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Abstract

This paper presents FAMIE, a comprehensive
and efficient active learning (AL) toolkit for
multilingual information extraction. FAMIE is
designed to address a fundamental problem in
existing AL frameworks where annotators need
to wait for a long time between annotation
batches due to the time-consuming nature of
model training and data selection at each AL
iteration. This hinders the engagement, produc-
tivity, and efficiency of annotators. Based on
the idea of using a small proxy network for fast
data selection, we introduce a novel knowledge
distillation mechanism to synchronize the
proxy network with the main large model (i.e.,
BERT-based) to ensure the appropriateness
of the selected annotation examples for
the main model. Our AL framework can
support multiple languages. The experiments
demonstrate the advantages of FAMIE in terms
of competitive performance and time efficiency
for sequence labeling with AL. We publicly
release our code (https://github.com/
nlp-uoregon/famie) and demo website
(http://nlp.uoregon.edu:9000/).
A demo video for FAMIE is provided at:
https://youtu.be/I2i8n_jAyrY.

1 Introduction

Information Extraction (IE) systems provide im-
portant tools to extract structured information from
text (Li et al., 2014; Nguyen and Nguyen, 2019;
Lai et al., 2021; Veyseh et al., 2021; Nguyen et al.,
2021a). At the core of IE involves sequence la-
beling tasks that aim to recognize word spans and
semantic types for some objects of interest (e.g., en-
tities and events) in text. For example, two typical
sequence labeling tasks in IE feature Named En-
tity Recognition (NER) to find names of entities of
interest, and Event Detection (ED) to identify trig-
gers of specified event types (Walker et al., 2006).
Despite extensive research effort for sequence la-
beling (Lafferty et al., 2001; Ma and Hovy, 2016;

Pouran Ben Veyseh et al., 2021b), a major bottle-
neck of existing IE methods involves the require-
ment for large-scale human-annotated data to build
high-quality models. As annotating data is often
expensive and time-consuming, large-scale labeled
data is not practical for various domains and lan-
guages.

To address the annotation cost for IE, previ-
ous work has resorted to active learning (AL) ap-
proaches (Settles and Craven, 2008; Settles, 2009)
where only a selective set of examples are anno-
tated to minimize the annotation effort while max-
imizing the performance. Starting with a set of
unlabeled data, AL methods train and improve a se-
quence labeling model via multiple human-model
collaboration iterations. At each iteration, three
major steps are performed in order: (i) training the
model on the current labeled data, (ii) using the
trained model to select the most informative ex-
amples in the current unlabeled set for annotation,
and (iii) presenting the selected examples to hu-
man annotators to obtain labels. In AL, the number
of annotated samples or annotation time might be
limited by a budget to make it realistic.

Unfortunately, despite much potentials, existing
AL methods and frameworks are still not applied
widely in practice due to their main focus on devis-
ing the most effective example selection algorithm
for human annotation, e.g., based on the diversity
of the examples (Shen et al., 2017; Yuan et al.,
2020) and/or the uncertainty of the models (Roth
and Small, 2006; Wang and Shang, 2014; Shel-
manov et al., 2021). Training and selection time in
the first and second steps of each AL interaction
is thus not considered in prior work for sequence
labeling. This is a critical issue that limits the ap-
plication of AL: annotators might need to wait for
a long period between annotation batches due to
the long training and selection time of the models
at each AL iteration. Given the widespread trend
of using large-scale pre-trained language models
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(e.g., BERT), this problem of long waiting or train-
ing/selection time in AL can only become worse.
On the one hand, the long idle time of annotators
reduces the number of annotated examples given
an annotation budget. Further, the engagement of
annotators in the annotation process can drop sig-
nificantly due to the long interruptions between
annotation rounds, potentially affecting the qual-
ity of their produced annotation. In all, current
AL frameworks are unable to optimize the avail-
able time of annotators to maximize the annotation
quantity and quality for satisfactory performance.

