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Abstract
We expect to interact with home assistants ir-
respective of our language. However, scaling
the Natural Language Understanding pipeline
to multiple languages while keeping the same
level of accuracy remains a challenge. In this
work, we leverage the inherent multilingual as-
pect of translation models for the task of multi-
lingual intent classification and slot filling. Our
experiments reveal that they work equally well
with general-purpose multilingual text-to-text
models. Furthermore, their accuracy can be fur-
ther improved by artificially increasing the size
of the training set. Unfortunately, increasing
the training set also increases the overlap with
the test set, leading to overestimating their true
capabilities. As a result, we propose two new
evaluation methods capable of accounting for
an overlap between the training and test set.

1 Introduction

Home assistants are omnipresent in everyday life.
We expect to have an assistant at our disposal at any
time using our phone, watch, or car — irrespective
of our language.

Scaling home assistants to multiple languages
brings additional challenges to NLU and ASR com-
ponents. There are two options: a single model per
language or a shared model for all languages. A
single model per language works well for resource-
rich languages such as English. However, lower
resource languages benefit from the cross-lingual
knowledge transfer of a single model dealing with
all languages (Conneau et al., 2020). This trade-off
applies to any multilingual system (Zhang et al.,
2022; De Bruyn et al., 2021).

While multilingual intent classification and slot
filling datasets exist, their language coverage is
limited, except for MASSIVE (FitzGerald et al.,
2022), a new dataset focused on multilingual intent
detection and slot filling. The authors translated
and localized an English-only dataset in 50 topo-
logically diverse languages. MASSIVE provides

Figure 1: Illustration of our method. We repurpose a
translation model for the task of multilingual intent clas-
sification and slot filling. We translate from utterances
into annotated utterances.

a good base to scale existing intent detection and
slot filling methods to multiple languages.

The traditional way to tackle multilingual intents
detection and slot filling is to use multilingual mod-
els such as XLM-R (Conneau et al., 2020), or mT5
(Xue et al., 2021). These models are similar to their
monolingual counterparts (Liu et al., 2019; Raffel
et al., 2020) except for the multilingual data used
to train them.1 This approach has been shown to
work in multiple studies (FitzGerald et al., 2022;
Li et al., 2021). However, MASSIVE has an ad-
ditional overlooked aspect: utterances are direct
translations of one another.

In this work, we approach the task of intent clas-
sification and slot filling as a translation task: we
translate the original utterance into the annotated
utterance. For example, we translate the utterance
what is the temperature in new york? into
the annotated utterance weather_query|what is
the [weather_descriptor : temperature] in
[place_name : new york].2

The typical use of translation models for intent
detection and slot filling is to augment the size
of an existing dataset (Zheng et al., 2021; Nicosia
et al., 2021). However, we believe the inherent mul-
tilingual capabilities of these models make them
excellent candidates for multilingual intent detec-

1They also have larger vocabularies and may have special
training tricks for cross-lingual training.

2We prepend the slot annotated utterance with the intent.
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tion and slot filling.
To this end, we leverage the recently re-

leased translation model No Language Left Behind
(NLLB) (NLLB Team et al., 2022) capable of trans-
lating between 202 pairs of languages simultane-
ously using a shared encoder-decoder. We antici-
pate that the wide range of languages covered by
the model will help us deal with lower resources
languages present in the MASSIVE dataset.

Better modeling is only half the story. Using
more data also helps improve performance. For
example, although the MASSIVE dataset displays
a large training set of more than 500K training
examples, the seed data is only around 10K training
examples. Therefore, we used GPT-3 (Brown et al.,
2020) to generate additional training data using a
dual-model approach. We also leveraged a dataset
close to the seed dataset of MASSIVE. As a result,
after translating our new training examples to the
50 remaining languages, our training set contains
more than 2M training examples — 4x the size of
the original training set.

Our experiments reveal that translation models
such as NLLB are a good fit for intent classification
and slot filling. However, their performance sharply
drops in languages that do not use spaces because
of tokenization issues.

Unfortunately, the additional training data signif-
icantly overlaps with the MASSIVE test set. As a
result, we propose two methods capable of dealing
with overlaps: weighted exact match and logistic
regression.

We conclude this introduction by summarizing
our contributions:

• We showed that a translation model such as
NLLB can complete the task of intent classifi-
cation and slot filling

• We demonstrated a method to improve the
training data with GPT-3

• We proposed two new evaluation methods tak-
ing the training/test set overlap into account

We release our model3, utterance translation
model4, and generated data5 on the HuggingFace
hub.

3maximedb/nllb_massive
4maximedb/massive_en_translation
5maximedb/massive_generated

2 Related Work

The problem of multilingual intent detection and
slot filling is not new. (Razumovskaia et al., 2022)
provides an excellent introduction to the subject.
We divide our related work section into three parts.
We start by reviewing the general problem of task-
oriented semantic parsing (i.e., intent detection and
slot filling). Next, we review the models commonly
used, and lastly, we review the available multilin-
gual datasets.

2.1 Task Oriented Semantic Parsing

Natural Language Understanding (NLU) systems
aim to classify an utterance into a predefined set
of intents and label the sequence with a predefined
ontology of slots (McTear, 2020). Since the release
of the ATIS dataset (Price, 1990), this problem has
been studied in numerous previous work (Mesnil
et al., 2013; Liu and Lane, 2016; Zhu and Yu, 2017).
However, it has recently been shown that the flat
structure of sequence labeling falls short when a
user issues sub-queries, or compositional queries,
e.g., set up a reminder to message mike
tonight6 Gupta et al. (2018) solves that problem
by using hierarchical representations instead.

2.2 Translation Models

Previous work tackling multilingual intent detec-
tion and slot filling uses multilingual versions
of well-known Transformers such XLM-Roberta
(Conneau et al., 2020), mT5 (Xue et al., 2021), or
mBART (Liu et al., 2020). We diverge from exist-
ing research and use machine translation models
instead. (Fan et al., 2021) released M2M100, a
model capable of translating between pairs of 100
languages using a single shared encoder-decoder
model. Instead of mainly going from and to En-
glish, the authors use a dataset that covers thou-
sands of language pairs. M2M100 was later im-
proved by the release of No Language Left Behind
(NLLB) (NLLB Team et al., 2022), which follows
the same architecture as M2M100 but covers 202
languages.

