user] jew jews hate
6 ##gg idiot islam whites ##es
7 gay trump muslim blacks women
8 women ass whites jew people
9 ##ds idiots ##gg race ##tar

10 f*cking people women ##es jew

Table 2: Top 10 most informative tokens for the hateful
class according to PMI, divided per platform dataset
(left), and after cross-distribution computation (right).

scores are known to be unreliable on relatively
small corpora (Jurafsky and Martin, 2021, Ch. 6).

Discussion The top 10 tokens on each platform
that are more associated with the hateful class are
presented in Table 2 (left). All platforms exhibit
a variety of lexical artifact types (cf. Section 2);
however, we observe clear divergences across dis-
tributions. While artifacts in Stormfront data are
mainly related to race, on Gab the focus is more
on religion. Reddit and Twitter conversations are
instead more varied, with higher occurrence of spu-
rious, non-identity artifacts (e.g., “RT”, “people”).

4.2 Cross-distribution artifacts

When datasets from multiple platforms are avail-
able, we hypothesize that leveraging individual
scores makes possible to better identify artifacts.
Given PMI(t, c)d the score of a token t for the
hateful class c on a given distribution d ∈ D
(e.g., platform), we normalize it in [0, 1] by ap-
plying a min-max normalization function to en-
able cross-platform score comparability – obtaining
PMI(t, c)d[0,1] – further applying a log2 transforma-
tion to mitigate the skewness of the original PMI
distribution. As a result, the final cross-distribution
score S(t, c) for each token is given by the average
of the corresponding individual scores:

S(t, c) =
1

|D|
∑D

d=1
log2(PMI(t, c)d[0,1]) (2)

We then sort tokens by descending score, high-
lighting lexical artifacts that are highly discrim-
inating for the hateful class across distributions.
Table 2 (right) shows the top 10 tokens after the
cross-platform computation is carried out.
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Discussion As shown in Table 2 (right), cross-
platform importance of tokens for the hateful class
demotes scores (and thus, ranks) of lexical artifacts
which are likely to be more indicative on some
platforms only (e.g., “RT”), while consolidating
the informativeness of cross-platform items (e.g.,
“jews”, “hate”, “##s”, “##es”,7 “people”). This con-
firms our hypothesis that encompassing multiple
platforms is beneficial for capturing lexical items
that are likely to be predictive across distributions.

4.3 Artifacts annotation
In order to disentangle lexical artifacts for further
debiasing, we select the k most predictive tokens
given by the cross-distribution rank of discrimina-
tiveness (Section 4.2) to be manually annotated.8

In our experiments, we set k = 200 as it matches
the subset of tokens which are highly informative
(≥ 0.33).9 All k tokens have been labeled as poten-
tially hateful and/or related to minority identities by
two annotators – male and female, fluent in English
– with background in linguistics and NLP, and past
experience in hate speech activities with NGOs.
Each annotator was provided with five examples of
tokens in context for enabling more informed anno-
tation decisions, represented by randomly sampled
posts from the four platforms included in this study.

After annotation, the two annotators were in-
volved in an adjudication session in order to discuss
the cases of disagreement, followed by correction
wherever possible. We calculate the inter-annotator
agreement (IAA) score before and after adjudica-
tion using Cohen’s kappa (Cohen, 1960). We ob-
tain κ = 0.6887 before and κ = 0.8311 after the
adjudication session, which is high agreement.

Discussion Although some cases of disagree-
ment were easily resolvable (e.g., annotation er-
rors), we found tokens which are difficult to discern
due to ambiguity – mostly subwords – or due to
real disagreement in the interpretation of the terms.
This is in line with existing works showing that
disagreement in toxicity annotation is inherent to
the task and cannot always be solved through ma-
jority voting or adjudication (Aroyo et al., 2019;

7We found “##s” and “##es” tokens typically correspond
to plural suffixes of out-of-vocabulary words.

8The main advantage of token-level annotation compared
to word-level annotation is that it allows to discern generic
subwords from hateful or identity-related ones – e.g., “homo-
phobia” 7→ {“homo”, “##phobia”} – without losing important
information when doing removal or masking (Section 5).

9We leave the investigation of larger thresholds for future
work due to space and annotation constraints.