To this end, we demonstrate a novel AL frame-
work (called FAMIE) that leverages large-scale pre-
trained language models for sequence labeling to
achieve optimal modeling capacity while signifi-
cantly reducing the waiting time between annota-
tion rounds to optimize annotator time. Instead of
training the full/main large-scale model for data se-
lection at each AL iteration, our key idea is to train
only a small proxy model on the current labeled
data to recommend new examples for annotation
in the next round. In this way, the training and
data selection time can be reduced significantly to
enhance annotation engagement and quality. An
important issue in this idea is to ensure that the
examples selected by the proxy model are also op-
timal for the main large model. To this end, we
introduce a novel knowledge distillation mecha-
nism for AL that encourages the synchronization
between the proxy and main models, and promotes
the fitness of selected examples for the main model.
To update the main model with new annotated data
for effective distillation, we propose to train the
main large model on current labeled data during
the annotation time, thus not adding to the wait-
ing time of annotators between annotation rounds.
This is in contrast to previous AL frameworks that
leave the computing resources unused during an-
notation time. Our approach can thus efficiently
exploit both human and computer time for AL.

To evaluate the proposed AL framework FAMIE,
we conduct experiments for multilingual sequence
labeling problems, covering two important IE tasks
(i.e., NER and ED) in three languages (i.e., English,
Spanish, and Chinese). The experiments demon-
strate the efficiency and effectiveness of FAMIE
that can achieve strong performance with signif-
icantly less human-computer collaboration time.
Compared to existing AL systems such as Ac-
tiveAnno (Wiechmann et al., 2021) and Paladin

(Nghiem et al., 2021), our system FAMIE features
important advantages. First, FAMIE introduces a
novel approach to reduce model training and data
selection time for AL via a small proxy model
and knowledge distillation while still benefiting
from the advances in large-scale language mod-
els. Second, while previous AL systems only focus
on some specific task in English, FAMIE can sup-
port different sequence labeling tasks in multiple
languages due to the integration of our prior mul-
tilingual toolkit Trankit (Nguyen et al., 2021b) to
perform fundamental NLP tasks in 56 languages.
Third, in contrast to previous AL systems that only
implement one data selection algorithm, FAMIE
covers a diverse set of AL algorithms. Finally,
FAMIE is the first complete AL system that allows
users to define their sequence labeling problems,
work with the models to annotate data, and eventu-
ally obtain a ready-to-use model for deployment.

2 System Description

In AL, we are given two initial datasets, a small
seed set of labeled examples D0 = {(w, y)} and an
unlabeled example set U0 = {w} (the seed set D0

is optional and our system can work directly with
only U0). For sequence labeling, models consume
a sequence of K words w = [w1, w2, . . . , wK ]
(i.e., a sentence/example) to output a tag sequence
y = [y1, y2, . . . , yK ] (yi is the label tag for wi).
The tag sequence is represented in the BIO scheme
to capture spans and types of objects of interest.

A typical AL process contains multiple
rounds/iterations of model training, data selection,
and human annotation in a sequential manner. Let
D and U be the overall labeled and unlabeled set
of examples at the beginning of the current t-th it-
eration (initialized with D0 and U0). At the current
iteration, a sequence labeling model is first trained
on the current labeled set D. A sample selection al-
gorithm then employs the trained model to suggest
the most informative subset of examples U t in U
(i.e., U t ⊂ U ) for annotation. Afterwards, a human
annotator will provide labels for the sentences in
the selected set U t, leading to the labeled examples
Dt for U t. The labeled and unlabeled sets can then
be updated via: D ← D ∪Dt and U ← U \ U t.

2.1 Model

We employ the typical Transformer-CRF archi-
tecture for sequence labeling (Nguyen et al.,
2021b). In particular, given the input sentence
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Figure 1: The overall Proxy Active Learning process.

w = [w1, w2, . . . , wK ], the state-of-the-art mul-
tilingual language model XLM-Roberta (Conneau
et al., 2020) is used to obtain contextualized em-
beddings for the words: X = x1, . . . , xK =
XLMR(w1, . . . , wK) (i.e., to support multiple lan-
guages). Afterwards, the word embeddings are
sent to a feed-forward network with softmax in the
end to obtain the score vectors: zi = softmax(hi)
where hi = FFN(xi). Here, each value in
zi represents a score for a tag in the tag set
V . The score vectors are then fed into a Con-
ditional Random Field (CRF) layer to compute
a distribution for possible tag sequences for w:
P (ŷ|w) = exp(s(ŷ,w))∑

ŷ′∈Y (w) exp(s(ŷ′,w))
where Y (w) is the

set of all possible tag sequences for w. Also,
s(ŷ,w) is the score for a tag sequence ŷ =
[ŷ1, . . . , ŷK ]: s(ŷ,w) =

∑
i zi[ŷi] +

∑
i πŷi→ŷi+1

.
Here, πŷi→ŷi+1

is the transition score from the
tag ŷi to the tag ŷi+1. The model is trained by
minimizing the negative log likelihood: Ltask =
− logP (y|w). For inference, the Viterbi algorithm
is used for decoding: ŷ∗ = maxŷ′P (ŷ′|w).