2.3 Cross-Lingual Task Oriented Semantic
Parsing

Although the initial dataset for intent classification
and slot filling targeted English, the number of non-
English datasets is growing rapidly. Non-English

6Two intents compose that query: create a reminder and
send a message to mike.
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datasets fall into two broad categories: non-English
monolingual datasets (Meurs et al., 2008; Castel-
lucci et al., 2019; Bellomaria et al., 2019; Zhang
et al., 2017; Gong et al., 2019; He et al., 2013;
Dao et al., 2021) and multilingual datasets. As we
aim to study models capable of handling multiple
languages simultaneously, we focus on the latter
kind of datasets. We will now cover the existing
multilingual datasets in greater detail. Upadhyay
et al. (2018) translated an existing English dataset
(Price, 1990) into Turkish and Hindi, while Su-
santo and Lu (2017) translated the same dataset
in Vietnamese and Chinese. Schuster et al. (2019)
released a multilingual dataset for task-oriented
dialogues in English, Spanish, and Thai across
three domains. (Li et al., 2021) provides MTOP a
new aligned task-oriented dataset in six languages.
MASSIVE (FitzGerald et al., 2022) is the largest
available dataset, covering 51 languages.

3 Data

There exist multiple alternative datasets to study
multilingual intent detection and slot filling. How-
ever, in this work, we use the largest one available:
the MASSIVE dataset.

3.1 MASSIVE
MASSIVE (FitzGerald et al., 2022) is a dataset
assembled by translating and localizing an existing
English-only dataset in 50 topologically different
languages.

English Seed MASSIVE is a translation of the
English-centric SLURP dataset (Bastianelli et al.,
2020). SLURP is a dataset of non-compositional
queries directed at a home assistant. It covers 18
domains, 60 intents, and 55 slots.

Languages The authors of MASSIVE hired pro-
fessional translators to translate the SLURP dataset
into 50 topologically diverse languages from 29
genera. Furthermore, to complicate the task, the
translators sometimes localized the queries instead
of simply translating them.

3.2 English Data Augmentation
As the seed data of MASSIVE is limited in scale
(10K training examples), we used two methods to
increase the training set artificially.

3.2.1 Generated Data
Generator We first fine-tune a GPT-3 (Brown
et al., 2020) curie (13B) model on the task of gener-

ating an English utterance conditional on the given
intent. For example, we train the model to gener-
ate wake me up at nine am given the prompt
alarm_set.

Parser Next, we fine-tune a second GPT-3 curie
model on intent detection and slot filling tasks.
Given an utterance, the model must generate
the concatenation of the intent and the anno-
tated utterance. For example, given the prompt
what is the temperature in new york?
must generate weather_query|what is the
[weather_descriptor : temperature] in
[place_name : new york].

Dataset We generate 30,000 utterances, equally
distributed amongst the 60 intents. After removing
duplicates and examples where the two models do
not agree on the intent, we arrive at a final dataset
of 22,276 annotated English utterances.

Intent & Slots Distribution Although we gen-
erated an equal amount of utterances per intent,
removing duplicates skewed the distribution. How-
ever, comparing the entropy of both distributions
with MASSIVE reveals that our generated dataset
is more equally spread amongst the intents but less
equally distributed relative to the slots.7 See Annex
A for a detailed analysis and comparison with the
MASSIVE dataset.

3.2.2 Synthetic Data
The SLURP dataset provides a synthetic dataset.8 It
is not part of the official training set, but as it shares
the same ontology as MASSIVE, it provides an
excellent extension to our training set. We compare
the intent and slot distribution with MASSIVE in
Annex A.

3.3 Non-English Data Augmentation
We explained in Section 3.2 our method to artifi-
cially increase the size of the (English) training set.
This section reviews our method to scale this silver
training set to the 50 remaining languages in the
MASSIVE dataset.

Using commercial translation systems was not
an option as this requires aligning the slots in the
translated utterances — a complicated task. Instead,
we fine-tune a translation model, NLLB (3B), on
the task of translating annotated utterances directly.

7Our generated dataset has an intent distribution entropy
of 4.02 and a slot distribution entropy of 3.10 compared to
3.75 and 3.21 for MASSIVE.

8https://github.com/pswietojanski/slurp/tree/master/dataset/slurp
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Using this method, we translate annotated utter-
ances and reconstruct the utterances by removing
the slot annotations from the text. Our translation
model is available on the HuggingFace Hub.9

4 Model

This work uses a machine translation model for
intent detection and slot filling. No Language Left
Behind (NLLB) (NLLB Team et al., 2022) is a
model specifically targeted at translating between
202 languages using a single encoder-decoder
model based on the M2M100 architecture (Fan
et al., 2021). It can translate text in 40,602 differ-
ent directions.

Data NLLB uses FLORES-200 as training data,
an extension of FLORES-100 (Goyal et al., 2022).
The authors of FLORES-200 used LASER3 (Hef-
fernan et al., 2022) to mine parallel data from the
web, resulting in 1.1 billion sentence pairs.

Tokenization NLLB uses a sentencepiece tok-
enizer (Kudo and Richardson, 2018) with a vocab-
ulary size of 256,000. To ensure low-resource lan-
guages are well-represented in the vocabulary, the
authors downsample high-resource and upsample
low-resource languages.

Architecture NLLB’s architecture is based on
the Transformer encoder-decoder (Vaswani et al.,
2017). NLLB is trained on several translation di-
rections at once, utilizing the same shared model
capacity. This architecture can lead to beneficial
cross-lingual transfer between related languages
at the risk of increasing interference between un-
related languages. The authors also present a
Sparsely Gated Mixture of Experts (MoE) (Alma-
hairi et al., 2016; Bengio et al., 2013). However,
we did not experiment with this variant.

