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Abstract
The automatic translation of sign language videos into transcribed texts is rarely approached in its whole, as it implies to finely
model the grammatical mechanisms that govern these languages. The presented work is a first step towards the interpretation of
French sign language (LSF) by specifically targeting iconicity and spatial referencing. This paper describes the LSF-SHELVES
corpus as well as the original technology that was designed and implemented to collect it. Our final goal is to use deep learning
methods to circumvent the use of models in spatial referencing recognition. In order to obtain training material with sufficient
variability, we designed a light-weight (and low-cost) capture protocol that enabled us to collect data from a large panel of LSF
signers. This protocol involves the use of a portable device providing a 3D skeleton, and of a software developed specifically
for this application to facilitate the post-processing of handshapes. The LSF-SHELVES includes simple and compound iconic
and spatial dynamics, organized in 6 complexity levels, representing a total of 60 sequences signed by 15 LSF signers.
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1. Introduction
Assistance in learning French sign language (LSF) re-
quires the creation of appropriate resources and the de-
velopment of digital interfaces that facilitate access to
information. However, main existing data are limited
lexicons, a few narrations or dialogues in LSF, and very
few are publicly available and labeled with transcribed
texts. Furthermore, corpora dedicated to grammatical
structures in LSF remain almost non-existent.
Our goal is to design and develop digital and pedagog-
ical tools that facilitate the learning (or reinforcement)
of LSF, focusing on well identified grammatical mech-
anisms. With the increase in the amount of data and the
advent of new machine learning techniques, these tools
should assist the automatized translation from videos
in LSF into written transcriptions in French.
Since it is not possible to tackle the complete machine
translation pipeline, given the successive transforma-
tions, from video to 3D motion, and from 3D motion
to written LSF, we focus in this work on a partial mod-
eling and interpretation system that makes possible the
interpretation of signed sentences. This system is char-
acterized by 1) a simplified methodology of the trans-
lation process; 2) the selection of limited LSF gram-
matical mechanisms; 3) the design of an original data
acquisition technique that facilitates the capture, stor-
age and post-processing of large volumes of data.
The machine translation process can be described as a
dual translation process, in which the signed and la-
beled videos (the subtitles being usually in French) are
transformed into precisely annotated 3D movements in
the form of a sequence of 3D skeletal poses,and these
3D movements are then translated into written tran-
scriptions (called glossed-LSF), using an intermediate
“pivot” language that takes into account the spatial and

structural modeling of the sign language. Then the
glossed-LSF is translated into written French. We will
focus here on the transformation from 3D motion to
glossed-LSF.

Unlike oral languages, sign languages use gestural and
visual information. This specificity is at the origin of
the omnipresence of spatial and iconic mechanisms in
sign languages. Iconicity is characterized by the more
or less close resemblance between the sign and what
it designates (Cuxac, 2000). These iconic structures
are essential in situations of scene description or story-
telling. In our corpus, we have chosen to include sev-
eral grammatical mechanisms of iconicity and spatial
referencing. The main objective is to give the largest
representation of these mechanisms, with a corpus fo-
cusing exclusively on it, other issues such as lexical
recognition being minimized. Moreover, we propose
to implement each utterance of the corpus with a large
number of lexical or grammatical inflections, i.e. by us-
ing various methods to specify a location, or by varying
the shapes of signs or motion trajectories. In order to
limit the study, we have not treated facial expressions
which convey other forms of syntactic or semantic in-
flections.

