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Abstract

SacreBLEU, by incorporating a text normaliz-
ing step in the pipeline, has become a rising au-
tomatic evaluation metric in recent MT studies.
With agglutinative languages such as Korean,
however, the lexical-level metric cannot pro-
vide a conceivable result without a customized
pre-tokenization. This paper endeavors to ex-
amine the influence of diversified tokenization
schemes –word, morpheme, subword, charac-
ter, and consonants & vowels (CV)– on the
metric after its protective layer is peeled off.

By performing meta-evaluation with manually-
constructed into-Korean resources, our empir-
ical study demonstrates that the human corre-
lation of the surface-based metric and other
homogeneous ones (as an extension) vacillates
greatly by the token type. Moreover, the hu-
man correlation of the metric often deteriorates
due to some tokenization, with CV one of its
culprits. Guiding through the proper usage of
tokenizers for the given metric, we discover i)
the feasibility of the character tokens and ii) the
deficit of CV in the Korean MT evaluation.1

1 Introduction

For almost two decades, BLEU (Papineni et al.,
2002) has been a key driver of the development of
Machine Translation (MT) and MT Evaluation de-
spite its blind spots. Marie et al. (2021) statistically
support such trend, reporting that in the past decade,
about 98.8% of research papers of ACL under the
title of "MT" regarded it as their prime evaluation
metric. However much stern warnings we have got
against its use (Tan et al. 2015; Callison-Burch et al.
2006), the fact that one of the most popular metrics
besides it since 2018 is its stabilized implementa-
tion SacreBLEU (Post, 2018) (Marie et al., 2021)
lets us ask ourselves if this rising metric is safe for
all .

1Link to our code is available at https://github.
com/kakaoenterprise/korean-sacrebleu

The biggest strength of SacreBLEU is that it
reduces the influence of pre-processing scheme on
the score computation that could have fluctuated
otherwise upon any minor changes such as a type
of tokenizers, a split of compound nouns, use of
unknown tokens for rare words, or casing (Post,
2018). By embracing the text normalizing step in
the architecture, this automatic metric can provide
more trustworthy evaluation scores.

While it is gaining weight in the literature, its
trust issue remains prominent in terms of aggluti-
nate languages such as Korean. Languages of such
typology by design require language-dependant
tokenization to convey the morphological impli-
cations hardly expressible by whitespaces. Pre-
sumably for that reason, SacreBLEU specifies a
customized tokenizer for some languages such as
Japanese. When assessing Korean texts, therefore,
the Workshop on Asian Translation directs that the
texts be tokenized by MeCab-ko2 before running
any automatic metrics (Nakazawa et al., 2017), but
their correlation to human judgment has not been
officially confirmed.

In the context where Korean is not capable of
taking advantage of SacreBLEU’s protective
layer, we shed light on the influence of varied
pre-tokenization types on the human correlation of
the given metric that features three surface-based
metrics: BLEU, TER (Snover et al., 2006), and
ChrF (Popović, 2015). With that information,
we share empirical lessons for SacreBLEU
when applying it in the Korean language in MT
evaluation, some of which are summarized as such:

On the segment level:

1. Almost any pre-tokenization enhances the hu-
man correlation of BLEU or TER, but not
ChrF.

2https://bitbucket.org/eunjeon/
mecab-ko
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2. The character-level decomposition guarantees
a feasible human correlation and fast deploy-
ment.

3. The influence of the CV level is detrimental.
It degrades the human correlation of ChrF.

On the corpus level:

1. The morpheme level, in general, achieves a
higher correlation, among which Kiwi and
Khaiii are noteworthy.

2. Contrary to the segment level, the character-
level tokens harm the human correlation of
the metrics.

3. The raw score of the metrics can be inflated
up to twice when different tokenizers are in-
volved. Thus, comparing scores by simply
copying from other studies is invalid.

Cost-Efficiency:

1. TER can be slower than the other two metrics
by up to seven times. In the worst scenario,
the metric was combined with CV and it took
360 times more than BLEU for computation.

2. No matter how beneficial the CV can be, cost-
ineffectiveness is its blind spot.

2 Related Works

Recently, the research topic of word segmenta-
tion has got the limelight in many NLP tasks
(Zhang et al. 2015; Park et al. 2018; Kim et al.
2020; Yongseok and Lee 2020; Park et al. 2020),
especially with the outstanding achievement of
subword-level pipelines such as SentencePiece
(SPM) (Kudo and Richardson, 2018) or Byte-Pair
Encoding (BPE) (Sennrich et al., 2016). In MT in
specific, interest is growing in handling unseen vo-
cabularies (OOVs) through an optimal token type,
whereas the influence of tokenization in MT evalua-
tion is rarely explored. Thus, this section is devoted
to the studies identifying the relation between tok-
enization and translation quality, but with a partic-
ular focus on its language dependency.

