
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 5813–5820
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

5813

Comparing Approaches to Language Understanding for Human-Robot
Dialogue: An Error Taxonomy and Analysis

Ada D. Tur†, David R. Traum††
†Los Altos High School, Los Altos, CA, 94022, USA,

††University of Southern California Institute for Creative Technologies, Playa Vista, CA 90094, USA
adadtur@gmail.com, traum@ict.usc.edu

Abstract
In this paper, we compare two different approaches to language understanding for a human-robot interaction domain in which a
human commander gives navigation instructions to a robot. We contrast a relevance-based classifier with a GPT-2 model, using
about 2000 input-output examples as training data. With this level of training data, the relevance-based model outperforms the
GPT-2 based model 79% to 68%, and an Oracle combination set an upper-bound of 85%. We also present a taxonomy of types
of errors made by each model, indicating that they have somewhat different strengths and weaknesses, so we also examine the
potential for a combined model.

Keywords: Dialogue, Human-Robot Interaction, Evaluation, Error Taxonomy

1. Introduction

There are many approaches toward language under-
standing for human-robot interaction. Some involve
domain-specific or general grammars of understand-
able utterances, combined with appropriate actions to
perform. Another approach is to learn an appropriate
output from supervised training data which pairs ap-
propriate outputs with given inputs. A third approach
is to “fine-tune” a general purpose predictive language
model with domain-specific data. We compare two in-
stances of the latter two approaches in a domain where
the task is to “translate” natural language instructions to
a more restricted language that can be directly executed
by a robot navigator. Actionable commands can be di-
rectly translated, while other utterances require com-
munication directly with the user.
In previous work, (Gervits et al., 2021) was able to
achieve over 75% accuracy using a classification ap-
proach. We have retested with additional training data
on the same test data, both with the same classifier soft-
ware used by (Gervits et al., 2021), as well as a new ap-
proach involving fine-tuning a large scale pre-trained
transformer-based language model (GPT-2) (Radford
et al., 2018). The original model shows a small im-
provement over the previous results with a smaller
training set, while the GPT model is not quite as ac-
curate. An error analysis shows that the models make
some different errors, so we also investigate the poten-
tial for combining the two approaches.
We first constructed a revised taxonomy of errors and
classify each of the 183 examples in the test set for both
models as to whether they are correct or which category
they fall in. We then create a confusion matrix showing
which types of errors are more common to each model.
We conclude with some preliminary steps toward com-
bining the models to reduce the total number of errors.

2. Related Work
Many different forms of statistical analysis have been
utilized for the task of human-machine interaction (Ser-
ban et al., 2016; Bonial et al., 2017). For instance, the
“corpus-based approach”, where the system is trained
on data from a target domain, has been used for human-
robot dialogue (Marge et al., 2017b; Marge and Rud-
nicky, 2011).
In the past few years, there have been several corpora
related to human-robot interaction for navigation and
object manipulation in 3D environments. In the Room-
to-Room (R2R) (Anderson et al., 2018) dataset, each
example includes a natural language instruction that
the agent needs to follow to navigate in a real-world
environment from the Matterport3D dataset (Chang et
al., 2017). Cooperative Vision-and-Dialog Navigation
(CVDN) (Thomason et al., 2020) is a also a natural
language dataset situated in the Matterport Room-2-
Room (R2R) simulation environment, however, in this
dataset, the human and agent engage in a multi-turn
conversation to complete the navigation task.
One barrier for many human-robot interaction tasks is
the problem of misinterpreting, or not having adequate
context to complete a task. There can be circumstances
where a robot is told to move towards a specific land-
mark, without having an understanding of the specific
setting and the landmarks around it. However, this is-
sue has been addressed with changes to how data is an-
notated for a model, such that it is uniquely marked for
turns with language that is grounded to the conversa-
tional or situational context. There is also a separation
between data that is used for training dialogue systems
in general contexts from data intended for a particular
situated environment (Bonial et al., 2021).
ScoutBot is a dialogue interface for physical and sim-
ulated robots that supports collaborative exploration of



5814

Figure 1: Human/Robot data collection setup (from (Marge et al., 2017a)).