The need to capture large volumes of motion data (from
3D captured motions) led us to a new motion acqui-
sition technology and protocol characterized by: (i) a
low-cost rather than high-resolution motion capture de-
vice, thus limiting hand data post-processing; (ii) the
possibility to perform the recordings at the deaf per-
son’s home and not in a motion capture studio; (iii) as
hand processing remains a real challenge in such data
sets, we relied on a specialized software to ”paste” hand
configurations and manually edit the recorded motion
data.
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This paper describes the LSF-SHELVES corpus that
implements the spatial referencing and iconicity mech-
anisms in LSF, selected through examples of position-
ing objects in relation to each other on shelves. It
proposes to produce utterances with increasing levels
of difficulty. The original low-cost motion acquisition
technique used to construct the dataset and then sup-
plement it with editing techniques, including incorpo-
rating manual configurations and correcting wrist ori-
entation trajectories, is then detailed. Section 2 reviews
existing video and motion capture data sets for sign lan-
guage recognition systems. Section 3 describes the ob-
jectives and the content of the LSF-SHELVES corpus.
Section 4 presents the data acquisition process. Sec-
tion 5 details the post-processing. Finally, Section 6
concludes and gives perspectives to this work.

2. Related Work
Given the visual and gestural nature of sign languages,
most corpora have been built using video cameras or
motion capture technologies.
Being low-cost and easy to collect, video-oriented cor-
pora usually constitute the prime material in linguis-
tic analysis. For instance, (De Beuzeville et al., 2009;
Ormel et al., 2017) have collected video data, focus-
ing on directional verbs and the use of space. Stud-
ies on coarticulation have given rise to different cor-
pora (Ormel et al., 2013; Ojala et al., 2009). In French
Sign Language, it is possible to study iconicity and role
shift with the LS-COLIN corpus (Cuxac et al., 2002),
and classifier predicates in narratives or stories (Millet,
2006; Millet, 2019). A remarkable work of comparison
of video corpus recorded since 2012 is available on the
website of the University of Hamburg (DGS-Korpus,
2021).
In the case of sign language recognition, many works
also use video recording. Early approaches focus on
the separate recognition of the basic components of
sign languages, namely handshapes and hand move-
ments. Prior work on handshape recognition (Yuntao
and Weng, 2000; Lu et al., 2003; Vogler and Metaxas,
2004; Isaacs and Foo, 2004; Ding and Martinez, 2009)
used a finite set of handshapes linguistically identified
in the specific sign language. More recently, hand-
shape recognition applied on a large vocabulary of hand
poses was achieved, using convolutional neural net-
works (Koller et al., 2016).
Research on sign language recognition has also ex-
plored hand motion trajectories, which was considered
as important for sign recognition (Junwei et al., 2009;
Dilsizian et al., 2016; Pu et al., 2016). Other research
has tackled the problem of full sign recognition for iso-
lated signs. However, the recognition rates for about
1000 signs across multiple signers did not give the ex-
pected results (accuracy around 70%).
More recently, new techniques based on deep learn-
ing and relying on data-driven end-to-end approaches
have targeted sign recognition in a continuous stream of