Huck et al. (2017) discovered that their model
displayed the highest performance when BPE was
coupled with a suffix split in German. In a simi-
lar manner, Lee et al. (2017) suggested that their
fully character-level NMT model outperformed
BPE models, especially in the Finnish-English pair.

Domingo et al. (2018) demonstrated that no single
best tokenizer could lead to a more refined transla-
tion quality for all languages when five languages
were under study. Furthermore, they remarked that
such phenomenon was striking in morphologically
rich languages such as Japanese.

Similarly, concerning Korean, Park et al. (2019)
found that SPM Unigram allowed their NMT
model to attain a higher BLEU score than simple
BPE. While they mentioned that a smaller token
unit was not always an answer in the case of Ko-
rean, recent studies paid more and more attention
to the sub-subword token unit called Jamo, refer-
ring to consonants and vowels.3 Moon and Okazaki
(2020) introduced Jamo-Pair Encoding, combining
Jamo with BPE. Eo et al. (2021) suggested a new
division of Jamo by sub-grouping it position-wise.
They demonstrated that the model with such a word
decomposition outperformed Park et al. (2019).

We differ from the studies above in exploring the
impact of tokenization on the MT evaluation. Our
keen interest is i) to observe how vulnerable this
metric is to the agglutinative languages and ii) to
find a way to ensure that the metric is in line with
human perception in this regard.

3 Background

This section describes the linguistic characteristics
of Korean as an agglutinative language. Unlike
most European languages, it features deeper layers
and diversified decomposition.

3.1 Token Level

We define five meta-levels of segmentation for our
experiment: word, morpheme, subword, character,
and CV. The fork of a road to the classification is
in the dependence of three elements: particles (or
Josa), endings, and affixes.

• Word: A whitespace is a separator between
this level of tokens. A token does not consider
any of the three components independent.

• Morpheme: This token level considers par-
ticles, endings, and affixes as dependent ele-
ments. The degree of segmentation, however,
varies from tokenizer to tokenizer by their tag
set or algorithm.

3For those who are not familiar with Korean, the in-depth
information about its word decomposition is provided in Ap-
pendix A.
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Source model Leon Dame before no one has strutted like the catwalk strutted down
Word 모델 레옹 데임은 아직 그 누구도 시도한 적 없는 방식으로 캣워크를 활보했다

Morpheme

레 옹 데 임 은 누구 도 시도 한 없 는 방식 으로 캣워크 를 활보 했다

데 이 ㅁ 누 구도 하 ㄴ 캣 워크 활 보 했 다

캐 엇 하 었 다

하 았 다

Subword 임 아 직 누구 도 한 으 로 캣 했 다

Character 모 델 임 누 구 도 시 도 한 방 식 워 크

CV
Choseong ㅁ ㄷ ㄹ ㅇ ㄷ ㅇ ㅇ ㅇ ㅈ ㄱ ㄴ ㄱ ㄷ ㅅ ㄷ ㅎ ㅈ ㅇ ㄴ ㅂ ㅅ ㅇ ㄹ ㅋ ㅇ ㅋ ㄹ ㅎ ㅂ ㅎ ㄷ
Jungseong ㅗ ㅔ ㅔ ㅗ ㅔ ㅣ ㅡ ㅏ ㅣ ㅡ ㅜ ㅜ ㅗ ㅣ ㅗ ㅏ ㅓ ㅓ ㅡ ㅏ ㅣ ㅡ ㅗ ㅐ ㅝ ㅡ ㅡ ㅘ ㅗ ㅐ ㅏ
Jongseong ㄹ ㅐ ㅁ ㄴ ㄱ ㄴ ㄱ ㅂㅅ ㄴ ㅇ ㄱ ㅅ ㄹ ㄹ ㅆ

Table 1: All possible tokenization schemes with the tokenizers applied in this study. The English source sentence is
"Model Leon Dame strutted down the catwalk like no one has strutted before.", and their corresponding Korean
words are given by the token space.

• Subword: It is an arbitrary sequence of
strings. It is to note that the surface form of
this token resembles morphemes unless the
dictionary is intentionally built at the sub-
subword level. We, nevertheless, categorize it
in isolation, given the absence of morphologi-
cal meaning in its token.

• Character: This token level denotes a string.
No tokenizer is needed for the decomposition.

• CV: It refers to the smallest token unit, Jamo,
meaning consonants and vowels (CV). A cer-
tain tokenizer is required to segment a string
(equal to a character) into the CV.

3.2 Tokenizer

The meta-level tokens come into shape with
the help of tokenizers in most cases. We imple-
ment seven tokenizers on the morpheme level –
Kkma, Hannanum, Komoran, Okt and MeCab from
KoNLPy (Park and Cho, 2014), Kiwi (Korean Intel-
ligent Word Identifier)4, data-driven Khaiii (Kakao
Hangul Analyzer III)5, a subword tokenizer SPM
(Kudo and Richardson, 2018), and a CV-level tok-
enizer, Jamo6. Their systematic details are given in
Appendix B.

