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Abstract

In this paper, we present an attention-based
deep learning framework, DeepADA, which
uses data augmentation to address the class
imbalance problem in textual datasets. The
proposed framework carries out the following
functions: (i) using MPNET-based embeddings
to extract keywords out of documents from
the minority class, (ii) making use of a CNN-
BiLSTM architecture with parallel attention to
learn the important contextual words associated
with the minority class documents’ keywords
and provide them with word-level characteris-
tics derived from their statistical and seman-
tic features, (iii) using MPNET, replacing the
key contextual terms derived from the oversam-
pled documents that match to a keyword with
the contextual term that best fits the context,
and finally (iv) oversampling the minority class
dataset to produce a balanced dataset. Using a
2-layer stacked BiLSTM classifier, we assess
the efficacy of the proposed framework using
the original and oversampled versions of three
Amazon’s reviews datasets. We contrast the
proposed data augmentation approach with two
state-of-the-art text data augmentation meth-
ods. The experimental results reveal that our
method produces an oversampled dataset that is
more useful and helps the classifier perform bet-
ter than the other two state-of-the-art methods.
Nevertheless, we discover that the oversampled
datasets outperformed their original ones by a
wide margin.

1 Introduction

Textual datasets from different domains generally
suffer from the issue of class imbalance, where
instances from the majority class outnumber the
instances from the minority class by a huge margin.
In such a case, the classifier cannot perform well on
the minority class dataset; as a result, the minority
class instances go undetected. Most research works
handle this issue by simply using a random over-
sampling algorithm without injecting additional

knowledge into the minority class dataset. As a
result, the resulting model is highly susceptible
to overfitting. Nevertheless, a data augmentation-
based minority class oversampling approach to han-
dle a class imbalance in a textual dataset has not
been well investigated.

Generally, the augmentation techniques generate
undesirable documents that do not share the similar
distribution of syntax, semantics, and pragmatics
of the original data. When it comes to text data
augmentation, class-indicating words (keywords)
play a significant role (Abulaish and Sah, 2019).
We must selectively augment the text, considering
the significance of different words. In this process
- (i) we should be able to identify the important
class-indicating words so that the newly generated
document semantically revolves around the class
of the original document, (ii) we should be able
to characterize the important words that aid the
identification class indicating words and ultimately
improves the generalization ability.

Deep learning models have emerged as effec-
tive classification models and are successful in
many domains (Krizhevsky et al., 2012; Huang
et al., 2021; Fazil et al., 2021), and have robust
pattern learning ability and are widely successful
for classification tasks. This paper presents a deep
learning-based text data augmentation approach
that exploits different deep learning techniques to
create a balanced dataset by augmenting the newly
generated documents to the minority class dataset
to improve the detection efficacy of the classifi-
cation algorithms on the minority class. The pro-
posed approach first identifies keywords from the
minority class data points utilizing a ranking-based
weighted approach. Using an attention mechanism,
it exploits the identified keywords to extract im-
portant contextual words from minority-class doc-
uments. In this process, it recognizes the word
roles using statistical correlation to measure word
occurrence frequencies respective to text categories
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and semantic similarity to measure word seman-
tics respective to text categories, which helps to
find the words semantically similar to text labels.
Finally, it utilizes important contextual words to
enrich the minority class dataset. The proposed
approach oversamples the minority class dataset by
generating new documents based on important con-
textual words and augmenting them to the minority
class dataset. The proposed approach seems inter-
pretable and improves the performance of the deep
learning classifiers over the augmented datasets.

The rest of the paper is organized as follows. Sec-
tion 2 presents a brief review of the existing litera-
ture on text data augmentation. Section 3 presents
a detailed description of the proposed attention-
based text data augmentation approach. Section 4
presents the experimental setup and evaluation re-
sults. It also presents a comparative analysis of the
proposed approach with two state-of-the-art text
data augmentation approaches. Finally, section 5
concludes the paper with future research directions.

2 Related Works

Researchers have come up with many approaches
including words substitution-based (Wei and Zou,
2019; Kobayashi, 2018; Wu et al., 2019; Abu-
laish and Sah, 2019), paraphrasing-based (Sen-
nrich et al., 2016; Edunov et al., 2018), and text
generation-based (Anaby-Tavor et al., 2020; Liu
et al., 2020) solutions.