sign language (Cui et al., 2017). To support this work,
new video-based corpora have been created, mainly in
recording studios with one or multiple cameras. An
overview of the European corpora is presented in (Kopf
et al., 2021). The corpus RWTH-PHOENIX-Weather
includes 1980 German sign language sentences de-
scribing weather forecasts (Forster et al., 2012). It is
used in many studies on video sign recognition, mostly
relying on neural networks, such as in (Konstantinidis
et al., 2018; Forster et al., 2018; Huang et al., 2018; Pu
et al., 2019; Cihan Camgöz et al., 2020).
In those previous work, recognition based on video in-
put did not involve intermediate 2D or 3D poses. Re-
cent work adds this step of extracting 2D or 3D vectors
from frame-by-frame video data, (Cao et al., 2021),
which provides a skeleton estimation. However, most
of these promising approaches do not consider hand re-
construction, because of the high dimensionality of the
hands and the numerous occlusions encountered, espe-
cially in sign languages. Studies using pose estimator
and hand reconstruction for sign language recognition
can be found in (Li et al., 2020b), relying on the (Li et
al., 2020a) corpus (isolated ASL sign corpus including
2000 common signs), in (Metaxas et al., 2018) with the
corpus (Athitsos et al., 2008) (isolated ASL sign corpus
including 5000 isolated signs), in (Belissen et al., 2020)
with the corpus Dicta-Sign-LSF-v2 (Efthimiou et al.,
2010) with the hand model of (Koller et al., 2016), and
in (Konstantinidis et al., 2018) with the corpus RWTH-
PHOENIX-Weather.
Recognition from skeletal data can meet the require-
ments of sign languages that demand high precision
in hand movements. Such an approach was achieved,
either through hand movement tracking systems (usu-
ally two trackers, one for the body and one for
the hands) (Vogler and Metaxas, 2004), using As-
cension Technologies MotionStar™alongside Virtual
Technologies Cyberglove™ (Cooper et al., 2011), re-
ferring to the Polhemus tracker (Waldron and Kim,
1995), or relying on MoCap technology. Several Mo-
Cap corpora in French sign language have been built
such as (Benchiheub et al., 2016) without the hands or
(Gibet, 2018; Naert et al., 2020) with hands included,
but they are dedicated to the synthesis of utterances in
sign language using 3D avatars, and they include very
little variability on iconic and spatial mechanisms.
In the studies cited above, sign language recognition
is primarily a recognition of signs, isolated or in data
streams, but very few of these studies aim at recog-
nizing grammatical sentences. This type of recogni-
tion relies essentially on the collection of dedicated
data. Moreover, the required datasets need to be large
enough to be suitable to deep learning solutions. The
collection of such a large dataset, representative of the
targeted grammatical mechanisms, with a high vari-
ability, requires on the one hand to minimize the post-
processing that can be tedious, and on the other hand
to have a large number of volunteers able to sign the
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sentences in LSF. Therefore, a light-weighted and con-
venient protocol is useful for this purpose. It is centered
on a portable device, which allows the capture pro-
cess to be moved to the deaf. This constitutes a trade-
off between data accuracy – that video corpora cannot
achieve – and the heaviness of the MoCap protocol. In
this paper we present both our LSF-SHELVES corpus
and a low-cost and innovative solution to acquire this
corpus.

3. Corpus Definition
3.1. Motivation
As introduced in section 1, the goal of our corpus is to
provide material for future work on iconicity and spa-
tial referencing in LSF, knowing that these aspects are
omnipresent in sign languages. More specifically, this
corpus is intended to analyze, model and recognize the
elements of LSF representing grammatical structures.
The research objective is twofold. On the one hand,
this corpus will constitute a basic resource for linguis-
tic analysis. On the other hand, it will be used for the
modeling of signed sentences, facilitating their inter-
pretation and the recognition of written glossed-LSF,
using recent machine learning approaches. Grammati-
cal structures have been chosen on the following crite-
ria: (i) It is highly challenging for an automated tool to
recognize referencing structures and extract informa-
tion from them. Indeed, the variability of the referenc-
ing mechanisms raises issues never addressed in sign-
based recognition systems; (ii) Moreover, as shown
in (Metaxas et al., 2018), we will show the importance
of introducing linguistic knowledge into the automatic
recognition process. Following those criteria, spatial
referencing seems to be a consistent subset of gram-
matical mechanisms with the particular strength of be-
ing ruled by linguistic guidelines. Based on the de-
scriptive grammatical theory of Millet’s (Millet, 2019),
we include in our corpus some descriptions with iconic
mechanisms, which essentially operate at lexical and
syntactic levels. According to Millet, these mecha-
nisms directly influence the three phonological com-
ponents that are Hand Placement, Hand Configuration
and Hand Movement (Stokoe, 1960). These basic lin-
guistic mechanisms are detailed below, in the Place-
ment and Hand Shape sections. More complex sen-
tences use these linguistic mechanisms to describe mul-
tiple objects positioning, relative referencing, and so-
phisticated geometrical shapes. Finally, our corpus
incorporates dynamic descriptions involving moving
hand configurations.

