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Preface

Text forms an integral part of exchanging information and interacting with
the world. Along with the other types of content (e.g., image and video),
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cessing (NLP) models to automatically assign a complexity score in the
range of 1 to 7 to German texts. In other words, the shared task is a
text regression task in which the output is continuous variables between
1 and 7. We received 84 submissions in the test phase from 10 teams.
The results and the data sets can be found at the shared task website at
https://qulab.github.io/text_complexity_challlenge/.
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Abstract

In this paper we present the GermEval
2022 shared task on Text Complexity As-
sessment of German text. Text forms
an integral part of exchanging informa-
tion and interacting with the world, cor-
relating with quality and experience of
life. Text complexity is one of the fac-
tors which affects a reader’s understand-
ing of a text. The mapping of a body of
text to a mathematical unit quantifying the
degree of readability is the basis of com-
plexity assessment. As readability might
be influenced by representation, we only
target the text complexity for readers in
this task. We designed the task as text re-
gression in which participants developed
models to predict complexity of pieces of
text for a German learner in a range from
1 to 7. The shared task was organized in
two phases; the development and the test
phases. Among 24 participants who reg-
istered for the shared task, ten teams sub-
mitted their results on the test data.

1 Introduction

Text forms an integral part of exchanging infor-
mation and interacting with the world. Along
with the other types of content (e.g., image and
video), textual content has been increased dras-
tically in amount and importance during recent
years. Text complexity (in the following used in-
terchangeably with text readability) is one of the
factors which affects a reader’s understanding of
text (Dale and Chall, 1949). Readability is con-
cerned with the relation between a given text and
the cognitive load of a reader to comprehend it.
This complex relation is influenced by many fac-
tors, such as a degree of lexical and syntactic so-
phistication, discourse cohesion, and background

knowledge (Crossley et al., 2017; Martinc et al.,
2021). A readability score is the mapping of a
body of text to a mathematical unit quantifying
the degree of readability. It is the basis of read-
ability assessment. Readability assessment has di-
verse use cases and applications, such as helping
people with disabilities and also facilitate choos-
ing of learning material for second language learn-
ers (Aluisio et al., 2010).

In this paper, we present the challenge and re-
sults from the task of German text complexity as-
sessment in GermEval 2022. The task includes
developing Natural Language Processing (NLP)
models to automatically assign a complexity score
in the range from 1 to 7 to German texts, where
1 represent an easy to understand (i.e., simple)
text/sentence and 7 shows a complex text for Ger-
man learners. In other words, the shared task is a
text regression task in which the output is a con-
tinuous variable between 1 and 7.

GermEval is a series of shared task evaluation
campaigns that focus on Natural Language Pro-
cessing for the German language. It started in
2014 with a shared task on German Named En-
tity Recognition (Benikova et al., 2014) and con-
tinued in the years after with different tasks from
lexical substitution (Miller et al., 2015) to the
task of identification of toxic, engaging, and fact-
claiming comments (Risch et al., 2021) and Ger-
man scene segmentation (Zehe et al., 2021).

The rest of the paper is organized as follow;
Section 2 presents recent research on text readabil-
ity and complexity assessment and related tasks.
An overview of the shared task and the data set, re-
sources and the evaluation metrics that have been
used in the shared task are presented in Sections 3
and 4, respectively. We briefly review the submit-
ted models and discussed the results in Sections 5.
Finally, we conclude the paper and the German
Text Complexity Assessment shared task in Sec-
tion 6.



2 Related Work

In this section we provide an overview of related
shared tasks in different languages, and also high-
light a number of the recent approaches for the
task of text complexity assessment.

2.1 Shared Tasks

To the best of our knowledge, no shared task has
been held so far on text complexity assessment at
a sentence level. However, there are a few compe-
titions on word level complexity assessment.

Paetzold and Specia organized the a shared task
on complex word identification as a SemEval 2016
task (Paetzold and Specia, 2016). The task was to
develop systems that can predict whether a target
word is complex for a non-native English speaker,
knowing the context sentence. In other words, it
was a binary classification task in which 1 means
the target word is complex in the given context
sentence, and 0 means it’s a simple word for a non-
native English speaker.

The next complex word identification shared
task was organized at the BEA workshop in 2018
for different languages including English, Ger-
man, Spanish and French. The shared task in-
cluded two subtasks: The first task was a binary
classification of a target word in a context sentence
as being complex or not complex. The second task
was a probabilistic classification in which the par-
ticipants were asked to assign the probability of a
target word being considered complex (Yimam et
al., 2018).

There were two subtasks of complexity predic-
tion of single words and multi-word expressions
as a regression task in the SemEval 2021 lexical
complexity prediction task (Shardlow et al., 2021).
The data includes around 10,000 instances for lex-
ical complexity in which the target words were an-
notated on a five point Likert scale.

Russian simple sentence evaluation in 2021 is
another related activity in which the task was de-
veloping systems to generate a simplified ver-
sion of a given input complex sentence in Rus-
sian (Sakhovskiy et al., 2021). The proposed data
set for the task includes around 3,000 complex
sentences, each have 2.2 corresponding simplified
sentences on an average.

As another related effort, Stajner et al. orga-
nized a shared task for the assessment of text sim-
plification in which systems should automatically
assign a label (e.g., good, OK, and bad) to four

aspect of the pairs of original and simplified sen-
tences (Stajner et al., 2016). The four aspects of
interests include the quality of the generated sen-
tences from grammar, meaning preservation, sim-
plicity, and overall quality point of views.

2.2 Approaches

In this section we overview some of the recent
approaches and models for automatic text com-
plexity and readability assessment. We review the
state-of-the-art models for English and German
texts.

As one of the recent models for English text
readability assessment, (Lee et al., 2021) de-
veloped different hybrid models using traditional
machine learning approaches based on hand-
crafted features, and also transformer-based mod-
els. Based on their experiments, the combination
of RoBERTA and Random Forrest models could
outperforms the other models and achieved almost
perfect classification accuracy (Lee et al., 2021).
Hybrid models show promising results for the task
in different languages and were the main trend
among the submitted models for GermEval 2022.

Naderi et al. proposed a model for German
text readability assessment based on linguistic fea-
tures (Naderi et al., 2019b). They extracted tra-
ditional, lexical and morphological linguistic fea-
tures (73 features in total). Their experiments
show that again the Random Forest Regressor out-
performs the other supervised models including
SVM, Linear Regression, and Polynomial Regres-
sion models for the task (Naderi et al., 2019b).

In another study Weiss and Meurers proposed
a model for sentence-wise German readability
assessment for L2 readers (Weiss and Meurers,
2022). They compared different machine learn-
ing models in two different tasks for readability as-
sessment; predictive regression and sentence pair
ranking. The obtained results in their experiments
show that a Bayesian Ridge Regression model
achieved the best performance against the other
models including the proposed model in (Naderi
et al., 2019b) and also against the widely used
readability formulae for the task of predictive re-
gression. Moreover, regarding the document level
text complexity assessment, their findings show
that the readability of texts is driven by the maxi-
mum rather than the overall readability scores on
the sentence level.