1

0.9

0.8

0.7

0.6

0.5

0.4C
oh

en
’s

ka
pp

a
(κ

)

Hatefulness & Identity

before adjudication
after adjudication

1

0.9

0.8

0.7

0.6

0.5

0.4C
oh

en
’s

ka
pp

a
(κ

)

Hatefulness

before adjudication
after adjudication

25 50 75 100 125 150 175 200

1

0.9

0.8

0.7

0.6

0.5

0.4

Top k tokens

C
oh

en
’s

ka
pp

a
(κ

)

Identity

before adjudication
after adjudication

Figure 2: Cumulative Cohen’s kappa (κ) scores for the
full annotation of lexical artifacts (top), and for deci-
sions on potentially hateful or identity-related artifacts
only (middle and bottom, respectively), ordered by in-
formativeness according to cross-distribution scores.

Leonardelli et al., 2021). Interestingly, this dis-
agreement follows the trend of cross-distribution
rank of artifacts (Figure 2). We decided to leave
the analysis of annotators’ disagreement for future
work, and we release these cases as disaggregated
labels. In Table 3 we show the most informative
artifacts by type, whereas the full list of spurious
artifacts used in the experiments is in Appendix B.

5 Experiments

We investigate the impact of spurious lexical ar-
tifacts on fairness and robustness in hate speech
detection. Similarly to previous studies (Kennedy
et al., 2020a; Röttger et al., 2021), we cast hate
speech detection as a binary classification problem,
where the two classes to be predicted are hateful
and non-hateful, as defined in Section 3. We carry
out in-distribution and OOD experiments, namely
training and testing all models on the same or dif-
ferent platform data, respectively. We evaluate per-
formance of models using macro F1 score, whereas
for fairness we use false positive rate (FPR) on test
instances containing SI mentions, consistently to
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Authentic artifacts Spurious artifacts
AI A¬I SI S¬I

retar*s hate white _s
b*tch dumb black _es
n*gro stupid jews people
f*ggot disgusting women country
n*gger kill jew _ing
n*gga racist whites anti
r*tarded filthy blacks illegal
fa*s evil muslim bunch
f*gs ass gay _t
f*ggot rape muslims kids

Table 3: Top 10 tokens per artifact type after anno-
tation. Gray letters indicate the most common token
prefixes/suffixes which occur with the lexical items. If
a variety of them is available, we indicate it with “_”.

previous work (Zhou et al., 2021).
We outline the experimental setup in Section 5.1,

whereas data-centric baselines are presented in Sec-
tion 5.2. Lastly, we present results and a thorough
discussion in Section 5.3.

5.1 Experimental setup

For all our experiments, we employ the uncased
BERT-base model (Devlin et al., 2019) as imple-
mented in the MaChAmp v0.2 toolkit (van der Goot
et al., 2021), since it has been shown to achieve
state-of-the-art performance in hate speech detec-
tion (Tran et al., 2020). We use default hyperparam-
eters, and perform a grid search to determine the
number of epochs, the learning rate, and the batch
size, using the search space suggested by Devlin
et al. (2019) – i.e., [2, 3, 4] for epochs, [2e-05, 3e-
05, 5e-05] for learning rate, and [16, 32] for batch
size. We use stratified 80% train, 10% develop-
ment, 10% test splits for each dataset, selecting the
best model based on the average macro F1 score
on the development test across all platforms. Dur-
ing fine-tuning, we emphasize the minority hate-
ful class using a cross-entropy loss with balanced
class weights. The final hyperparameters are: 4 for
epochs, 2e-05 for learning rate, and 16 for batch
size. All experiments have been run on a NVIDIA
Tesla V100-SXM2 GPU, with a training time rang-
ing from 10 to 40 minutes each. The number of
trainable parameter for all models are ≈110M.

5.2 Baselines

We investigate the impact of spurious identity-
related and non identity-related lexical artifacts on
the robustness and fairness of hate speech detection
by employing the following data-centric baselines.

VANILLA We fine-tune the BERT-base model on
each corpus, so that the proposed baselines can be
directly compared to a commonly employed setup.