3.2. Linguistic Mechanisms
3.2.1. Placement
In LSF, lexical signs performed during an utterance
have a specific location in the signing space, i.e. the
space immediately surrounding the signer. There are
several types of placements, each one corresponding to

a specific linguistic function (Millet, 2019). At the lex-
ical level, the mechanism of Spatialization consists in
placing a sign in a given place that is not that of its
neutral anchoring place. At a syntactic level, the Lo-
cus represents a 3D location in the signing space. With
these 3D locations, it becomes possible to refer prede-
fined entities in a discourse or to give them a relative
placement with respect to others. The Locus can be ac-
tivated by different means, for example by a pointing
gesture or a pointing through gaze or upper-body mo-
tion. In our corpus, we will only consider index point-
ings. Three different situations are considered:
Sign and place. In this situation, the entity is signed in
its neutral anchoring location in front of the signer and
then is placed at a precise location. In Figure 1 a., for
example, the bowl can be signed in its neutral lexical
space and then placed on the left of the shelf, while
keeping the hand shape to depict the bowl.
Sign at place. For lexical signs not anchored on the
body, it is possible to go to the specific Locus and to
directly sign the entity at this location. For example, in
Figure 1 a., The bowl can be signed at the 3D Locus.
Point to entity. Pointed target is retained in this cate-
gory of simple placement, although it implies both the
Pointed Locus and the hand movement gesture. In our
corpus, we will consider index pointing to a specific
Locus in the signing space to indicate the exact posi-
tion of the entity. For example, in Figure 1 a., a point-
ing gesture can be used to indicate the sticker.

3.2.2. Hand Shape
The shape of the hand, most often called manual con-
figuration, constitutes one of the phonological param-
eters of the signs (Stokoe, 1960). Hand shapes can
also be used lexically, with the status of Size and Shape
Specifiers, or Proforms described below:
Size and Shape Specifier. At the boundary between
lexicon and morphology, these specifiers are hand
shapes used to depict the shape or size of objects to
which the discourse refers (Moody, 1983; Cuxac, 2000;
Millet, 2019). They may represent adjectives, i.e, they
can be added to lexical signs, for example with a small
or big book. In this case, the lexical sign ”book” is ex-
ecuted first, then its size is delimited. They may also
be lexicalized, like the signs ”bowl” or ”glass”. In that
case, the shapes of the hand refer to that of a bowl (Fig-
ure 1 a.) or a glass (Figure 1 d.).
Static Proform. Static proforms consist in using a
specific hand shape representing an object (e.g. a flat
hand for a table) or a person (e.g. a raised index fin-
ger for a standing person or a curved one for a sitting
person). They are intuitive, efficient and powerful syn-
tactic tools, particularly adapted to play the role of pro-
nouns in sentences, by referencing lexical items, or to
describe situations of relative spatial positioning. For
example a pencil can be represented by the index fin-
ger (Figure 1 c.).
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Figure 1: Different situations requiring specific spatial referencing mechanisms: a. a book is next to a sticker on
the shelf; b. two books are aligned and two are stacked; c. a pencil is inside a glass d. a glass is next to an apple;
e. an assembly of triangle-shaped shelves; f. (top) an apple (with a spider behind it) is next to a inclined bowl
containing another apple; (bottom) the spider has climbed the first apple.

3.2.3. Multiple Positioning
We also consider in our corpus mechanisms of multiple
arrangement of objects, which involve horizontal align-
ments (sweeping) and vertical stacks (stacking) (Millet,
2019). To describe these arrangements, hand move-
ment is used, specifying the type of arrangement, while
the shape of the hand keeps an iconic memory of the
multiple objects. In this situation, hand shape may rep-
resent a manual proform if the object allows it (like
a pencil or a plant) or a shape/size specifier (e.g., the
hand shape C can represent cylindrical objects for de-
scribing buildings). This process refers either to a spe-
cific number of items or to an undefined number of ob-
jects (e.g., the description of a car in a traffic jam). Fig-
ure 1 b. shows a set of books aligned or stacked. In
our corpus the number of items will be specified. Two
situations are encountered:
Use a numeral sign. This corresponds to signing a
numeral sign, such as ”3”, before signing the multiple
entities, aligned or stacked.
Repeat aligned/stacked signs. This corresponds to
signing in sequence several signs separately along a
motion trajectory.