3 Task Description

In this section we describe the proposed task in
detail. The data set and the evaluation metrics are
presented in the next section.

The mapping of a body of text to a mathematical
unit quantifying the degree of readability is the ba-
sis of readability assessment. This quantified unit
is significant in informing the reader about how
difficult the text content is to read. We defined the
task of German text complexity assessment as a
text regression task in which the participants were
asked to develop systems to automatically assign
a variable in the range from 1 to 7 to given Ger-
man texts. We considered German learners at the
B level as the target group. This means the sys-
tem should predict the complexity/difficulty of a
piece of text for a person who learns German at a
B level.

The shared task is organized on the Codalab
platform (Pavao et al., 2022), where the partici-
pants could access the data and submit their pre-
diction on the provided data sets and get informed
about the obtained results via the platform. More
information about the competition is accessible
via the corresponding web-page on the Codalab
website 1.

Although the task is defined as a text regression
task, there is no restriction on re-formulation of
the task. Moreover, there was no restriction about
using additional data sets for training purposes.

The shared task is organized in two phases; the
development and the test phases. During the de-
velopment phase the teams could develop their
systems and test it against a validation data set.
There was no restriction on the number of submis-
sions during the development phase. The obtained
results on the validation set were accessible for
the teams immediately after submitting the predic-
tions.

The test phase was a one week time period in
which the participants could submit their results
on the provided test data set. The test data was
shared with the participants one week before the
start of the test phase. During the test phase each
team could submit a maximum number of two
submissions per day on the test data set. The par-
ticipants could only know about the achieved re-
sults on the test data (i.e., the leaderboard) when
the competition ended. The detailed information

1https://codalab.lisn.upsaclay.fr/competitions/4964

about the provided data set and the evaluation met-
rics are presented in Section 4.

4 Data Set and Evaluation

In this section we discuss briefly the compiled data
set for the competition and also overview the eval-
uation metrics that have been used to assess and
ranked the submitted results.

4.1 Data Set

Three different data sets were available to the par-
ticipants during the competition. We provided
a training data set with complexity scores that
could be used to train and tune the models and the
systems. Moreover, two collections of sentences
without the complexity score were shared as the
validation and the test sets. The participants could
evaluate their models using this data set during the
development phase.

4.1.1 Train set
The training data set consisting of 1,000 German
sentences taken from 23 Wikipedia articles. The
data set includes subjective assessment of differ-
ent text-complexity aspects provided by German
learners at level A and B (Naderi et al., 2019a).

An online survey system was created to collect
the subjective assessment of the 1,000 sentences
using three items each rated on a 7-point Likert
scale. A survey session consisted of training and
rating sections. The training section was contain-
ing three sentences which participants needed to
rate on the same scale as the main section. The
sentences in the training section were constant and
represent very easy, average and very complex
sentences. Afterward, participants rated complex-
ity, understandability and lexical difficulty of ten
sentences. For each sentence in the data set the
Mean Opinion Score (MOS) is calculated. The
MOS score is the arithmetic mean over the all
ratings of a particular aspect (complexity, under-
standability or lexical difficulty) provided for that
sentence. The data set is published as TextCom-
plexityDE in (Naderi et al., 2019a). For this shared
task we only used the complexity scores of the sen-
tences.

Figure 1 shows a few sample sentences from the
training set. The training data set is freely avail-
able in a GitHub repository2. Moreover, a more
detailed description of the TextComplexityDE data

2https://github.com/babaknaderi/TextComplexityDE



Als Nebenprodukt entstand damals natürlich
auch die erste Seifenblase.
MOS complexity score: 1.60
Translation: As a by-product, of course, the first soap
bubble was created at that time.

In Abgrenzung zum klassischen Rasiermesser
wird ein Rasiermesser mit Wechselklinge als
Shavette bezeichnet.
MOS complexity score: 3.25
Translation: In distinction from the classic razor, a razor
with interchangeable blade is called a shavette.

In Pompeji gefundene Exemplare von frühen
Klapp-Rasiermessern mit 12 Zentimeter lan-
gen trapezförmigen Klingen und Griffen aus
Elfenbein gehörten als Luxusobjekte zum
Hausstand höherer Schichten.
MOS complexity score: 4.36
Translation: Specimens of early folding razors with
12-centimeter-long trapezoidal blades and ivory handles
found in Pompeii belonged to the household of higher
classes as luxury objects.

Figure 1: Sample sentences from the training set

set including the conducted pilot study to deter-
mine relevant dimensions of text complexity and
the manually simplified sentences are presented
in (Naderi et al., 2019a).

4.1.2 Test set
The ratings for the validation and test data sets
are collected in four different experiments. For
each experiment, 100 sentences were complied
in which 80 sentences were from 18 differ-
ent Wikipedia articles, and 20 sentences were
shared between all experiments and taken from the
TextComplexityDE data set. Participants are re-
cruited through online German learner groups in
social media and also language schools. For on-
line participants, there was a short mandatory lis-
tening and comprehensive language test to make
sure they have basic to intermediate knowledge of
German. We used a same 7-point Likert Scale as
it was used in the training data set (TextComplexi-
tyDE). In the data cleansing step, all submissions
from users with one of the following conditions
were removed from the data.

• Users with wrong answer to the gold standard
question3

• Users who failed in the language test
3gold standard question contains a text that its complex-

ity is known to organizers (i.e. very simple or very complex
ones) and used to filter participants who not following the
instructions.

• Users with specific click patterns (i.e. small
variance) or those who were too fast in fin-
ishing a session

Like the TextComplexityDE data set, a MOS score
for complexity is calculated for each sentence. Us-
ing the 20 shared sentences in each experiment,
a first-order mapping function for MOS values
from each experiment to the MOS values of the
TextComplexityDE data set are fitted. This was
done to remove the well-known bias and gradient
between different subjective tests.

The final data set includes 310 new sentences
from 18 Wikipedia articles which were rated by
a minimum of 16 participants. 100 sentences of
this data have been used as the validation set. The
participating teams used the validation set to tune
their models and parameters during the develop-
ment phase. The reminding 210 sentences were
used as test data set to assess the performance of
the submission in the test phase. All the reported
results in this paper are the achieved results on the
test data set with 210 instances.