FILTERING Swayamdipta et al. (2020) have
shown that the most ambiguous training data in-
stances promote OOD generalization while pre-
serving in-distribution performance. We thus lever-
age the VANILLA model’s training dynamics to
filter training data to contain the 33% most am-
biguous instances only, in line with the subset size
in Swayamdipta et al. (2020).10 Intuitively, those
are instances whose class probabilities fluctuate
frequently across training epochs. We then fine-
tune the BERT-base model on the resulting subset.
This setup is similar in spirit to the one employed
in Zhou et al. (2021); however, we assess it on data
from multiple platforms, also removing duplicate
instances (Appendix A.2) which may potentially
confound the debiasing results.

REMOVAL Prior to fine-tuning, we naively re-
move any occurrence of spurious lexical artifacts
from training and development data. This matches
previously employed baselines for assessing fair-
ness in hate speech detection (Kennedy et al.,
2020b). However, since we are also interested in
OOD robustness, we experiment with two removal
variants: one for SI and one for S¬I artifacts. We
hypothesize that removing SI tokens potentially
improves fairness, whereas removing S¬I tokens
mostly contributes to OOD robustness.

MASKING We propose a novel data-centric debi-
asing alternative based on token masking. Instead
of removing spurious artifacts altogether, we re-
serve a special token in the vocabulary of the model
that we use as replacement for spurious artifacts.
We then fine-tune the model on the masked data.
Intuitively, this way we encourage the model to
blend all artifacts to a single contextualized rep-
resentation that will never appear during testing,
also avoiding to redistribute the informativeness of
spurious lexical items to surrounding tokens. As
for REMOVAL, we experiment with S¬I and SI
masking variants.

5.3 Results and discussion

In Table 4 we report the results for all baselines
along the in-distribution and out-of-distribution di-
mensions from the lens of fairness and robustness.

10For fair comparison, we also provide results with less
(50%) and more (25%) aggressive thresholds in Appendix C.1.
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In-distribution Out-of-distribution
→\ →7 → →Ê

F1↑ FPR↓ F1↑ FPR↓ F1↑ FPR↓ F1↑ FPR↓ F1↑ FPR↓

VANILLA \ 75.830.3 11.260.9 59.260.7 9.601.3 68.240.4 19.801.4 69.580.3 16.362.0
FILTERING \ 72.791.0 14.574.4 58.950.3 12.054.4 65.571.3 19.196.6 67.681.9 19.672.5

REMOVAL (S¬I) \ 74.960.8 10.391.1 59.280.3 11.090.5 68.560.3 19.291.9 67.651.2 15.321.8
REMOVAL (SI) \ 74.960.8 9.520.9 58.990.4 8.931.7 66.310.6 13.131.1 63.001.5 14.493.6

MASKING (S¬I) \ 74.761.1 10.820.7 59.140.2 13.472.5 67.620.6 19.292.3 66.370.9 17.813.6
MASKING (SI) \ 76.410.6 7.502.0 58.830.4 8.262.3 65.660.8 10.101.5 63.481.6 6.631.9

VANILLA 7 68.830.4 11.011.5 60.611.2 29.874.1 65.950.6 41.724.8 67.680.6 40.175.3
FILTERING 7 68.460.3 14.661.1 61.160.2 38.961.5 63.660.7 52.532.1 65.970.7 53.001.4

REMOVAL (S¬I) 7 67.891.0 13.761.4 60.301.9 37.524.3 65.350.6 48.795.6 65.831.4 54.246.2
REMOVAL (SI) 7 67.650.4 6.991.1 58.770.4 17.462.5 65.710.3 27.985.2 66.951.7 21.743.9

MASKING (S¬I) 7 68.500.5 9.601.4 61.171.2 29.442.3 66.710.9 40.612.8 67.111.0 36.857.4
MASKING (SI) 7 66.720.7 5.360.4 57.721.2 12.552.0 65.070.6 24.143.2 63.133.1 11.593.1

VANILLA 71.290.6 31.414.6 64.510.7 29.155.8 61.121.4 10.042.0 67.660.9 37.686.5
FILTERING 71.130.1 27.477.1 64.310.7 23.675.6 61.090.6 9.904.4 68.151.2 31.886.2