In (Wei and Zou, 2019), authors introduced Easy
Data Augmentation (EDA), a widely used word-
replacement based data augmentation method with
four basic randomization operations – (i) replace-
ment, (ii) insertion, (iii) swap, and (iv) deletion.
They have visualized that these simple operations
can improve a classifier’s performance on text clas-
sification tasks. In (Kobayashi, 2018), authors
proposed contextual augmentation for labeled sen-
tences to predict words from a wide range of substi-
tute words, learned using a label-conditional bidi-
rectional language model. In (Abulaish and Sah,
2019), authors showed that augmenting n−grams
from a minority class document to itself that in-
cludes minority class keywords using Latent Dirich-
let Allocation (LDA), if any, in the document, can
improve the CNN’s ability to identify the minor-
ity class instances. In (Wu et al., 2019), authors
proposed to identify substitute words according to
their context, which, apart from the similar mean-
ing, also cares whether the candidates fit in the

surrounding context and labels. In (Miao et al.,
2020), authors exploited data augmentation to au-
tomatically create more labeled training data to
fine-tune a language model to derive each aspect-
opinion pair’s sentiment. In (McCoy et al., 2019),
authors insisted on creating new linguistic patterns
for text data augmentation using large pre-trained
language models.

3 Proposed Attention-Based Deep
Learning Framework

In this section, we discuss the proposed attention-
based deep learning framework, DeepADA, for
data augmentation to improve the performance of
classifiers on imbalanced text datasets. We evalu-
ate the proposed approach over 3 Amazon reviews
dataset, with statistics as shown in Table 1. Table 1
clearly shows that the Amazon reviews dataset suf-
fers from class imbalance problem, as the number
of positive reviews is significantly higher than the
number of negative reviews. With this inference,
we label the positive reviews dataset as the major-
ity class dataset (Dmaj) and the negative reviews
dataset as the minority class dataset (Dmin). The
DeepADA performs the following functions:

(i) Extracts keywords out of documents from the
minority class, using embeddings generated
by a transformer-based language model, as
discussed in section 3.1.

(ii) Makes use of a CNN-BiLSTM architecture
with parallel attention to learn the important
contextual words associated with the minority
class documents’ keywords, as discussed in
section 3.2.

(iii) Using a transformer-based language model,
replaces the key contextual terms derived from
the oversampled documents that match to a
keyword with the contextual term that best fits
the context, as discussed in section 3.3.

(iv) Finally, oversamples the minority class dataset
to produce a balanced dataset, as discussed in
section 3.4.

3.1 Similarity-Based Weighted Keywords
Extraction

This section discusses the keyword extraction
mechanism that we use in our proposed approach.
In order to extract keywords, we use MPNET
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(Song et al., 2020), a semantically and contextu-
ally robust word embedding technique. MPNET is
a transformer-based language model designed to
capture the meaning of words, phrases, and doc-
uments by encoding them to vectors by inherit-
ing the advantage of both masked language model-
ing (MLM), adopted in BERT, and permuted lan-
guage modeling (PLM), adopted in XLNet. In
order to generate the embeddings, we use SBERT
(Reimers and Gurevych, 2019), which uses siamese
and triplet network structures and has proven to be
a successful bi-encoder model for generating se-
mantically meaningful sentence embeddings that
we can utilize for textual similarity comparisons
using cosine similarity. We extract keywords from
the minority class dataset (Dmin) to employ them
for their corresponding important contextual words
extraction, which we utilize to generate new minor-
ity class documents.

In order to extract keywords from the minority
class dataset, we first encode each jth document
dj in the minority class dataset (Dmin) to its em-
bedding vector using SBERT, to extract semanti-
cally more meaningful sentence-level embeddings.
We consider MPNET as a pre-trained model for
SBERT. Then, we encode each ith word wi from
the minority class vocabulary (V bmin) to its embed-
ding vector using MPNET. Thereafter, we calculate
cosine similarity (CSV al) between each ith word,
wi ∈ V bmin and jth document dj ∈ Dmin, to give
CSV al(wi, dj) as given by equation 1; where −→wi

is the embedding vector corresponding to wi,
−→
dj

is the embedding vector corresponding to dj , and
CSV al(wi, dj) ∈ [−1, 1].