3.2.4. Relative Referencing
Relative placement is a frequent mechanism in LSF, al-
lowing objects to be iconically referenced to each other
(e.g., object 1 is on (in) object 2). It can be realized by
static proforms that represent entities of the scene, thus
ensuring the syntactic consistency of the sentence (Mil-
let, 2019). Two kinds of situations are incorporated in
our corpus:

Point and place. In this case, the signer points to a
specific Locus and then signs the entities at this location
(spatialization). For example, in Figure 1 d., a glass is
signed on the shelve location and an apple is signed
near it.
Relative Proform. Static proforms can be used to de-
scribe entities in the scene and their relative placement.
For example, in Figure 1 c., two static proforms are
used, a pencil (pr-pencil) and a glass (pr-glass). The
passive hand represents the glass, while the active hand
describes the pencil inside, with the possibility to orient
precisely the pencil into the glass.

3.2.5. Geometric Shape Description
To describe complex geometric forms, in which sub-
sets of objects are assembled or positioned in relation
to each other, several iconic mechanisms, taken among
the previous ones, can be used. Size specifiers, often
combined with shape specifiers (Millet, 2019; Filhol
and McDonald, 2020) are used to describe the volumes
and dimensions of the shape. Moreover, relative refer-
encing or proforms, with the passive hand as a refer-
ence for a predefined part of the shape and the active
hand that describes, can be used to incrementally de-
scribe the complex shape. In Figure 1 e., the passive
hand will be flat or angled to show where the current
plank is placed in relation to the corners/segments of
the pre-described part.

3.2.6. Hand Movement and Dynamic Proform
Dynamic proforms refer to the attribution of a verbal
value to the lexical sign (Millet, 2019). Most of the
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time, this mechanism integrates moving proforms: ani-
mated entities, depicted as dynamic proforms, are thus
used to describe the movements of these entities (e.g.,
displacement along a trajectory, jumping), as well as
the expressive quality of the movements. The challenge
here will be to recognize both the proform and its tra-
jectory. Our corpus includes two types of situations:
Locus to Locus Movement. In this case, the motion
of the moving entities is described by a trajectory an-
chored in the signing space. It starts from Locus a. and
ends at Locus b., or goes through a sequence of Locus.
Referential Proform. In this case, the passive hand
describes an object around which the dynamic proform
moves. For example, in Figure 1 f., the passive hand
represents an apple while the active hand describes the
movement of the spider climbing on it.

3.3. Content of the LSF-SHELVES Corpus
The corpus consists in sentences that describe situa-
tions in a signing scene by exploiting the spatial ref-
erencing mechanisms mentioned above. It mainly con-
tains descriptions about bookshelves (from one to three
shelves) with static entities (a bowl, a sticker, etc.) or
dynamic ones (a spider) located on these shelves, with
varying contexts. The lexicon of this corpus is com-
posed of signs that can adopt specifiers, either shape
or size, or that can be represented as proforms (static or
dynamic). We specify in Table 1 whether the shape/size
specifier, when it exists, is nominal (i.e. the specifier
and the qualitative information contained in it represent
a single lexical sign) or adjectival (i.e. a sign following
a lexical sign), because this may impact the number of
signs needed: one for a nominal shape/size specifier
(e.g., [Bowl]), two for an adjectival shape/size speci-
fier (e.g., [Book]). We also specify the ”prototypical
aspect” (Millet, 2019) of the sign (iconic or not, neu-
tral area or location on the body). An iconic sign in
a neutral space can thus keep the same structural form
when a verb is applied to it (e.g., the frog that jumps,
or the pencil that is placed in the glass will both re-use
features of the lexical term such as the handshape to
modulate the verb), when it cannot otherwise.
Note that to this lexicon we have added the signed
numbers ”1”, ”2”, ”3”, ”4” and ”5”. The corpus
consists in 60 scenes divided in 6 levels of 10 scenes,
each level adding complexity to the previous one and
using the linguistic mechanisms described in 3.2.
Level 1 presents a single object on a shelf, sometimes
with a sticker. It focuses on absolute spatial referenc-
ing (placement and spatialization for the main object
and pointing for the sticker). The objects presented to
the signers are boxes, bowls and glasses. Each can be
specified in a nominal way with respect to its size and
shape.
Level 2 contains alignments or stacks, and also de-
scribes repetitions of objects. Adjectival and nominal
signs are also represented in this level. For example,
the sign [Book], which has a size specifier but is

