
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 1671–1679
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

1671

Combining ELECTRA and Adaptive Graph Encoding
for Frame Identification

Fabio Tamburini
FICLIT-University of Bologna, Italy

fabio.tamburini@unibo.it

Abstract
This paper presents contributions in two directions: first we propose a new system for Frame Identification (FI), based on
pre-trained text encoders trained discriminatively and graphs embedding, producing state of the art performance and, second,
we take in consideration all the extremely different procedures used to evaluate systems for this task performing a complete
evaluation over two benchmarks and all possible splits and cleaning procedures used in the FI literature.
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1. Introduction
Frame Semantics (Fillmore, 1982; Fillmore and Baker,
2010) is one of the more successful semantic theory
and FrameNet1 (Fillmore et al., 2003) is an invaluable
resource both for linguistic and computational analy-
ses. A semantic frame represents an event or scenario,
and possesses frame elements that participate in the
event/scenario with different roles.
On the computational side, considering the Frame Se-
mantic Parsing task, studies in literature concentrated
on three major subtasks (Das et al., 2014):

• target identification, involving the selection of a
word token, or word token sequences (the target
predicate), evoking some frame in a given sen-
tence. In frame semantics, verbs, nouns, adjec-
tives, and even prepositions can evoke frames un-
der certain conditions;

• frame identification aims at finding the exact
frame evoked by a target predicate in a given sen-
tence, a sort of word-sense disambiguation task
using frames as senses;

• argument identification (a.k.a. semantic role
labeling) is the task of identifying words and
phrases as the appropriate arguments of the target
predicate, the so called Frame Elements, and their
specific roles.

See Figure 1 for some examples and a more detailed
explanation of the three tasks and a brief description of
FrameNet frame-to-frame relation structure.

In this paper, we focus our attention on the Frame Iden-
tification (FI) task. There is a long series of studies in
literature for solving the FI task (Das and Smith, 2011;
Das et al., 2014; Hermann et al., 2014; Swayamdipta
et al., 2017; Hartmann et al., 2017; Yang and Mitchell,
2017; Botschen et al., 2018; Peng et al., 2018; Sikos
and Padó, 2019; Popov and Sikos, 2019; Tan and Na,

1https://framenet.icsi.berkeley.edu/
fndrupal/

2019; Chen et al., 2021; Jiang and Riloff, 2021; Su et
al., 2021), both using traditional techniques and various
neural network approaches.

Examining in detail the most recent literature present-
ing state of the art systems based on Deep Neural Net-
works, we found four main studies.

Tan and Na (2019) proposed a very simple method
based on transformers (Vaswani et al., 2017; Devlin et
al., 2019) and positional attention obtaining good per-
formance results.

The solution by Chen et al. (2021) consists of four
modules, a Bidirectional-LSTM encoder module for
encoding the input sentence and three decoder mod-
ules, for solving respectively frame identification, argu-
ment identification and role classification, jointly opti-
mized for solving all these subtasks of frame semantic
parsing together.

Jiang and Riloff (2021) exploited lexical unit and frame
definitions concatenated with target sentences for get-
ting BERT embeddings (Devlin et al., 2019) and esti-
mate the probability of a given frame to be the correct
frame evoked by the input target.

The work from Su et al. (2021) is very recent, it has
been developed independently at the same time of this
work and share some similar ideas employing graph
embeddings and pre-trained language models. Our
work, however, is based on a more reliable graph em-
bedding technique (see Sect. 2.1) and it has been ex-
tensively evaluated over the whole set of benchmark
configurations (see Sect. 3).