3.2.1 Tag Set
Most Korean morphological analyzers have their
roots in the 21st Century Sejong Project launched
in 1998 intending to build a national framework for
large-scale Korean corpora (21st Sejong Project,
1999). The tokenizers feature a different number
of tag sets derived from the Sejong tag sets, as
described in Table 7 in Appendix C.

The prototypical tag set is preserved in Komoran
or similarly in MeCab and Khaiii. The tokenizer

4https://github.com/bab2min/Kiwi
5https://github.com/kakao/khaiii
6https://github.com/JDongian/

python-jamo

with the most fine-grained tag set is Kkma (56 tags).
It provides a detailed analysis of endings. The most
coarse form is observed in Okt (19 tags), a tok-
enizer for Twitter. Woo and Jung (2019) report its
outstanding performance in terms of typos, emojis,
and punctuation. Hannanum also features a small-
sized tag set (22 tags). The particle-related tags are
exceptionally reduced in this tokenizer. As men-
tioned previously, the central divergence of the tag
sets is in particles, endings, and affixes.

3.2.2 Tokenization Scenario

The exemplary sentence depicted in Table 1 gives
a glimpse of all possible cases of tokens in our ex-
periment. It illustrates that the the most diversified
segmentation occurs with verbs (strutted down). In-
triguingly, some morphological tokenizers partially
employ CV, such as shown in한 versus하, -ㄴ(the
part of no one has strutted). Such are the cases of
Hannanum, Kkma, Komoran, Khaiii, and Kiwi.

4 Experiment

4.1 Experiment Setup

As Korean evaluation data is scarce, we have orga-
nized human evaluation of four commercial NMT
systems for the English-to-Korean translation with
Direct Assessment (DA), the conventional human
evaluation metric employed in Conference on Ma-
chine Translation (Barrault et al., 2020). Subse-
quently, automatic evaluation is performed with
BLEU, TER, and ChrF built in SacreBLEU. With
the resources at hand, the correlation between the
two evaluation results is computed on the segment
and corpus level.

4.1.1 Dataset

• Source Test Set: The original English texts
are borrowed from WMT 2020 English III-
type test set, composed of 2,048 sentences (61
documents) with a segment split maintained.
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Word Morpheme Subword Char CV
Hannanum Kkma Kiwi Khaiii Komoran MeCab Okt

Ratio
Ref 1 2.04 2.27 2.24 2.24 2.22 2.06 1.78⋆ 2.30 3.22 7.51‡
Hyp 1 2.02 2.15 2.14 2.14 2.12 1.97 1.70⋆ 2.20 3.16 7.23‡

Time (ms) - 4,326.91 27,112.96‡ 1,959.96 1,494.13 1,084.10 152.59 3,029.68 51.57 5.00⋆ 89.07

Table 2: Given our reference and hypothesis translations, a token ratio per word is measured by category. ‡ and ⋆
denote the biggest and smallest values, respectively. In addition, the time to decompose 1,000 sample sentences is
calculated in milliseconds.

• Reference Translation: We hire a group of
professional translators to create Korean ref-
erence translations. They are advised not to
post-edit MT. To guarantee the highest trans-
lation quality, one of our in-house translator
double-checks the final version. The revision,
nevertheless, is implemented only if the sen-
tence is semantically erroneous.

• System Translation: We employ four online
MT models including our own –Kakao i7–.
They are anonymized as SysA, SysB , SysP
and SysQ for legal reason. The system trans-
lations are obtained on July 21, 2021.

• Token Ratio & Time: Given a word (ratio =
1.0), an average token ratio per token type is
displayed in Table 2. The size of character and
CV tokens are about 1.5 and 4 times larger
than that of the average morpheme tokens.
In addition, time taken to process 1,000 sen-
tences is logged per token unit. The character
level is about 5,000 times faster than Kkma.

In terms of normalizing data, errors in the source
test sets and their subsequent impact on the sys-
tem translations as discussed in Kim et al. (2021)
remain undealt with. Only some minor technical
issues, i.e. a single quote (’) versus a backtick (‘),
are normalized.

4.1.2 Human Evaluation
DA is a metric where an evaluator scores each sen-
tence on a continuous scale of [0, 100] in the cat-
egory of Adequacy and Fluency. We hire 25 pro-
fessional translators and assign each person a set
of more or less 300 translated sentences. The con-
textual information of the documents is maintained
to help them consider when making a judgment.
They are allowed to reverse their previous deci-
sions within a document boundary.

Regarding their qualification, they are either
holders of a master’s degree in interpretation and

7https://www.translate.kakao.com

translation in the English-Korean language pair or
freelance translators with a minimum of two years
of experience. In light of the fact that all partic-
ipants are new to MT evaluation, we provide a
detailed guideline for the experiment.

One judgment per system translation is gathered,
amounting to 16,116 (8,058 of Adequacy and Flu-
ency) evaluation data. The judgment on Fluency is
only utilized as supplementary information.