Distillation The authors distilled a 54 billion pa-
rameter model using MoE into smaller dense mod-
els of 1.3 billion and 615 million parameters using
online distillation (Hinton et al., 2015). The student
model is trained on the training data but with an
additional objective: to minimize the cross-entropy
to the word-level distribution of the teacher model.
We use the distilled 615M parameter model as the
base model for intent classification and slot filling.

9For anonymity reasons, we will release the URL upon
acceptance of this paper.

5 Experiments

This section describes our experiments in applying
NLLB to the task of intent classification and slot
filling. NLLB is a translation model. While we
could repurpose NLLB to the task of intent classi-
fication and slot filling directly, we choose to first
pre-train it on a translation task.

5.1 Pre-training

As NLLB is, at its core, a translation model, we
start by teaching it to translate between the aligned
pairs of the MASSIVE dataset. Instead of trans-
lating between the utterances of two languages,
we translate between the utterance and the anno-
tated utterance. For example, the model must trans-
late "tell me the time in moscow," to the French
annotated utterance datetime_query|donne moi
l’heure à [place_name: moscou]. We take
special care in avoiding localized utterances, as this
would confuse the model. For example, we avoid
predicting datetime_query|donne moi l’heure
à moscou bordeaux.

5.2 Fine-tuning

In a second step, we fine-tune the model on the
task of translating between the utterance and the
annotated utterance in the same language. For ex-
ample, we translate the utterance what is the
temperature in new york? into the anno-
tated utterance weather_query|what is the
[weather_descriptor : temperature] in
[place_name : new york].

5.3 Technical Details

We use the NLLB-200 (600M) model for
all experiments.10 We wrap each encoder
input according to the following formula:
<s>...</><language_code>. We prepend each
decoder input with the target language code. We
train for 50,000 steps during pre-training and
fine-tuning with a learning rate of 1e−4 and 1e−5,
respectively. We use Pytorch (Paszke et al., 2019),
the HuggingFace Trainer (Wolf et al., 2020) and
DeepSpeed (Rajbhandari et al., 2020).

6 Results

This section presents a high-level analysis of our
results. Table 1 compares our results against the
baselines provided by the authors of MASSIVE.

10facebook/nllb-200-distilled-600M
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Model Training Set Intent Acc (%) Slot F1 (%) Exact Match (%)
High Low Avg High Low Avg High Low Avg

XLM-R M 88.3 77.2 85.1 83.5 63.3 73.6 70.1 55.8 63.7
mT5 Enc. M 89.0 79.1 86.1 85.7 64.5 75.4 72.3 57.8 65.9
mT5 M 87.9 79.0 85.3 86.8 67.6 76.8 73.4 58.3 66.6
NLLB M+G 89.3 79.2 87.3 85.9 66.3 77.0 74.1 57.8 68.3
NLLB M+G+S 94.5 84.5 93.4 82.9 69.6 82.9 89.2 65.0 78.5

Table 1: Modelling results on the MASSIVE test set. NLLB trained on the MASSIVE training set (M), our generated
dataset (G) and the synthetic training set from SLURP (S) achieve the highest scores. However, as we show in a
later section, this outperformance is due to a large overlap with the MASSIVE test set.

Our experiments reveal that NLLB performs sim-
ilarly to mT5 on intent detection and slot filling
tasks. Furthermore, our two data augmentation
strategies improve the results on the MASSIVE
test set. First, training with our generated training
set improves the locale average exact match from
66.6 to 68.3. Second, training with the generated
and synthetic data boosts the exact match as it im-
proves from 68.3 to 78.5. As we show in the next
section, this performance boost is mainly due to a
large overlap between the training and test set.

7 Training & Test Set Overlap

This section analyses the similarity between the
training sets and the MASSIVE. Next, we look for
evaluation methods capable of correcting for the
overlap between the training and test set.

Exact Duplicates An analysis of the data reveals
problematic overlaps between the training sets and
the MASSIVE test set. However, this overlap is un-
equal across the training sets and languages. Table
2 shows the percentage of examples in the MAS-
SIVE test set, which are also present in our three
training sets. The English subset of the MASSIVE
test set overlaps highly with the synthetic train-
ing set described in Section 3.2.2. Localization
and translation somewhat reduce the exact match
overlap when looking at all languages, although
it remains high. The MASSIVE and generated
training sets also have a non-zero overlap with the
MASSIVE test set.

Close Duplicates Some examples may not be ex-
act duplicates but close duplicates. For example,
call the dentist and olly please call the
dentist now. We use character n-grams to mea-
sure the similarity between two utterances as simi-
larity metric between two utterances. We search for
the most similar training example for each example

Training Set en-US (%) All Locales (%)
MASSIVE 0.7 5.9
Generated 5.6 6.4
Synthetic 49.0 12.8

Table 2: Exact duplicate analysis. Percentage of exam-
ples in the MASSIVE test set, which are also present
in the training set of MASSIVE, our generated training
set, and the synthetic training set. Translation reduces
the overlap of the synthetic dataset compared to the
English-only figures. However, it is the opposite for the
MASSIVE test set, where the overlap is higher for all
locales compared to English only.

in the test and record their n-gram similarity.11 Fig-
ure 2 shows the distribution of maximum similarity
between the test set and our three training sets for
the English subset and across all locales. It is clear
from Figure 2 that the English synthetic dataset
overlaps significantly with the English MASSIVE
test set. However, as for the exact duplicates, the
translation and localization process reduces this
overlap but does not eliminate it.

A naive solution would be to remove training ex-
amples that overlap with the test set. However, how
does one decide what is a close duplicate? Further-
more, as the training set grows, some overlap with
the test is inevitable. We argue that the problem is
not the training data but the evaluation metric. We
need an evaluation metric capable of controlling
for the overlap between the test and training sets.

7.1 Logistic Regression

Instead of looking at the simple exact match accu-
racy, we want to express the exact match accuracy
as a function of the test/train similarity. One po-
tential solution is to use logistic regression with
similarity as the independent variable and exact
match as the dependent variable.

