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Abstract

SentSpace is a modular framework for
streamlined evaluation of text. SentSpace
characterizes textual input using diverse lexi-
cal, syntactic, and semantic features derived
from corpora and psycholinguistic experiments.
Core sentence features fall into three primary
feature spaces: 1) Lexical, 2) Contextual, and
3) Embeddings. To aid in the analysis of com-
puted features, SentSpace provides a web
interface for interactive visualization and com-
parison with text from large corpora. The mod-
ular design of SentSpace allows researchers
to easily integrate their own feature computa-
tion into the pipeline while benefiting from a
common framework for evaluation and visual-
ization. In this manuscript we will describe the
design of SentSpace, its core feature spaces,
and demonstrate an example use case by com-
paring human-written and machine-generated
(GPT2-XL) sentences to each other. We find
that while GPT2-XL-generated text appears flu-
ent at the surface level, psycholinguistic norms
and measures of syntactic processing reveal key
differences between text produced by humans
and machines. Thus, SentSpace provides
a broad set of cognitively motivated linguistic
features for evaluation of text within natural
language processing, cognitive science, as well
as the social sciences.

1 Introduction

Natural Language Processing (NLP) researchers
and language scientists alike rely heavily on nu-
meric representations of text in order to better un-
derstand how machines and humans process lan-
guage. Consider the following text generated by a
large pre-trained language model, GPT2:

The scientist named the population, af-
ter their distinctive horn, Ovid’s Unicorn.
These four-horned, silver-white unicorns
were previously unknown to science.

∗Equal contribution ♢Equal contribution

The passage demonstrates a remarkable facility
with language, but also some potentially non-
human aspects, both syntactic (e.g., an unnatu-
ral forward shifting of the phrase “after their dis-
tinctive horn”) and semantic (describing a four-
horned animal as a unicorn). It is of growing
interest to researchers to be able to characterize
how any text compares to that from another source,
be it generated by humans or artificial language
models. For example, NLP practitioners are in-
terested in understanding and improving language
model output, and bringing it closer to human gen-
erated text e.g., Ettinger (2020); Hollenstein et al.
(2021); Meister et al. (2022); similarly, language
scientists are highly interested in using large-scale
language models to develop and test hypotheses
about language processing in the mind and brain,
e.g., Schrimpf et al. (2021); Caucheteux and King
(2022); Goldstein et al. (2022).

To support these shared goals, we developed
SentSpace, an open source application for char-
acterizing textual input using diverse lexical, syn-
tactic, and semantic features. These features are
derived from sources such as large, constructed
corpora, behavioral psycholinguistic experiments,
human judgment norms, and models based on theo-
ries of human sentence processing. We also devel-
oped functionality to compare textual inputs to one
another and to large normative distributions based
on natural language corpora. We envision the use
cases of SentSpace to be diverse: (i) comparison
of machine-generated text to human-generated text;
(ii) comparison of text produced by different human
populations (e.g., native and non-native speakers,
neurotypical individuals and individuals with devel-
opmental or acquired communication disorders);
(iii) comparison of different genres of text; (iv)
evaluation of the normativity of stimuli/datasets to
be used in psycholinguistic experiments or experi-
ments with language models; and (v) investigation
of sentences that present particular comprehension
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Figure 1: An overview of SentSpace data flow: users
can supply text in a number of formats. The text is batch-
processed in each selected module containing various
features. The features computed from each module are
then outputted in the specified output file format. These
results can be readily plugged into the visualization
module out of the box.

difficulties for humans and/or language models,
e.g., eliciting a strong neural response in an electro-
physiological or neuroimaging study, or producing
non-typical or undesired behavior in the case of
language models.

We make SentSpace publicly available via
https://sentspace.github.io/sentspace in the follow-
ing two forms: (i) an open source API implemented
in Python (Figure 1), installable via the Python
package index (PyPI) or as a self-contained Docker
image; (ii) a hosted web interface for computing
and visualizing features, thus making SentSpace
accessible without running locally (Figures 2, 3, 4).

2 Structure and Design

At the core of SentSpace there are features asso-
ciated with a sentence: f : sentence → Rd

where Rd can be any feature or representation
space. The core features are organized into three
core modules based on the nature of their char-
acterization of a sentence. (1) The Lexical mod-
ule acts at the individual lexical item (token) level.
Sentence-level lexical features are computed by
aggregating over the tokens of a sentence. (2) Con-
textual features are sentence-level features and are
obtained as a result of some computation at the sen-
tence level, such as, constructing and then process-
ing a syntax parse tree. Finally, (3) Embeddings
computes pooled vector representations from one
of many popular embedding models, from GloVE
(Pennington et al., 2014) to Transformer architec-

tures (Radford et al., 2019; Devlin et al., 2019;
Wolf et al., 2020). These three modules cover a
wide range of features—derived from text corpora
or behavioral experiments—that have some demon-
strated relevance to language processing.

Figure 2: Public-facing hosted interface where users
can input text and obtain features by downloading them
from the same website. Each request gets a correspond-
ing ID which is temporarily cached to enable repeated
downloading and visualization of the same data.