REMOVAL (S¬I) 71.040.3 30.003.4 64.191.1 27.714.3 61.581.1 10.492.3 68.440.8 34.992.2
REMOVAL (SI) 69.780.5 21.525.4 65.080.4 21.936.3 60.541.3 6.991.4 66.521.4 24.227.8

MASKING (S¬I) 71.060.4 27.884.7 64.460.7 25.972.8 61.910.6 8.631.6 68.860.6 33.334.7
MASKING (SI) 69.720.8 13.640.9 65.550.8 15.012.2 60.171.5 3.200.6 66.642.5 13.041.9

VANILLA Ê 78.330.9 15.732.2 60.200.5 17.893.2 58.220.8 5.580.4 64.760.6 25.562.0
FILTERING Ê 73.423.1 17.391.6 58.381.1 18.331.3 57.251.6 6.851.8 62.010.8 25.453.2

REMOVAL (S¬I) Ê 76.771.0 17.811.3 61.321.6 17.171.5 59.072.0 6.180.8 65.260.4 24.751.4
REMOVAL (SI) Ê 75.621.1 15.323.9 58.580.7 20.063.5 58.950.4 7.291.8 61.960.6 22.122.6

MASKING (S¬I) Ê 77.011.0 17.810.7 60.000.7 19.054.2 58.990.8 6.180.3 64.440.2 27.272.0
MASKING (SI) Ê 76.390.6 9.941.6 57.811.2 14.431.1 57.331.5 4.320.6 62.970.4 18.281.7

Table 4: In-distribution and out-of-distribution results (F1 for accuracy and FPR for fairness). Out-of-distribution
results are on→\: REDDIT,→7: TWITTER,→ : GAB, and→Ê: STORMFRONT. Scores are averages of 3
runs with different seeds, whereas subscripts indicate standard deviation. ↑: greater the better; ↓: lower the better.

Since we argue that in-distribution performance is
not a reliable measure for the performance of a hate
speech detection system in the wild, due to space
constraints we here focus on the more realistic yet
more challenging out-of-distribution setup.

Filtering is not a one-size-fits-all solution De-
spite the improvements in OOD generalization on
commonsense reasoning, question answering, and
NLI tasks (Swayamdipta et al., 2020), training on
ambiguous instances collected from training dy-
namics is not as effective in hate speech detec-
tion.11 Instead, our results show that FILTERING

leads to mixed results for OOD fairness compared
to the VANILLA baseline. This is consistent with
results on Twitter data (Zhou et al., 2021), and we
further confirm it is the case also across platforms.
Importantly, we also notice that FILTERING has
a detrimental effect on OOD robustness, except
for two cases only (i.e., 7→\ and →Ê).
This indicates that hate speech detection is a nu-
anced task requiring more targeted approaches than
automated data filtering.

11We notice this holds true also when employing less/more
aggressive filtering thresholds, as shown in Appendix C.1.

Removing SI is not as strong as it has been pre-
viously thought Removing identity terms from
data altogether is a commonly used baseline for
testing downstream fairness (e.g., Kennedy et al.,
2020b). Indeed, our results confirm that RE-
MOVAL(SI) consistently reduces the FPR on test
instances containing SI mentions compared to
the VANILLA baseline – with the only exception
of Ê→ . However, it only improves OOD ro-
bustness on → \ and Ê → 7. Moreover, it
consistently scores lower than MASKING(SI) on
fairness, as discussed below. This raises the ques-
tion of whether REMOVAL(SI) should continue to
be used as fairness baseline in future studies.

Masking SI improves fairness When masking
SI , we notice a consistent improvement in fairness
over all approaches, both in-distribution and out-
of-distribution, on all platforms. Reduction in FPR
over the VANILLA baseline is as large as 3×, as
results for {7; } → Ê and → 7 show.
Most of the remaining train-test pairs show a 2×
improvement in FPR, also compared to the com-
mon REMOVAL(SI) baseline. We hypothesize the
improved fairness performance with respect to RE-
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MOVAL(SI) is due to the way contextualized repre-
sentations are formed during training, as discussed
in Section 5.2. Despite being surprisingly simple,
we envision MASKING(SI) as a strong baseline for
future work on fairness in hate speech detection.