The contribution of our paper is two-fold: first, we
present a new system for FI producing state of the art
performance (Sect. 2) and, second, we take in con-
sideration all the extremely different procedures used
to evaluate systems for this task performing a complete
evaluation over the two benchmark datasets and all pos-
sible splits and cleaning procedures used in the FI lit-
erature (Sect. 3 and 4). Sect. 5 and 6 analyse in more
detail some aspects of the proposed system and the ob-
tained results and Sect. 7 draws some conclusions.

https://framenet.icsi.berkeley.edu/fndrupal/
https://framenet.icsi.berkeley.edu/fndrupal/
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We hurried down the village street and found, as we had expected,
that [the inspector]Theme was [just]Time LEAVING[DEPARTING] [his lodgings]Source.

Mysteriously, the Anasazi vanished from the valley around a.d. 1150, LEAVING[CAUSATION]

[it]Affected [to be repopulated by the Southern Paiutes, another hunter-gatherer tribe]Effect.
True to wild-West stereotypes, Stewart was slain by a neighboring farmer, LEAVING[ABANDONMENT]

[his strong-willed wife, Helen]Theme, [to assume the duties of the ranch]Explanation.
(a)

[We]Self_mover HURRIED[SELF_MOTION] [down the village street]Path and found, as we had expected,
that the inspector was just leaving his lodgings.

We hurried down the [village]Relative_location [STREET]Roadway[ROADWAYS] and found, as we had expected,
that the inspector was just leaving his lodgings.

[We]Cognizer hurried down the village street and FOUND[BECOMING_AWARE], as we had expected,
[that the inspector was just leaving his lodgings]Phenomenon.

We hurried down the village street and found , as [we]Cognizer had EXPECTED[EXPECTATION],
[that the inspector was just leaving his lodgings]Phenomenon.

We hurried down the village street and found, as we had expected,
that [the inspector]Theme was [just]Time LEAVING[DEPARTING] [his lodgings]Source.

(b)

(c)

Figure 1: (a) Three examples of the target lemma leave.v from FrameNet 1.7 each evoking a different frame.
‘LEAVING’ represents the target word evoking the various frames, namely DEPARTING, CAUSATION and ABAN-
DONMENT, and the text fragments in square brackets represent the Frame Elements with their respective role. (b)
In FrameNet full-text annotations we could have more than one target word evoking different frames in the same
sentence, each of which is a FI problem to be solved. In the example, five target words are present in the same
sentence, evoking different frames and involving various FEs. (c) A fragment of the FN 1.7 graph connecting
frames with various frame-to-frame relations centered on the frame DEPARTING as showed by the Frame Grapher
from the original FN Web site.

2. System Architecture
Formally, the FI task can be described in this way: let
S = w1, w2, ....wn represent the actual sentence with
a marked predicate t, the target, that evokes a mem-
ber of the set of all possible frames F = {f1, ..., fk},
built by extracting data from FrameNet (FN) for a given
FN version. FI is generally seen in literature as a clas-
sification task. For complete information about this
long-standing task please refer also to (Das et al., 2014;
Swayamdipta et al., 2017).
The proposed architecture for solving FI is depicted in
Figure 2; it is composed of various modules described
in detail in the following subsections.

2.1. Attributed Graph Embeddings
We relied on the AGE proposal from Cui et al. (2020)
for embedding part of the FrameNet graph and, in par-

ticular, for deriving highly informative frame embed-
dings containing both frame features and FN graph in-
formation.
As discussed in (Yang et al., 2021), most of exist-
ing network embedding methods rely on Graph Con-
volutional Networks (GCN) (Kipf and Welling, 2017)
and are based on graph autoencoder (GAE) and varia-
tional graph autoencoder (VGAE) (Kipf and Welling,
2016). These GCN-based methods have some major
drawbacks described in detail in (Yang et al., 2021):
(a) the entanglement of the filters and weight matri-
ces composing GCNs provides no performance gain
for semi-supervised graph representation learning, and
even harms training efficiency since it deepens the
paths of back-propagation; (b) considering the graph
convolutional filters, that act as Laplacian smoothing
filters applied on the feature matrix for low-pass de-
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Frame Definitions

S = w1, .., t, .., wn Sentence-BERT

ELECTRA AGE FNG

prjt prja

·

FE Classifier Frame Classifier

OFE O

LFE Lc LAGE

L

[d1, .., dk]

[d1, .., dk]

t AGEembs = [f1, ..., fk]

J

Inf.