CSV al(wi, dj) =
−→wi ·

−→
dj

∥−→wi∥∥
−→
dj∥

(1)

Once we have calculated CSV al of each word
from V bmin with each document in Dmin com-
paring their embeddings, we sort them in order
such that the words in V bmin which share higher
CSV al with most of the documents in Dmin is
ranked higher. In order to achieve this, we assign
a score to each word based on its rank. The word
score (WS) of word w ∈ V bmin, WS(w) is given
by equation 2; where r(w, di) is the rank of word
w corresponding to ith document ∈ Dmin, n is the
number of documents in Dmin, and P is a variable
vital in assigning score to a word w based on its
rank values corresponding to documents ∈ Dmin,
and it basically penalizes more if the rank corre-

sponding to a document is less; here, we choose
P = 10 over other values based on experimental
fine-tuning.

WS(w) =
n∑

i=1

r(w, di)× Pr(w,di)−1 (2)

We select only the top k words from V bmin based
on their WS value as the minority class keywords
(Kmin).

3.2 Important Contextual Words Extraction
from Minority Class Documents

In order to generate additional documents in order
to augment it to the minority class Dmin, we iden-
tify the important contextual words corresponding
to each minority class document containing the
keyword(s). Towards this, we first create a labeled
dataset based on the presence of keyword(s) in
the minority class documents as discussed in sec-
tion 3.2.1. We then extract additional word-level
features of each word w ∈ V bmin based on its
semantic and statistical property as discussed in
section 3.2.2. After that, we learn the important
contextual words using a parallel attention-based
CNN-BiLSTM model corresponding to the key-
words from the keywords-based labeled dataset
enriched with the word-level features as discussed
in section 3.2. Figure 1 illustrates the important
contextual words extraction process from minority
class documents.

3.2.1 Keywords-Based Labeled Dataset
Creation

In this section, we discuss the creation of a bi-
nary labeled dataset for important contextual words
extraction Dicwe from the minority class dataset
Dmin. We aim to extract important words that aid
the classifier most in classifying the keywords. To
this end, for each keyword kw ∈ Kmin, starting
from the keywords with the highest CSV al in de-
scending order, we check if a document r ∈ Dmin,
oversample it corresponding to each word w ∈ r.
We label class K to the oversampled document if
w = kw and assign it to DK

icwe, and class NK to
the oversampled document if w ̸= kw and assign
it to DNK

icwe. We continue this process until the total
number of documents in the minority class dataset,
and important words extraction dataset combined
is equal to the number of documents in the majority
class dataset, i.e., |Dmin|+ |DK

icwe| = |Dmaj |.
320



3.2.2 Word-Level Feature Extraction
In this section, we present the two effective word-
level features that depict a word’s association with
different classes of the dataset based on its statisti-
cal and semantic properties. Since we aim to iden-
tify the important contextual words corresponding
to each kw ∈ Kmin, we aim to develop a robust
classification framework that identifies accurate im-
portant contextual words.

(i) Class Correlation: This measures how fre-
quently the word co-occurs with the different
classes. If the words’ frequency is higher in
the K class, then its class correlation value
is higher for the K class than for the NK
class. The class correlation value of a word
w corresponding to the class K, CC(w,K)
is nothing but weighted log-likelihood ratio,
and is given by equation 3; where p(

w

K
) is

the probability of observing word w in class
c while p(

w

K∁ ) is the probability of observing

word w in class other than K.

CC(w,K) = p(
w

K
)× log(

p(
w

K
)

p(
w

K∁ )
) (3)

Here, for each word w, we calculate
CC(w,K) and CC(w,NK) corresponding
to the classes K and NK, respectively.

(ii) Semantic Similarity: This measures how
much semantics the word w share with the
label of a class. We take the semantic sim-
ilarity of a word w with keyword class K
as the cosine similarity value of word w
with the semantic score of class K, i.e.,
CSV al(w, SS(K)), similar to the calcula-
tion in equation 1, and SS(K) as the aver-
age of the word vectors of top 100 words
∈ Kmin in order of their WS value. We
take the top 100 keywords from respective
classes to calculate the classwise semantic
scores since they represent the better se-
mantic space being the centroid point of
top keywords extracted using a more se-
mantically sound approach. Here, for each
word w, we calcuate CSV al(w, SS(K)) and
CSV al(w, SS(NK)) corresponding to the
classes K and NK respectively.

In this context, providing word-level features
to the documents in Dicwe will help identify the
important contextual words more effectively by
exploiting their statistical and semantic property,
which depicts their alignment to a particular cate-
gory.