S¬I artifacts are not as useful as SI We ob-
serve that methods exploiting S¬I artifacts lead to
mixed results. This suggests that while a substan-
tial FPR reduction can be achieved exploiting SI
artifacts, robustness calls for more complex debias-
ing strategies to transfer well across distributions.

Fairness comes at the cost of robustness Over-
all, we observe an important trade-off between
fairness and robustness. Data-centric approaches
that achieve a consistently high level of fairness –
namely, MASKING(SI) and REMOVAL(SI) – typ-
ically show a decrease in in-distribution and out-
of-distribution performance – with the exception
of \→\ and →\ for MASKING(SI), and
→\ and Ê→7 for REMOVAL(SI). On one

hand, this suggests that spurious, identity-related
lexical artifacts do play an important role in perfor-
mance across distributions. On the other hand, we
believe this reflects the real performance of a proto-
typical model that is substantially fairer, and thus to
which future work in hate speech detection should
be compared to. We argue that MASKING(SI) rep-
resents a starting point to achieve both fairness and
OOD robustness, the latter requiring more complex,
model-centric debiasing approaches. A summary
of the results over all corpus pairs for each method
is presented in Appendix C.2.

6 Towards Artifacts Documentation

The practice of data statements (Bender and Fried-
man, 2018) has been recently adopted by the NLP
community as a way to include relevant informa-
tion about the creators, the methodology and possi-
ble biases when a dataset is released. This should
in turn have a positive impact on systems trained
on such data, contributing to a better evaluation of
models’ generalization and fairness. We propose
that an artifacts statement should be added to this
documentation as a way to contribute to diagnosis
(and thus mitigation) of pre-existing bias, which is
also one of the goals of data statements.

In particular, we propose a template for lexical ar-
tifacts documentation and publicly release code to
easily compute ranked correlations between tokens
and target classes of interest for a given annotated

corpus. To ensure the process of documenting lexi-
cal artifacts will be as smooth as possible – and thus
allows widespread adoption of artifacts statement
in the future – our code automatically generates out-
puts in different formats, from raw text to LaTeX
code for seamless inclusion in publications.

We present the artifacts statement template be-
low, and provide a full example in Appendix D.

I) TOP LEXICAL ARTIFACTS. Which are the
k most informative tokens in the corpus for the
class(es) of interest? This can be a ranked list of
(k ≥ 10) tokens in plain text or in a tabular format,
optionally along with associated scores. If there are
multiple classes of interest, top k lexical artifacts
for each class should be included.

II) CLASS DEFINITIONS. Different definitions
for the same class may exist across datasets. This
impacts the annotation, which in turn has an effect
on resulting lexical artifacts. An explicit definition
of the target class(es) for which the top lexical
artifacts are computed should be provided here.

III) METHODS AND RESOURCES. The method
used to compute the correlation between tokens and
class(es) (e.g., PMI, interpretability approaches)
in the annotated corpus should be reported here,
possibly with a link to code. If preprocessing and
deduplication have been performed, they should
be clearly reported. Resources such as full lists of
lexical artifacts can be additionally included.

7 Related Work

The problem of models’ generalizability related
to hate speech detection has been extensively dis-
cussed in recent works (Vidgen and Derczynski,
2020; Yin and Zubiaga, 2021; Wich et al., 2021).
Indeed, it has been shown that state-of-the-art per-
formance on this task overestimates the capability
of models to yield the same results over time (Flo-
rio et al., 2020) or across different domains (Wie-
gand et al., 2019). Possible mitigation strategies
include domain adaptation techniques (Ramponi
and Plank, 2020), augmenting smaller datasets with
a larger dataset from a different domain (Karan
and Šnajder, 2018), the use of a domain lexi-
con to transfer knowledge across domains (Pa-
mungkas and Patti, 2019) and the fine-tuning of
HateBERT (Caselli et al., 2021) on the target cor-
pus (Bose et al., 2021), among others.