Figure 2: The various modules composing the full ‘Electra-AGE_FE’ system for Frame Identification. The detailed
description of all components can be found in Section 2.

noising, it can be shown that they are not optimal since
they cannot filter out noises in some high-frequency in-
tervals not reaching the best smoothing effect; (c) train-
ing objectives of these algorithms, either reconstructing
the adjacency matrix or feature matrix, present some
drawbacks: reconstructing the adjacency matrix sets it
as the ground truth pairwise similarity, while it is not
appropriate for the lack of feature information. Recov-
ering the feature matrix will force the model to remem-
ber high-frequency noises in features, and thus is inap-
propriate as well (Yang et al., 2021).
For all these reasons, Cui et al. (2020) proposed
Adaptive Graph Encoder (AGE), a framework for at-
tributed graph embedding composed of a nonparamet-
ric Laplacian filter to perform low-pass filtering in or-
der to get smoothed node features and an adaptive en-
coder to learn better node embeddings. The reconstruc-
tion training objectives has been replaced with adaptive
learning which selects training samples from the pair-
wise similarity matrix and fine tunes the embeddings it-
eratively. AGE is able to embed a graph structure with
feature-rich nodes into an embedding space in which
node embeddings contain both original node features
and graph-structure information.
Considering the discussion above and contrary to the
choices made by Su et al. (2021) that applied CGN-
based methods, we preferred to adopt the AGE pro-
posal from Cui et al. (2020) for deriving structurally-
informed frame embeddings. We first extract frame

embeddings Dembs = [d1, ..., dk] ∈ IRk×d from
FrameNet frame definitions D = {d1, ..., dk}, with di
the definition of fi, by using the Sentence-BERT model
(Reimers and Gurevych, 2019), for all the k frames
in a given FN version and use them as starting node
features for the AGE model. d represents the dimen-
sion of Sentence-BERT embeddings. Then, we extract
the FrameNet subgraph FNG projected by the Inher-
itance, Subframe and Using frame relations from FN,
as in Popov and Sikos (2019), and use them as graph-
structure input in the AGE model for obtaining the
structurally-informed frame embeddings AGEembs =
[f1, ..., fk] ∈ IRk×y , where y is the AGE output em-
bedding dimension.

2.2. Classifiers
The input sentence S is processed by one contextual-
embedding technique based on transformers (Vaswani
et al., 2017) for obtaining all the contextualised word-
embeddings for each word in S and, as a consequence,
also for the target t, namely t (for multi-word expres-
sion targets we averaged the corresponding embed-
dings). In this study we relied on ELECTRA, recently
proposed by Clark et al. (2020), a text encoder pre-
trained with a more sample-efficient task called ‘re-
placed token detection’ as a discriminator rather than
a generator in a set-up resembling a generative adver-
sarial network.
The AGE and target embeddings were combined by
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first projecting them into a common joint target-
label space of dimension h by two linear layers with
bias, namely prjt and prja, and then, by using the
component-wise multiplication ‘⊙’, into

J = [prja(f1)⊙prjt(t), ..., prja(fk)⊙prjt(t)] ∈ IRk×h

to measure the compatibility between the target and
each possible frame as done in Pappas and Hender-
son (2019). In order to get the final classification
probabilities over all possible frames we computed
Oi = Ji · Wi + Bi, i = 1, ..., k, where W ∈ IRk×h,
B ∈ IRk and ‘·’ is the dot product, performing the
equivalent of k linear h × 1 layers with bias applied
row-wise to J , and then applied the softmax function.