environments (Lukin et al., 2018). Users can issue un-
constrained spoken language commands to ScoutBot.
ScoutBot prompts for clarification if the user’s instruc-
tion is unclear or needs additional input. It is trained
on human-robot dialogue collected from Wizard-of-Oz
experiments, where robot responses were initiated by a
human wizard in previous interactions. The demonstra-
tion shows a simulated ground robot (Clearpath Jackal)
in a simulated environment supported by ROS (Robot
Operating System) (Quigley et al., 2009). ScoutBot
uses a classification approach described in (Gervits et
al., 2021). It relies on the similarity score using a statis-
tical language model as described in detail in (Leuski
and Traum, 2010).
The recent ALFRED data set (Shridhar et al., 2020) fo-
cuses on human-robot interaction including multi-step
everyday tasks. Transformer-based approaches have
proven to be effective for this task (Jansen, 2020). For
instance, OpenAI’s GPT-2 model (Radford et al., 2018)
has had success with the task, achieving an accuracy of
5% higher, on average, than approaches using Recur-
rent Neural Networks. As a result, we believe explor-
ing the capabilities of transformer-based models for a
similar task, such as ScoutBot, could be promising.

3. Task Description
The ScoutBot domain concerns collaborative naviga-
tion for urban search and rescue scenarios. In this task,
a remotely located robot is performing certain naviga-
tion tasks as instructed by a Commander (Gervits et al.,
2021). A participant, acting as the “Commander,” is-
sues verbal instructions to the robot partner. There are
two main modules controlling robot behavior, which
were operated by Wizards in Early data collection ex-
periments. The “Dialogue Manager”(DM) interprets

the commander’s instructions and translates them to
simplified versions and sends to the “Robot Naviga-
tor” (RN). The RN then controls the robot to execute
the instruction. The Commander and DM-wizard can
see the robot actions on a dynamically updated 2D LI-
DAR1 map. The RN then indicates completion or any
problems, and DM conveys this information in Natu-
ral Language back to the Commander. Figure 1 depicts
the Wizard-of-Oz-based data collection setup, and Fig-
ure 2 provides an example of how information is passed
back and forth, using the dialogue structure annotations
from (Traum et al., 2018).
Following (Gervits et al., 2021), the task for the dia-
logue manager is to interpret the commander’s utter-
ance and either translate it to an equivalent robot com-
mand using simplified language, or to give feedback to
the commander if it is not executable without more in-
formation. Below are examples of natural language ut-
terances with robot commands. If multiple commands
are required they are separated by the keyword “then”.

taskDesc: please move forward um five feet
annotation: move forward five feet

taskDesc: move west fifteen feet
annotation: turn to face west then move forward fif-
teen feet

4. Approach
We compare several different NLU methods. First, we
report the best results from(Gervits et al., 2021), using
the NPCEDitor and a training set containing 966 user
utterances, 483 distinct system responses, and 995 links
between user utterances and system responses. The
current ScoutBot system uses an updated training set,



5815

Figure 2: Example annotation from human-robot interaction corpus (from (Gervits et al., 2021)).

Figure 3: The NPCEditor system design (left) and character editor screen (right)

including 2058 user utterances, 493 system responses,
and 2153 links. We also report on the performance of
the NPCEditor on this extended dataset. The same ex-
tended training set is also used to fine-tune a generative
model. We also report on combinations of the latter
two models.

4.1. NPCEditor
NPCEditor is a system for building a natural language-
processing component for virtual humans capable of
engaging a user in spoken dialogue on a limited do-
main (Leuski and Traum, 2011). It uses statistical
language-classification technology for mapping from a
user’s text input to system responses. NPCEditor pro-
vides a user-friendly editor for creating effective vir-
tual humans quickly. It has been deployed as a part
of various virtual human systems in several applica-
tions (Traum et al., 2012; Traum et al., 2015). NPCEd-
itor functions primarily with the usage of a ‘Dialogue
Manager’, which utilizes a classifier-based approach.
The classifier consists of a statistical language model
for each class, which is used to compute the cross-
language relevance for each commander instruction.
See (Leuski and Traum, 2010) for more information.