3.2.3 Keywords-Specific Important
Contextual Words Extraction

In this section, we discuss how we extract impor-
tant contextual words corresponding to the minority
class keywords (Kmin). As from section 3.2.1, we
already know that each document d in Dicwe is cre-
ated corresponding to a target word wt ∈ d and
labeled class K or NK based on whether wt is
in Kmin or not. After that, in section 3.2.2, we
identified two word-level features based on their
statistical and semantical properties. In this sec-
tion, we discuss how we identify the top contex-
tual words that help classify the target word wt

corresponding to which a document d ∈ Dicwe

has been created, using a parallel attention-based
CNN-BiLSTM model, to ultimately identify the
top contextual words corresponding to document
d ∈ DNK

icwe. We choose the CNN-BiLSTM model
to exploit the benefit of both the CNN’s feature
extraction ability along with the BiLSTM’s ability
to learn long-term in textual documents (Liu and
Guo, 2019; Rhanoui et al., 2019).

Let us suppose di is the ith document, and
di ∈ Dicwe such that di = {w1, . . . , wt, . . . , wn};
wt and n being the target word and the number
of words in the document respectively. DeepADA
aims to learn the importance of each contextual
word w ∈ di while training the model on di with
emphasis on wt, where wt is a target word corre-
sponding to which di ∈ Dicwe has been generated
and labeled, as discussed in section 3.2. To this
end, we have two parallel attention-based CNN, fol-
lowed by 2 layers stacked BiLSTM, one encoding
the preceding context of the document (ENCp),
and the other the following context of the target
word (ENCf ) given by equations 4 and 5 respec-
tively.

hpwt
= ENCp(wt, h

p
wt−1

) (4)

hfwt
= ENCf (wt, h

f
wt−1

) (5)

where ENCp and ENCf are two employed CNN-
BiLSTM that model the preceding and following
context of the target word independently.

With the help of the attention mechanism, vari-
able weights are assigned to all words from the
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beginning of the document to the target word
(encoded by ENCp), and from the target words
towards the end of the document (encoded by
ENCf ), depending on their contextual impor-
tance.

For encoded vector Vdi of document di ∈ Dicwe;
if hidden state representation of a target word wt ∈
Vdi given by the attention-based CNN-BiLSTM
classifier is hwt , then it is passed to a dense-layer
to learn its hidden representation h′wt

, as given by
equation 6, where W and B represent the weight
and bias, respectively. Thereafter, similarity is cal-
culated between hwt and a vertex vector vwt which
represents the importance of wt ∈ Vdi . We com-
pute the normalized importance score of wt using
equation 7. The feature-level context vector vwt

is randomly initialized and jointly learned during
the training process. Finally, the attention-aware
representation of the document di is learned and
represented as A. It is computed as a weighted sum
of the hidden representation of each word, as given
by equation 8.

h′wt
= tanh(Whwt +B) (6)

αwt =
exp(h′wt

vwt)∑
w exp(h′wt

vwt)
(7)

Adi =
∑

w

αwthwt (8)

Both ENCp and ENCf pass through the pro-
cesses in equations 6, 7, and 8 simultaneously.
The attention-based representation corresponding
to ENCp and ENCf for document di are repre-
sented as Ap

di
and Af

di
. After we get the attention-

based representation vector of the current word in
both directions (Ap

di
and Af

di
), then we concatenate

these two vectors to generate the final representa-
tion vector of the document di, pass it through a
dense layer with 1024 neurons and finally through
a softmax layer with 2 neurons. This is done in or-
der to make the model learn and be able to identify
the target word given the attention-based weight
distribution of the contextual words.

We train the parallel attention-based CNN-
BiLSTM model on Dicwe dataset. Once we have
trained the model, we extract the attention-based
vectors Ap and Af . These vectors are the atten-
tion scores corresponding to words on both sides
of the target word wt. We rank the top words on
both sides of wt based on their attention scores.

In this work, we have selected the top 15% words
corresponding to both the ENCp and ENCf .

3.3 Language Model-Based Documents’
Transformation

In this section, we discuss the process of lan-
guage model-based transformation of documents in
Dk

icwe. We aim to transform a document r ∈ Dk
icwe

to rt such that the transformed document rt is a non-
duplicate version of r, ensuring that words that are
replaced from r to give rt are contextually similar
and gives the semantically similar meaning as r.
To this end, we deploy Fill-Mask task supported by
MPNET, where some of the words in a sentence
are masked, and the MPNET model predicts which
words best replaces the current word, also known
as mask language modeling.

