@inproceedings{mcnamee-duh-2022-multilingual,
title = "The Multilingual Microblog Translation Corpus: Improving and Evaluating Translation of User-Generated Text",
author = "McNamee, Paul and
Duh, Kevin",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://preview.aclanthology.org/add-emnlp-2024-awards/2022.lrec-1.96/",
pages = "910--918",
abstract = "Translation of the noisy, informal language found in social media has been an understudied problem, with a principal factor being the limited availability of translation corpora in many languages. To address this need we have developed a new corpus containing over 200,000 translations of microblog posts that supports translation of thirteen languages into English. The languages are: Arabic, Chinese, Farsi, French, German, Hindi, Korean, Pashto, Portuguese, Russian, Spanish, Tagalog, and Urdu. We are releasing these data as the Multilingual Microblog Translation Corpus to support futher research in translation of informal language. We establish baselines using this new resource, and we further demonstrate the utility of the corpus by conducting experiments with fine-tuning to improve translation quality from a high performing neural machine translation (NMT) system. Fine-tuning provided substantial gains, ranging from +3.4 to +11.1 BLEU. On average, a relative gain of 21{\%} was observed, demonstrating the utility of the corpus."
}