In order to enrich the information injected into the
model, we trained a further multi-label classifier, in the
spirit of multi-task learning, for predicting the Frame
Elements (FE) involved in a specific frame invocation;
from the projected target embedding, through a fur-
ther linear layer with bias P , we obtain the output
OFE = sigmoid(P (prjt(t))) ∈ Rf , with f the to-
tal number of FE for a given FN version.

The whole system does not require a very big model
consisting in only 1.6 million parameters.

2.3. Optimisation, Losses and Inference
We optimise our model by using the AdamW algo-
rithm (Loshchilov and Hutter, 2019) with respect to
three losses: (a) the standard loss for link prediction
proposed by (Cui et al., 2020), LAGE , for the AGE
model; (b) the cross-entropy loss, Lc, for the classifier
output O and (c) the binary cross-entropy loss, LFE ,
for the multi-label FE classifier output OFE . We com-
bine these losses and optimise the model by using the
joint loss

L = γ2 [γ1 Lc + (1− γ1) LAGE ] + (1− γ2) LFE

with γ1, γ2 ∈ [0, 1].

With regard to inference on output frames, we restrict
the set of possible frames to all those potentially evoked
by the target t. For FE classification during inference,
the final decision about the FEs involved in a specific
problem instance are restricted to the set of all possible
FEs being part of every frame potentially evoked by t,
thresholding the logits on 0.0 for taking the decision.

3. Experimental setting
As noted by Kabbach et al. (2018), evaluating FI sys-
tems is a very complex task: despite the availability of
two standard benchmarks adopted in current literature,
namely FN 1.5 and FN 1.7, examining the large bundle
of works devoted to FI we found a lot of different pro-
cedures based on only one of the two FN versions and
on different splits and cleaning criteria.

The older works tested the proposed systems on the
full-text annotations of FN 1.5, considering the split

first introduced by Das and Smith (2011), containing 23
documents for the test set with 4,458 predicates. From
the remaining 55 documents, 16 documents were cho-
sen as validation set following Hermann et al. (2014)
(we call this split ‘Val16’). Swayamdipta et al. (2017),
accepting the same split for the test set, proposed in-
stead a different split in which only 8 documents were
included into the validation set (we call it ‘Val8’).
Kabbach et al. (2018), adopting the same split as
Swayamdipta et al. (2017), noted that data were not
clean, some sentences or annotations were inserted
twice or more times across splits and developed the
pyfn package2 to clean them and to guarantee no du-
plicates and no overlaps within and across splits and,
thus, to perform more correct evaluations (we call this
split ‘Val8C’).
With regard to FN 1.7, used by more recent studies,
problems are exactly the same: some works used the
Das and Smith (2011) split, others the Swayamdipta et
al. (2017) split and, again, data has to be cleaned in
order to have a more correct and reliable benchmark
(Kabbach et al., 2018). We use the same split names
introduced before for FN1.5.
Moreover, some studies used as further training data
also the FN exemplar sentences annotated partially for
showing the use of the various FEs, some claiming
that they improve the results (Yang and Mitchell, 2017;
Chen et al., 2021) while others stating that they, be-
ing only partially annotated, could confuse the sys-
tems classification process (Das et al., 2014). Actually,
there is also the problem that some exemplar sentences
have been included into validation and test sets, espe-
cially for FN 1.7, and thus cannot definitely be used for
training without applying some cleaning procedure. It
is worth noting that Tan and Na (2019) only partially
clean data, removing duplicates only in the exemplars
added to the training set, but, as they do not provide any
procedure or instance count for their splits, we cannot
reliably reproduce their evaluation and thus we will not
consider their work for comparisons.
Given this very problematic panorama, comparing our
results with the literature and the state of the art is very
complex and, choosing a specific benchmark, split and
cleaning option, only a subset of the interesting studies
can be reliably considered. In our opinion this is not
acceptable, thus we decided to test our system in any
configuration and compare the obtained results with the
appropriate studies, giving a complete and systematic
picture of the FI results in literature for any consider-
ered configuration and reliable conclusions about the
effectiveness of the proposed solution.