We replace the top k important words from each
document r ∈ Dk

icwe, based on attention score as
discussed in section 3.2. Now, for each ith impor-
tant word Iwi ∈ Iw where Iw is the list of impor-
tant words corresponding to r, we learn its best
substitute by masking and passing it through the
MPNET model. We mask the words in their or-
der of importance, i.e., attention score, and when
we mask a word, the rest of the words remain the
same. The MPNET model then gives the best word
replacement for Iwi in the form of Irwi

. We then
replace Iwi by Irwi

and repeat this for every impor-
tant word of the document r. In the end, we have
the transformed document rt where all the words
w ∈ Iw∩r are replaced by their best contextual and
semantically similar words given by the MPNET
model.

3.4 Balanced Dataset Creation

In this section, we discuss the oversampling pro-
cess of the minority class dataset Dmin such that
the number of instances in both classes of the
dataset is equal. We already know from section
3.2.1 that Dk

icwe has been created such that aug-
menting it to Dmin gives the balanced dataset.
First, we transform each document r ∈ Dk

icwe to
give the transformed document rt as discussed in
section 3.3. Finally, we augment Dk

icwe with Dmin

to give oversampled minority class dataset ADmin,
such that |Dmaj | = |ADmin|. So, ADmin is the
final augmented minority class dataset. We replace
Dmin with ADmin to give the oversampled bal-
anced dataset.
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Figure 1: An overview of the important words extraction process

4 Experimental Setup and Results

In this section, we present our experimental setup
and discuss the evaluation of the proposed ap-
proach. We mention that experiments were per-
formed on a machine with a 2.10 GHz Intel(R) Sil-
ver(R) processor and 192G RAM. DeepADA was
implemented in Keras1. For MPNET pre-trained
models, we used Transformers2 library.

4.1 Datasets

We use 3 publicly available Amazon reviews
datasets (He and McAuley, 2016) to evalu-
ate DeepADA The datasets musical instruments
(DS1), patio lawn and garden (DS2), and automo-
tive (DS3) have overall rating on a scale of 1 to 5, 1
being the lowest and 5 being the highest rating pro-
vided by the customer, respectively. In this work,
we modify this to binary by labeling ratings 1 or 2
as negative reviews and ratings 3, 4, or 5 as positive
reviews. The statistics of the modified datasets are
shown in Table 1.

1https://keras.io/
2https://huggingface.co/docs/transformers/index

Table 1: Statistics of the Amazon review datasets

Dataset #Reviews #Dmaj #Dmin IR

DS1 10,261 9,794 467 20.97
DS2 13,272 12,080 1,192 10.13
DS3 20,473 19,325 1,148 16.83

Review documents differ significantly from stan-
dard grammatical structures, and the character lim-
itations compel users to develop creative spellings.
Such data needs to be preprocessed more care-
fully to avoid semantic loss. The preprocessing
tasks taken by us are: stop-words, URLs, and hash-
tag symbols removal, resolving elongated words,
emoticons handling, resolving contractions, stem-
ming, and lemmatization.

4.2 Classifier Architecture and Training
Details

In this section, we present the classification
technique used to validate the effectiveness of
DeepADA. As discussed, the Amazon reviews
datasets are divided into majority class (Dmaj)
and minority class (Dmin). We used a 2−layer
stacked BiLSTM architecture with 256 cells each
followed by 2 neurons in the final softmax layer,
as we formulated this as a binary classification
problem. Other parameters include Xavier Glo-
rot initializer to assign initial weights, adam as an
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optimizer, dropout to minimize the overfitting ef-
fect, with a probability value of 0.2 at the BiLSTM
layer, ReLU as an activation function throughout
the model, except in the output layer, where we
used the softmax function, and L2 regularizer with
a value of λ as 0.01 over the softmax loss function.

Table 2 gives the statistics of the total number
of keywords extracted corresponding to different
Amazon reviews datasets to generate the keyword-
based labeled dataset, based on the discussion in
section 3.2.1. For MPNET-related tasks, we have
used the pre-trained model proposed in (Song et al.,
2020). For classification tasks throughout this
work, we have used 300−dimensional GloVe em-
beddings trained on the Common Crawl dataset
with 840B tokens.