4.1.3 Quality Control
Out of the 8,058 Adequacy judgments, the first 10
judgments of each evaluator are removed from the
calculation. The scores are then normalized with
judge-wise Z-scores. Then, Inter-Quartile Range
(IQR) is computed as in Equation 1, where Q1 and
Q3 signify the first and third quartile values and
x denotes outliers that fall into the two categories.
Having removed 4.1% of the data, we base our
observation on 7,727 judgments.

x < Q1 − 1.5 · (Q3 −Q1)

or
x > Q3 + 1.5 · (Q3 −Q1) (1)

4.1.4 Computation
The hypothesis and reference translations are tok-
enized by the aforementioned 11 token units with-
out applying any additional normalization. Con-
sequently, the scores of the automatic metrics are
computed, and their Pearson’s correlation coeffi-
cient r are measured against the human Adequacy
judgment by:

r =

∑n
i=1 (Hi −H) · (Mi −M)√∑n

i=1 (Hi −H)2
√∑n

i=1 (Mi −M)2

(2)
where H and M refer to the machine and human
DA scores, respectively, and H and M , their mean
values. The Pearson’s r measures the linear rela-
tionship between the two variables. During the pro-
cess, some of the issues have concerned us:
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Default Word Morpheme Subword Char CV
Hannanum Kkma Kiwi Khaiii Komoran MeCab Okt

BLEU ngrams 4 1 2 2 2 2 2 2 2 2 2 5

ChrF
char_order 6 3 3 3 3 3 3 3 3 3 3 5
word_order 0 0 0 0 1 1 1 1 1 1 2 0

Table 3: The adjusted parameters of BLEU and ChrF per token type.

(a) BLEU (b) TER (c) ChrF

Figure 1: The Pearson correlation on the segment level: concerning the meta-token level. The morpheme corresponds
to the average value of all morpheme tokens.

(a) BLEU (b) TER (c) ChrF

Figure 2: The Pearson correlation on the segment level: concerning the morpheme level. Khaiii is in red to inform
its different basis.

• Do we adjust n-gram parameters?
The BLEU score is a geometric mean of four-
grams. As the token unit is divergent, on the
one hand, we attempt to avoid a circumstance
where any tokenizer benefits from the n-gram
parameter. On the other, the default word n-
gram of ChrF is zero, which leads to the same
conclusion for some tokens. To make the con-
sequence of the token unit clear and compati-
ble, we have organized a preliminary study to
obtain the best-correlated n-gram parameters
per token typology. The result is provided in
Table 3 along with the default values.

• TER scores over 1.0
Theoretically speaking, a TER score of 1.0
represents a total mismatch between a hypoth-
esis and reference. Yet, when a reference is
too short for its hypothesis, the computation

is programmed to exceed 1.0, which becomes
an outlier to the Pearson correlation. We, thus,
normalize such cases by cutting down to 1.0.

• Is the sample size enough?
Koehn (2004) reported that they reached a
near 100% confidence with 3,000 samples
when assessing MT systems with BLEU. In
light of their work, we believe that our sample
size is affordable to draw a valid conclusion.

4.2 Experiment Result
The Pearson correlation of SacreBLEU to human
DA scores when with different token types is re-
ported on the segment and corpus level. On each
level, the results are organized by the meta level,
with the morpheme represented by the average
score of seven types. Afterward, the morpheme
tokens are compared among themselves. Khaiii is
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(a) BLEU (b) TER (c) ChrF

Figure 3: The Pearson correlation on the corpus level: concerning the meta-token level.

(a) BLEU (b) TER (c) ChrF

Figure 4: The Pearson correlation on the corpus level: concerning the morpheme level.

highlighted with a different color to present its al-
gorithmic divergence.

4.2.1 Segment Level
Figure 1 and Figure 2 reports the Pearson correla-
tion of the meta- and morpheme level, respectively.
The scores range from 0.23 to 0.33.

BLEU achieves better human correlation when
the token is more fine-grained. When a sentence is
not decomposed, the score is likely to lose validity.
The best fit for this metric is a character (r = 0.312).
Among the morphemes, we witness an insignificant
correlation of MeCab.

The result of TER coincides with BLEU in that
any tokenizer can enhance the correlation of the
metric. The result shows that SPM goes best with
this metric. It is also noticeable that CV results in a
poor correlation. Moreover, Khaiii is insignificant
to this metric.

ChrF has obtained relatively consistent corre-
lations in all token types despite its re-adjusted
parameters. The morpheme level is best suited for
this metric, among which Khaiii stands out for a
good reason and CV for a wrong reason. CV often
deteriorates the correlation of ChrF.

We conclude that any pre-tokenization is essen-
tial for BLEU and TER, while ChrF should be
approached with caution on the segment level. On
the bright side, the performance of Kiwi is note-

worthy among the morpheme tokenizers. Further-
more, as a whole, we stress the effectiveness of the
character-level segmentation, which guarantees a
fast deployment and the human correlation that is
often better than MeCab. On the other side, the CV
level is undependable in the Korean MT evaluation,
unlike in other NLP tasks. Furthermore, Hannanum
and Okt are not an option for this task.