We relied on the package pyfn cited before to ex-
tract data both in uncleaned and cleaned form from
the original annotations in FN releases, with or with-
out the additional exemplar sentences and annotations.
Table 1 shows the number of FI instances in each split

2https://github.com/akb89/pyfn

https://github.com/akb89/pyfn
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and configuration used by some work in literature and
then tested here as well as the number of ambiguous
instances in the various test sets.

Benchmark # FI Instances
Configuration Train Valid. Test (Ambig.)
FN1.5_Val16 15044 4436 4458 (2025)
FN1.5_Val8 17148 2332 4458 (2025)
FN1.5_Val8C 16706 2319 4148 (1850)
FN1.5_Val8C† 170889 2319 4148 (1850)
FN1.7_Val8 19903 2309 6728 (3293)
FN1.7_Val8C 19550 2309 6446 (3114)
FN1.7_Val8C† 192554 2309 6446 (3114)

Table 1: All combinations of splits, cleaning (C) and
use of exemplars in the training set (†) from FN ver-
sions considered in literature and tested here.

In Table 2 we listed the pre-trained models and hyper-
parameters used for testing our system without having
optimised them in any way.

Pre-trained model Dim.
SBERT: stsb-roberta-base 768
ELECTRA: electra-base-discriminator 768
Hyperpar. Value Hyperpar. Value
d, y 768 γ1 0.5
h 256 γ2 0.1

Table 2: Pre-trained models and hyperparameters used
in the proposed system.

The influential paper from Reimers and Gurevych
(2017) makes clear to the community that reporting a
single score for each DNN training/evaluation session
could be heavily affected by the system random initial-
isation and we should instead report the mean and stan-
dard deviation of various runs, with the same setting, in
order to get a more accurate picture of the real systems
performance and make more reliable comparisons be-
tween them. Despite this, most of the cited literature
for FI still present the results as a single score without
explicitly state if it is the average, the maximum value
or any other combination of various experiments. A
notable exception in recent literature regards the work
from Jiang and Riloff (2021) that presents the average
of three runs.
For these reasons, any new result proposed in this paper
is presented as the mean and standard deviation of FI
accuracy (the standard metric for this task) over 10 runs
with different random initialisations. In this way, we
should give a real picture of our system performances.

4. Results
Table 3 shows the performance of the proposed sys-
tem, Electra-AGE_FE, compared to any work found in
literature w.r.t. the different benchmark configurations
in Table 1. Our system consistently outperform any
other proposal in a highly significant way except when

Model FN1.5_Val16
All Amb. Max

(Das et al., 2014) 83.60 69.19 -
(Popov and Sikos, 2019) 87.03 72.48 -
(Hartmann et al., 2017) 87.63 73.80 -
(Yang and Mitchell, 2017)† 88.20 75.70 -
(Hermann et al., 2014) 88.41 73.10 -
(Botschen et al., 2018) 88.82 75.28 -
(Sikos and Padó, 2019) 91.26 80.77 -
(Jiang and Riloff, 2021) 91.30 81.00 -
Electra-AGE_FE 91.71• 82.01• 91.97/

±0.17 ±0.37 82.56
Model FN1.5_Val8

All Amb. Max
(Swayamdipta et al., 2017) 87.51 - -
(Peng et al., 2018)† 90.00 78.00 -
(Chen et al., 2021)† 90.50 79.10 -
(Su et al., 2021) 92.13 82.34 -
Electra-AGE_FE 92.21− 83.13• 92.42/

±0.12 ±0.23 83.56
Model FN1.5_Val8C

All Amb. Max
(Kabbach et al., 2018) 83.20 73.60 -
(Kabbach et al., 2018)† 84.60 69.30 -
Electra-AGE_FE 92.57• 83.58• 92.79/