The system design of the NPCEditor program is shown
in the left part of Figure 3. Each character has a respec-
tive fine-tuned classifier such that the inputs and out-
puts associated with each character and its classifica-
tion are distinct from others in the server. The character
editor screen is the interface used by users to define the
inputs and outputs specific to a character. Each output
is paired to at least one input, and each pair is defined
in the interface as a training, evaluation, or testing ex-
ample for the classifier. In this way, users can define
the sizes of each data set, and the number of examples
in each by providing the examples for the classifier to
use.

4.2. Generative Model Training
The conversational deep learning model used is the
OpenAI GPT-2 model (Radford et al., 2018), an
auto-regressive model, utilized for the generation
of responses to model tasks that a robot can inter-
pret directly, rather than classification. We decided
to utilize GPT-2 for this generative task based on
prior work with other generative NLP tasks, like
question-answering, textual entailment, and textual
summarization (Radford et al., 2019). In GPT, the



5816

Approach Name Accuracy
NPCEditor 79.23%

(Gervits et al., 2021) 75.41%
OpenAI GPT-2, 25 epoch 68.31%

Oracle Combination 84.69%
Decision Level Combination 79.78%

Table 1: Experimental results using the NPCEditor and
GPT-2 based approaches.

attention layer only attends to earlier positions in the
output sequence using the causal language model
objective (in contrast to masked language model
objective). The model is fine-tuned on the ScoutBot
data, a list of natural language commands a user may
make to the robot, along with a gold standard format
of the simplified command that the OpenAI GPT-2
should aim to predict. For each training instance, we
separate each line by:

<Directive> [SEP]
<CommandTuple1> [CSEP]
<CommandTuple2> [CSEP]
... [CSEP]
<CommandTupleN> [EOS]

For example:

move west fifteen feet [SEP] turn to face west
[CSEP] move forward fifteen feet [EOS]

The GPT-2 Medium transformer model used con-
sists of 24 layers, 16 attention heads, and 325 million
parameters, and contains decoder cells, meaning it
uses masked self attention, where attention heads
consider only what has appeared previously in a se-
quence, making it an auto-regressive generative model.
During the generation process, top-k and nucleus
sampling (Holtzman et al., 2019) were employed with
beam search using the Huggingface Transformers
library1. The OpenAI GPT was trained on 25 epochs.

5. Experiments and Results
As described above, the training set used in this study
consists of 2058 manually annotated examples, with
robot commands. The test set used for this task is the
same as that used in (Gervits et al., 2021) and was
derived from previously unseen, annotated dialogues,
which remained unprocessed, with the exception of
instruction-response extraction for each dialogue. This
test set consists of 183 instruction-response pairs, and
each instruction was input to both the NPCEditor and
the OpenAI GPT. Overall, we attempted separate trials
for both models, and also different combinations be-
tween them, in order to accommodate for the strengths
and weaknesses between both models. The results

1https://huggingface.co/docs/transformers/model doc/gpt2

are presented in Table 1. The NPCEditor trained on
the extended dataset achieved an accuracy of 79.23%,
improving slightly on the previously reported results
from (Gervits et al., 2021) (75.41%). The GPT-2
model performed worse, with an accuracy of 68.3%.
However, the GPT-2 model did accurately recognize
some instances that were missed by the NPCEditor,
so we also computed the performance of an “oracle”
that could correctly choose the best response when the
two differed. This oracle combination had an accuracy
of 84.7%. We also tested a decision level combina-
tion, which divided tasks between the GPT-2 and the
NPCEditor, giving all tasks with numerical values to
the GPT-2, and all others to the NPCEditor, and this
combination resulted in an accuracy of 79.78%.

6. Error Analysis and Error Taxonomy
In order to get a more detailed sense of the types of er-
rors that each model made, we manually classified each
error according to a new error taxonomy, extending the
analysis from (Gervits et al., 2021), which included
the following error categories: ‘Felicitous’, ‘Approx-
imate’, ‘Context-Dependent’, ‘Wrong’, and ‘No Re-
sponse’. Instead of looking at whether an answer
was wrong or close, we focused on several identifiable
sources of error. Our presented taxonomy is shown in
Table 2. We define each of these below, with examples
from the test set, then present a full confusion matrix
showing the distribution of errors of each model.