4.2.2 Corpus Level
Figure 3 to Figure 4 depict the result of the
meta- and morpheme levels, respectively. The score
ranges from 0.46 to 0.93, which is much higher and
broader than the segment level.

On the meta level, the morpheme tokens are
likely to attain a higher correlation to human judg-
ment in all cases. Moreover, the performance of
Kiwi and Khaiii is striking. However, the corre-
lation of TER and ChrF degrades with character
tokens or SPM in the case of ChrF. Such a tendency
is in clear contrast to the finding observed at the
segment level.

Additionally, the raw scores of each metric are
compared to human DA scores, as shown in Table
4. As expected from the characteristics of the lex-
ical matching system, the smaller units result in
higher raw scores, which, however, can soar up to
twice in the case of BLEU (from 28.1 to 48.5 in
SysA). Likewise, the most severe version of TER
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Ave. DA ↑ Ave. z Word Okt MeCab Komoran Kkma Kiwi Khaiii Hannanum SPM Character CV
SysA 68.783 0.203 28.099 33.398 38.341 40.275 40.986 41.022 40.005 36.939 41.015 48.712 48.467
SysB 67.160 0.112 28.932 34.351 39.185 41.007 41.920 41.997 40.881 37.793 41.948 49.553 49.188
SysP 64.688 0.027 23.941 30.415 35.605 36.621 37.236 38.458 37.034 32.902 37.213 45.924 45.098
SysQ 57.734 -0.220 25.941 31.382 35.602 37.304 38.063 38.138 36.939 34.058 38.155 47.096 46.602

(a) BLEU
Ave. DA ↑ Ave. z Word Okt MeCab Komoran Kkma Kiwi Khaiii Hannanum SPM Character CV

SysA 68.783 0.203 82.811 68.223 64.142 63.041 62.253 62.352 63.412 67.833 62.391 57.718 52.932
SysB 67.160 0.112 82.334 67.332 63.519 62.585 61.545 61.649 62.867 67.249 61.083 56.364 51.962
SysP 64.688 0.027 89.652 69.882 64.898 64.859 63.479 62.983 64.346 71.199 65.914 62.163 54.063
SysQ 57.734 -0.220 86.699 70.356 66.611 65.641 64.751 64.758 66.126 71.199 64.767 59.771 54.697

(b) TER
Ave. DA ↑ Ave. z Word Okt MeCab Komoran Kkma Kiwi Khaiii Hannanum SPM Character CV

SysA 68.783 0.203 44.897 46.508 47.544 48.904 46.326 49.299 48.763 46.019 47.932 47.887 53.140
SysB 67.160 0.112 45.725 47.345 48.370 49.635 47.131 50.096 49.560 46.826 48.807 48.707 53.807
SysP 64.688 0.027 42.742 44.171 45.342 46.182 43.796 47.017 46.354 43.401 45.357 45.699 51.198
SysQ 57.734 -0.220 43.505 45.134 46.031 47.166 44.639 47.557 47.011 44.378 44.378 46.533 51.775

(c) ChrF

Table 4: The raw scores of the metrics of the four MT systems by token type along with the human DA scores and
their z-scores. The highest scores are in blue & red.

scores is before the tokenization (82.33 - 89.69).
The ChrF scores, on the other hand, fluctuate mod-
erately from 44.9 to 53.1 (in SysA). We, therefore,
advise not to copy raw SacreBLEU scores from
any studies when this language is concerned.

While so, we discover a substantial problem
that the system rankings calculated by the au-
tomatic metrics do not comply with the human
judgment at all. As the highest scores in blue
and red demonstrate such a trend, the human av-
erage scores place the systems in the order of
[SysA = 1, SysB = 2, SysP = 3, SysQ = 4],
but almost all automatic scores position them as
[SysA = 2, SysB = 1, SysP = 3, SysQ = 4].
In the worst case, the third and fourth ranks are
swapped according to BLEU when tokenized by
MeCab, Kiwi, or Khaiii. Such an erroneous con-
clusion by the metrics can be drawn due to either
the small number of systems or possible outlier sys-
tems in the experiment setup (Mathur et al., 2020).
We leave the verification of this issue to our future
work.

5 Extra Meta-Evaluation

As an extended work, we investigate the influ-
ence of pre-tokenization on other homogeneous
automatic metrics: NLTK-BLEU8, GLEU9 (Wu
et al., 2016), NIST10, RIBES (Isozaki et al.,

8https://www.nltk.org/_modules/nltk/
translate/bleu_score.html

9https://www.nltk.org/_modules/nltk/
translate/gleu_score.html

10https://www.nist.gov/itl/iad/mig/
metrics-machine-translation-evaluation/

2010), CharacTER (Wang et al., 2016), and EED
(Stanchev et al., 2019). We compute the Person cor-
relation r of a total of nine metrics per tokenization
on the segment and corpus level under the same
environment. The results are provided in Figure 5
through Figure 8 in Appendix D.