Concerning bias and fairness, several works have
pointed out the presence of bias in hate and abu-
sive language datasets (Wiegand et al., 2019; Sap
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et al., 2019, 2020). This issue has been addressed
in different ways, including functional tests for
hate speech detection models (Röttger et al., 2021;
Manerba and Tonelli, 2021) and post-hoc expla-
nations to measure models’ bias towards identity
terms (Kennedy et al., 2020b). As regards bias
mitigation, the task has been addressed through a
number of approaches, e.g., via adversarial feature
learning (Vaidya et al., 2020), by using debiased
word embeddings and gender swap data augmen-
tation (Park et al., 2018) or by adding non-toxic
examples to better balance the data (Dixon et al.,
2018). The work probably most related to ours
is Zhou et al. (2021), which presents an analysis of
lexical and dialectal biases in the dataset by Founta
et al. (2018). The authors propose lexical bias cate-
gories which we extend in this work (see Section 2).
However, they focus only on one dataset and on in-
domain bias reduction. Moreover, they start from a
list of “bad words”, whereas we compute it from
data. To our knowledge, this is the first work advo-
cating for a joint view on fairness and robustness,
both identified as critical aspects related to the clas-
sification of hate speech (Wich et al., 2021).

8 Limitations

Our work is a step forward towards a better under-
standing of the bias that can be encoded in hate
speech detection corpora (Blodgett et al., 2020).
However, we are aware of some limitations. First,
all findings in this work are related to hate speech
datasets in English. With the increasing availability
of hate speech data in languages other than English,
we aim to investigate our methods on other lan-
guages too. Second, annotated data from multiple
platforms may not be available for some languages,
and this can limit the cross-distribution computa-
tion of artifacts. Lastly, we acknowledge spurious
statistical correlations may go beyond the token
level. We believe our study is a first step towards
contextual debiasing from spurious lexical artifacts,
and thus can be of inspiration for future studies.

9 Conclusion and Future Directions

This paper investigates the impact of lexical arti-
facts on out-of-distribution fairness and robustness
in hate speech detection, raising awareness on the
interplay between the two dimensions that should
be studied together in future work. We propose a
fine-grained categorization of lexical artifacts and
simple yet effective data-centric baselines, show-

ing that while robustness calls for model-centric
approaches, masking spurious identity artifacts is
a viable approach that we argue should be used as
strong baseline for fairness assessment in future
research. In future work we aim to investigate the
role of dialectal biases and non-lexical artifacts, ex-
tending the study on languages other than English.
We release all baseline models, resources, and the
code to compute lexical artifacts, broadly suggest-
ing the inclusion of “artifacts statement” as a way
to document potential lexical biases when a dataset
is released, to provide a complementary view to
data statements (Bender and Friedman, 2018).

Ethical Considerations

The annotation task described in Section 4.3 was
carried out by two researchers regularly employed
at Fondazione Bruno Kessler as part of their work.

Overall, we do not foresee any specific ethical
concern related to this work. On the contrary, our
goal is to propose artifacts statement as a desir-
able practice for documenting potential biases in
newly released datasets, and improve current debi-
asing methods by distinguishing among different
types of lexical artifacts. However, the (finite set
of) identity-related and offensive tokens consid-
ered in this work are all in English and centered
around Western cultural context. We leave the eval-
uation of our methodology to assess whether there
are language- or more broadly culture-dependent
changes for future work, following recent work on
biases in geo-cultural contexts (Ghosh et al., 2021).
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Appendix

A Data: Additional Details

A.1 Preprocessing and anonymization

We preprocess texts across platforms in a consis-
tent way by anonymizing user mentions, URLs,
and email addresses with [USER], [URL], and
[EMAIL] placeholders, respectively. We seg-
ment hashtags into constituent words using the
wordsegment package,12 remove newlines, un-
escape HTML tags, and lowercase the texts.

A.2 Deduplication

We found many duplicates in the data for all plat-
forms. We argue that retaining duplicates as done
in most previous work could severely affect the reli-
ability of any bias analysis (and debiasing method)
and its subsequent conclusions. Specifically, dupli-
cates can (i) skew the distribution of actual artifacts
in the data, overamplifying some lexical items and
demoting others, and (ii) result in unfair evalua-
tions due to identical examples falling in multiple
instances of the training, development and test sets,
also potentially leading to overfitting.13

Following this intuition, we thus remove dupli-
cate instances after preprocessing.14 Specifically,
we removed 485 duplicate instances from Vid-
gen et al. (2021), 10,911 duplicate instances
from Founta et al. (2018), 521 from Kennedy et al.
(2020a), and 255 from de Gibert et al. (2018).
Moreover, for the purpose of this work we remove
duplicates whose single instances exhibit opposing
labels, leaving the exploration and exploitation of
annotator disagreement for future work.