The Lexical module consists of features that per-
tain to individual lexical items, words, regardless
of the context in which they appear. These fea-
tures include, for example, lexical frequency, con-
creteness, and valence. Because SentSpace is
built to work with sentences, lexical-level features
are aggregated across the sentence (cf. Gao et al.
(2021)). As a default, SentSpace aggregates
over all words with available norms in the sentence
by computing the arithmetic mean across words.

The Contextual module consists of features that
quantify contextual and combinatorial inter-word
relations that are not captured by individual lexical
items. This module encompasses features that re-
late to the syntactic structure of the sentence (Con-
textual_syntax features) and features that apply to
the sentence context but are not (exclusively) re-
lated to syntactic structure (Contextual_misc fea-
tures). Contextual_syntax include features related
to syntactic complexity, instantiated as e.g., sur-
prisal or integration cost, based on leading theoret-
ical proposals (Gibson, 2000; Shain et al., 2016;
Rasmussen and Schuler, 2018). Some syntactic fea-
tures are computed for each word in the sentence
and then subsequently aggregated; other features
are computed for multi-word sequences or the en-
tire sentence. Contextual_misc include features

100

https://sentspace.github.io/sentspace


Figure 3: An example of multiple corpora visualized alongside each other for the feature “Age of Acquisition”.
Sentences from the Wall Street Journal and the Colossal Cleaned Common Crawl (C4) show a tendency of higher
age of acquisition on average than other sources. Mouseover on dots enables users to see example sentences and
their corresponding values. The ‘x axis value’ dropdown allows users to pick the feature to plot. The ‘y’ and ‘z’
axis values are used for a 3D scatter plot, which can be enabled using the ‘Plot type’ selector.

like lexical density or sentence sentiment.
The Embedding module consists of high-

dimensional vectors derived from pre-trained lan-
guage models.
SentSpace also provides functionality that al-

lows users to contribute novel features and mod-
ules. A user may design their own features and
plug-and-play into SentSpace to achieve a more
streamlined analysis pipeline and integrated bench-
marking and visualization (Figure 1). In order to
contribute a module, users must adhere to the mod-
ule call API, accepting a sentence batch and return-
ing a dataframe whose columns consist of features.
Users may make use of parallelism and other utils
provided as a part of SentSpace. Users may also
plug in their computed features in the visualization
module and use the web interface.

2.1 Feature Modules

2.1.1 Lexical

Lexical features have been shown to affect lan-
guage comprehension at the level of individual
words. For instance, lexical features affect how

people recognize and recall words, such as word
frequency (e.g., Gorman (1961); Kinsbourne and
George (1974)), concreteness/imageability (e.g.,
Gorman (1961); Rubin and Friendly (1986)), and
valence/arousal (e.g., (Rubin and Friendly, 1986;
Danion et al., 1995; Kensinger and Corkin, 2003).
Moreover, lexical features have been shown to af-
fect language processing when words are presented
in context as measured by eye tracking and self-
paced reading, such as surprisal (e.g., Levy (2015);
Demberg and Keller (2008); Singh et al. (2016)),
polysemy (e.g., Pickering and Frisson (2001)), am-
biguity (e.g., Frazier and Rayner (1987); Rayner
and Duffy (1986)), word frequency (e.g., Rayner
and Duffy (1986)), and age of acquisition (e.g.,
Singh et al. (2016)). We implement these features
using lookup tables for each token. In case the fea-
ture is unavailable for a token, we use a lemmatizer
to obtain the feature corresponding to the word’s
lemma. We observe the various features are only
moderately correlated with one another, thus each
adding new information to the analysis (Figure 5).
See Appendix A.1 for supported lexical features.
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Figure 4: A zoomed-in view of a 3D scatterplot shows
mouseover on a point in space revealing the sentence
at that location and its features being plotted. A top
bar (not displayed) allows the users to change the fea-
tures to plot. A side bar (not displayed) enables se-
lecting/deselecting corpora and files uploaded by the
user to the visualization module. (Abbreviations are
‘num_morpheme_poly’: Number of Morphemes; ‘aoa’:
Age of Acquisition.)

2.1.2 Contextual

Several properties of a sentence cannot be at-
tributed to its individual lexical items (words).
These features broadly fall into two categories: syn-
tactic (denoted by Contextual_syntax) and miscella-
neous (denoted by Contextual_misc). The syntactic
features include measures of storage and integra-
tion cost as predicted by both the Dependency Lo-
cality Theory (DLT; Gibson (2000)) and left-corner
theories of sentence processing (Rasmussen and
Schuler, 2018). In brief, the Dependency Locality
Theory is an influential theory of word-by-word
comprehension difficulty during human language
processing, with difficulty hypothesized to arise
from working memory demand related to storing
items in working memory (storage cost) and retriev-
ing items from working memory (integration cost)
as required by the dependency structure of the sen-
tence. Memory costs derived from the DLT have
been associated with self-paced reading (Grodner
and Gibson, 2005), eye-tracking (Demberg and
Keller, 2008), and fMRI (Shain et al., 2021b) mea-
sures of comprehension difficulty. Left-corner pars-
ing models also posit storage and integration costs,
but these costs are thought to derive not from depen-
dency locality but from the number of unconnected
fragments of phrase structure trees that must be
maintained and combined in memory throughout