5.1 Segment Level
Albeit minor differences from SacreBLEU,
NLTK-BLEU is most benefited from the CV level,
not the character level. GLEU features a more ro-
bust correlation to any given token type than BLEU.
Consistent with such a tendency, the CV level
increases the correlation of RIBES. Interestingly
enough, however, NIST turns out to be vulnerable
to any token types except SPM, and the scope of
the scores is markedly low (0.1 - 0.19).

In terms of edit-distance-based metrics, the re-
sult does not vacillate much and, at the same time,
presents high human correlations. CharacTER fa-
vors the morpheme level, such as Komoran. EED,
on the other hand, does not favor any token types.
The more decomposed a token is, the lower the
human correlation becomes in this metric.

To summarize, there is a good chance that the
CV level enhances the correlation of many n-gram-
based metrics such as BLEU. The metrics that a
word should be left as it is are NIST and EED.

5.2 Corpus Level
On the corpus level, the morphological tokens are
predominantly helpful in obtaining a higher human
correlation, as in the case of BLEU, GLEU, and
NIST. Among the morphemes, the role of Kiwi is
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Word Kkma Hannanum Okt Komoran MeCab Khaiii Kiwi ↑ Subword Character CV
EED 0.095 0.094 0.093 0.089⋆ 0.092 0.093 0.098 0.096 0.094 0.096 0.201

BLEU 0.110 0.110 0.108 0.107 0.111 0.109 0.134 0.106⋆ 0.106⋆ 0.108 0.128
ChrF 0.111 0.113 0.108⋆ 0.115 0.121 0.115 0.121 0.115 0.115 0.129 0.147

CharacTER 0.284⋆ 0.827 0.633 0.434 0.77 0.679 0.763 0.816 0.792 2.391 366.65
GLEU 1.018 1.059 1.075 1.036 1.029 1.060 1.038 1.002 0.961⋆ 0.979 1.068
NIST 1.016 1.061 1.044 1.042 1.082 1.033 1.011⋆ 1.032 1.032 1.085 1.119

NLTK-BLEU 1.072 1.016 0.982 1.011 0.994 1.036 1.140 1.037 0.981⋆ 1.020 1.028
RIBES 1.011⋆ 3.888 2.867 1.791 3.360 2.735 3.441 3.578 3.476 13.094 628.96

TER 0.332⋆ 9.849 5.236 2.413 8.232 5.061 7.768 7.653 8.106 24.933 362.18

Table 5: The time of each metric to compute a score for 100 sentences when combined with different token units.
The value is sorted by Kiwi (unit: seconds). The best scores are with a star(⋆) and the abnormal cases are stressed in
blue.

significant. This token type is, however, detrimental
to RIBES, which scores the highest correlation in
this experiment. The character level, on the other
hand, is beneficial to this metric. In the case of
CharacTER and NIST, the correlation is degraded
with word decomposition by the CV or character
level.

5.3 Computation Time

Table 5 describes the time to compute metric scores
of 100 sentences per token type. From the perspec-
tive of token type, the more fine-grained token type
takes more time. For instance, treating CV takes
100 times more than words in TER. No matter how
good the CV level can be, inefficiency is its blind
spot.

From the viewpoint of automatic metrics,
RIBES, TER, and CharacTER are one of the most
time-consuming ones. The pairing with CV and
RIBES, for instance, would end in taking up about
630 seconds (10 minutes) to deal with 100 sen-
tences. On the contrary, EED boasts the utmost
efficiency.

6 Limitations & Future Works

We acknowledge some limitations this work has
to embrace. First of all, the number of systems in
question is small, which, in part, has led to an ar-
guable conclusion on the corpus level. Furthermore,
all of the systems are online APIs. Second, while
questioning the influence of token type on the ag-
glutinative languages, we base our study solely on
Korean.

It is of our future interest to probe into the con-
sequence of token types in other comparable lan-
guages other than Korean. We also intend to scale
up the experiment by employing state-of-the-art
NMT models.

7 Conclusion

This paper analyzes the influence of diversified to-
ken units on the human correlation of SacreBLEU
on both segment and corpus levels when it comes
to agglutinative languages such as Korean by per-
forming meta-evaluation with Pearson correlation.
We demonstrate that the pre-tokenization with a fit-
for-all token type is not always an optimal choice
in Korean MT evaluation. We summarize some of
the valuable lessons:

• BLEU and TER should always be accompa-
nied by a segmentation process beforehand.

• Tokenizer should be carefully selected in
ChrF.

• The human correlation of some metrics, which
are mostly related to edit distance, is easily
degraded by token type.

• The CV level is beneficial to some metrics.
However, its exponential computation time
makes it unprofitable in the MT evaluation.

• Instead, we discover the possibility of a
character-level segmentation as a quick and
easy substitute on the segment level.