11We do this search on a per-language basis.
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Figure 2: Box plot of the maximum similarity between
examples in the MASSIVE test set with the training
set of MASSIVE (M), Generated (G) and Synthetic (S),
for the English part and the entire dataset (all locales).
The English synthetic (S) training set overlaps highly
with the MASSIVE test set. Translation and localization
reduces this overlap in the all-locales dataset.

Training S. β0 β1 R2

M+G -0.96±0.03 3.31±0.06 0.07
M+G+S -0.69±0.03 3.14±0.06 0.08

Table 3: We report the logistic regression results for two
NLLB models fine-tuned on the training set of MAS-
SIVE (M), generated (G), and synthetic (S). We report
the point estimate and the 95% confidence interval for
each parameter. After correcting for any overlap be-
tween the training and test set, the second is statistically
better than the first.

p(x) =
1

1 + e−(β0+β1x)
(1)

Where p(x) represents the probability of an ex-
act match, β0 represents the intercept and β1 the
slope. Using this method, we can compare both
models at the same level of similarity.

Results Table 3 presents a summary of the logis-
tic regression results. We report the point estimate
and confidence interval for both β0, β1 and the
pseudo R2 given by statsmodels (Seabold and
Perktold, 2010). Using Equation 1, we can esti-
mate the performance of both models at multiple
levels of similarity, as shown in Figure 3.

According to Table 3 and Figure 3, the model
trained on the three training datasets is better than
the one trained only on two — taking the overlap
into account. However, these numbers also indicate
that both models struggle with utterances dissim-
ilar to the training set. Moreover, they achieve an
exact match accuracy lower than random chance
on dissimilar utterances — casting doubt on their
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Figure 3: Exact match probability at three levels of
similarity: 0, 0.5, and 1.0. We used Equation 1 with the
estimated parameters from Table 3. Model two is better
than model one on dissimilar utterances. However, the
difference diminishes when the similarity increases.

Training Set Weighted Average (%)
M+G 59.2
M+G+S 67.2

Table 4: We report the weighted average results for two
NLLB models fine-tuned on the training set of MAS-
SIVE (M), generated (G), and synthetic (S). The second
model is better than the first even after correcting for its
high overlap with the training set.

abilities to generalize to unseen utterances.

7.2 Weighted Average

Another possibility is to give less importance to
test examples similar to the training set.

n∑

i=1

wi ∗ exact_matchi∑n
i=1wi

(2)

where wi = 1− simi.

Results Table 4 displays the results according
to the weighted average metric. According to this
metric, the second model outperforms the first one.
This metric is easy to understand. However, it
does not tell us anything about the performance of
dissimilar queries.

7.3 Summary

According to our overlap-aware evaluation metrics,
the model trained on the synthetic datasets is the
most performant, even after correcting for its high
overlap with the test.
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Language Intercept Num. Token Split R-Squared
ja-JP 0.85* -0.16* 0.013
zh-CN 0.58* -0.15* 0.006
zh-TW 0.11 -0.03 0.000

Table 5: Logistic regression of exact match accuracy explained by the number of split token. The number of split
token negatively influence the capability of the token to correctly parse the slots for ja-JA and zh-CN. The coefficient
are not significantly different than zero for zh-TW. Starred numbers (*) are statistically different than zero with a
p-value of 0.05

Figure 4: Our method does not scale well to non-space
delimited languages. For example, in the utterance
above, the time slot ends in the middle of a token. To
correctly parse the utterance, the model must replace
token 20202 (時に) by tokens 249229 (時) and 5954
(に).

8 Error Analysis

8.1 Tokenization

Our formatting of input and output consists of sur-
rounding slots with brackets along with the slot
name (e.g., [place_name : new york]. This
method implies that slots’ boundaries align with to-
kenization. Otherwise, the model cannot correctly
place the opening or closing bracket — unless it
uses a different token than the ones in the source
utterance. See Figure for an example.

We identified three languages for which this
problem occurs: ja-JP in 66% of the test set, zh-CN
in 66% of the test set, and zh-TW in 69% of the
test set. These are three languages that do not use
spaces between words.

Similar to Section 7.1, we ran a logistic regres-
sion to explain the exact match performance by the
number of split tokens. Table 5 shows the results.
We identified a statistically significant relationship
between the number of split tokens and the exact
match performance for ja-JP and zh-CN. The per-
formance of zh-TW is low regardless of the number
of split tokens.

8.2 Generalization

Section 7.1 demonstrated that models struggle to
generalize to utterances dissimilar to the training
set. In this section, we decompose this conclu-
sion by languages. Figure 5 decomposes Figure
3 by languages. It shows the probability of an ex-
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Figure 5: Exact match probability at three levels of
similarity: 0, 0.5, and 1.0. We used Equation 1 with the
estimated parameters from Table 3. Model two is better
than model one on dissimilar utterances. However, the
difference diminishes when the similarity increases.

act match on the test set by increasing levels of
similarity to the training set. Figure 5 shows a
wide distribution of probabilities for low similar-
ity utterances (6% standard deviation), while the
distribution for highly similar utterances is more
concentrated (3% standard deviation). Some lan-
guages do better than others. For example, km-KH
achieves an exact match probability of 44% at a
similarity of 0.0 while vi-VN only achieves a an
exatch match probability of 15%. We list the full
details of Figure 5 in Appendix B.

9 Future Work

In this work, we estimated the similarity between
two utterances using character n-grams. However,
while this captures lexically similar utterances, it
fails to capture utterances semantically similar but
lexically different. For example, these two utter-
ances are highly similar, although they only share
a single common token: what time is it? and
tell me the time. Future work can tackle this
by using multilingual sentence encoders such as
LASER3 (Heffernan et al., 2022), Multilingual
Universal Sentence Encoder (Yang et al., 2020),
or multilingual models on Sentence Transformers
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(Reimers and Gurevych, 2020).
This work did not explicitly address cross-

lingual training and instead relied on the cross-
lingual pre-training of the translation model. Future
work could combine a translation model with cross-
lingual training methods such as xTune (Zheng
et al., 2021), or X-Mixup (Yang et al., 2022).