Adapter-based Finetuning To further improve
the memory and time efficiency, we incorporate
light-weight adapter networks (Houlsby et al.,
2019; Peters et al., 2019) into our model. In form of
small feed-forward networks, adapters are injected
in between the transformer layers of XLM-Roberta.
For training, we only update the adapters while
the parameters of XLM-Roberta are fixed. This
significantly reduces the amount of learning param-
eters while sacrificing minimal extraction loss, or
in case of low-resource learning even surpassing
performance of fully fine-tuned models.

2.2 Data Selection Strategies

To improve the flexibility to accommodate differ-
ent problems, our AL framework supports a wide

range of data selection strategies for choosing the
best batch of examples to label at each iteration
for sequence labeling. These algorithms are cate-
gorized into three groups, i.e., uncertainty-based,
diversity-based, and hybrid. For each group, we
explore its most popular methods as follows.

Uncertainty-based. These methods select exam-
ples for annotation according to the main model’s
confidence over the predicted tag sequences for un-
labeled examples. Early methods sort the unlabeled
examples by the uncertainty of the main model.
To avoid the preference over longer examples, the
method Maximum Normalized Log-Probability
(MNLP) (Shen et al., 2017) proposes to normalize
the likelihood over example lengths. In particular,
MNLP selects examples with the highest MNLP
scores: MNLP (w) = −maxŷ′

1
K logP (ŷ′|w).

Diversity-based. Algorithms in this category as-
sume that a representative set of examples can act
as a good surrogate for the whole dataset. BERT-
KM (Yuan et al., 2020) uses K-Means to cluster
the examples in unlabeled data based on the con-
textualized embeddings of the sentences (i.e., the
representations for the [CLS] tokens in the trained
BERT-based models). The nearest neighbors to the
K cluster centers are then chosen for labeling.

Hybrid. Recently, several works have proposed
data selection strategies for BERT-based AL to
balance between uncertainty and diversity. The
BADGE method (Ash et al., 2019; Kim, 2020)
chooses examples from clusters of gradient embed-
dings, which are formed with the token represen-
tations hi from the penultimate layer of the main
model and the gradients of the cross-entropy loss
with respect to such token representations. The gra-
dient embeddings are then sent to the K-Means++
to find the initial K cluster centers that are distant
from each other, serving as the selected examples
(Kim, 2020).

In addition, we implement the AL framework
ALPS (Yuan et al., 2020) that does not require
training the main model for data section. ALPS
employs the surprisal embedding of w, which is ob-
tained from the likelihoods of masked tokens from
pre-trained language models (i.e., XLM-Roberta).
The surprisal embeddings are also clustered to se-
lect annotation examples as in BERT-KM.
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2.3 Proxy Active Learning

As discussed in the introduction, model training
and data selection at each iteration of traditional
AL methods might consume significant time (espe-
cially with the current trend of large-scale language
models), thus introducing a long idle time for an-
notators that might reduce annotation quality and
quantity. To this end, (Shelmanov et al., 2021) have
explored approaches to accelerate training and data
selection steps for AL by leveraging smaller and
approximate models during the AL iterations. To
make it more efficient, the main large model is
only trained once in the end over all the annotated
examples in AL. Unfortunately, this approach suf-
fers from the mismatch between the approximate
and main models as they are separately trained in
AL, thus limiting the effectiveness of the selected
examples for the main model (Lowell et al., 2019).

To overcome these issues, our AL framework
FAMIE trains a small proxy network at each iter-
ation to suggest new unlabeled samples. Dealing
with the mismatch between the proxy-selected ex-
amples and the main model, FAMIE proposes to
involve the main model in the training and data
selection for the proxy model. In particular, at each
AL iteration, the main model will still be trained
over the latest labeled data. However, to avoid the
interference of the main large model with the wait-
ing time of annotators, we propose to train the main
model during the annotation time of the annotators
(i.e., main model training and data annotation are
done in parallel). Given the main model trained at
previous iteration, knowledge distillation will be
employed to synchronize the knowledge between
the main and proxy models at the current iteration.