Table 1 provides a summary of statistics and fre-
quency distribution of the training and test data
sets. Moreover, the histogram of MOS values in
the training and test data sets are presented in Fig-
ure 2. As it is highlighted in the figure, the sen-
tences in the training set tend to be more balanced.
In other words, more complex and difficult sen-
tences are presented in the training data set, com-
pared to the test data set.
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Figure 2: The distribution of MOS values in the
training and test data sets



Training data Test data
Number of records (i.e., sentences) 1,000 210
Max length of sentences (in character) 487 486
Min length of sentences (in character) 19 38
Average length of sentences (in character) 147.3 160.03
Number of terms 20077 4400
Number of unique terms 7539 2249
Average of the complexity score 3.01 2.87

Standard Deviation 1.18 0.87

Table 1: Summary of statistics and frequency distribution of the training and test data sets

4.2 Evaluation Metrics
We used the Root Mean Square Error (RMSE)
MAPPED metric to evaluate and rank the submit-
ted results. Moreover, the normal RMSE scores
were evaluated and reported.

RMSE shows the root of average squared differ-
ence between the estimated values ŷi (complexity
scores) and the actual value y for the sentence i, as
presented in the following equation.

RMSE =

√∑N
i=1 (yi − ŷi)

2

N
(1)

Since slightly different ratings and conse-
quently different MOS values could be obtained
by repeating a subjective test and adding bias to
the data, the RMSE MAPPED score has been used
to assess the submitted runs. We used a map-
ping function to get ride of this offset/bias. The
RMSE MAPPED is calculated based by the fol-
lowing steps:

1. A team submits its predictions (mos pre).

2. A f(mos pre) function is created by minimiz-
ing the absolute value between (true mos)
and f(mos pre).

3. We call the outcome of the function f to be
mapped mos pre:
mappend mos pre = f(mos pre)

4. We calculate the RMSE between the map-
pend mos pre and the true mos.

The f function is created for each model, and is
a linear function.

5 Results

In this section we present the baseline model and
also survey the submitted models for the shared
task.

5.1 Baseline Model
For the baseline model we fine-tuned a GBERT
pre-trained model (Chan et al., 2020) on the train-
ing set. After feeding the input text into the model
the last hidden state is passed through a dense lin-
ear layer by applying a Tanh activation. A dropout
layer is also put on top before the output layer.

Regarding the hyper parameters, the AdamW
optimizer (Loshchilov and Hutter, 2019) was used
with a learning rate of 5e − 5. The model was
fine-tuned in 3 epochs.

5.2 Proposed Models
In this section we highlight the main contribu-
tions of the proposed models in the shared task.
The overall performance of the submitted results
is presented in Table 2.

Among the submitted models, hybrid ap-
proaches in which the traditional machine learn-
ing models based on linguistic feature extraction
are combined with state-of-the-art pre-trained lan-
guage models show promising results for the task.

The top ranked team (Mosquera, 2022), HHU-
plexity team (Arps et al., 2022) and HIIG
team (Asghari and Hewett, 2022) proposed hy-
brid models that combine a feature engineering ap-
proach and transfer learning via pre-trained trans-
formers. Although the approaches are similar
in general, different features and models have
been used by different teams. For instance while
Bert (Devlin et al., 2019) and RoBERTa (Liu et
al., 2019) are fine-tuned in (Mosquera, 2022), the
HHUplexity team extracted features from Bert and
DistilBERT (Sanh et al., 2019) and the HIIG team
fine-tuned XLM-R (Conneau et al., 2020). More-
over, different approaches have been used by dif-
ferent teams to combine the outcome of the fea-
ture engineering models and the pre-trained mod-
els. However, the hybrid models couldn’t always



outperform the simple models. For instance, the
obtained results from the HHUplexity team show
that fine-tuning DistilBERT can outperform the
other models including the hybrid model based on
linguistic features. Also, the experiments from the
HIIG team show that data augmentation could not
increase the overall performance of the proposed
model.

The AComplexity team (Blaneck et al., 2022),
TUMuch Complexity team (Vladika et al., 2022)
and TUM Social Computing team (Anschütz and
Groh, 2022) used a similar approach of hybrid
models. The AComplexity team extracted 154
features for each sentence and fine-tuned GBERT
and GPT-2-Wechsel (Minixhofer et al., 2022)
models. They combined the output of the pre-
trained model with the readability features calcu-
lated for each sentence using a multi-layer per-
ceptron with two layers (Blaneck et al., 2022).
On the other side, the TUMuch Complexity team
stacked RoBERTa and Gaussian process models as
the proposed hybrid approach. As the stacking ap-
proach, they averaged the output predictions of the
Gaussian process model and the fine-tuned XLM-
RoBERTa (Conneau et al., 2020). The TUM So-
cial Computing team (Anschütz and Groh, 2022)
computed 6 different readability formulae based
on some statistics and combined them with the
fine-tuned DistilBERT model. Their analysis on
the relevance of different features on the predic-
tions highlight the importance of pre-trained mod-
els and also some statistics from text like the aver-
age sentence length (Anschütz and Groh, 2022).

The BBAW Zentrum Sprache team (Hamster,
2022) trained a random forest model on the set
of extracted features like statistical, lexical, and
grammatical ones. They also extracted a set of fea-
tures from pre-trained NLP models like Sentence-
BERT (Reimers and Gurevych, 2019). Their ex-
periments show the linear relationship between the
complexity score and the logarithm of the num-
ber of characters per sentence. Moreover, their re-
sults reveal that Sentence-BERT features also im-
pact the complexity scores.

Due to the fact that the provided training
data set was small and included only 1,000 sen-
tences, different teams applied different strate-
gies to increase the training data. The Deepset
team used more than 220,000 pseudo-labels to
train Transformer-based models in order to re-
frain from feature engineering step (Kostic´ et

al., 2022). They used 12,562,164 distinct sen-
tences from German Wikipedia and other cor-
pora like news articles from Zeit Online for their
semi-supervised learning approach. The proposed
approach includes training a base model on the
training set and pseudo-labeling the collected cor-
pus with the base model. Finally, the pre-trained
language models Fine-tuned on the pseudo-labels
and the training sets and trained a linear regres-
sion model on the out-of-fold predictions from the
cross-validations (Kostic´ et al., 2022).

As another approach to increase the data set
size, the LGirrbach team turned the text regres-
sion task into a pairwise regression for complex-
ity prediction (Girrbach, 2022). In this setting,
instead of the direct prediction of the complexity
score for the sentences, the model receive two sen-
tences and predicts the relative difference in com-
plexity of two sentences. However, the obtained
results on the training set during the development
phase show that ”pairwise regression does not per-
form better than standard regression” (Girrbach,
2022). Unfortunately, the team could not test the
proposed model on the test data set due to an error
in the submission.