B List of Spurious Artifacts

In the following, we provide the list of all spuri-
ous lexical artifacts annotated as SI and S¬I as
described in Section 4.3. All these are the ones that
exhibit full agreement. In our shared repository
we also release all artifacts that exhibit disagree-
ment even after adjudication, in order to encourage
future work on this direction.

12https://github.com/grantjenks/
python-wordsegment

13Among duplicates, we found some tweets with more than
100 duplicate instances in Founta et al. (2018).

14Most work do not explicitly mention if deduplication is
carried before or after preprocessing texts. We believe this is
an important detail to foster reproducibility – we found many
examples with the same text but different URLs, unveiling
possibly bot-generated messages we removed this way.

Identity-related (SI ) “white”, “black”, “jews”,
“women”, “jew”, “whites”, “blacks”, “muslim”,
“gay”, “muslims”, “islam”, “woman”, “jewish”,
“islamic”, “immigrants”, “mexican”, “asian”, “ho-
mosexual”, “americans”, “lesbian”, “homo”, “fe-
males”, “america”, “brown”, “israel”, “arabs”,
“zionist”, “trans”, “lgbt”, “girl”, “hispanic”,
“refugees”, “male”, “african”, “africa”, “girls”, “in-
dians”, “queer”, “##grate”, “guy”.

Non identity-related (S¬I ) “##s”, “##es”, “peo-
ple”, “country”, “##ing”, “anti”, “illegal”, “bunch”,
“##t”, “kids”, “culture”, “brain”, “##ly”, “##bt”,
“##d”, “sex”, “ho”, “##nt”, “countries”, “##ic”,
“##ers”, “liberal”, “reason”, “##y”, “human”,
“genocide”, “##ed”, “##ists”, “wrong”, “lives”,
“bad”, “god”, “##oc”, “lying”, “##ard”, “racism”,
“##e”, “##oid”, “##w”, “yeah”, “millions”, “so-
ciety”, “##g”, “leftist”, “crime”, “sp”, “des”,
“##ist”, “##ry”, “mouth”, “##ards”, “##rs”,
“##ize”, “burn”, “murdered”, “worship”, “##en-
ing”, “##ism”, “living”, “##fa”, “coming”, “call-
ing”, “streets”, “##ting”, “force”, “mis”, “##ss”,
“blame”, “typical”, “##pe”, “baby”, “death”, “talk-
ing”, “##gen”, “belong”, “respect”, “di”, “##yp”,
“sexual”, “##less”, “mad”, “war”.

C Experiments: Additional Results

C.1 Filtering with different thresholds

In Table 5 we present results for the FILTER-
ING baseline using different sampling thresh-
olds. Specifically, in addition to using the 33%
(1/3) most ambiguous training data instances as
in Swayamdipta et al. (2020), we provide full re-
sults using more aggressive (i.e., 25%, 1/4) and
less aggressive (i.e., 50%, 1/2) filtering thresholds.
We notice mixed results that make hard to deter-
mine which is the best threshold across platforms.
FILTERING (25%) improves OOD robustness on
→\, and FILTERING (50%) provides best over-

all in-domain performance on . However, MASK-
ING(SI) outperforms all FILTERING approaches
according to the FPR metric.

C.2 Average results over all corpus pairs

We provide a summary of the results for all meth-
ods in Table 6, where we report average scores over
all corpus pairs (refer to Table 4 for full results). On
average, MASKING(SI) improvement in FPR over
the VANILLA baseline is as large as 2×, both in-
distribution and out-of-distribution. This comes at
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In-distribution Out-of-distribution
→\ →7 → →Ê

F1↑ FPR↓ F1↑ FPR↓ F1↑ FPR↓ F1↑ FPR↓ F1↑ FPR↓

FILTERING (25%) \ 72.350.7 13.421.9 58.250.6 11.982.8 65.140.9 18.183.2 67.842.3 20.089.9
FILTERING (33%) \ 72.791.0 14.574.4 58.950.3 12.054.4 65.571.3 19.196.6 67.681.9 19.672.5
FILTERING (50%) \ 74.870.9 11.262.6 59.200.4 9.822.5 66.340.3 19.392.8 69.542.4 20.504.5