Figure 5: Pearson correlation among features from
the Lexical and Contextual modules obtained from
SentSpace for text written by humans and GPT2-
XL (described in Section 4).

parsing, word-by-word. Probabilistic left-corner
parsers can also be used to define a probability dis-
tribution over the next word that conditions solely
on hypotheses about the syntactic structure of the
sentence, providing a critical tool for evaluating
the degree to which syntax might influence both
human and language model predictions of future
words (Shain et al., 2020). See Appendix A.2.1 for
supported contextual features.

2.1.3 Embeddings
Embeddings provide representations of words
or sentences in high-dimensional, learned vector
spaces. The information contained in these spaces
depend on the objective function of the algorithm
used to derive the vectors, but could be of seman-
tic nature (e.g., Grand et al. (2022)). We provide
a decontextualized embedding space (words have
the same vector representation independent of con-
text), GloVe (Pennington et al., 2014), as well as
several commonly used contextualized embedding
spaces (words have different vector representations
based on the context in which they appear) from the
HuggingFace framework (Wolf et al., 2020). See
Appendix A.3 for supported embedding models.

3 Benchmarking Against Large Corpora

To understand where a sentence stands relative to
other text, we facilitate comparison with sentences
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Figure 6: We use SentSpace to visualize sentences from two sources of interest. In one case, humans generated
paragraphs, and in the other, a GPT2-XL language model did. We find several points of differences between
the two sources, verified using statistical tests comparing the two distributions. p-values were obtained using
two-tailed independent samples t-tests: Concreteness (t = 4.24, p≪0.001), Polysemy (t = −0.27, p = n.s.),
Lexical Frequency (t = −2.91, p < 0.005), N-gram Surprisal (3-gram) (t = 2.91, p < 0.005), Syntactic Integration
Cost (t = 2.34, p < 0.05), Syntactic Embedding Depth (t = 1.81, p = n.s.). *p < .05, **p < .01, ***p < .005.

from large corpora of human-generated text (both
written and spoken). We allow this by subsampling
from large corpora to include an approximately
equal number (≈ 500) of sentences from each cor-
pus. We pre-computed and cached SentSpace
features for each of 8 corpora (≈ 4000 sentences
in total), enabling quick and streamlined compar-
ison with sentences from existing corpora. In the
SentSpace[.vis] module, these corpora are
loaded by default in addition to user-supplied input.
Corpora benchmarking can be disabled to allow
visualizing user input in isolation. We provide a
list of corpora used in Appendix C.

4 System Demonstration and Results

In this section we provide an example of how
SentSpace can be used to compare and visu-
alize sets of sentences to one another using features
from the Lexical (n = 13 features) and Contex-
tual (n = 13 features) modules of SentSpace1.
For this example demonstration, we compare two
sets of materials: Human-generated text versus
GPT2-XL-generated text. The texts consisted of

1The code for analyses in this paper is available at
http://github.com/sentspace/NAACL-HLT-2022

52 unique paragraphs written by multiple human
writers. The first 10 words of each paragraph were
used as a prompt to a pretrained GPT2-XL au-
toregressive language model (Radford et al., 2019;
Wolf et al., 2020). Prompt completions were ex-
tracted across multiple random seeds using top-
p sampling (Holtzman et al., 2020) with genera-
tion parameters p = 0.9 and temperature = 1.
We selected 5 completions per prompt that most
closely matched the human-generated prompt in
word length (within ±5 words) to control for any
length-driven correlations. As a result, we had
one human-generated and 5 GPT2-XL-generated
paragraphs per prompt, yielding a total of n = 52
human-generated paragraphs and n = 260 GPT2-
XL-generated paragraphs (for examples, see Ap-
pendix B). Features were averaged across sentences
within each paragraph. For statistical tests, features
for the n = 5 GPT2-XL-generated paragraphs for
the same prompt were averaged to yield a matched
sample of paragraphs with the human-generated
paragraphs (n = 52). In Figure 6, we demonstrate
that our feature measures can reveal subtle quantita-
tive differences between machine-generated (blue)
and human-generated (red) texts that may not be
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subjectively apparent.

Figure 6A demonstrates three features from the
Lexical module: i) Concreteness (Brysbaert et al.,
2014); a behavioral measure of the extent to which
the concept denoted by the word refers to a per-
ceptible entity, ii) Polysemy (Miller, 1992), and
iii) Log lexical frequency from the SUBTLEX-us
database (Brysbaert and New, 2009). As evident,
GPT2-XL produces sentences that on average have
less concrete words compared to human sentences
(p≪.001). Lexical frequency reflects how often
a given word is used in language. Lexical fre-
quency is known to affect language comprehen-
sion, for instance more frequent words are read
faster (e.g., Rayner and Duffy (1986); Singh et al.
(2016) and articulated faster (e.g., Jescheniak and
Levelt (1994)). We can see this as being a trend
towards GPT2-XL’s use of more frequent wording
compared to humans (p≪.001).