Section 8.1 showed the limitation of subword
tokenization methods. Future work could explore
methods which do not uses subword tokenization
such as byT5 (Xue et al., 2022).

10 Conclusion

In this work, we showed that a translation model
such as NLLB can perform the task of intent clas-
sification and slot filling. Because of tokenization
issues, it is, however, suboptimal with non-spaced
languages.

Moreover, we showed that artificially increas-
ing the training sets’ size leads to improved per-
formance. Unfortunately, we also show that this
added data can overlap with the existing test set,
distorting the true evaluation of these models. The
normal way to overcome this problem is to remove
the overlap from the training set. However, decid-
ing on what constitutes an overlap remains an open
question. Therefore, we argued that the data over-
lap is not the problem — the evaluation metric is.
As a result, we proposed two evaluation metrics
that control the training/test overlap. Both metrics
reveal that the model trained on overlapped data
improves the results on non-overlapped data. How-
ever, our analysis also reveals that these models
struggle to beat random chance when evaluated on
utterances dissimilar to the training set.

Acknowledgement

We thank the reviewers for their helpful feedback.
This research received funding from the Flemish
Government under the Onderzoeksprogramma Ar-
tificiële Intelligentie (AI) Vlaanderen programme.

References
Amjad Almahairi, Nicolas Ballas, Tim Cooijmans, Yin

Zheng, Hugo Larochelle, and Aaron Courville. 2016.
Dynamic capacity networks. In Proceedings of the
33rd International Conference on International Con-
ference on Machine Learning - Volume 48, ICML’16,
page 2091–2100. JMLR.org.

Emanuele Bastianelli, Andrea Vanzo, Pawel Swietojan-
ski, and Verena Rieser. 2020. SLURP: A spoken lan-

guage understanding resource package. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
7252–7262, Online. Association for Computational
Linguistics.

Valentina Bellomaria, Giuseppe Castellucci, Andrea
Favalli, and Raniero Romagnoli. 2019. Almawave-
slu: A new dataset for slu in italian. arXiv,
abs/1907.07526.

Yoshua Bengio, Nicholas Léonard, and Aaron C.
Courville. 2013. Estimating or propagating gradients
through stochastic neurons for conditional computa-
tion. CoRR, abs/1308.3432.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Giuseppe Castellucci, Valentina Bellomaria, Andrea
Favalli, and Raniero Romagnoli. 2019. Multi-lingual
intent detection and slot filling in a joint bert-based
model. arXiv, abs/1907.02884.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Mai Hoang Dao, Thinh Hung Truong, and Dat Quoc
Nguyen. 2021. Intent detection and slot filling for
vietnamese. arXiv, abs/2104.02021.

Maxime De Bruyn, Ehsan Lotfi, Jeska Buhmann, and
Walter Daelemans. 2021. MFAQ: a multilingual FAQ
dataset. In Proceedings of the 3rd Workshop on Ma-
chine Reading for Question Answering, pages 1–13,
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Man-
deep Baines, Onur Celebi, Guillaume Wenzek,
Vishrav Chaudhary, Naman Goyal, Tom Birch, Vi-
taliy Liptchinsky, Sergey Edunov, Edouard Grave,
Michael Auli, and Armand Joulin. 2021. Beyond
english-centric multilingual machine translation. J.
Mach. Learn. Res., 22(1).

76

https://doi.org/10.18653/v1/2020.emnlp-main.588
https://doi.org/10.18653/v1/2020.emnlp-main.588
https://doi.org/10.48550/ARXIV.1907.07526
https://doi.org/10.48550/ARXIV.1907.07526
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.48550/ARXIV.1907.02884
https://doi.org/10.48550/ARXIV.1907.02884
https://doi.org/10.48550/ARXIV.1907.02884
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.48550/ARXIV.2104.02021
https://doi.org/10.48550/ARXIV.2104.02021
https://doi.org/10.18653/v1/2021.mrqa-1.1
https://doi.org/10.18653/v1/2021.mrqa-1.1


Jack FitzGerald, Christopher Hench, Charith Peris,
Scott Mackie, Kay Rottmann, Ana Sanchez, Aaron
Nash, Liam Urbach, Vishesh Kakarala, Richa
Singh, Swetha Ranganath, Laurie Crist, Misha
Britan, Wouter Leeuwis, Gokhan Tur, and Prem
Natarajan. 2022. Massive: A 1m-example mul-
tilingual natural language understanding dataset
with 51 typologically-diverse languages. arXiv,
abs/2204.08582.

Yu Gong, Xusheng Luo, Yu Zhu, Wenwu Ou, Zhao Li,
Muhua Zhu, Kenny Q. Zhu, Lu Duan, and Xi Chen.
2019. Deep cascade multi-task learning for slot fill-
ing in online shopping assistant. In Proceedings of
the Thirty-Third AAAI Conference on Artificial Intelli-
gence and Thirty-First Innovative Applications of Ar-
tificial Intelligence Conference and Ninth AAAI Sym-
posium on Educational Advances in Artificial Intelli-
gence, AAAI’19/IAAI’19/EAAI’19. AAAI Press.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’Aurelio Ranzato, Francisco Guzmán,
and Angela Fan. 2022. The Flores-101 evaluation
benchmark for low-resource and multilingual ma-
chine translation. Transactions of the Association for
Computational Linguistics, 10:522–538.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Ku-
mar, and Mike Lewis. 2018. Semantic parsing for
task oriented dialog using hierarchical representa-
tions. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2787–2792, Brussels, Belgium. Association
for Computational Linguistics.

Xiaodong He, Li Deng, Dilek Hakkani-Tur, and Gokhan
Tur. 2013. Multi-style adaptive training for robust
cross-lingual spoken language understanding. In
2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 8342–8346.