Table 2: Number of keywords extracted corresponding
to different Amazon review datasets

Dataset #Keywords

DS1 2, 246

DS2 1, 172

DS3 2, 484

4.3 Evaluation Metrics
When it comes to the evaluation of imbalanced data,
we have very few metrics to consider (Ferri et al.,
2009). In the case of a skewed dataset, the usual
evaluation metrics, like accuracy, overshadow the
performance of the classifier on the minority class.
So, we considered reporting the performance of
the classification model used in our work only for
the minority class and the macro-averaged ones.
As evaluation metrics, we considered precision
(PR), recall (DR), F1 score (F1), macro precision
(MacPR), macro recall (MacDR), and macro F1

(MacF1). We chose these evaluation metrics to
report the classifier’s performance on the minority
class and observe whether there is any highly ad-
verse impact on the majority class of the dataset.

4.4 Comparison Approaches and Baseline
In order to establish the efficacy of the proposed
model on imbalanced data, we performed a com-
parative performance evaluation of DeepADA with
the following two standard text data augmentation
techniques:

(1) EDA – Easy Data Augmentation Tech-
niques for Boosting Performance on Text

Classification Tasks (Wei and Zou, 2019):
In this work, authors have applied 4 simple
text data augmentation operations namely – (i)
synonym replacement, (ii) random insertion,
(iii) random swap, and (iv) random deletion
either randomly or regulated by variables in a
document. They observed that the classifier’s
performance was improved on the augmented
version of the datasets using these simple data
augmentation mechanisms.

(2) Contextual Augmentation – Data Augmen-
tation by Words with Paradigmatic Rela-
tions (Kobayashi, 2018): In this work, authors
have presented a novel text data augmentation
technique using different words given by a
bi-directional language model and further in-
troduced a label-conditional architecture into
the language model. The proposed method
produced various words compatibly with the
labels of original texts and improved neural
classifiers more than synonym-based augmen-
tation. We refer to this work as CDA in the
coming sections.

In order to study the effectiveness of incorpo-
rating the word-level features in the proposed ap-
proach, we created a baseline DeepADAb by re-
moving word-level features from DeepADA.

4.5 Evaluation Results and Comparative
Analysis

In order to evaluate DeepADA, we balanced the
original datasets by oversampling their minor-
ity class with new documents generated using
DeepADA, as discussed in section 3.4. For compar-
ison, we have considered two state-of-the-art text
data augmentation techniques, namely EDA (Wei
and Zou, 2019) and CDA (Kobayashi, 2018) as
well as a baseline DeepADAb, which is similar to
ablation study that simply excludes the word-level
features from DeepADA, as discussed in section
4.4. We balanced the original datasets using all
EDA, CDA, and DeepADAb for comparison pur-
poses. We performed experimentation on the BiL-
STM model discussed in section 4.2 for evaluation
purpose. We trained the BilSTM model on 56%,
validated it on 14%, and finally tested the model
to observe its effectiveness after getting trained on
30% of the datasets. We performed this on both
the original and balanced versions of the datasets.
While training the BiLSTM, we set the maximum
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Table 3: Comparative performance evaluation results of DeepADA on minority class

Approach
DS1 DS2 DS3

PR DR F1 PR DR F1 PR DR F1

Original Dataset 45.45 10.42 16.95 37.21 13.48 19.80 35.86 15.03 21.18

EDA (Wei and Zou, 2019) 95.37 98.92 97.11 90.86 97.90 94.25 90.35 98.69 94.33

CDA (Kobayashi, 2018) 95.65 97.15 96.39 95.98 94.03 95.00 94.95 97.31 96.12

DeepADA 97.11 99.83 98.45 92.98 98.43 95.63 97.53 99.41 98.47

DeepADAb 96.63 99.66 98.12 92.59 98.79 95.59 97.34 99.57 98.44

Table 4: Macro comparative performance evaluation results of DeepADA

Approach
DS1 DS2 DS3

MacPR MacDR MacF1 MacPR MacDR MacF1 MacPR MacDR MacF1

Original Dataset 70.61 54.90 57.25 64.61 55.62 57.30 65.48 56.71 58.95

EDA (Wei and Zou, 2019) 97.12 97.03 97.04 94.17 93.56 93.71 94.72 95.87 95.16

CDA (Kobayashi, 2018) 96.44 96.46 96.45 95.13 95.09 95.10 96.15 96.15 96.16

DeepADA 98.47 98.40 98.42 95.65 95.48 95.48 98.47 98.45 98.45

DeepADAb 98.14 98.06 98.08 95.64 95.43 95.43 98.45 98.42 98.42

epochs as 100 with the “early stopping” regular-
ization technique to combat overfitting. We have
reported the results obtained on test data.