6 Conclusion

In this paper we described the GermEval 2022 task
on ”Complexity Assessment of German Text”.
The shared task is co-located with the Conference
on Natural Language Processing (KONVENS)
2022. We presented the compiled data sets for
the training and the test phases and the models
proposed by the participants. The training and
the test sets included 1,000 and 210 German sen-
tences from Wikipedia articles, respectively, with
a readability/complexity score from 1 to 7. Re-
garding the models, combining the traditional fea-
ture extraction models with state-of-the-art pre-
trained language models was the main trend in the
submitted systems. Although different teams used
different feature set, pre-trained models and also
different strategies to combine the outcomes of the
models, there were similarities between the overall
procedure from different participants. Almost all
of the submissions could outperform the transfer
learning based model as the competition’s base-
line.

For the next round of the shared task, the inter-
pretability of the models (i.e., explainability) can
be taken into account to make the predictions more



Team name RMSE MAPPED RMSE
Alejandro Mosquera (Mosquera, 2022) 0.430 0.449
AComplexity (Blaneck et al., 2022) 0.435 0.442
HIIG (Asghari and Hewett, 2022) 0.446 0.462
TUM Social Computing (Anschütz and Groh, 2022) 0.449 0.466
Deepset (Kostic´ et al., 2022) 0.454 0.484
TUMuch Complexity (Vladika et al., 2022) 0.457 0.489
HHUplexity (Arps et al., 2022) 0.473 0.486
Baseline 0.477 0.489
CCL 0.516 0.586
BBAW Zentrum Sprache (Hamster, 2022) 0.553 0.583
LGirrbach (Girrbach, 2022) - -

Table 2: The results on the test data set

understandable. Moreover, the training and the
test sets can be enriched by more samples from
more diverse resources.
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2020. German’s next language model. In Do-
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Abstract

The German Text Complexity Assessment
Shared Task in KONVENS 2022 explores how
to predict a complexity score for sentence ex-
amples from language learners’ perspective.
Our modeling approach for this shared task
utilizes off-the-shelf NLP tools for feature engi-
neering and a Random Forest regression model.
We identified the text length, or resp. the log-
arithm of a sentence’s string length, as the
most important feature to predict the complex-
ity score. Further analysis showed that the Pear-
son correlation between text length and com-
plexity score is about ρ ≈ 0.777. A sensitivity
analysis on the loss function revealed that se-
mantic SBert features impact the complexity
score as well.

1 Introduction

We create and extract features from pre-trained
NLP models and train a random forest model to
predict scores of the TextComplexityDE dataset
(Naderi et al., 2019) because we want to find out
what evaluation criteria the annotators, here lan-
guage learners, used. Using handcrafted features
was the common approach before the breakthrough
and wide adoption of deep learning models. For
example, Lee et al. (2021) combine transformer
models with random forest models based on 255
manually specified features for readability assess-
ments. Xia et al. (2016) predict the CEFR-level of
a text with support-vector machines and linguistic
features, e.g., lexical, syntactic, discourse-based.
Beinborn et al. (2014) and Lee et al. (2019) mea-
sure text difficulty with word familiarity, false cog-
nates, morphological inflections, and phonetic com-
plexity in C-Tests. Feng et al. (2009) handcraft
linguistic features assuming these may be relevant
due to human cognition, or resp., working memory
limits. The advantage of manual feature engineer-
ing is that it allows to assess the impact of each

feature or group of features later on, e.g., sensitiv-
ity on the loss function, and feature importance in
random-forest. In other words, the model becomes
partially explainable, and allows deriving feedback
for practitioners such as language teachers.

2 Feature Engineering

We use sentence-level features addressing different
language levels by using different types of features
generated by or derived from off-the-shelf NLP
tools (Table 1).

language level types of features
semantics Contextual sentence embeddings

syntax Node distances in dependency trees
morphosyntax Part-of-Speech tag distribution

Lexical & grammatical properties
phonetics IPA-based consonant clusters

morphology Lexeme statistics
Char- & Bi-gram frequencies

lexicology Word frequencies
- Text length

Table 1: Types of features and their language level.

Contextual sentence embeddings. We use
feature vectors from the pretrained Sentence-
BERT model paraphrase-multilingual-
MiniLM-L12-v2 what is trained on parallel
corpora (Reimers and Gurevych, 2019). Using a
multilingual contextualized sentence embeddings
for German may help with code-switching
phenomena and adoption of neologisms.

Node distances in dependency trees. We
parse sentences with Trankit v1.1.1 german-hdt
(Nguyen et al., 2021), what is trained on the Ham-
burg Treebank (Foth et al., 2014), to retrieve the
dependency tree, PoS tags, and other morphosyn-
tactic properties. We compute the adjusted node
distance as the shortest path between each word
token in the dependency tree minus their distance



in the token sequence. We, finally, compute the em-
pirical distributions over adjusted node distances
between [−5, 15] whereas fat tail occurrences are
assigned to −5 and 15.

Part-of-Speech (PoS) tag distribution. We com-
pute the empirical distribution over the 17 Univer-
sal Dependency PoS tags for the word tokens of
each sentence, i.e., the percentage of tokens of a
specific PoS tag within a sentence.

Other lexical & grammatical properties. We
compute the percentage of word tokens that have
specific lexical and grammatical properties.

Features Properties
Verb form VerbForm={Fin, Inf, Part, Mod}
Finite verb forms Mood={Ind, Imp}
Aspect Aspect=Perf
Verb tense Tense={Pres, Past}
Gender Gender={Fem, Masc, Neut}
Number Number={Sing, Plur}
Person Person={1, 2, 3}
Case Case={Nom, Dat, Gen, Acc}
Adposition AdpType={Post, Prep, Circ}
Conjunction ConjType=Comp
Comparison Degree={Pos, Cmp, Sup}
Cardinal number NumType=Card
Particle type PartType={Res, Vbp, Inf}
Pronominal type PronType={Art, Dem, Ind, Prs, Rel,

Int}
Negation Polarity=Neg
Possessive words Poss=Yes
Reflexive words Reflex=Yes
Alternative form Variant=Short
Foreign word Foreign=Yes
Hyphenated Hyph=Yes
Punctation PunctType={Brck, Comm, Peri}

Table 2: List of counted lexical and grammatical fea-
tures and properties.

IPA-based consonant clusters. We convert the
sentences to IPA symbols with Epitran v1.18
deu-Latn (Mortensen et al., 2018) and a) count
the number of IPA consonants, b) consonant clus-
ters of two, and c) consonant clusters of three or
more divided by the number of IPA symbols.

Lexeme statistics. We parse lexemes of words
with SMOR (Schmid et al., 2004; Schmid, 2006).
SMOR returns all possible morphological variants
that can be inferred from the surface form of a
word. We count a) syntactical ambivalent variants
for each word, b) ambivalent lexeme combinations
of a word, and c) take the variant with the most lex-
emes for a word as approximation for the working
memory requirement to comprehend composites.

Each of the three frequencies are divided by the
number of words in the sentence.