Kevin Heffernan, Onur Çelebi, and Holger Schwenk.
2022. Bitext mining using distilled sentence rep-
resentations for low-resource languages. arXiv,
arxiv.2205.12654.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv,
abs/1503.02531.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit
Gupta, Sonal Gupta, and Yashar Mehdad. 2021.
MTOP: A comprehensive multilingual task-oriented
semantic parsing benchmark. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,

pages 2950–2962, Online. Association for Computa-
tional Linguistics.

Bing Liu and Ian Lane. 2016. Attention-based recurrent
neural network models for joint intent detection and
slot filling. Interspeech 2016, pages 685–689.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. arXiv,
abs/2001.08210.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv, abs/1907.11692.

Michael McTear. 2020. Conversational ai: dialogue
systems, conversational agents, and chatbots. Syn-
thesis Lectures on Human Language Technologies,
13(3):1–251.

Grégoire Mesnil, Xiaodong He, Li Deng, and Yoshua
Bengio. 2013. Investigation of recurrent-neural-
network architectures and learning methods for spo-
ken language understanding. In INTERSPEECH.

Marie-Jean Meurs, Frédéric Duvert, Frédéric Béchet,
Fabrice Lefèvre, and Renato de Mori. 2008. Seman-
tic frame annotation on the French MEDIA corpus.
In Proceedings of the Sixth International Conference
on Language Resources and Evaluation (LREC’08),
Marrakech, Morocco. European Language Resources
Association (ELRA).

Massimo Nicosia, Zhongdi Qu, and Yasemin Altun.
2021. Translate & Fill: Improving zero-shot mul-
tilingual semantic parsing with synthetic data. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 3272–3284, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Rop-
ers, Safiyyah Saleem, Holger Schwenk, and Jeff
Wang. 2022. No language left behind: Scal-
ing human-centered machine translation. arXiv,
abs/2207.04672.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca

77

https://doi.org/10.48550/ARXIV.2204.08582
https://doi.org/10.48550/ARXIV.2204.08582
https://doi.org/10.48550/ARXIV.2204.08582
https://doi.org/10.1609/aaai.v33i01.33016465
https://doi.org/10.1609/aaai.v33i01.33016465
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.1109/ICASSP.2013.6639292
https://doi.org/10.1109/ICASSP.2013.6639292
https://doi.org/10.48550/ARXIV.2205.12654
https://doi.org/10.48550/ARXIV.2205.12654
https://doi.org/10.48550/ARXIV.1503.02531
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/2021.eacl-main.257
https://doi.org/10.18653/v1/2021.eacl-main.257
https://doi.org/10.48550/ARXIV.2001.08210
https://doi.org/10.48550/ARXIV.2001.08210
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.2200/S01060ED1V01Y202010HLT048
https://doi.org/10.2200/S01060ED1V01Y202010HLT048
http://www.lrec-conf.org/proceedings/lrec2008/pdf/256_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/256_paper.pdf
https://doi.org/10.18653/v1/2021.findings-emnlp.279
https://doi.org/10.18653/v1/2021.findings-emnlp.279
https://doi.org/10.48550/ARXIV.2207.04672
https://doi.org/10.48550/ARXIV.2207.04672


Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc.

P. J. Price. 1990. Evaluation of spoken language sys-
tems: the ATIS domain. In Speech and Natural Lan-
guage: Proceedings of a Workshop Held at Hidden
Valley, Pennsylvania, June 24-27,1990.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimizations
toward training trillion parameter models. In Pro-
ceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’20. IEEE Press.

Evgeniia Razumovskaia, Goran Glavas, Olga Majewska,
Edoardo M Ponti, Anna Korhonen, and Ivan Vulic.
2022. Crossing the conversational chasm: A primer
on natural language processing for multilingual task-
oriented dialogue systems. Journal of Artificial Intel-
ligence Research, 74:1351–1402.

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual us-
ing knowledge distillation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4512–4525,
Online. Association for Computational Linguistics.

Sebastian Schuster, Sonal Gupta, Rushin Shah, and
Mike Lewis. 2019. Cross-lingual transfer learning
for multilingual task oriented dialog. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 3795–3805, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Skipper Seabold and Josef Perktold. 2010. statsmodels:
Econometric and statistical modeling with python. In
9th Python in Science Conference.

Raymond Hendy Susanto and Wei Lu. 2017. Neural
architectures for multilingual semantic parsing. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 38–44, Vancouver, Canada. As-
sociation for Computational Linguistics.

Shyam Upadhyay, Manaal Faruqui, Gokhan Tür,
Hakkani-Tür Dilek, and Larry Heck. 2018. (almost)

zero-shot cross-lingual spoken language understand-
ing. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 6034–6038.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2022. ByT5: Towards a token-free
future with pre-trained byte-to-byte models. Transac-
tions of the Association for Computational Linguis-
tics, 10:291–306.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

Huiyun Yang, Huadong Chen, Hao Zhou, and Lei Li.
2022. Enhancing cross-lingual transfer by manifold
mixup. arXiv, abs/2205.04182.

Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy Guo,
Jax Law, Noah Constant, Gustavo Hernandez Abrego,
Steve Yuan, Chris Tar, Yun-hsuan Sung, Brian Strope,
and Ray Kurzweil. 2020. Multilingual universal sen-
tence encoder for semantic retrieval. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations,
pages 87–94, Online. Association for Computational
Linguistics.

Qingyu Zhang, Xiaoyu Shen, Ernie Chang, Jidong Ge,
and Pengke Chen. 2022. Mdia: A benchmark for
multilingual dialogue generation in 46 languages.
arXiv, abs/2208.13078.

Weinan Zhang, Zhigang Chen, Wanxiang Che, Guoping
Hu, and Ting Liu. 2017. The first evaluation of chi-
nese human-computer dialogue technology. CoRR,
abs/1709.10217.