Error Types
Genuine

Hallucination
No Response
Contextual
Numerical
Directional
Felicitous

Table 2: Error types

6.1. Error Types
Errors made by the OpenAI GPT-2 and the NPCEditor
can be categorized into 7 different groupings: Genuine
Errors, Hallucinations, No Response Cases, Contextual
Errors, Numerical Errors, Directional Errors, and Fe-
licitous Errors.
The first error category is the Genuine Errors. Gen-
uine Errors are errors where a model (the OpenAI GPT-
2 or NPCEditor) produces output that has great vari-
ance semantically from the gold standard, such that if
executed the robot would do the wrong thing. This is
equivalent to the ‘Wrong’ error category in (Gervits et
al., 2021). Examples of Genuine Errors include:

• taskDesc: go one foot north
annotation: move forward one foot
predicted: turn to face north



5817

• taskDesc: center in front of calendar
annotation: move forward to front of calendar
predicted: move into room

Hallucinations are errors where the model inserts ob-
jects, locations, or entities that do not exist in the task
description or context, such that an extraneous addi-
tion to the description of the task completion is added
unnecessarily. While in theory, a classifier model like
NPCEditor could produce hallucinations, where the
closest match includes additional information, in prac-
tice we saw only the GPT-2 model make them. Exam-
ples of Hallucinations are:

• taskDesc: go three feet
annotation: move forward three feet
predicted: move three feet towards green arrow

No Response cases are circumstances where a model
returns no response to the task description, usually
when potential responses have too low of a confidence
level to be returned. No Response errors were made
only by the NPCEditor, as the GPT-2 model always
produces some output, regardless of its confidence,
whereas the NPCEditor has an option to return no re-
sponse (in which case the dialogue manager would ask
the commander to say it again or rephrase). Gener-
ally, a No Response is preferred to other error types,
assuming the response of the model is executed in a
real-world scenario, as the No Response implies that
the Commander must repeat the task with a different
wording that the model may understand, whereas other
error types may result in an incorrect execution of the
command. Examples of No Response include:

• taskDesc: go back <pause> to table
annotation: move back towards table
predicted: [no response]

Contextual Errors occur in situations where the gold
standard has more information than a model, in the
form of the layout of a building, the direction the robot
is facing at the time of the task, objects in the envi-
ronment, etc. Usually, the input includes some under-
specified referring expressions that require contextual
information to fully disambiguate into actionable com-
mands. The model does not resolve the intended ref-
erent and merely passes on an equivalently context-
dependent referring expression. Both the OpenAI GPT-
2 and the NPCEditor commonly make Contextual er-
rors. This category is equivalent to the ‘Context-
Dependent’ category in (Gervits et al., 2021). Con-
textual errors can be potentially solved using either a
map of the environment as a further parameter for the
training and testing of both models, or with the inclu-
sion of computer vision into the algorithm, such that
the robot has the capacity to analyze and interpret its
surroundings. Instances where the models make Con-
textual errors are:

• taskDesc: go towards poster on left
annotation: move to budapest poster
predicted: move to poster on left

• taskDesc: go forward to nearest door well
annotation: move to dark room hall doorway
predicted: move forward to nearest door well

Numerical Errors are where a model makes errors re-
garding a numerical feature of the task. For instance,
the model may return an incorrect value for degrees
turned, distance moved, and other numerically-based
descriptions. An approach toward solving and numeri-
cal errors would be to use a number tagger during pre-
processing. Examples of some Numerical errors are:

• taskDesc: five degrees to your left
annotation: turn left five degrees
predicted: turn left 45 degrees

Directional Errors occur when a model returns a re-
sult that includes an incorrect direction parameter, for
example direction to turn, or direction to move in.
There are also instances where either model makes both
a Directional and Contextual Error, such that the di-
rection may be correct, but it does not match the gold
standard. A direction tagger could be used in pre-
processing, similar to Numerical errors, in order to han-
dle them. Cases where Directional errors are made are:

• taskDesc: go one foot north
annotation: move forward one foot
predicted: turn to face north

• taskDesc: center in front of calendar
annotation: move forward to front of calendar
predicted: move into room