Char- & Bi-gram frequencies. DeReChar con-
tains the character and bi-gram frequencies of the
DeReKo corpus (IDS, 2022). We apply max-
scaling to each, the character frequency list, and
bi-gram frequency list, to values between 0 and 1.
For each sentence, we look up all scaled character
frequencies, sum them up, and divide by the string
length of the sentence example. In case of bi-gram,
we window-slide over the string and divided the
looked up frequencies by the string length minus
one.

Word frequencies. The COW16 list contains
the frequencies approx. 42 Mio. words from the
COW web corpus (Schäfer and Bildhauer, 2012;
Schäfer, 2015),1 and we removed ∼ 97 % of
the least frequent words for faster lookup. Max-
scaling is applied to the logarithm of 1 plus the
COW frequencies. For each sentence example,
the scaled word frequencies are assigned to one
of six bins if their values falls within brackets
[0, 1/6, 1/3, 1/2, 2/3, 5/6, 1]. The bin counts are
divided by the number of words of the sentence,
and used as features.

Text length. We measure the text length in two
ways. First, the logarithm of 1 plus the number
of words per sentence. Second, the logarithm of 1
plus the string length.

3 Experiments

Dataset. The subject of this shared task is the
TextComplexityDE dataset by Naderi et al. (2019).
Its training set contains 1000 German sentence ex-
ample from Wikipedia. Each sentence example had
3 items with Likert-scale from 1 to 7 resulting in a)
complexity, b) understandability, and c) lexical dif-
ficulty scores. And 369 German language learners
provided, 10650 valid sentence ratings.

Random-Forest Feature Importance. We
trained the multi-output random-forest (Breiman,
2001) implementation of Scikit-Learn package
(Pedregosa et al., 2011) with 100 trees, max. tree
depth of 16, and at least 10 samples per leaf, as
well as bootstrap aggregation with subsample size
of 50% and out-of-bag errors. Table 3 shows the
Gini or impurity-based feature importance scores
of the trained random-forest model. The text

1https://github.com/olastor/german-word-frequencies



length, or logarithm of the number of characters
per sentence (length1), appears to be the single
most important feature of the model.

feature fi score
length1 .6042
sbert156 .0170

frequency2 .0151
sbert173 .0095
sbert69 .0077

Table 3: Top-5 feature importance scores of the fully
trained Random Forest model.

The text length. The linear relationship between
complexity score and the logarithm of the number
of characters per sentence has a Pearson correlation
coefficient of ρ ≈ 0.777 with a p-value < 10−202.

Figure 1: Complexity score versus the log of the number
of characters per sentence, or text length (length1).

Sensitivity Analysis. We systematically replaced
each of the nine types of inputs with random num-
bers, computed the RMSE and subtracted the train-
ing loss. Table 4 shows the impact of the two text
length features, and that semantic SBert features
still have some influence on the complexity score.
The text length has less impact on the understand-
ability score, and the semantic SBert features more
impact on the lexical score.

We also trained a Random Forest model without
the text length features. The impact of morpho-
logical features and word frequencies seems more
visible. The semantic SBert features have still an
impact on the loss function. The impact of node
distance feature can be explained by text length
because larger node distances require longer sen-
tences.

input type complex. underst. lexical
Sentence semantic 0.2174 0.2874 0.3426

Node distances 0.0039 0.0043 0.0049
PoS tags 0.0157 0.0160 0.0179

lex. & syntact. prop. 0.0078 0.0079 0.0081
IPA consonant clusters 0.0008 0.0011 0.0012

Lexeme stat. 0.0038 0.0050 0.0055
Word freq. 0.0211 0.0226 0.0354

Char & Bi-gram freq. 0.0203 0.0199 0.0229
Text length 2.3412 1.5246 2.1846

Table 4: Losses with pertubated inputs per input types
subtracted by the training loss.

input type complex. underst. lexical
Sentence semantic 0.1580 0.1810 0.2023

Node distances 0.3309 0.2308 0.2753
PoS tags 0.0131 0.0136 0.0155

lex. & syntact. prop. 0.1095 0.0847 0.0969
IPA consonant clusters 0.0030 0.0031 0.0037

Lexeme stat. 0.0075 0.0067 0.0089
Word freq. 0.0859 0.0812 0.1006

Char- & Bi-gram freq. 0.0281 0.0281 0.0322

Table 5: Sensitivity analysis for the Random Forest
model without text length features.

4 Discussion

An explanation for the text length as the dominant
feature for the TextComplexityDE dataset could be
the working memory (Miller, 1956; Cowan, 2001),
or cognitive load theory for sentence comprehen-
sion (Mikk, 2008). Foreign language texts are new
to a language learner to varying degrees. Dealing
with new things can require more conscious and
analytical information processing, which is more
cognitively demanding. Respondents may have de-
veloped and applied text length as a heuristic while
answering the survey, what can be explained by
the effort-reduction framework (Shah and Oppen-
heimer, 2008). In extreme cases, a study participant
could only measure the black and white contrast
of the dark letters on a light background as an ap-
proximation for the text length, i.e., a person do not
even have to read the text to assign a score. How-
ever, some part of the complexity score is related
to semantic SBert features, i.e., the text content
still mattered to the survey participants. The other
proposed evaluation criteria (e.g., node distance,
consonant cluster, word frequency) cannot explain
the dependent variables of the TextComplexityDE
dataset.

5 Conclusion

Although the study designer can ask for thoughtful
responses, this does not prevent study participants



or annotators from using or developing heuristics
such as text lengths. We suggest two solutions to
prevent annotators from using text length as scoring
heuristic. First, use text length as a control variable
during the survey, i.e., a participant assess a set of
sentence examples of a similar text length. This
would force the participant to consider other eval-
uation criteria related to the survey question. Al-
though the implementation is easy, the annotation
time would increase because participants might de-
velop more differentiated sets of evaluation criteria.
Second, ask the participant to translate each Ger-
man sentence example into their native language be-
fore assigning a score. This countermeasure would
ensure that participants spend time for details, and
may weight less obvious evaluation criteria higher,
e.g., they became aware of the syntactic or lexical
similarity between both languages. The drawback
is that the annotation time would increase consid-
erably when survey participants create a parallel
corpus.
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Abstract

In this paper we explain HIIG’s contribution to
the shared task Text Complexity DE Challenge
2022. Our best-performing model for the task
of automatically determining the complexity
level of a German-language sentence is a com-
bination of a transformer model and a classic
feature-based model, which achieves a mapped
root square mean error of 0.446 on the test data.

1 Introduction

Text complexity is not only a highly interesting
topic from a linguistic perspective; it also has sev-
eral implications on a societal level. A text that
has the appropriate complexity level for a specific
reader not only ensures that the reader can fully
understand the information presented in the text,
but it also keeps the reader engaged and can help
the reader to learn new structures and expand their
vocabulary. This last point is particularly relevant
for language learners and readers who are reading
text in a language that is not their native language.
The Text Complexity DE Challenge focuses on this
specific target group as the task involves predicting
the complexity of a sentence in German, which
have been annotated on a scale of 1 to 7 by German
learners whose language proficiency is at B level
(on the CEFR scale). An overview of the shared
task and the results from all the teams can be found
in (Mohtaj et al., 2022).