Tables 3 and 4 give the detailed experimental
results over minority class datasets and macro-
averaged results over all the classes of the datasets,
highlighting the performance of DeepADA in com-
parison to EDA and CDA as well as the baseline
approach.

4.5.1 Minority Class Performance
Table 3 shows that the classifier’s performance on
the original imbalanced datasets was the worst. On
the original imbalanced datasets, in terms of F1

score, we can state that the classifier performance
increased with the size of the original dataset. How-
ever, when we observed the PR and DR values on
the original imbalanced datasets, the same assump-
tion did not stand. It shows that the performance of
the deep learning classifier on the original imbal-
anced datasets was not just abysmal but also noisy.
The original imbalanced datasets reported highest
PR value of 45.45 on DS1, and the highest DR
and F1 values of 15.03 and 21.18, both on DS3.

We were amazed by the classifier’s performance
on the balanced datasets obtained using any text
data augmentation mechanisms. Among the result
obtained on the balanced versions of the datasets,
the lowest PR, DR and F1 values were 90.35,
94.03 and 94.25 and were reported on DS3 using
EDA, DS2 using CDA and DS3 using EDA respec-

tively; while the highest PR, DR and F1 values
were 97.53, 99.83 and 98.47 and were reported on
DS3, DS1 and DS3 all using DeepADA. Overall,
DeepADA performed the best in terms of F1 value.
We observed that the performance of DeepADAb
was at par with DeepADA on all evaluation mea-
sures over all the datasets. In some cases, like on
DS2 and DS3, it even outperformed DeepADA in
terms of DR value. Out of EDA and CDA, EDA
outperformed CDA in terms of DR value on all the
datasets, while at the same time, CDA surpasses
EDA in terms of PR value on all the datasets. Over-
all, among EDA and CDA, CDA performed com-
paratively better than EDA in terms of F1 value
on all datasets except on DS1. After studying Ta-
ble 3 in detail, we can conclude that performance
over the balanced version of all the datasets created
using DeepADA was the best, while the baseline
DeepADAb performed second.

4.5.2 Macro-Averaged Performance

Table 4 shows that the classifier’s macro averaged
performance on both the classes of the original
imbalanced datasets was worst, similar to that ob-
served on the minority class. The original im-
balanced datasets reported highest PR value of
70.61 on DS1, and the highest DR and F1 values
of 56.71 and 58.95, both on DS3. Compared to
the performance on the minority class, the higher
value of these evaluation measures signifies that
the model can perform well on the majority class
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but fails miserably to identify the minority class
instances correctly.

Table 4 shows that similar to the performance re-
ported on the minority class, the classifier’s perfor-
mance on the balanced datasets obtained using any
text data augmentation mechanisms outperforms its
performance on the original imbalanced datasets.
The detailed study in Table 4 reveals that over all
the datasets, the performance of DeepADA and
DeepADAb over all the macro-averaged evaluation
metrics were reported to be first and second best,
respectively. Out of EDA and CDA, CDA outper-
formed EDA in terms of all the evaluation metrics
over all the datasets except DS1. It suggests that
both the DeepADA and DeepADAb generate high-
quality minority class documents, which, when
augmented to the minority class dataset, gives a
balanced dataset capable of making the classifier
perform better on the minority class dataset without
degrading its performance on the majority class.

5 Conclusion and Future Work

This paper presents a deep learning-based text
data augmentation approach, DeepADA, to address
the class imbalance issue of classifying textual
datasets. The oversampled dataset generated us-
ing DeepADA can be helpful for deep learning
models that extract patterns from the data. Exper-
iments on different datasets show that DeepADA
significantly outperforms the state-of-the-art meth-
ods. The ablation study in the form of the base-
line DeepADAb reveals that statistical correlation
and semantic similarity are essential for effective
word selection. The performance observed on the
minority class dataset, and the macro-averaged
performance over the 3 datasets indicates that the
classifier acquires stronger generalization ability
when trained on oversampled datasets generated us-
ing DeepADA. Exploring more word-level features
and extensive study on various transformer-based
language models to generate more qualitative over-
sampled datasets seems a promising future direc-
tion of research.
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