±0.12 ±0.27 84.05
Electra-AGE_FE† 92.56• 83.54• 92.67/

±0.09 ±0.20 83.79
Model FN1.7_Val8

All Amb. Max
(Peng et al., 2018)† 89.10 77.50 -
(Jiang and Riloff, 2021) 92.10 83.80 -
(Su et al., 2021) 92.40 84.41 -
Electra-AGE_FE 92.24◦ 84.26− 92.46/

±0.14 ±0.29 84.73
Model FN1.7_Val8C

All Amb. Max
(Kabbach et al., 2018) 82.30 70.00 -
(Kabbach et al., 2018)† 83.60 66.70 -
Electra-AGE_FE 92.33• 84.22• 92.49/

±0.13 ±0.27 84.55
Electra-AGE_FE† 91.42• 82.34• 91.62/

±0.08 ±0.17 82.76

Table 3: FI accuracy results for ‘All’ or ‘Ambigu-
ous’ instances in FN 1.5 and FN 1.7 evaluation bench-
marks used in literature and the splits listed in Ta-
ble 1. ‘Max’ represents the best performance ob-
tained by our system. Results marked with ‘†’ make
use of FN exemplars during training only for Val8C
configurations because some exemplars, for the other
configurations, have been inserted into the validation
and test sets. Some symbols mark the significance
using a one-sample t-test when comparing our re-
sults with the best found in literature (−: p>0.05,
∗: 0.05>p>0.01, ◦: 0.01>p>0.001, •: p<0.001).
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compared to the work from (Su et al., 2021). When
tested on FN1.5_Val8, our system produced a better re-
sult but it was not significant (p=0.078) if considering
all instances and highly significantly better on ambigu-
ous ones. On FN1.7_Val8, Su et al. (2021) performed
significantly better on all instances but not on ambigu-
ous ones. In both cases our system exhibits better per-
formance on ambiguous FI instances. However, it is
very relevant to note that the cited work from Su et al.
(2021) presented a unique test performance and not the
average of multiple runs and it is not clear if this is
the best absolute performance or not. Our ‘Max’ result
would be a bit better when compared to their results for
FN1.7_Val8 and much better for FN1.5_Val8.

In general, the Val8 split of FN 1.5 produces better re-
sults w.r.t. the Val16 split because more data are placed
in the training set and even better the results for the
Val8C cleaned datasets.
Adding the dataset exemplars to the cleaned splits, the
only conditions for which is safe doing it, does not
help at all in increasing system performance and this
seems to confirm that having only partially annotated
sentences, as in the case of FN exemplars, does not
give enough information for helping the system in the
disambiguation phase. These results seems a bit bet-
ter for FN 1.5, a version containing less data and more
problems in the annotations, but, on the newer FN 1.7
version, being enriched and cleaned a bit more, adding
exemplars reduces the system performance by a large
margin.

5. Ablation Study
In order to fully understand the contributions of the var-
ious system components in Figure 2, we performed an
ablation study increasing the system complexity one
step at a time. Table 4 shows the results obtained with
the various systems when applied to the reference con-
figuration FN1.5_Val8.
The simplest system, ‘Electra-T’, tries to predict the
correct frame using only the ELECTRA embedding for
the target word, namely t: despite the simplicity of this
systems its performance is indeed quite good, a bit less
that 92%. ‘Electra-T_FE’ slightly increases the com-
plexity by adding also the FEs prediction component
and it improves the performance a bit. A big improve-
ment in system performance was obtained adding the
AGE component for including structurally-informed
frame embeddings into the game and working in a joint
target-label space. The complete system, integrating
all modules further improves the performance showing
that all the various pieces forming the whole ‘Electra-
AGE_FE’ system really contribute to the final results.

6. FE Classification
Even if this is not the focus of this study, in order to
gather more insights about the real effectiveness of the
proposed model, we measured also the Frame Element
Classification performance.

Model FN1.5_Val8
All Amb.