In this paper we briefly report on related work
in Section 2, before describing the dataset used
in the shared task in Section 3. In Section 4 we
outline our various approaches to the task, before
reporting on the results and briefly discussing them
in Section 5. In Section 6 we conclude the paper.

2 Related work

Previous work aimed at automatically assessing
the text complexity level of sentences has focused

∗* Equal contribution

mostly on the English language. Stajner et al.
(2017) use the Newsela corpus (English-language
newspaper articles, simplified at multiple levels for
different aged school children) and calculate scores
for unigrams, bigrams and trigrams by looking at
what levels of the corpus they occur in. They exper-
iment with different classifiers and achieve the best
results with a Random Forest. Pitler and Nenkova
(2008) conduct a small-scale analysis on 30 articles
from the Wall Street Journal which have been man-
ually annotated on a scale from 1-5 for the question
of how well-written the article is. They investigate
how various linguistic features correlate with these
scores. Vocabulary and discourse relations are the
strongest predictors of readability, followed by av-
erage number of verb phrases and length of the text.
Lee et al. (2021) work with three English-language
datasets and produce hybrid models which con-
sist of a transformer based model combined with a
feature-based model. They predict 3 and 5 classes
(depending on the dataset) and achieve the state of
the art, with a ROBERTA-based transformer model
performing best.

Work on German-language text complexity as-
sessment is fairly rare. Hancke et al. (2012) look
at text-level binary readability classification using
a corpus of 1627 articles in original form and a
version aimed at children. Their classifier uses
the Sequential Minimal Optimization algorithm
with five groups of features (traditional readabil-
ity formulas, lexical, syntactic, language model,
and morphological), with a best accuracy score of
89.7%. Stodden and Kallmeyer (2020) work with
various corpora from different languages from the
text simplification domain and evaluate 104 differ-
ent features using statistical tests, with the aim to
determine differences between simplified and com-
plex texts. They also work with a German-language
corpus of 1888 texts (Klaper et al., 2013) and find
that the feature lexical complexity, in particular,
is relevant specifically for German texts. Battisti



et al. (2020) build on the same corpus and release
a newer version with 6217 documents. Hewett and
Stede (2021) create a corpus of 2655 texts from on-
line lexica at three different levels (adults, children,
children who are beginner readers) and use knowl-
edge graph based features to estimate conceptual
complexity. In a pairwise classification task they
achieve an accuracy score of 91%.

3 Dataset

The dataset for the challenge consists of sentences
that have been taken from 41 Wikipedia articles
from different article genres. Groups of German
learners, with language levels between A2 and B2,
rated the sentences according to complexity, under-
standability and lexical difficulty on a scale from
1 to 7. For each aspect, the arithmetic mean (or
Mean Opinion Score; MOS) was calculated and
the task was to predict the MOS complexity score
of the sentences. More information on the dataset
can be found in (Naderi et al., 2019).

The training dataset consists of 1000 sentences,
the validation set (for development phase) of 100
and the test set (for the evaluation phase) of 210
sentences. Figure 1 shows a histogram of the tar-
get variable (MOS) in the training set (mean=3.02,
stdev=1.18). Some examples from the training set
can be seen in Table 1.

It is also worth mentioning that ‘complexity’ can
be subjective. For example as can be seen in Ta-
ble 1, the second sentence ‘Das Meerwasser ist
leicht basisch’ has a score of 1; whilst the sentence
is clearly short and has a very simple structure,
arguably the words alkaline (basisch) and even sea-
water (Meerwasser) are not usually part of a lan-
guage learner’s vocabulary. The sentence structure
may not be ‘complex’ but the lexical items do seem
more advanced. These kinds of scores may be due
to the fact that participants were also asked to rate
the understandability of a sentence, a score which
was not used in this shared task. The subjective
nature of complexity is a limitation of the dataset
which the shared task organisers try to compensate
for by using a mapped root mean squared error as
a metric, more information can be found in the task
overview paper (Mohtaj et al., 2022).

4 Approaches

In this section we outline our different approaches.
As a baseline, we take the simple approach of pre-
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Figure 1: Histogram of mean opinion scores.

dicting the mean MOS value (3.02) for all samples.
Using this baseline, the root mean squared error
(RMSE) is 1.18.1

4.1 Additional Augmented Data

As the training dataset is not particularly large
(1000 sentences), one of our approaches was to
create additional training data. We used the ex-
tended lexica corpus from Hewett and Stede (2021)
which consists of 86613 sentences at three differ-
ent levels. We created artificial scores on a scale
of 1 to 7 using a simple method. We took the
original labels (1-3) and scaled them using the fea-
ture of sentence length, which we found to be a
strong predictor for complexity. For example, a
sentence with the original label of 1, with one of
the longest sentence lengths for this class would
have a transformed score of around 2.3, whereas
a short sentence originally labelled with 1 would
have a transformed score closer to 1.

We used this additional data together with the
training data in several different models and the
results were consistently worse than the basic base-
line using only the training data. This is most likely
due to the noise that is introduced when producing
these artificial labels, and the fine-grained nature
of the labels. Another reason could also be the dif-
ferent target groups; the shared task data has been
labelled by non-native speakers whereas the lexica
corpus has children as its target group. Children
and non-native speakers are two different target
groups of simplified language with different needs.

4.2 Neural Approach

The neural method we use is to fine-tune a pre-
trained transformer model for our given task. As

1Aside from the final results in Table 2, all reported scores
refer to 20% of the training set and to the non-mapped RMSE.



Original Sentence Literal Translation MOS Complexity
Die Folgen dieser Versauerung betreffen
zunächst kalkskelettbildende Lebewesen, deren
Fähigkeit, sich Schutzhüllen bzw Innenskelette
zu bilden, bei sinkendem pH-Wert nachlässt.

The consequences of this acidification have an
effect on calcium-skeleton-forming organisms,
whose ability to form protective shells or internal
skeletons diminishes with decreasing pH.

5.25

Das Meerwasser ist leicht basisch. Seawater is slightly alkaline. 1

Table 1: Example sentences from the dataset.

our base model, we chose XLM-R (also known as
XLM-RoBERTa) by Conneau et al. (2019).

XLM-R is a self-supervised cross-lingual trans-
former model – trained on 2.5TB of filtered Com-
monCrawl data containing 100 languages – using a
masked language modeling objective. It is mostly
intended to be fine-tuned on downstream tasks
(HuggingFace, 2022), and offers state-of-the-art
performance for many language tasks. Specifically
it outperforms multilingual BERT on a variety of
metrics (Conneau et al., 2019).