• taskDesc: turn right <pause> forty five degrees
annotation: turn right forty five degrees
predicted: turn left 45 degrees

Felicitous Errors are cases where a model’s response
returned does not match the gold standard, but the re-
sult is identical in meaning to the gold standard. For ex-
ample, the gold standard may have a different ordering
of words, or different terms used that the model was un-
able to match accurately. However, if the model were
to execute the returned task with a robot, it would be
able to complete the task correctly, even when it does
not match the gold standard. Generally, Felicitous er-
rors do not need further analysis to solve, as they do not
effect robot performance. An example is:

• taskDesc: and move to the east five feet
annotation: turn to face east then move forward
five feet
predicted: move to the east five feet



5818

Errors NPCEditor% GPT-2 %
Genuine 10% 37%

Hallucination 0% 6%
No Response 8% 0%
Contextual 16% 16%
Numerical 24% 7%
Directional 26% 27%
Felicitous 16% 7%

Table 3: Distributions of error types between the GPT-
2 and NPCEditor

6.2. Error Comparison
Table 3 shows the proportion of error types for each
recognizer. While they make a similar proportion of di-
rection and contextual errors, the GPT-2 model makes
more frequent genuine and hallucination errors, while
NPCEditor makes more no response errors and numer-
ical and felicitous errors.
Table 4 shows a confusion matrix between the NPCEd-
itor and GPT-2 results. Of the 183 test instances, 104
were correctly recognized by both models, while 52
were recognized correctly by only one of the models
(41 for NPCEditor, 11 for GPT-2), and 27 were not
recognized by either. Results from the confusion ma-
trix depict an analysis of our results of both models.
In many cases, the NPCEditor and GPT-2 made the
same types of errors, with exceptions where one model
was correct or made a different type of error. For in-
stance, Hallucination errors are made only by the GPT-
2 (likely because of low confidence in a response, or
part of a response), and No Response errors are only
made by the NPCEditor, because it returns no response
when its confidence is below a threshold. The cases
where both models made the same error are the Con-
textual and Directional categories. Contextual errors
were more likely to cause an error in both models be-
cause neither model has pre-defined contextual infor-
mation for a response, while the gold standard does.
Directional errors were commonly made by both mod-
els due to common confusions between typical training
examples and the specific test examples.

6.3. System Combination and Continuations
In this work we have further explored various ways of
combining these two approaches, allowing for the op-
timization of the strengths of both models, as well as
experiments into continuations of the improvements of
the model performance.
We first analyzed how access to more training data
affects the performance of the GPT-2 model. It was
shown that with the presence of more training data,
the GPT-2 could have reached a closer accuracy to
the NPCEditor, and this was tested by limiting the ex-
isting training data and finding how the model per-
formed. Given available training data, we limited the
training data in three categories, ‘Full Training Data’,
‘Half Training Data’, and ‘Quarter Training Data’. Its

Figure 4: Learning Curve of GPT-2 with limited train-
ing data

learning curve below depicts an improvement in per-
formance given more data, which can potentially indi-
cate that once more training data is available, the GPT-2
may have better results.
For combinations, there are many different practices
that could results in improved performance. For in-
stance, the NPCEditor may make mistakes with utter-
ances consisting of numerical values, such as “rotate
twenty five degrees to your right ”, whereas the GPT-
2 model cannot handle unseen utterance types, such as
“take a picture looking west”. This motivated us to ex-
periment with further combination efforts.
We have explored two approaches to combine the
NPCEditor and GPT-2 predictions:

• Oracle combination: We tested the Oracle com-
bination to establish an upper-bound for the per-
formance of our models and their combinations.
The Oracle combination utilizes the responses
from either the NPCEditor or GPT-2, dependent
on which is correct for each task.

• Decision level combination: As an alternative,
we have combined the predictions based on model
characteristics, such as their confidence, or utter-
ance characteristics, such as whether it contains
numbers. We found that giving tasks that in-
clude numerical values to the GPT-2, and giving
a majority of other commands to the NPCEditor
resulted in considerably higher accuracy, as the
GPT-2 was more easily able to analyze and return
correct numerical values.