• However, the morpheme level is recom-
mended on the corpus level such as Kiwi or
Khaiii, among others.

• The raw score on the corpus level can be in-
flated up to twice. We strongly advise against
copying scores from other studies.
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A Word Decomposition

A single distinct meaningful element
of speech or writing, [...] and typically
shown with a whitespace on either side
when written or printed.
-Oxford Dictionary

The general definition of a word, as shown above,
conjectures that it is segmented with whitespaces.
While such is the case of most European languages,
it is arguable in Korean whose words do not always
accompany spaces between themselves, depend-
ing on schools. Here we illustrate three approaches
in defining a word: comprehensive, compromising,
and analytic. Their views on the independence of
post-positional particle, ending, or affix as a word
diverge (Nam et al., 2019), as displayed respec-
tively in Table 6 of Level Word.

Following the comprehensive standpoint, what
is typically understood as a word in Western lan-
guages is equivalent to Eojeol in Korean. Those
with the compromising perspective perceives that
endings and affixes are not a word while the ana-
lytic school recognizes the independence of end-
ings. That much active discussion is possible with
the morpheme boundary as well, due to the fact
that a character is divisible.

In other words, a character has a sub-layer.
The word read, for instance, is composed of four
characters: r-e-a-d. The equivalent Korean word읽
in Table 6 is also a character, but at the same time
it is a combination of two consonants (ㅇ,ㄺ) and
one vowel (ㅣ). We call this sub-layer Jamo (ㅇ-ㅣ-
ㄺ) in Korean or CV in this paper, the abbreviated
form from the initial letters of consonant (자음/ja-
eum/) and vowel (모음/mo-eum/).

CV is position-wise; it is situated in a fixed posi-
tion of Choseong (initial,ㅇ), Jungseong (middle,
ㅣ), and Jongseong (final,ㄺ), respectively. Some
affixes or morphemes take the form of Jongseong,
making a diversified token scenario between the
morpheme and CV level.

B Architecture of the Morpheme
Analyzers

This section delves into the detailed architecture
of the morpheme analyzers mentioned in this pa-
per. The aforementioned analyzers are grouped into
dictionary-based and data-based by their core algo-
rithm.

B.1 Dictionary-based

Most of the tokenizers applied in this paper belongs
to this category. The first step of the tokenization
is that when encountered a word, all possible mor-
phological scenarios are represented with some
probabilities by referring to a dictionary that con-
tains vocabularies and their morphological infor-
mation. The next step is to find the optimal mor-
pheme combination that maximizes the observed
probability, with the assumption being that the out-
put morpheme mk of position k is determined by
its previous output mk−1 and its kth character ck.
Then, as a final procedure mk is tagged.

For the agglutinative languages whose charac-
ters are always divisible, the decomposition depth
should be determined whether to separate the char-
acter into the CV level. In that sense, we will de-
nominate each case as non-CV and CV level for
convenience’s sake.

The non-CV-level decomposition is performed
in Kkma, Okt, and Hannanum in our case. Can-
didate tokens are generated by restoring from the
dictionary, and their probabilities are calculated by
Dynamic Programming. The CV level segmenta-
tion, on the other hand, is the case of Komoran
and Kiwi. The probability is calculated by Aho-
Corasick string-matching algorithm (Aho and Cora-
sick, 1975) applied on the dictionary which is struc-
tured as a look-up table called Tries (Fredkin and
Beranek, 1960) of CV.

B.2 Data-driven

Khaiii is the sole analyzer that fits in to this cate-
gory in this paper. While the previous dictionary-
based tokenizers consider the word decomposition
as an analysis problem, Khaiii approaches it as a
classification problem of determining a morpheme
tag for a given input character. One of the main
challenges is the disharmonious token length of
input and output observed in some cases such as
shortened words whose restoration involves the
CV-level segmentation. As an instance, the verb
했다 (did) can be segmented into하/VX +였/EP +
다/VV. It is clear that just by combining하 and였
the original morpheme했 is not able to be achieved
at a character level (하였 vs.했).

While Recurrent Neural Networks (RNN) is a
popular baseline in this regard, Khaiii adopts Con-
volutional Neural Networks (CNN) to maintain the
information of input character and its correspond-
ing output tag. In addition, CNN can speed up the
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Level Denomination Particle Ending Affix Example

Word
Eojeol X X X 혜미가,동화를,읽었다
Word O X X 혜미, -가,동화, -를,읽었다
Word O O X 혜미, -가,동화, -를,읽, -었다

Morpheme Morpheme O O O 혜미, -가,동화, -를,읽, -었, -다
Character Eumjeol - - - 혜, -미, -가,동, -화, -를,읽, -었, -다

CV Jamo - - -
ㅎ, -ㅖ,ㅁ, -ㅣ,ㄱ, -ㅏ,ㄷ, -ㅗ, -ㅇ,ㅎ,
-ㅘ,ㄹ, -ㅡ, -ㄹ,ㅇ, -ㅣ, -ㄹㄱ,ㅇ, -ㅓ, -ㅆ,ㄷ, -ㅏ