Figure 6B demonstrates three Contextual fea-
tures: i) N-gram surprisal (3-gram), ii) Average syn-
tactic integration cost according to the Dependency
Locality Theory (DLT, (Gibson, 2000); integration
cost is roughly proportional to dependency length),
and iii) Average syntactic center-embedding depth
in a left-corner phrase-structure parser (van Schi-
jndel et al., 2013). Although GPT2-XL usually
generates sentences that are syntactically well-
formed, their syntactic features differ on average
from human-generated text. As shown, texts gen-
erated by GPT2-XL show lower 3-gram surprisal
(t=2.91, p≪.001), tend to be less syntactically com-
plex on average than human-generated ones, with
shorter syntactic dependencies (t=2.33, p=0.02)
and numerically shallower center-embedded tree
structures (t=1.8, p=0.09, n.s.). So, these findings
might suggest GPT2-XL makes use of ‘simpler’
wording compared to humans.

The remaining SentSpace features obtained
for the comparison between human- and GPT2-XL-
generated text (n = 26 features in total) are summa-
rized in the Appendix, Table 2. More features are
in the progress of being added to the SentSpace
framework (see Appendix A.1, A.2).

The comparison between human- and machine-
generated text is a demonstration of one of the
use cases of SentSpace: comparing and visu-
alizing texts to one another. The SentSpace
framework streamlines the process of obtaining
corpora-backed features, parsing and syntactically
analyzing texts, simplifying and accelerating such

analyses for natural language generation.

5 Related work

Related work include Balota et al. (2007) who
collected behavioral visual lexical decision and
speeded naming reaction times and provided these
along with a set of word-level, psycholinguistic
features (The English Lexicon Project). Gao et al.
(2021) provide a meta-base of word-level, psy-
cholinguistic features. A different alley of re-
lated work includes visualization tools for high-
dimensional embeddings obtained from pre-trained
language models (e.g., van Aken et al. (2020); Ope-
nAI).

A large body of work focuses on characterizing
bias in text, particularly that either used in training
language models, or that generated by language
models (Sun et al., 2019). Related work also fo-
cuses on methods to mitigate bias in existing lan-
guage models using debiasing methods. In the
future we hope to include norms that character-
ize bias as one of the many features that will be
added to SentSpace. We also hope that outputs
from SentSpace will inform what data goes into
training large language models to make them more
human-like.

6 Conclusion

SentSpace is a system for obtaining numeri-
cal representations of sentences. Our core feature
modules span lexical, semantic, and syntactic fea-
tures from corpora and behavioral experiments. We
provide an interface for comparing textual inputs
to one another or to large normative distributions
based on natural language corpora.

Within the last few years, contextualized em-
beddings obtained from large pre-trained language
models have revolutionized and dominated the field
of natural language processing. However, despite
these embeddings being useful for diverse applica-
tions, it is unclear precisely which information is
embedded in these high-dimensional feature repre-
sentations. We view SentSpace as a complemen-
tary resource that can provide interpretability and
grounding to these pre-trained high-dimensional
embeddings.

A major limitation of SentSpace is that we
currently only support English. Part of the lim-
iting factor is the relative lack of behavioral and
psycholinguistic experimental data for other lan-
guages, as well as mature linguistic features tai-
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lored to other languages.
We envision SentSpace as a dynamic plat-

form with continuous collaboration across research
labs for the addition of new features and we hope
to make this framework valuable for a number of
applications within natural language processing,
cognitive science, psychology, linguistics, and so-
cial sciences.

Acknowledgements

We thank the authors of publicly available datasets
that we have been able to use in SentSpace.
We thank Adil Amirov, Alvincé Le Arnz Pon-
gos, Benjamin Lipkin, and Josef Affourtit for
their assistance towards developing the software
for SentSpace. We thank Hannah Small and
Matthew Siegelman for their assistance with the
human- and GPT-generated texts.

References
David A. Balota, Melvin J. Yap, Keith A. Hutchi-

son, Michael J. Cortese, Brett Kessler, Bjorn Loftis,
James H. Neely, Douglas L. Nelson, Greg B. Simp-
son, and Rebecca Treiman. 2007. The English Lexi-
con Project. Behavior Research Methods, 39(3):445–
459.

Thorsten Brants and Alexander Franz. 2009. Web 1t
5-gram, 10 european languages version 1. Philadel-
phia, Pa.: Linguistic Data Consortium, Computer
file.

Marc Brysbaert, Paweł Mandera, Samantha F. Mc-
Cormick, and Emmanuel Keuleers. 2019. Word
prevalence norms for 62,000 English lemmas. Be-
havior Research Methods, 51(2):467–479.

Marc Brysbaert and Boris New. 2009. Moving beyond
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A Feature Descriptions

A.1 Lexical Features

Lexical features are ordered alphabetically.
Age of Acquisition Age of acquisition is a met-

ric that estimates when a person acquired (i.e., un-
derstood) a given word. Participants were asked for
each word to enter the age at which they thought
they had learned the word even if they could not
use, read, or write it at the time. The norms were
collected by (Kuperman et al., 2012).