The fact that XLM-R has great performance out
of the box and is multilingual, make it a suitable
choice for the challenge. We downloaded the pre-
trained model using the Hugging Face Python li-
brary.2 We changed the model head to a (single)
regressor layer plus a dropout, inspired by Kozodoi
(2022). (As is typical, the weights for the new lay-
ers are randomly assigned, while the rest of the
model is initialized to the pretrained weights.) We
used a custom trainer to set RMSE as the loss func-
tion, and did not freeze any of the layers for higher
accuracy. For preprocessing, was used the XLM-R
Tokenizer with padding and truncation, which is
how this model expects the data.

During the earlier phases of the Text Complexity
DE challenge, we used a simple 80:20 data split for
training and validation; and observed that our mod-
ified XLM-R model performed quite well after 10
training epochs with the default AdamW optimizer.
For the final stage of the challenge, we adopted
k-fold validation (with k=5) to ensure that all the
available data was used during training. Thus we
ended up with five models (with RMSEs between
0.55 and 0.70). For the actual predictions on the
test dataset, we averaged the prediction of these
five models.

4.3 Feature-based Approach

A further approach was to use the 43 ‘single fea-
tures’ which Stodden and Kallmeyer (2020) ap-
plied in their cross-lingual study on text complexity

2We chose the base model, not large, so that the training
could be done efficiently on our laptop GPU.

(see Section 2). These features are calculated using
sentences as input; we therefore did not perform
any additional pre-processing. We applied feature
ranking using the recursive feature elimination im-
plementation from scikit-learn (Pedregosa et al.,
2011) and used the top 34 features; the full list of
features can be found in Appendix A. The most
important features were number of words per sen-
tence, number of syllables per sentence and number
of characters per word. We used these with a lin-
ear regression model, using the default parameters
from scikit-learn. When applied to the training data
in a 80/20 split, the RMSE was 0.7. We then re-
trained the model in the whole training set before
using the official test data set as input (the results of
which can be seen in Table 2). Approaches using
sentence embeddings or lexical complexity values
derived from our additional data did not beat our
simple baseline on the training set and so were
therefore not pursued any further.

5 Ensemble Results & Discussion

Our final approach is to combine our feature-based
and neural approach by averaging the outputs of
these two models.3

While both our transformer and feature-based
models perform better than the baseline RMSE,
among them, the transformer model does generally
better on different data splits. Thus, it might seem
paradoxical that our final model is a weighted av-
erage (ensemble) of the two. Using an ensemble
method is, however, a theoretically sound practice,
and quite common in machine learning competi-
tions.

In the words of Page (2018), “To rely on a single
model is hubris. It invites disaster. [...] Wisdom
can be achieved by averaging models.” Simply ex-
plained, due to both over-fitting and under-fitting,
any one model will predict some samples (espe-
cially among the unobserved) quite wrongly. As
long as the individual models in the collection do

3Our implementation can be found at
https://github.com/hadiasghari/konvens22-shared-task



not share a common bias, then any diverse collec-
tion of the models will be more accurate than the
average member—an implication of the so called
diversity prediction theorem (Page, 2018).

To illustrate the point, we can compare the pre-
dictions from both models on the test dataset (Fig-
ure 2). The Pearson correlation coefficient be-
tween the two is 0.85. On average, the predictions
are close, with the transformer model predicting
slightly lower scores. In about ten percent of the
samples, the difference between the predictions is
bigger than 1, and crucially, in both directions.4
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Figure 2: Histogram of mean opinion scores.

Closer to home and in the readability assessment
(RA) literature, Lee et al. (2021) also propose using
ensemble methods. In particular “[when] a trans-
former shows weak performance on small datasets,
there must be some additional measures done to
supply the final model (e.g. ensemble) with more
linguistic information”, adding that such studies
are rare in RA.

The final results on the test dataset are presented
in Table 2. We hypothesized that since our trans-
former model does slightly better than our feature
based model, a weighted average favoring the for-
mer might yield better accuracy, which turned out
to be the case.5

4Without the MOS scores for the test dataset, we can only
speculate about this discrepancy between the two model pre-
dictions. See Appendix B for a few examples.

5In future work, the averaging weights could themselves
be learnt from the data, and obviously, more models be added
to the ensemble.

RMSE Model Description
0.541 Linear regression (feature based)
0.484 Ensemble 70:30 (lr:xlmr)
0.479 XLM-R (without k-fold)
0.458 XLM-R (with k-fold)
0.457 Ensemble 50:50
0.450 Ensemble 40:60
0.446 Ensemble 30:70 (lr:xlmr)

Table 2: Mapped RMSE results for different models
(more information on the mapping can be found in the
shared task overview paper (Mohtaj et al., 2022))

6 Conclusion

In this paper we explained our contribution to the
shared task Text Complexity DE Challenge 2022.
We experimented with both neural and feature-
based approaches. Our best-performing model is
a weighted average of a fine-tuned XLM-R trans-
former model and a classic feature-based model
with linear regression. The ensemble achieves a
mapped root square mean error of 0.446 on the test
data which is better than either of the models alone.
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Appendix

A Features Used

The features we used in our feature-based model
(discussed in Section 4.3) include6:
get type token ratio, get ratio of function words, get
ratio of coordinating clauses, get ratio of subordi-
nate clauses, get ratio prepositional phrases, get
ratio relative phrases, get ratio clauses, get ratio
named entities, check if head is noun, check if one
child of root is subject, check passive voice, is non
projective, get ratio of nouns, get ratio of verbs, get
ratio of adjectives, get ratio of adpositions, get ra-
tio of adverbs, get ratio of auxiliary verbs, get ratio
of conjunctions, get ratio of determiners, get ratio
of numerals, get ratio of particles, get ratio of pro-
nouns, get ratio of punctuation, count words, count
sentences, count syllables in sentence, count words
per sentence, count syllables per sentence, count
characters per word, count syllables per word, max
pos in freq table, average pos in freq table, sentence
fkgl.

B Discrepancy between Model
Predictions

Without the MOS scores for the test dataset, we can
only speculate about this discrepancy between the
two model predictions. After manually inspecting
some cases, we found that when the prediction of
the feature-based model was higher (i.e. more com-
plex) than the transformer model, these were long
sentences which in fact were often just lists. When
the prediction of the transformer model was higher,
these were often shorter sentences with uncommon
words (often compounds). See Table 3 for some
examples.