Electra-T 91.98±0.12 82.62±0.25
Electra-T_FE 92.00±0.11 82.67±0.24
Electra-AGE 92.14±0.11 82.97±0.25
Electra-AGE_FE 92.21±0.12 83.13±0.23

Table 4: FI accuracy for the various steps consid-
ered in the ablation study. The differences between
Electra-AGE/Electra-T and Electra-AGE_FE/Electra-
T_FE when applying a two-sample t-test are both sta-
tistically highly significant (0.01>p>0.001), showing
the importance of adding AGE frame embeddings to
our model.

A frame typically possesses more than a single FE, thus
FEs classification must be configured as a multi-label
multi-class classification problem. As described in Sect
2.2 and 2.3, the output of the FE Classifier is the result
of a sigmoid function with the decision threshold set
to 0.0. This approach is the standard choice for multi-
label classifiers.
The Jaccard Score (JS), defined as the size of the in-
tersection divided by the size of the union of two label
sets, is used to compare the set of predicted labels for
a sample to the corresponding set of true labels and it
is thus a good metric for measuring the performance
of multi-label classifiers, where JS = 1 means perfect
classification and JS = 0 no overlapping between sys-
tem predictions and true labels.
We took the binary output of the FE Classifier, re-
stricted to the subset of all possible FEs for a given
instance (see Sect 6), and compared it with the binary
vector of correct labels measuring the degree of over-
lapping between them by JS. Table 5 shows the means
and std.dev. of JS for all the tested split configurations.

Split Electra-AGE_FE
Configuration Jaccard Score (in %)
FN1.5_Val16 35.24±0.95 (max 36.20)
FN1.5_Val8 37.30±1.16 (max 39.27)
FN1.5_Val8C 36.64±1.18 (max 37.73)
FN1.5_Val8C† 36.65±1.46 (max 39.38)
FN1.7_Val8 38.39±1.55 (max 39.86)
FN1.7_Val8C 38.34±1.07 (max 39.41)
FN1.7_Val8C† 39.55±1.41 (max 42.77)

Table 5: Electra-AGE_FE Frame Elements Classifier
Jaccard Score (in %).

Given that we did not make any effort for tuning the
system and increasing FEs classification performances,
JSs slightly less than 40% look very promising.

7. Discussion and Conclusions
Most of the studies in literature producing the best re-
sults for the various benchmarks, namely Tan and Na
(2019) and Su et al. (2021), do not provide the system
codes and a precise description of their experimental
procedures, thus it is very difficult to reproduce their
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results and compare them with ours; when a compari-
son is possible, our results are in line with their accu-
racies or better for all benchmarks. Notable exceptions
are the works from Kabbach et al. (2018) and Jiang
and Riloff (2021) that provide all experimental setting
information and allow for a complete and reliable com-
parison: also in these cases our system obtained the
best results.
Kabbach et al. (2018) presents the unique reference
on fully cleaned configurations, but it used a very sim-
ple and not a really competitive system. We, any-
way, preferred to provide a reference also for these
split and cleaning configurations because, despite no
other recent work is using them, in our opinion they
should be adopted as the real references, being the most
correct and reliable benchmark configurations among
those used in literature.
There are various studies (Litkowski, 2014; O’Hara
and Wiebe, 2009; Matsubayashi et al., 2009) propos-
ing to organise the FrameNet FEs into a hierarchy of
semantic roles. Adopting such perspective, it could be
possible in our future works to approach the FE clas-
sification problem applying classification techniques
for multi-label hierarchically organised labels (Murty
et al., 2018; Wehrmann et al., 2018; Xu and Bar-
bosa, 2018; Mao et al., 2019; Muller and Smith, 2020;
Zhou et al., 2020) and improve the classification re-
sults. Our future plans regard also the development of
a full fledged system embodying also target and argu-
ment identification.
All the benchmark configuration datasets and the code
for reproducing our results can be downloaded from
our GitHub repository3.
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