Norms were available for 30,124 unique words.
Obtained from: http://crr.ugent.be/

archives/806.
Arousal Arousal quantifies each word on a scale

of active–passive. The norms were collected based
on human ratings by (Mohammad, 2018) using
Best-Worst scaling, where participants are pre-
sented with four words at a time and asked to select
the word with the highest arousal. The two ends of
the arousal dimension were: MOST arousal, active-
ness, stimulation, frenzy, jitteriness, alertness OR
LEAST unarousal, passiveness, relaxation, calm-
ness, sluggishness, dullness, sleepiness.

Norms were available for 20,007 unique words.
Obtained from: https://saifmohammad.

com/WebPages/nrc-vad.html.
Concreteness Concreteness quantifies the extent

to which the concept denoted by the word refers to
a perceptible entity. Concrete words were defined
as something that exists in reality and can be expe-
rienced directly through the five senses or actions.
Conversely, abstract words refer to something one
cannot experience directly through your senses or
actions. The norms were collected based on human
ratings by (Brysbaert et al., 2014).

Norms were available for 37,058 unique words.
Obtained from http://crr.ugent.be/

archives/1330.
Log Contextual Diversity Contextual diversity

(CD) is the number of contexts in which a word
has been seen [cite Adelman 2005]. The metric
available here was computed based on the SUB-
TLEXus database based on American subtitles (51
million words in total) (Brysbaert and New, 2009)
and thus denotes the number of films in which
the word appears. The CD metric is computed as
log10(CDcount+1).

Norms were available for 74,286 unique words.
Obtained from the SUBTLEXus

database: https://www.ugent.be/pp/

experimentele-psychologie/en/
research/documents/subtlexus).

Log Lexical Frequency Lexical frequency de-
notes how frequent a word occurs in a given cor-
pus/sets of corpora. The frequency metric available
here was computed as log10(FREQcount+1) based
on American subtitles (51 million words in total)
from the SUBTLEXus database (Brysbaert and
New, 2009).

Norms were available for 74,286 unique words.
Obtained from the SUBTLEXus

database: https://www.ugent.be/pp/
experimentele-psychologie/en/
research/documents/subtlexus).

Lexical Connectivity Lexical connectivity is a
metric for how connected a given word is to other
words based on association judgments. The metric
views the mental lexicon as a semantic network
where words are linked together by semantic relat-
edness. Lexical connectivity is computed as the
total degree centrality of a given word node in the
semantic graph. Norms were obtained from (Mak
and Twitchell, 2020) who computed the total de-
gree centrality based on free association norms
collected by (De Deyne et al., 2019) (specifically,
the first recalled word).

Norms were available for 12,215 unique words.
Obtained from: https://osf.io/

7942s/.
Lexical Decision Reaction Time (RT) Lexical

decision latency measures how quickly people clas-
sify strings as words or non-words. The lexical
decision latency provides a proxy for how quickly
a given word is extracted from the mental lexi-
con/semantic memory. The norms were collected
by (Balota et al., 2007).

Norms were available for 40,482 unique words.
Obtained from the English Lexicon Project:

https://elexicon.wustl.edu/.
Number of Morphemes A morpheme denotes

the smallest meaningful lexical unit in a language.
The number of morphemes quantifies how many
morphemes a given word has. The primary mor-
pheme counter available here is Morfessor (Vir-
pioja et al., 2013) which uses machine learning
to find morphological segmentations of words. If
dependency issues arise with Morfessor, the mor-
pheme count is obtained from the English Lexicon
Project Database (Balota et al., 2007).

Orthographic Neighbor Frequency Ortho-
graphic neighbor frequency is a metric that quan-
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tifies the number of orthographic neighbors that a
string has. The metric was computed by (Medler
and Binder, 2005) and an orthographic neighbor
was defined as a word of the same length that dif-
fers from the original string by only one letter. The
frequency metric denotes the averaged frequency
(per million) of orthographic neighbors.

Norms were available for 66,371 unique words.
Obtained from http://www.neuro.mcw.

edu/mcword/.
Orthography-Semantics Consistency (OSC)

Orthography–semantics consistency is a metric that
quantifies the degree of semantic relatedness be-
tween a word and other words that are orthographi-
cally similar. The metric was computed by (Marelli
and Amenta, 2018) as the frequency-weighted av-
erage semantic similarity between the meaning of
a given word and the meanings of all the words
containing that very same orthographic string.

Norms were available for 15,017 unique words.
Obtained from: http://www.

marcomarelli.net/resources/osc.
Polysemy Polysemy provides a metric of how

many distinct meanings a word has. Polysemy
was measured by the number of definitions of
a word in WordNet (Miller, 1992). Polysemy
was implemented using NLTK’s word_net library
(synsets() function) which accepts a word and a
part-of-speech tag as input and returns a list of
synonyms. Parts-of-speech tags were taken from
NLTK’s pos_tag, then mapped to the four POS tags
accepted by word_net. If a POS tag could not be
mapped to one of word_net’s ADJ, VERB, NOUN,
or ADV then the tag given was an empty string.
The number of synonyms for a given word were
counted.