The complete framework for FAMIE is pre-
sented in Figure 1. At iteration t, a proxy acquisi-
tion model is trained on the current labeled data set
Dt−1

0 = D0 ∪D1 . . . ∪Dt−1. The trained proxy
model at the current step is called M t

prx. Also,
we use knowledge distillation signals Kt−2

0 that is
computed from the main model M t−1

main trained at
the previous iteration t−1 to synchronize the proxy
model M t

prx and the main model M t−1
main (M1

prx is
trained only on D0). Afterwards, a data selection
algorithm is used to select a batch of examples U t

from the current unlabeled set U for annotation,
leveraging the feedback from M t

prx. Next, a hu-
man annotator will label U t to produce the labeled
data batch Dt for the next iteration t+ 1. During
this annotation time, the main model will also be

trained again over the current labeled data Dt−1
0 to

produce the current version M t
main of the model.

The distillation signal Kt−1
0 for the next step will

also be computed after the training of M t
main. This

process is repeated over multiple iterations and the
last version of Mmain will be returned for users.

To improve the fitness of the proxy-based se-
lected examples for Mmain, we leverage the dis-
tilled version miniLM of XLM-Roberta (Wang
et al., 2021) that employs similar stacks of trans-
former layers for the proxy model Mprx. Note that
Mprx also includes a CRF layer on top of miniLM.

2.4 Uncertainty Distillation

Although the proxy and main model Mprx and
Mmain are trained on similar data, they might still
exhibit large mismatch, e.g., regarding decision
boundaries. This prompts a demand for regulariz-
ing the proxy model’s predictions to be consistent
with those of a trained main model to improve the
fitness of the selected examples for Mmain. Ideally,
we expect the tag sequence distribution Pprx(y|w)
learned by the proxy model to mimic the tag se-
quence distribution Pmain(y|w) learned by the
main model. To this end, we propose to minimize
the difference between the intermediate outcomes
(i.e., the unary and transition scores) of the two dis-
tributions. In particular, we introduce the following
distillation objective for each sentence w at one AL
iteration: Ldist = −

∑
i

∑
v p

main
i [v] log pprxi [v] +∑

i(π
main
yi→yi+1

− πprx
yi→yi+1)

2 where pmain
i and pprxi

are the tag distributions computed by the main and
proxy models respectively for the word wi ∈ w
(i.e., the scores zi). Note that pmain

i and πmain
yi→yi+1

serve as the knowledge distillation signal that is
obtained once the main model finishes its train-
ing at each iteration. Here, we will use the newly
selected examples for the current annotation to
compute the distillation signals. The overall ob-
jective to train Mprx at each AL iteration is thus:
L = Ltask + Ldist.

3 Usage

Detailed documentation for FaMIE is provided at:
https://famie.readthedocs.io/. The
codebase is written in Python and Javascript, which
can be easily installed through PyPI at : https:
//pypi.org/project/famie/.
Initialization. To initialize a project, users first
choose a data selection strategy and upload a label
set to define a sequence labeling problem. Next,
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Figure 2: Comparison among data selection strategies.

the dataset U with unlabeled sentences should be
submitted. FAMIE then allows users to interact
with the models and annotate data over multiple
rounds with a web interface. Also, FAMIE can de-
tect languages automatically for further processing.
Annotating procedure. Given one annotation
batch in an iteration, annotators label one sentence
at a time as illustrated in Figure 3. In particular, the
annotators annotate the word spans for each label
by first choosing the label and then highlighting
the appropriate spans. Also, FAMIE designs the
size of the annotation batches to allow enough time
to finish the training of the main model during the
annotation time at each iteration.
Output. Unlike previous AL toolkits which fo-
cus only on their web interfaces to produce labeled
data, FAMIE provides a simple and intuitive code
interface for interacting with the resulting labeled
dataset and trained main models after the AL pro-
cesses. The code snippet in Figure 4 presents a
minimal usage of our famie Python package to use
the trained main model for inference over new data.
This allows users to immediately evaluate their
models and annotation efforts on data of interest.

Figure 3: Annotation interface in FAMIE.