The Oracle combination improved our accuracy to
84.69%, and we received results that were 0.5% higher
than our NPCEditor using the decision level combina-
tion, which had a 79.78% accuracy.



5819

x Genuine Hallucination No Response Contextual Numerical Directional Felicitous Correct Total
Genuine 4 0 1 0 0 0 2 18 25

Hallucination 0 0 0 0 0 0 1 3 4
No Response 0 0 0 0 0 0 0 0 0
Contextual 0 0 1 6 0 0 0 4 11
Numerical 0 0 0 0 2 0 1 2 5
Directional 0 0 0 0 0 6 0 12 18
Felicitous 0 0 1 0 0 0 2 2 5
Correct 0 0 0 0 7 4 0 104 115
Total 4 0 3 6 9 10 6 145 183 each

Table 4: Confusion matrix on error categories between the NPCEditor and GPT-2, where rows correspond to GPT-
2 errors and columns correspond to NPCEditor errors

7. Conclusions and Future Work

We have presented our research on the intersections
of previously existing technologies for human-robot
interaction, compared and combined with more con-
temporary forms of deep learning-based approaches,
particularly transformer-based models. Although the
NPCEditor performs more effectively than the OpenAI
GPT-2 on the available training data, deep learning-
based models continue to show potential for growth
and improvement in the future, especially when larger
amounts of data is provided. One possible alternative to
using GPT-2 for a generative task is to utilize the Bidi-
rectional Encoder Representations from Transformers
model (BERT)-style encoders for classification. To get
the best of both worlds, we plan to explore the usage
of an encoder-decoder architecture, such as the bidi-
rectional and auto-regressive transformers (BART), as
well as other examples. Additionally, we will continue
to explore further model combinations as part of our
future work.

ScoutBot can be used to test newly emerging deep
learning approaches. In coming studies, it would be
beneficial to research how modules consisting of dif-
ferent combinations between the NPCEditor and auto-
regressive models can surpass current performance.
For instance, tasks containing distinct traits can be di-
vided between different models in order to leverage the
strengths of each model. With the error analysis con-
ducted, further context could be provided for this sepa-
ration, showing where each model achieves higher per-
formance and how models can collaborate to complete
each task. Contextual tasks, particularly for specific
landmarks in an environment, can be improved through
context used for input for an NLU classifier, with trans-
formations conducted on the input prior to classifica-
tion. The action interpreter can also handle situated
context dependent instructions.

Acknowledgements

The second author was supported in this work by the
US Army. We thank Felix Gervits for sharing the test
set used in (Gervits et al., 2021), and other members
of the Scoutbot project at the Army Research Lab and
the Institute for Creative Technologies for the updated
training set.

8. Bibliographical References
Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson,

M., Sünderhauf, N., Reid, I., Gould, S., and Van
Den Hengel, A. (2018). Vision-and-language nav-
igation: Interpreting visually-grounded navigation
instructions in real environments. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 3674–3683.

Bonial, C., Marge, M., artstein, R., Foots, A., Gervits,
F., Hayes, C., Henry, C., Hill, S., Leuski, A., Lukin,
S., Moolchandani, P., Pollard, K., Traum, D., and
Voss, C. (2017). Laying down the yellow brick road:
Development of a wizard-of-oz interface for collect-
ing human-robot dialogue. 10.

Bonial, C., Abrams, M., Baker, A. L., Hudson, T.,
Lukin, S. M., Traum, D., and Voss, C. R. (2021).
Context is key: Annotating situated dialogue rela-
tions in multi-floor dialogue. In Proceedings of the
25th Workshop on the Semantics and Pragmatics of
Dialogue.

Chang, A., Dai, A., Funkhouser, T., Halber, M., Niess-
ner, M., Savva, M., Song, S., Zeng, A., and Zhang,
Y. (2017). Matterport3d: Learning from rgb-d data
in indoor environments.

Gervits, F., Leuski, A., Bonial, C., Gordon, C., and
Traum, D. (2021). A classification-based approach
to automating human-robot dialogue. In Increasing
Naturalness and Flexibility in Spoken Dialogue In-
teraction: 10th International Workshop on Spoken
Dialogue Systems, pages 115–127. Springer Singa-
pore.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi,
Y. (2019). The curious case of neural text degenera-
tion. arXiv preprint arXiv:1904.09751.