adjectival, is used in descriptions of multiple objects.
Level 3 has several objects randomly arranged on two
or three shelves. With non-aligned/stacked objects, it
is necessary to use the process of relative referencing.
Some of the new objects introduced in this level (e.g.,
pencil, plants) are easier to manipulate with proforms
that are described in their static form.
Level 4 introduces geometric shapes using a variety of
shelves assemblies and shapes (e.g., triangular, round).
There is only one apple on the structure.
Level 5 uses the same type of shapes as Level 4, but
with randomly arranged objects. Although it does
not incorporate new linguistic mechanisms, it is the
first level to mix relative referencing applied both to a
lexical item or a shape.
Level 6 is similar to Level 3, with an animal moving
through the scene. The animals considered, a spider
and a frog, use different proforms and adopt different
movements in the scene.

4. Acquisition of the Data
4.1. Capturing Motion Data with Kinect

Azure

Figure 2: Captation installation scheme

For convenience, the captured motion data were stored
as animated 3D skeletons. Indeed, this corpus is to be
used in a machine learning context that deals with data
represented as vector sequences. To that end, a suit-
able solution was to work with the MoCap technology
which requires specific equipment.
In order to simplify the capture process for our volun-
teers, we preferred to use a portable system with one
infrared camera such as the Kinect Azure (Sych et al.,
2020) rather than a high-resolution system. The device
relies on two NIR Laser diodes enabling near and wide
field-of-view (FoV) depth modes, automatic per pixel
gain selection enabling wide dynamic range, thus al-
lowing near and far objects to be captured, global shut-
ter for acquisition in sunlight and a multi-phase depth
calculation method. In addition, it integrates an inner
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Item Shape/Size Specifier Proform Prototypical Aspect Variations
Plank Length and shape (nominal) No Iconic in neutral space 1
Box Length, width and height (nominal) No Iconic in neutral space 2

Book Length, width and height (adjectival) No Iconic in neutral space 1
Bowl Diameter and height (nominal) No Iconic in neutral space 1
Glass Height (nominal) No Iconic in neutral space 1
Ruler Length (adjectival) Yes Non-iconic in neutral space 1
Pencil No Yes Iconic in neutral space 1
Lamp No No Iconic in neutral space 3
Apple No No Iconic anchored on the body 1
Teddy No Yes Iconic anchored on the body 1
Plant No Yes Iconic in neutral space 1

Sticker Shape (adjectival) No Iconic in neutral space 1
Spider No Yes (animated) Iconic in neutral space 1
Frog No Yes (animated) Iconic in neutral space 1

Table 1: List of lexical signs presented in our corpus. Column 1 is the name of the item, 2 indicates if they can
admit a shape or size specifier, and if they are nominal or adjectival. Column 3 indicates if they admit a proform
and if it is a static or animated one. Column 4 describes the prototypical value of the sign describing the item and
column 6 the number of sign variation this item can be represented by.

software relying on a deep learning model (neural net-
work) to extract a 3D skeleton from heat map (estima-
tors). The resulting file format is BVH whose charac-
teristics were defined by the acquisition software.
As can be seen on Figure 2, the resulting set up is very
light and the constraints are relatively low. The layout
may vary slightly from one capture session to another
since they are often performed at the volunteer’s place.
The volunteer stands in front of the camera and prefer-
ably with a uniform background. Neither the brightness
of the room nor the location of the volunteer seemed to
have any impact on the quality of the data. In most se-
tups, simple office lamps are used. The distance from
the volunteer to the camera varies from 3 to 6 meters.
Each capture session lasts between 1 to 2 hours and re-
sulted in an average of 30 minutes of raw data. The
volunteer is therefore alone in front of the camera. He
signs successively the 60 scenes that are provided to
him. The instructions are presented on a computer ded-
icated to it, remotely controlled by the operator, an
assistant or the volunteer himself. The operator also
checks the capture process on the computer hosting the
Kinect acquisition software.