4 Evaluation

Datasets and Hyper-parameters. To compre-
hensively evaluate our AL framework FAMIE,

import famie
# access a project via its name
p = famie.get_project('NewProject')
# access the project's labeled data
data = p.get_labeled_data()

# access the project's trained target model
model = p.get_trained_model()
# make predictions with the trained model
doc = '''Nick is happy.'''
output = model.predict(doc)
print(output)
# [('Nick', 'B-Person'), ('is', 'O'), ('happy', 'O'), ('. ', 'O')]

1
2
3
4
5
6
7
8
9
10
11
12
13

Figure 4: Accessing the labeled dataset and the trained main
model returned by an AL project.

we conduct experiments on two IE tasks (i.e.,
NER and ED) for three languages using four
datasets: CoNLL03-English (Tjong Kim Sang and
De Meulder, 2003) and CoNLL02-Spanish (Tjong
Kim Sang, 2002) for NER, and ACE-English and
ACE-Chinese for ED (i.e., using the multilingual
ACE-05 dataset (Walker et al., 2006; Nguyen and
Grishman, 2015, 2018)). The CoNLL datasets
cover 4 entity types while 33 event types are an-
notated in ACE-05 datasets. We follow the stan-
dard data splits for train/dev/test portions for each
dataset (Li et al., 2013; Lai et al., 2020; Pouran
Ben Veyseh et al., 2021a).

For the main target model Mmain, the full-scale
XLM-Robertalarge model is used as the encoder.
Our framework for AL thus inherits the ability of
XLM-Roberta to support more than 100 languages.
Also, we employ the compact miniLM architecture
(distilled from the pre-trained XLM-Roberta) for
the proxy model Mprx. In all experiments, the
main model is trained for 40 epochs while the proxy
model is trained for 20 epochs at each iteration. We
use the Adam optimizer with batch size of 16 and
learning rate of 1e-5 to train the models.

We follow the AL settings in previous work to
achieve consistent evaluation (Kim, 2020; Shel-
manov et al., 2021; Liu et al., 2022). Specifically,
the unlabeled pool is created by discarding labels
from the original training data of each dataset; 2%
of which (∼ 242 sentences) is selected for labeling
at each iteration for a total of 25 iterations (exam-
ples of the first iteration are randomly sampled to
serve as the seed D0). The annotation is simulated
by recovering the ground-truth labels of the cor-
responding instances. The model performance is
measured on the test datasets by taking average
over 3 runs with different random seeds.

Comparing Data Selection Strategies. In this
experiment, we aim to determine the best data se-
lection strategy for our AL framework. To this end,
we perform the standard AL process (i.e., training
the full transformer-CRF model with no adapters,
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Idle CoNLL03-English CoNLL02-Spanish ACE-English ACE-Chinese
mins/iter 10% 20% 30% 40% 50% 100% 10% 20% 30% 40% 50% 100% 10% 20% 30% 40% 50% 100% 10% 20% 30% 40% 50% 100%

Full Data x x x x x x 92.4 x x x x x 89.6 x x x x x 71.9 x x x x x 69.1
Large 41.6 90.3 92.4 93.0 92.4 92.4 x 86.9 88.6 89.4 89.3 89.0 x 67.8 71.1 70.0 72.4 71.3 x 64.8 67.6 71.3 68.7 71.5 x
FaMIE 3.4 90.1 91.7 91.8 91.7 92.7 x 86.5 88.2 88.5 88.1 89.4 x 67.0 69.3 69.5 68.9 70.6 x 61.3 67.9 68.5 69.8 69.6 x
FaMIE-A 5.7 89.7 90.8 91.3 91.9 91.7 x 87.4 87.2 89.0 87.7 89.1 x 67.2 68.0 69.5 68.9 70.6 x 62.8 66.5 67.9 66.3 69.4 x
FaMIE-AD 5.6 87.0 90.1 90.5 90.7 90.5 x 85.5 86.9 87.7 88.8 88.6 x 64.9 65.4 67.7 66.8 69.1 x 58.1 65.4 66.5 64.8 70.3 x
Random x 86.0 89.1 90.6 91.4 91.9 x 80.8 85.3 88.1 88.7 88.6 x 60.4 64.1 66.9 69.0 67.5 x 48.4 58.2 65.1 65.4 66.6 x

Table 1: Main model’s performance on multilingual NER and ED tasks. “Idle” indicate average waiting time of annotators.

selecting data, and annotating data at each itera-
tion) for different data selection strategies to mea-
sure performance and time. We focus on English
datasets in this experiment. Figure 2 reports the
performance across AL iterations of the model for
different data selection methods. As can be seen,
“MNLP” is the overall best method for data selec-
tion in AL. We will thus leverage MNLP as the
data section strategy for the evaluation of FAMIE.