Norms were available for 155,327 words orga-
nized in 175,979 synsets for a total of 207,016
word-sense pairs (Wikipedia).

Obtained from the NLTK interface: https://
www.nltk.org/howto/wordnet.html.

Prevalence Word prevalence is a metric that
quantifies the number of people who know a given
word. The norms were collected by (Brysbaert
et al., 2019) based on human ratings of whether or
not they knew the word.

Norms were available for 61,855 unique words.
Obtained from: https://osf.io/

g4xrt/.
Valence Valence quantifies each word on a scale

of positiveness–negativeness. The norms were col-

lected based on human ratings by (Mohammad,
2018) using Best-Worst scaling, where participants
are presented with four words at a time and asked
to select the word with the highest valence. The
two ends of the valence dimension were: MOST
happiness, pleasure, positiveness, satisfaction, con-
tentedness, hopefulness OR LEAST unhappiness,
annoyance, negativeness, dissatisfaction, melan-
choly, despair.

Norms were available for 20,007 unique words.
Obtained from: https://saifmohammad.

com/WebPages/nrc-vad.html.

The following features were not analyzed in the
current work, but in the future we plan to add sup-
port for these features in the SentSpace frame-
work:

Body-Object Interaction Body-object interac-
tion quantifies the ease with which the human body
can interact with what a word represents. The
norms were collected using behavioral ratings on a
scale from 1 to 7 with a value of 7 indicating a high
body-object interaction rating by (Pexman et al.,
2019).

The norms were available for 9,349 unique
words.

Obtained from: https://link.
springer.com/article/10.3758%
2Fs13428-018-1171-z#Sec9.

Dominance Dominance quantifies each word
on a scale of dominant–submissive. The norms
were collected based on human ratings by (Mo-
hammad, 2018) using Best-Worst scaling, where
participants are presented with four words at a time
and asked to select the word with the highest domi-
nance. The two ends of the dominance dimension
were: MOST dominant, in control of the situation,
powerful, influential, important, autonomous OR
LEAST submissive, controlled by outside factors,
weak, influenced, cared-for, guided.

Norms were available for 20,007 unique words.
Obtained from: https://saifmohammad.

com/WebPages/nrc-vad.html.
Part-of-Speech Ambiguity Parts-of-speech

(POS) ambiguity is a metric to quantify how fre-
quent the dominant POS of a given word is given all
possible POS a word has. The value is a fraction be-
tween 0 and 1 where 1 denotes that the word always
occurs in its most dominant POS form. POS val-
ues were obtained from the SUBTLEXus database
(Brysbaert et al., 2012).

Norms were available for 74,286 unique words.
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Obtained from the SUBTLEXus
database: https://www.ugent.be/pp/
experimentele-psychologie/en/
research/documents/subtlexus).

Semantic Diversity Semantic diversity is a met-
ric that quantifies semantic ambiguity based on
variability in the contextual usage of words. The
metric was computed by (Hoffman et al., 2013) and
takes a step beyond simply summing the number
of definitions that a word has. The underlying as-
sumption is that words that appear in a wide range
of contexts on diverse topics are more variable in
meaning than those that appear in a restricted set of
similar contexts. Hoffman et al. thus quantify the
degree to which the different contexts associated
with a given word vary in their meanings.

Norms were available for 31,739 English words.
Obtained from: https://link.

springer.com/article/10.3758/
s13428-012-0278-x#SecESM1.

Word Length Word length as measured by char-
acters.

Zipf Lexical Frequency The Zipf lexical fre-
quency is a metric of word frequency, but on a
different scale than standard frequency. The Zipf
scale was proposed by (van Heuven et al., 2014) as
a scale that is easier to interpret than the usual
frequency scales. Zipf values range from 1 to
7, with the values 1-3 indicating low-frequency
words (with frequencies of 1 per million words and
lower) and the values 4-7 indicating high-frequency
words (with frequencies of 10 per million words
and higher). Norms were based on American sub-
titles (51 million words in total) from the SUB-
TLEXus database (Brysbaert and New, 2009).

Norms were available for 74,286 unique words.
Obtained from the SUBTLEXus

database: https://www.ugent.be/pp/
experimentele-psychologie/en/
research/documents/subtlexus).

A.2 Contextual Features

The contextual features broadly fall into two cate-
gories: syntactic (denoted by Contextual_syntax)
and miscellaneous (denoted by Contextual_misc).
Contextual features are ordered alphabetically.

A.2.1 Contextual Features — Syntax
Content Word Ratio — Misc Lexical density is
the proportion of content words to function words
in a sentence. It is a proxy for how much infor-
mation a sentence contains. Content words were

defined as nouns, verbs, adjectives, and adverbs
and were defined using the NLTK part-of-speech
tagger.