78

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://aclanthology.org/H90-1020
https://aclanthology.org/H90-1020
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1613/jair.1.13083
https://doi.org/10.1613/jair.1.13083
https://doi.org/10.1613/jair.1.13083
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.18653/v1/N19-1380
https://doi.org/10.18653/v1/N19-1380
https://doi.org/10.18653/v1/P17-2007
https://doi.org/10.18653/v1/P17-2007
https://doi.org/10.1109/ICASSP.2018.8461905
https://doi.org/10.1109/ICASSP.2018.8461905
https://doi.org/10.1109/ICASSP.2018.8461905
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.48550/ARXIV.2205.04182
https://doi.org/10.48550/ARXIV.2205.04182
https://doi.org/10.18653/v1/2020.acl-demos.12
https://doi.org/10.18653/v1/2020.acl-demos.12
https://doi.org/10.48550/ARXIV.2208.13078
https://doi.org/10.48550/ARXIV.2208.13078
http://arxiv.org/abs/1709.10217
http://arxiv.org/abs/1709.10217


Bo Zheng, Li Dong, Shaohan Huang, Wenhui Wang,
Zewen Chi, Saksham Singhal, Wanxiang Che, Ting
Liu, Xia Song, and Furu Wei. 2021. Consistency reg-
ularization for cross-lingual fine-tuning. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3403–3417, Online.
Association for Computational Linguistics.

Su Zhu and Kai Yu. 2017. Encoder-decoder with focus-
mechanism for sequence labelling based spoken lan-
guage understanding. In 2017 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 5675–5679. IEEE.

A Distribution of Intents & Slots

We list in Table 6 the distribution of intents across
the three datasets. Table 7 shows the distribution
of slots across the three datasets.

B Logistic Regression by Languages

We list the results of the logistic regression by lan-
guage in Table 8.
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Intent MASSIVE Generated Synthetic
calendar_set 7,0% 2,6% 3,6%
play_music 5,5% 2,2% 3,3%
weather_query 5,0% 2,0% 3,0%
calendar_query 4,9% 2,2% 2,4%
general_quirky 4,8% 1,7% 5,2%
qa_factoid 4,7% 2,0% 8,3%
news_query 4,4% 2,1% 2,5%
email_query 3,6% 2,2% 12,0%
email_sendemail 3,1% 2,4% 11,1%
datetime_query 3,0% 1,5% 1,4%
calendar_remove 2,7% 2,1% 1,1%
play_radio 2,5% 2,1% 1,5%
social_post 2,5% 2,4% 8,7%
qa_definition 2,3% 2,2% 3,7%
transport_query 2,0% 2,3% 1,1%
cooking_recipe 1,8% 2,2% 1,2%
lists_query 1,7% 1,5% 1,0%
play_podcasts 1,7% 1,5% 1,0%
recommendation_events 1,7% 2,0% 0,9%
alarm_set 1,6% 1,8% 0,6%
lists_createoradd 1,5% 1,7% 0,6%
recommendation_locations 1,5% 2,3% 0,9%
lists_remove 1,4% 1,7% 0,9%
music_query 1,3% 1,3% 0,6%
iot_hue_lightoff 1,3% 1,3% 0,6%
qa_stock 1,3% 2,5% 2,7%
play_audiobook 1,3% 2,0% 0,3%
qa_currency 1,2% 2,2% 3,3%
takeaway_order 1,2% 2,1% 0,4%
alarm_query 1,1% 1,3% 0,2%
email_querycontact 1,1% 2,0% 3,3%
transport_ticket 1,1% 1,8% 0,6%
iot_hue_lightchange 1,1% 2,1% 0,7%
iot_coffee 1,1% 1,2% 0,5%
takeaway_query 1,1% 1,8% 0,5%
transport_traffic 1,0% 1,8% 0,4%
music_likeness 1,0% 1,5% 0,5%
play_game 1,0% 1,7% 0,7%
audio_volume_up 1,0% 1,2% 0,1%
audio_volume_mute 1,0% 1,5% 0,3%
social_query 0,9% 2,0% 2,8%
transport_taxi 0,9% 1,9% 0,5%
iot_cleaning 0,8% 1,4% 0,4%
alarm_remove 0,7% 1,8% 0,2%
qa_maths 0,7% 1,7% 0,8%
iot_hue_lightup 0,7% 1,3% 0,4%
iot_hue_lightdim 0,7% 1,4% 0,4%
general_joke 0,6% 1,3% 0,3%
recommendation_movies 0,6% 2,0% 0,4%
email_addcontact 0,5% 1,3% 1,4%
iot_wemo_off 0,5% 0,8% 0,2%
datetime_convert 0,5% 1,6% 0,2%
audio_volume_down 0,5% 1,1% 0,1%
music_settings 0,4% 0,9% 0,2%
iot_wemo_on 0,4% 1,0% 0,2%
general_greet 0,2% 0,2%
iot_hue_lighton 0,2% 1,0% 0,1%
audio_volume_other 0,2% 0,6% 0,0%
music_dislikeness 0,1% 0,9% 0,1%
cooking_query 0,0% 0,0% 0,0%