FILTERING (25%) 7 68.230.6 15.772.3 60.730.3 40.981.0 62.890.7 53.642.6 65.660.6 59.836.6
FILTERING (33%) 7 68.460.3 14.661.1 61.160.2 38.961.5 63.660.7 52.532.1 65.970.7 53.001.4
FILTERING (50%) 7 68.770.5 12.051.6 61.110.4 35.642.5 65.311.2 46.873.8 67.120.5 48.035.6

FILTERING (25%) 71.160.6 30.512.6 65.920.1 26.701.6 61.600.8 11.311.6 68.700.8 34.582.9
FILTERING (33%) 71.130.1 27.477.1 64.310.7 23.675.6 61.090.6 9.904.4 68.151.2 31.886.2
FILTERING (50%) 71.481.0 27.475.4 64.111.1 24.396.1 61.810.5 8.782.5 67.910.9 29.198.8

FILTERING (25%) Ê 72.942.2 14.702.2 59.040.7 14.571.6 57.122.1 6.771.4 62.430.2 22.734.2
FILTERING (33%) Ê 73.423.1 17.391.6 58.381.1 18.331.3 57.251.6 6.851.8 62.010.8 25.453.2
FILTERING (50%) Ê 76.421.1 13.871.4 59.501.0 14.862.9 58.011.3 5.210.3 63.420.4 22.532.0

Table 5: Additional results for the FILTERING baseline using different sampling thresholds (25%, 33%, 50%).

In-distr. Out-of-distr.
F1↑ FPR↓ F1↑ FPR↓

VANILLA 73.57 17.35 63.98 23.62
FILTERING 71.45 18.52 62.85 25.96

REMOVAL (S¬I) 72.67 17.99 63.90 25.63
REMOVAL (SI) 72.00 13.34 62.61 17.20

MASKING (S¬I) 72.83 16.53 63.90 23.16
MASKING (SI) 72.31 9.11 62.03 11.80

Table 6: Average in-distribution and OOD results over
all corpus pairs for each method.

the cost of a minimal in-distribution and OOD drop
in macro F1 (i.e., −1.26 and −1.95, respectively).

D Lexical Artifacts Statement Example

An example of lexical artifacts statement for the
Reddit dataset (Vidgen et al., 2021) used in this
study is presented in the following.

I) TOP LEXICAL ARTIFACTS. We present the
top k = 10 most informative tokens for the hateful
class along with their scores in Table 7.

Rank Token Score Rank Token Score

1 ##tar 1.00 6 ##gg 0.80
2 ##ded 0.91 7 gay 0.79
3 ##s 0.86 8 women 0.76
4 fa 0.85 9 ##ds 0.74
5 b*tch 0.83 10 f*cking 0.74

Table 7: Top 10 most informative tokens for the hateful
class on the Reddit dataset according to PMI.

II) CLASS DEFINITIONS. The hateful class is
represented by originally identity-directed labeled

examples in CAD (Vidgen et al., 2021), and is de-
fined as “Content which contains a negative state-
ment made against an identity. An ‘identity’ is a so-
cial category that relates to a fundamental aspect of
individuals’ community, socio-demographics, po-
sition or self-representation [...]. It includes but
is not limited to Religion, Race, Ethnicity, Gen-
der, Sexuality, Nationality, Disability/Ableness and
Class.” (Vidgen et al., 2021).

III) METHODS AND RESOURCES. In order
to compute the correlation between tokens to the
hateful class we employ PMI as implemented
in [this work] (code: https://github.com/
dhfbk/hate-speech-artifacts). Input
texts have been preprocessed by anonymizing
user mentions, URLs, and email addresses
with [USER], [URL], and [EMAIL] place-
holders. Hashtags have been segmented using
wordsegment,15 and we remove newlines, un-
escape HTML tags, and lowercase texts. Duplicate
instances have been removed after preprocessing.

The full list of lexical artifacts along with asso-
ciated scores is available at https://github.
com/dhfbk/hate-speech-artifacts.

15https://github.com/grantjenks/
python-wordsegment
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