Dependency Locality Theory (DLT) Variants
The Dependency Locality Theory (DLT) (Gibson,
2000) features are measures of storage and integra-
tion costs during sentence processing. The DLT is
a theory of word-by-word comprehension difficulty
during human language processing, with difficulty
hypothesized to arise from working memory de-
mand related to storing items in working memory
(storage cost) and retrieving items from working
memory (integration cost) as required by the de-
pendency structure of the sentence. We include the
traditional DLT metrics, as well as modifications
as described in (Shain et al., 2016).

Left-Corner Features — Syntax The left-
corner features are based on left-corner theories
of sentence processing as described in (Rasmussen
and Schuler, 2018). Similar to DLT, left-corner
parsing models also posit storage and integration
costs, but these costs are thought to derive not
from dependency locality but from the number of
unconnected fragments of phrase structure trees
that must be maintained and combined in mem-
ory throughout parsing, word-by-word. See (Shain
et al., 2021a) for detailed description of these fea-
tures, but in brief they include: end of constituent,
length of constituent (3 variants), end of center em-
bedding, start of multi-word center-embedding, end
of multi-word center embedding, length of multi-
word center embedding (3 variants), and syntactic
embedding depth. Features are derived from auto-
matic parse trees generated by the van Schijndel
et al. (2013) parser trained on a generalized catego-
rial grammar reannotation (Nguyen et al., 2012) of
the Penn Treebank corpus (Marcus et al., 1993).

N-gram Surprisal — Misc N-gram surprisal
provides a metric of how surprising a word is given
its context. The norms were computed by (Pianta-
dosi et al., 2011) based on Google (Brants and
Franz, 2009) using a standard probabilistic N-gram
model which treats the context as consisting only
of the local linguistic context containing the pre-
vious N − 1 words. The norms are available for
N = 2, 3, 4, i.e. 2-grams, 3-grams and 4-grams.

Norms were available for 3,297,629 (2-grams),
2,133,709 (3-grams) and 1,600,987 (4-grams)
unique words. Obtained from colala.berkeley.edu/
data/PiantadosiTilyGibson2011/Google10L-1T.

Pronoun Ratio — Misc The pronoun ratio is
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the proportion of pronoun words to all words in
a sentence. It is a proxy for how much discourse
is assumed in a sentence. Pronoun words were
defined using the NLTK part-of-speech tagger.

The following features were not analyzed in the
current work, but are in the process of being added
to the SentSpace framework:

Language Model Surprisal Language model
surprisal provides a metric for how surprising (i.e.,
likely) a given sentence is by using the probability
distribution obtained from pre-trained state-of-the-
art language models. The default probability is
computed as the product of individual tokens’ log
probabilities.

The language models were obtained using the
HuggingFace Transformers framework (Wolf et al.,
2020).

Sentence-Level Sentiment — Misc Sentence-
level sentiment provides a metric for how positive
or negative a given sentence is. The feature was
derived using a pre-trained transformer model fine-
tuned to perform sentiment prediction from a large
dataset of human-annotated sentiment norms. The
code framework used to compute the feature was
by HuggingFace (Wolf et al., 2020).

Syntactic Rule Frequency — Syntax The syn-
tactic rule frequencies consist of counts of n-ary
and binary syntactic rules. For both n-ary (n is an
arbitrary number larger than two) and binary rules,
the sentence is dependency parsed (CoNLL format).
The n-ary version gets all heads, along with its part
of speech and its dependency relations. So if there
is a verb with a subject and object, an n-ary rule
would be: nsubj-V-dobj. The binary version is sim-
ilar, but takes each head/dependency relationship
separately. So the rules would be nsubj-V, V-dobj,
etc. Thus, the syntactic rule frequency features
consists of the number of times each n-ary and bi-
nary rules occur. The code framework to compute
the features was obtained from Kyle Mahowald
(preprint to appear).

A.3 Embeddings
Embeddings provide representations of sentences
in high-dimensional, learned vector spaces. We
provide a context-independent embedding space
(words have the same vector representation in-
dependent of context), GloVe (Pennington et al.,
2014), as well as several commonly used contextu-
alized embedding spaces (words have different vec-
tor representations based on the context in which

they appear) from the HuggingFace framework
(Wolf et al., 2020). These can be invoked using
the corresponding model identifier from Hugging-
Face model hub as an argument to SentSpace.

B Materials Used in Demonstration

B.1 Example human-written paragraph
Montreal has a unique bagel tradition
that dates back to at least 1919. The Mon-
treal bagel is chewier, smaller, and less
dense, but has a much bigger hole than
its American cousin. Boiled in honey
water and then baked in a wood-burning
oven, it’s a little sweet and has a harder
exterior. It is hand-rolled in the shape of
an oval hoop; you can wear one around
your wrist like a bracelet.

B.2 Examples of GPT2-XL generated text
1 Montreal has a unique bagel tradi-
tion that dates back to the mid-nineteenth
century. In the early days of the morn-
ing, tourists would arrive in Montreal in
large numbers for a morning sandwich
and coffee. You could be guaranteed to
find several dozen different varieties in
a pastry case. When the “Cappuccino”
was introduced in 1894, the bagels came
with it. You had to order your espresso
and and your bagel separately.