Table 6: Level of word decomposition in Korean, indicating an open discussion about defining a word (Nam et al.,
2019).

process. More in-depth architecture is provided in
their git page. The model is trained with Sejong
Corpus provided by Sejong Project, together with
a manually created 6k words. After rooting erro-
neous sentences out, the size of the corpus reaches
about 10.3 million words/Eojeol).
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C Tag Sets of Korean Tokenizers

Category Sejong Okt Komoran MeCab-ko Kkma Hannanum Khaiii Kiwi
# of tags 42 19 42 43 56 22 46 47

Substantive
noun

general NNG

Noun

NNG NNG NNG NC NNG NNG
proper NNP NNP NNP NNP NQ NNP NNP

dependent
NNB NNB

NNB NNB
NB NNB NNBunit NNBC NNM

pronoun NP NP NP NP NP NP NP
numeral NR NR NR NR NN NR NR

Predicate

verb VV Verb VV VV VV PV VV VV
adjective VA Adjective VA VA VA PA VA VA

auxiliary VX - VX VX
VXV

PX VX VX
VXA

copula positive VCP - VCP VCP VCP - VCP VCP
negative VCN - VCN VCN VCN - VCN VCN

Modifier
article determiner

MM Determiner MM MM
MDT

MM MM MMnumeral MDN

adverb general MAG Adverb MAG MAG MAG
MA

MAG MAG
connective MAJ Conjunction MAJ MAJ MAC MAJ MAJ

Interjection interjection IC Exclamation IC IC IC II IC IC

Post-positional Particle

case-marking

subjective JKS

Josa

JKS JKS JKS

JC

JKS JKS
complement JKC JKC JKC JKC JKC JKC
adnominal JKG JKG JKG JKG JKG JKG
objective JKO JKO JKO JKO JKO JKO
adverbial JKB JKB JKB JKM JKM JKM
vocative JKV JKV JKV JKI JKI JKI

quotation JKQ JKQ JKQ JKQ JKQ JKQ
auxiliary JX JX JX JX

JX
JX JX

conjunctive JC JC JC JC JC JC
predicative - - - - JP - -

Dependent

pre-final ending
honorific

EP PreEomi EP EP
EPH

EP EP EPtense EPT
politeness EPP

sentence-closing ending

declarative

EF Eomi

EF

EF

EFN

EF EF EF

interrogative EFQ
imperative EFO
requesting EFA
interjective EFI
honorific EFR

connective ending
equal

EC
EC

EC
ECE

EC EC ECauxiliary ECS
dependent ECD

transformative ending nominal ETN ETN ETN ETN
ET

ETN ETN
adnominal ETM ETM ETM ETD ETD ETD

prefix substantive XPN - XPN XPN XPN
XP

XPN XPN
predicative - - - - XPV - -

suffix
derived noun XSN

Suffix
XSN XSN XSN

XS
XSN XSN

derived verb XSV XSV XSV XSV XSV XSV
derived adverb XSA XSA XSA XSA XSA XSA

root root XR - XR XR XR - XR XR

Punctuation

. ? ! SF

Punctuation

SF SF SF

S

SF SF
. . . SE SE SE SE SE SE

“ ” ‘ ’ ( ) SS SS
SSO

SS SS SS
SSC

∼- _ SP SP SC SP SP SP
others SO SO SY SO SO SO

Chinese character SW
Foreign

SW SW SW SW

Etc.

foreign word SH SH SH OH F SH SH
number SL Alpha SL SL OL - SL SL

unknown noun SN Number SN SN ON - SN SN
unknown verb NF

Unknown
NF -

UN
- ZN

UNunknown NV NV - - ZV
unknown NA NA - - ZZ

consonant/vowel - KoreanParticle - - - - SWK -
hashtag - Hashtag - - - - - W_HASHTAG

user name - ScreenName - - - - - W_MENTION
email - Email - - - - - W_EMAIL

url - URL - - - - - W_URL

Table 7: Tag sets of Sejong Project and seven Korean tokenizers.
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D Meta-Evaluation

(a) NLTK-BLEU (b) GLEU (c) NIST

(d) RIBES (e) CharacTER (f) EED

Figure 5: The Pearson correlation on the segment level: concerning the meta-level

(a) NLTK-BLEU (b) GLEU (c) NIST

(d) RIBES (e) CharacTER (f) EED

Figure 6: The Pearson correlation on the segment level: concerning the morpheme level
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(a) NLTK-BLEU (b) GLEU (c) NIST

(d) RIBES (e) CharacTER (f) EED

Figure 7: The Pearson correlation on the corpus level: concerning the meta-level

(a) NLTK-BLEU (b) GLEU (c) NIST

(d) RIBES (e) CharacTER (f) EED

Figure 8: The Pearson correlation on the corpus level: concerning the morpheme level
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