4.2. Software
The Motion Up software (Le Naour, 2021) was used to
extract the 3D skeleton from the Kinect Azure stream.
This software handles a skeleton acquisition of 32
joints while correcting data to limit errors and allow
further use of the data. This correction consists in re-
calculating the angular values to allow the continuity of
the angular trajectories over time.
Unlike the MoCap acquisition room where markers can
be added on the hands, the Kinect Azure is unable to
recognize hands’ configurations and orientations. To
tackle this issue, we use a video recording of the cap-
tured movements in order to keep track of these hand
poses over time. This video stream is then used in a

post-processing step to edit the captured sequence and
add animated handshapes with corresponding motions.

4.3. Signers and Elicitation
Despite the sanitary context, we were able to gather 15
volunteers with proficiency level in LSF varying from
A2 to C2. Since the corpus is essentially based on spa-
tial description, it presents referencing elements that
are all mastered from level A2 in LSF. We enrolled a
heterogeneous panel of volunteers. This heterogene-
ity is partly based on the level of fluency, but also on
the volunteer’s environment (geographical and socio-
cultural) as well as on the frequency and context of LSF
use. It introduces some variability in the production of
signed sentences, e.g., some signers prefer to point to a
Locus while others directly sign objects at this specific
location, while the level of fluency impacts the preci-
sion of descriptions. Thus, the panel is composed of
volunteers aged from 20 to 70, practicing LSF either in
their daily life, in the context of their studies, or in their
professional environment, with varying frequencies of
use. The volunteers’ profiles are fairly distributed, as
can be seen in Figure 3.
The signers did not know the detailed content of the
corpus before the motion capture session. They signed
60 scenes divided into 6 levels (10 scenes per level),
and had the opportunity to practice several times be-
fore signing each scene. During the recording session,
they interacted with a Power Point presentation slide
show, either directly or with the help of an assistant.
Each slide showed a static scene consisting of a set of
shelves with objects on them. This facilitated access to
multiple views, by translating the 2D figure along hori-
zontal and vertical axes, or by adding written aids (ob-
ject’s name and relative information such as ”small”).
Each signer was free to interpret the scenes and de-
scribe them as he/she wished, only a few instructions
were given at the beginning. Thus, he/she was not



2494

Figure 3: Left diagram represents the typical volun-
teer’s profile, right diagram the proficiency according
to European language proficiency categorization

given specific instructions on how to sign the spatial
referencing, but was constrained to use only the signs
presented in an introductory sequence (e.g., the frog
entity has several distinct signs, only one was used in
the corpus). In addition, he/she was instructed not to
use additional signs, especially to support descriptions
(e.g., the ”small” sign, colors) or to give details about
placement (e.g., the signs ”in the center” or ”at the
end”).
Therefore, the instruction protocol described above
highlights the flexibility of the French sign language
introduced in our corpus, including: 1) flexibility in
grammatical choice; 2) flexibility in order description
choice; 3) flexibility of the language shortcuts that were
introduced, such as two-handed lexical signs that can
be executed with one hand (while this type of dynam-
ics is not part of the grammar of LSF, it is common for
fluent signers to use them). An additional layer of vari-
ability was also introduced in our corpus by the pos-
sibility of hand inversion (the active hand being alter-
nately right or left).