2 Montreal has a unique bagel tradition
that dates back to 1766, when an English-
man named J.D. Bagel opened the first
of what would become five bakeries. To-
day, there are more than 70 Bagel East St.
Laurent and 15 Bagel Central St. Lau-
rent. It’s not just the flavors of bagels
that separate Montreal bagel restaurants
from the rest of Canada. What also sets
them apart are the quality ingredients.

3 Montreal has a unique bagel tradition
that dates back to 1876, when the city
hosted the Olympic Games. The tradi-
tion is still alive today. Because the bagel
is such an American food, you won’t find
bagels being served in many Chinese
restaurants, as French food in France
is considered food that originated from
the Americas. Desserts Although bagels
have many tastes, you don’t need to try
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every flavor to enjoy bagel ice cream or
bagel sandwiches.

4 Montreal has a unique bagel tradi-
tion that dates back to 1917. In 2017,
the Bagel Corner will open its doors
again to celebrate Montreal’s unique
bagel heritage. This May, the Bagel
Corner will offer a variety of bagels,
bagel sandwiches and doughnuts, sold in
Montreal and Montreal-area food trucks.
With bags of fresh fruit, grapes, pickled
veggies and other delicious bagels, this
year’s sale will be a great opportunity to
indulge your taste buds.

5 Montreal has a unique bagel tradition
that dates back to the early 1900’s. The
bagels that we now associate with Mon-
treal are greatly influenced by the place
that spawned them the Sea Route Bagel.
This famous bagel began its long journey
to Montreal with a group of Jewish im-
migrants arriving from Eastern Europe
in the early 1900’s. To say that they were
fortunate would be an understatement.

C Corpora Benchmarks

As mentioned in the manuscript, we subsam-
ple a collection of corpora for use as bench-
marks to compare against. We list these
corpora in Table 1. These include: the
Brown Corpus (Francis and Kucera, 1979),
the Toronto Books Corpus Adventure genre
(Zhu et al., 2015), Wall Street Journal corpus
(Paul and Baker, 1992), Universal Dependen-
cies https://universaldependencies.
org/#download, Colossal Cleaned Common
Crawl (C4) (Raffel et al., 2020), Corpus of Contem-
porary American English (Spoken) — 1991, 2001,
2012 (Davies, 2009).
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Corpus name Volume/Genre No. of sentences Duplicates Sentence Length

Mean Median Std. deviation

(Total) 63,350,596 615,672
Brown 26,954 3 12.681 13 4.462
Toronto Books Adventure 1,040,936 0 14.519 13 7.632
UD 19,543 2 16.89 15 8.664
WSJ 541,790 960 22.351 21 8.734
COCA Spoken 1991 121,351 0 17.051 15 10.048
COCA Spoken 2001 113,330 3 15.734 13 9.269
COCA Spoken 2012 97,512 2 14.41 12 8.65
C4 10 random parts 49,772,404 614,602 17.481 16 8.905

Table 1: A list of Corpora used as Benchmarks

Feature Mean Standard Deviation
GPT2-XL Human GPT2-XL Human

2-gram Surprisal*** 7.86 8.13 0.46 0.40
3-gram Surprisal*** 5.64 5.78 0.32 0.28
4-gram Surprisal 3.57 3.58 0.22 0.20
Age of Acquisition 5.28 5.26 0.53 0.46
Arousal 0.42 0.42 0.04 0.04
Concreteness*** 2.58 2.69 0.16 0.15
Content Word Ratio* 0.50 0.53 0.11 0.08
End of Constituent* 0.23 0.24 0.03 0.03
End of Center-Embedding 0.65 0.64 0.04 0.04
End of Multi-Word Center-embedding 0.12 0.13 0.03 0.02
Length of Constituent* 1.33 1.38 0.18 0.12
Length of Multi-Word Center-Embedding 0.47 0.52 0.17 0.13
Lexical Connectivity 45.12 43.85 7.54 7.48
Lexical Decision RT 626.59 629.34 11.02 9.30
Log Contextual Diversity* 3.46 3.40 0.17 0.14
Log Lexical Frequency*** 4.48 4.36 0.27 0.20
Number of Morphemes 1.52 1.54 0.09 0.08
Orthographic Neighbor Frequency 690.82 655.06 228.56 196.97
Orthography-Semantics Consistency 0.77 0.76 0.04 0.04
Polysemy 5.49 5.46 0.86 0.69
Prevalence 2.30 2.31 0.04 0.03
Pronoun Ratio 0.07 0.07 0.07 0.07
Sentence Length 104.59 102.63 12.50 9.59
Syntactic Integration Cost* 0.62 0.68 0.17 0.14
Syntactic Embedding Depth 1.23 1.27 0.17 0.14
Valence 0.62 0.62 0.05 0.04

Table 2: Mean values of SentSpace features for human- and GPT2-XL-generated text. Statistically significant
differences (after a two-tailed t-test) are indicated by *p < .05, **p < .01, ***p < .005.

113