Table 6: Distribution of intents across the three datasets. Generated represents the utterances generated by GPT-3,
while synthetic represents the synthetic training set of SLURP.
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Intent MASSIVE Generated Synthetic
date 16,0% 10,8% 10,7%
place_name 9,6% 10,6% 8,0%
event_name 8,8% 4,3% 5,5%
person 7,6% 5,4% 17,2%
time 7,0% 5,8% 4,1%
media_type 4,2% 5,4% 9,5%
business_name 3,4% 5,7% 7,6%
weather_descriptor 2,8% 1,1% 1,5%
transport_type 2,8% 5,0% 1,2%
food_type 2,6% 4,2% 1,4%
relation 2,2% 2,3% 4,8%
timeofday 2,1% 2,0% 1,3%
artist_name 2,0% 0,8% 1,2%
device_type 2,0% 3,4% 1,1%
definition_word 2,0% 2,0% 3,5%
currency_name 1,9% 3,8% 5,7%
house_place 1,7% 3,8% 0,8%
list_name 1,7% 1,8% 0,9%
business_type 1,7% 2,8% 0,8%
news_topic 1,6% 0,7% 1,1%
music_genre 1,6% 0,9% 1,0%
player_setting 1,4% 2,1% 0,5%
radio_name 1,2% 1,1% 0,9%
song_name 1,1% 0,3% 0,7%
order_type 0,9% 1,6% 0,3%
color_type 0,9% 1,7% 0,4%
game_name 0,8% 1,3% 0,6%
general_frequency 0,7% 0,3% 0,4%
personal_info 0,7% 1,2% 2,0%
audiobook_name 0,6% 0,9% 0,2%
podcast_descriptor 0,6% 0,6% 0,3%
meal_type 0,6% 0,4% 0,4%
playlist_name 0,5% 0,1% 0,3%
podcast_name 0,5% 0,4% 0,3%
time_zone 0,5% 1,1% 0,2%
app_name 0,4% 0,3% 0,1%
change_amount 0,4% 0,9% 0,1%
music_descriptor 0,4% 0,2% 0,2%
joke_type 0,3% 0,8% 0,2%
email_folder 0,3% 0,2% 0,9%
email_address 0,3% 0,4% 1,4%
transport_agency 0,3% 0,5% 0,2%
coffee_type 0,2% 0,2% 0,1%
ingredient 0,2% 0,1% 0,1%
cooking_type 0,1% 0,1% 0,1%
movie_name 0,1% 0,1% 0,1%
movie_type 0,1% 0,2% 0,0%
transport_name 0,1% 0,1% 0,1%
drink_type 0,1% 0,1% 0,0%
alarm_type 0,1% 0,1% 0,0%
transport_descriptor 0,1% 0,0% 0,0%
audiobook_author 0,1% 0,2% 0,0%
sport_type 0,0% 0,0% 0,0%
music_album 0,0% 0,0%
game_type 0,0% 0,0% 0,0%

Table 7: Distribution of slots across the three datasets. Generated represents the utterances generated by GPT-3,
while synthetic represents the synthetic training set of SLURP.
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language β0 β1 R2 f(x = 0) f(x = 0.5) f(x = 1)
all -0.69 3.14 0.08 0.33 0.71 0.92
af-ZA -0.98 4.01 0.11 0.27 0.74 0.95
am-ET -0.46 3.09 0.06 0.39 0.75 0.93
ar-SA -0.58 3.01 0.07 0.36 0.72 0.92
az-AZ -0.55 3.24 0.08 0.37 0.75 0.94
bn-BD -1.27 3.71 0.10 0.22 0.64 0.92
cy-GB -0.66 3.37 0.08 0.34 0.74 0.94
da-DK -0.95 4.13 0.12 0.28 0.75 0.96
de-DE -0.65 3.58 0.09 0.34 0.76 0.95
el-GR -0.92 3.64 0.09 0.28 0.71 0.94
en-US -1.45 4.93 0.21 0.19 0.73 0.97
es-ES -0.60 2.99 0.07 0.36 0.71 0.92
fa-IR -0.96 2.70 0.06 0.28 0.60 0.85
fi-FI -0.86 3.80 0.10 0.30 0.74 0.95
fr-FR -0.37 2.65 0.05 0.41 0.72 0.91
he-IL -0.72 3.44 0.08 0.33 0.73 0.94
hi-IN -0.76 3.10 0.08 0.32 0.69 0.91
hu-HU -0.55 3.25 0.08 0.37 0.75 0.94
hy-AM -1.05 3.35 0.08 0.26 0.65 0.91
id-ID -0.67 3.33 0.08 0.34 0.73 0.93
is-IS -0.56 3.19 0.07 0.36 0.74 0.93
it-IT -0.46 2.82 0.06 0.39 0.72 0.91
ja-JP -0.48 2.77 0.06 0.38 0.71 0.91
jv-ID -0.34 2.95 0.06 0.42 0.76 0.93
ka-GE -0.46 2.59 0.06 0.39 0.70 0.89
km-KH -0.23 1.62 0.03 0.44 0.64 0.80
kn-IN -0.94 2.55 0.05 0.28 0.58 0.83
ko-KR -0.49 3.42 0.08 0.38 0.77 0.95
lv-LV -0.81 3.62 0.09 0.31 0.73 0.94
ml-IN -1.39 3.64 0.10 0.20 0.61 0.90
mn-MN -0.79 3.32 0.07 0.31 0.70 0.93
ms-MY -0.77 3.55 0.08 0.32 0.73 0.94
my-MM -0.97 4.12 0.08 0.27 0.75 0.96
nb-NO -0.72 3.65 0.09 0.33 0.75 0.95
nl-NL -0.80 3.71 0.10 0.31 0.74 0.95
pl-PL -0.52 2.65 0.06 0.37 0.69 0.89
pt-PT -0.56 3.05 0.07 0.36 0.72 0.92
ro-RO -0.36 3.00 0.06 0.41 0.76 0.93
ru-RU -0.47 3.12 0.07 0.38 0.75 0.93
sl-SL -0.63 3.25 0.08 0.35 0.73 0.93
sq-AL -0.54 3.04 0.07 0.37 0.73 0.92
sv-SE -0.51 3.53 0.09 0.37 0.78 0.95
sw-KE -0.89 3.26 0.08 0.29 0.68 0.91
ta-IN -0.70 3.20 0.07 0.33 0.71 0.92
te-IN -0.65 2.18 0.04 0.34 0.61 0.82
th-TH -0.66 2.61 0.06 0.34 0.66 0.88
tl-PH -1.12 3.72 0.09 0.25 0.68 0.93
tr-TR -0.71 3.53 0.09 0.33 0.74 0.94
ur-PK -0.80 3.30 0.08 0.31 0.70 0.92
vi-VN -1.72 3.78 0.10 0.15 0.54 0.89
zh-CN -0.42 2.35 0.06 0.40 0.68 0.87
zh-TW -0.56 1.97 0.05 0.36 0.61 0.80

Table 8: Logistic regression results by language
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