5. Post-processing
As the motion data extracted from the Kinect Azure
system is rather reliable, the main aspect of data post-
processing consists in adding the missing hands (not
provided by the device), by positioning and orienting
them at the right spatio-temporal location in the move-
ment sequence. To solve this problem, the Motion Up
software (Le Naour, 2021) proposes a process in two
successive phases. First, by adding hand poses through
the use of a handshape keyframing technique. Sec-
ond, by changing the orientation of the wrists. We de-
scribe below in more details these two post-processing

Figure 4: Examples of 6 out of the 32 handshapes that
are used in our corpus

phases, as well as the filtering system.

5.1. Handshape Keyframing
A hand pose database is first created and implemented
within the Motion Up software. As seen in section
4.3, lexical signs were selected to limit the number of
poses present in the corpus. This choice should in-
crease the consistency of the future machine learning
process. Our corpus contains 32 handshapes that are
partially presented in Figure 4.
Using this handshape database, the process modifies
BVH files obtained during the capture session by
adding nodes representing the hands. Poses are directly
selected in the software interface. Then, pose transi-
tions are managed by the software and no additional
processing is required in the resulting file.

5.2. Adding Wrist Orientations
In the second phase of the post-processing, the question
of the wrists orientation is particularly sensitive. Un-
like the hand poses, wrist orientations are present in the
raw data, but they carry errors in their angle trajecto-
ries, and need to be replaced manually. Thus, rotations
over the three axis need to be calculated separately and
manually overwritten.

5.3. Filtering Data
The Motion Up software integrates a filtering system
that allows to apply transformations on the angular ro-
tation trajectories (e.g., transform, add) and to modify
them (e.g., value, duration, fading modulation).
The originality of this software lies in some additional
filters that have been created to handle specific cases
that are very useful for processing LS movements. In
the case of wrist orientation, we mainly distinguish two
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Figure 5: Example of a filter modifying wrist rotation trajectory to obtain data where hand palm is parallel
to the floor. On the right, some editing operations such as 3D position or rotation transformations, filtering, or
interpolation

kinds of such editing techniques applied on rotations:
1) palm parallel/perpendicular to the floor or the other
hand, and hand in the continuation of the forearm 2)
palm parallel to the floor and palm pointing at some
locus in front of the signer
These processes may force a body segment (the hand
palm for wrist correction) to remain parallel to a spec-
ified plan such as illustrated in Figure 5. In that par-
ticular example, plan defined by the hand palm and the
one defined by the floor will maintain parallelism dur-
ing the time set in the filter settings.
Filters also allow to synchronize two trajectories so that
they may mirror each other (applied for example on
both arms’ wrists trajectories). Finally, the Motion Up
software integrates procedural models that make possi-
ble to perform inverse kinematics computations. This
can be especially helpful in making the palm of the
hand point to a specific location in space. All these fil-
ters make it possible to accelerate the post-processing
time imposed by the absence of hand motion capture.
In its current state our corpus has not been through
post-processing yet. The process has been tested and
validated, post-processing of the data is in progress,
and annotation should begin shortly.

6. Conclusion
We presented the LSF-SHELVES corpus, a new Mo-
Cap corpus of French Sign Language for recognition
of iconic and spatial referencing mechanisms. LSF-
SHELVES has been designed to present grammatical
parameters such as the location of entities relatively to
spatial references or other entities. It contains very few

lexical signs and a wide variety of different spatial con-
texts. This corpus has been collected with the use of
a novel low-cost protocol. This protocol being light-
weight, we produced a consistent and precise data set
that presents sufficient variability to be used in future
recognition tasks using recent deep learning methods.
Once the ongoing post-processing and annotation tasks
will be achieved, this corpus will be open to the com-
munity. The following step will consist in producing
an intermediate representation of the corpus, based on
spatial referencing graphs. This formalism will be an
important step toward the representation of descriptive
sentences and a baseline for future automatic recogni-
tion of grammatical sign language mechanisms.
Furthermore, this research may lead to the implemen-
tation of a visual tool facilitating the understanding and
learning of written grammar for deaf people.
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