Also, Figure 2 shows the annotators’ idle time
(the combined time for model training and data se-
lection) across iterations for each selection strategy.
The major difference comes from ALPS that has
significantly less waiting time than other methods
as it does not require model training. However,
ALPS’s performance is considerably worse than
MNLP as a result, especially in early iterations.
This demonstrates the importance of training and
including the main model during the AL iterations
for data section. Importantly, we find that the wait-
ing time of annotators at each iteration is very high
in current AL methods (e.g., more than 30 minutes
after the first 8 iterations with the MNLP strategy),
thus affecting the annotators’ productivity.

Performance and Time Efficiency. To evaluate
the performance and time efficiency of FAMIE,
Table 1 compares our full proposed framework
FAMIE (with proxy model, knowledge distilla-
tion, and adapters) with the following baselines: (i)
“Large”: the best AL baseline from the previous ex-
periment employing the full-scale transformer en-
coder and MNLP for data selection; (ii) “Random”:
this is the same as “Large”, but replaces MNLP
with random selection; (iii) “FAMIE-A”: this is
the proposed framework FAMIE without adapter-
based tuning (all parameters from the main model
are fine-tuned); and (iv) “FAMIE-AD”: we fur-
ther remove the knowledge distillation loss from
“FAMIE-A” in this method. The experiments are
done for all four datasets of NER and ED.

The first observation is that FAMIE’s perfor-
mance is only marginally below that of Large de-
spite only using the small proxy network for data
selection. Importantly, annotators only have to wait
for about 3.4 minutes per AL iteration before they

can annotate the next data batch in FAMIE. This is
over 10 times faster compared to the standard AL
approaches (e.g., in Large). Second, the adapters
in FAMIE not only boost the overall performance
for AL but also reduce the waiting time for annota-
tors. Also, we note that using adapters, the training
time of Mmain only takes 32 minutes at each iter-
ation (on average). This is reasonable to fit into
the time that an annotator needs to spend to label
an annotation batch at each AL iteration, thus ac-
commodating our proposal for training the main
model during annotation time. Finally, FAMIE-AD
performs worst (i.e., similar or even worse than
Random) in most cases, which confirms the neces-
sity of our distillation component in FAMIE.

5 Related Work

Despite the potential of AL in reducing annota-
tion cost for a target task, most previous AL work
focuses on developing data selection strategies
to maximize the model performance (Wang and
Shang, 2014; Sener and Savarese, 2017; Ash et al.,
2019; Kim, 2020; Liu et al., 2022; Margatina et al.,
2021). As such, previous AL methods and frame-
works tend to ignore the necessary time to train
models and perform data selection at each AL iter-
ation that can be significantly long and hinder an-
notators’ productivity and model performance. To
make AL frameworks practical, few recent works
have attempted to minimize the model training and
data selection time by leveraging simple and non
state-of-the-art architectures as the main model,
e.g., ActiveAnno (Wiechmann et al., 2021) and
Paladin (Nghiem et al., 2021). However, an issue
with these approaches is the inability to exploit re-
cent advances in large-scale language models to
achieve optimal performance. In addition, some re-
cent works have also explored large-scale language
models for AL (Shelmanov et al., 2021; Yuan et al.,
2020); however, to reduce waiting time for anno-
tators, such methods need to exclude the training
of the large models in the AL iterations or employ
small models for data selection, thus suffering from
a harmful mismatch between the annotated exam-
ples and the main models (Lowell et al., 2019).
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6 Conclusion

We introduce FAMIE, a comprehensive AL frame-
work that supports model creation and data anno-
tation for sequence labeling in multiple languages.
FAMIE optimizes the annotators’ time by leverag-
ing a small proxy network for data selection and
a novel knowledge distillation to synchronize the
proxy and main target models for AL. As FAMIE
is task-agnostic, we plan to extend FAMIE to cover
other NLP tasks in future work.
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