Jansen, P. A. (2020). Visually-grounded planning
without vision: Language models infer detailed
plans from high-level instructions. arXiv preprint
arXiv:2009.14259.

Leuski, A. and Traum, D. (2010). Practical language
processing for virtual humans. In Twenty-Second
IAAI Conference.

Leuski, A. and Traum, D. (2011). Npceditor: Creating
virtual human dialogue using information retrieval
techniques. Ai Magazine, 32(2):42–56.

Lukin, S. M., Gervits, F., Hayes, C. J., Moolchandani,
P., Leuski, A., Rogers III, J. G., Sanchez Amaro,



5820

C., Marge, M., Voss, C. R., and Traum, D. (2018).
ScoutBot: A dialogue system for collaborative navi-
gation. In Proceedings of ACL 2018, System Demon-
strations, pages 93–98, Melbourne, Australia, July.
Association for Computational Linguistics.

Marge, M. R. and Rudnicky, A. (2011). The teamtalk
corpus: Route instructions in open spaces.

Marge, M., Bonial, C., Byrne, B., Cassidy, T., Evans,
A. W., Hill, S. G., and Voss, C. (2017a). Applying
the wizard-of-oz technique to multimodal human-
robot dialogue. arXiv preprint arXiv:1703.03714.

Marge, M., Bonial, C., Foots, A., Hayes, C., Henry,
C., Pollard, K., Artstein, R., Voss, C., and Traum,
D. (2017b). Exploring variation of natural human
commands to a robot in a collaborative navigation
task. In Proceedings of the first workshop on lan-
guage grounding for robotics, pages 58–66.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote,
T., Leibs, J., Wheeler, R., Ng, A. Y., et al. (2009).
Ros: an open-source robot operating system. In
ICRA workshop on open source software, volume 3,
page 5. Kobe, Japan.

Radford, A., Narasimhan, K., Salimans, T., and
Sutskever, I. (2018). Improving language under-
standing by generative pre-training (2018).

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. (2019). Language models are un-
supervised multitask learners. OpenAI blog, 1(8):9.

Serban, I., Sordoni, A., Bengio, Y., Courville, A., and
Pineau, J. (2016). Building end-to-end dialogue
systems using generative hierarchical neural network
models. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 30.

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y.,
Han, W., Mottaghi, R., Zettlemoyer, L., and Fox,
D. (2020). Alfred: A benchmark for interpreting
grounded instructions for everyday tasks. In Pro-
ceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10740–10749.

Thomason, J., Murray, M., Cakmak, M., and Zettle-
moyer, L. (2020). Vision-and-dialog navigation.
In Conference on Robot Learning, pages 394–406.
PMLR.

Traum, D., Aggarwal, P., Artstein, R., Foutz, S.,
Gerten, J., Katsamanis, A., Leuski, A., Noren, D.,
and Swartout, W. (2012). Ada and grace: Direct in-
teraction with museum visitors. In Intelligent Virtual
Agents: 12th International Conference, IVA 2012,
Santa Cruz, CA, USA, September, 12-14, 2012. Pro-
ceedings, volume 7502, page 245. Springer.

Traum, D., Jones, A., Hays, K., Maio, H., Alexander,
O., Artstein, R., Debevec, P., Gainer, A., Georgila,
K., Haase, K., et al. (2015). New dimensions in tes-
timony: Digitally preserving a holocaust survivor’s
interactive storytelling. In International Conference
on Interactive Digital Storytelling, pages 269–281.
Springer.

Traum, D., Henry, C., Lukin, S., Artstein, R., Gervits,

F., Pollard, K., Bonial, C., Lei, S., Voss, C., Marge,
M., et al. (2018). Dialogue structure annotation
for multi-floor interaction. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018).


	Introduction
	Related Work
	Task Description
	Approach
	NPCEditor
	Generative Model Training

	Experiments and Results
	Error Analysis and Error Taxonomy
	Error Types
	Error Comparison
	System Combination and Continuations

	Conclusions and Future Work
	Bibliographical References