6From the implementation from Stodden and Kallmeyer
(2020): https://github.com/rstodden/text-simplification-
evaluation
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ID Sentence Translation XLMR LR
2115 "Die danach häufigsten Wohnungstypen waren

Wohnungen in kleinen Apartmentkomplexen
(2–9 Einheiten, 12,8 % der Bevölkerung),
Wohnungen in mittleren Apartmentkomplexen
(10–49 Einheiten, 7,9 %), Einfamilienreihen-
häuser (5,9 %), Mobilheime (5,7 %), Wohnungen
in großen Apartmentkomplexen (50+ Einheiten,
5,0 %) und Boote, Wohnmobile und Ähnliches
(0,1 %)."

The next most common housing types were flats
in small apartment complexes (2-9 units, 12.8
% of the population), flats in medium apartment
complexes (10-49 units, 7.9 %), single-family
terraced houses (5.9 %), mobile homes (5.7 %),
flats in large apartment complexes (50+ units, 5.0
%), and boats, mobile homes, and the like (0.1
%).

3.233 4.624

2053 "Daneben gibt es auch konfessionelle (VkdL im
CGB) und weitere Verbände (Waldorflehrkräfte,
Lehrkräfte der Montessori-Schulen)."

There are also confessional (VkdL (Association
of Catholic German Teachers) in the CGB (Chris-
tian Trade Union Federation of Germany)) and
other associations (Waldorf teachers, Montessori
school teachers).

3.123 2.393

Table 3: Example predictions on the test set with large discrepancy between the transformer (XLMR) and the feature
based linear regression (LR) models.
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Abstract

In this paper, we describe our submission to the
GermEval 2022 Shared Task on Text Complex-
ity Assessment of German Text. It addresses
the problem of predicting the complexity of
German sentences on a continuous scale. While
many related works still rely on handcrafted sta-
tistical features, neural networks have emerged
as state-of-the-art in other natural language pro-
cessing tasks. Therefore, we investigate how
both can complement each other and which
features are most relevant for text complexity
prediction in German. We propose a fine-tuned
German DistilBERT model enriched with sta-
tistical text features that achieved fourth place
in the shared task with a RMSE of 0.481 on the
competition’s test data.

1 Introduction

Text readability describes how easy a given text
is understood by a specific reader (Hancke et al.,
2012). Factors that influence the readability are,
for example, the number of technical terms in the
text or the length and convolution of the sentences.
Assessing a text’s readability can be used to select
the proper texts for a specific user group or provide
authors feedback about their texts. Moreover, it can
be integrated into an automatic text simplification
system. On the one hand, it helps to decide whether
and, if so, how much a text should be simplified.
On the other hand, readability assessment is a mea-
sure to evaluate a simplification system by check-
ing if the output has a higher readability (Garbacea
et al., 2021; Martinc et al., 2021). Text complex-
ity is inversely related to text readability; thus, in
this work, the terms text complexity prediction and
readability assessment are used interchangeably.

This paper is a contribution to the GermEval
2022 Shared Task on Text Complexity Assessment
of German Text that aims to predict the complex-
ity of a German text on a continuous scale (Mo-
htaj et al., 2022). We propose a model based on

fine-tuned German DistilBERT (Sanh et al., 2019)
combined with traditional readability formulas and
statistical text features. This model achieved fourth
place in the competition. Moreover, we used SHAP
(Lundberg and Lee, 2017) to explain our model’s
predictions and discuss which features contribute
to higher complexity. By knowing the feature rele-
vance, authors and machine learning engineers can
pay attention to them when generating new texts.
Our code is released on Github for further research
and development.1

This paper is structured as follows: Section 2
gives an overview of existing readability formulas
and prediction models. In section 3, we present
the organization of the shared task and introduce
its dataset. Then, section 4 walks through our pro-
posed approaches and entails their performance.
Finally, in section 5, we apply explainability meth-
ods to discuss text features relevant to complexity
prediction.

2 Related work

We investigated two approaches for readability as-
sessment, traditional readability formulas, and deep
learning. Therefore, this section gives an overview
of existing formulas and models. Moreover, we
analyze which text features yielded promising pre-
diction results in previous work.

2.1 Traditional complexity measures
Multiple formulas exist to calculate the readability
of a text based on statistical values such as word
counts or average word length. Flesch (1948) pro-
posed the Flesh reading ease (FRE) score that cal-
culates a value between 0 − 100, where a higher
value indicates a lower complexity. Similarly, the
readability index (LIX) (Björnsson, 1983) returns
a readability estimate ranging from 20 to 60. How-
ever, with this score, an easier text gets a lower

1https://github.com/MiriUll/text_
complexity

https://github.com/MiriUll/text_complexity
https://github.com/MiriUll/text_complexity


value. As German words tend to be longer than
English words on average, Amstad (1978) adapted
the FRE measure to the German language by adapt-
ing the weight of the average word length measure.
Kincaid et al. (1975) used the FRE score as a ba-
sis for a new measure, the Flesch-Kincaid-Grade-
Level (FKGL). In contrast to the previous scores,
this returns the U.S. school grade in which the text
can be understood. Other complexity scores re-
turning the number of years in education needed
to grasp the content of a text are SMOG (Laugh-
lin, 1969) and Gunning fog index (Gunning et al.,
1952). The Wiener Sachtext formulas are four
slightly varying formulas returning the required
grade adapted to the German school system and
specificities of the German language (Bamberger
and Vanacek, 1984).

These formulas are based on an analysis of tex-
tual features. In the literature, different text proper-
ties are distinguished (Santucci et al., 2020; vor der
Brück et al., 2008; Hancke et al., 2012): Statisti-
cal features analyze the number of sentences or
the number of words in a sentence, while syn-
tactic features investigate the sentence structure,
e.g., the depth of the dependency tree. Other cate-
gories are lexical features, such as the number of
unique words, or semantic features, i.e., the length
of causal chains. As indicated by Solnyshkina et al.
(2017), using the plain text properties as features
can outperform the complexity estimation of read-
ability formulas.

2.2 Learning complexity prediction models

Syntactic, semantic, or lexical text features have
been exploited for readability prediction in differ-
ent languages such as Italian (Santucci et al., 2020)
or English (Štajner and Hulpus, 2020). Other ap-
proaches use neural language models like BERT for
their predictions (Martinc et al., 2021). For the Ger-
man language, Weiß and Meurers (2018) proposed
a binary prediction model based on linguistic fea-
tures, such as lexical or morphological complexity,
and psycholinguistic features, i.e., cognitive com-
plexity and language use. Their work was based on
the binary prediction model by Hancke et al. (2012).
In a very recent work (Anonymous, 2021), the neu-
ral approaches by Martinc et al. (2021) were trans-
ferred to German, yielding promising results in a
language-level prediction task. These approaches
focus on a classification task, while vor der Brück
et al. (2008) worked on a seven-point Likert scale,

similar to the Shared Task data. They used syntac-
tic and semantic features together with a nearest
neighbor model for their predictions.

2.3 Feature relevance analysis

To understand why a model deems a sentence com-
plex, but also to use the complexity scores for fur-
ther tasks such as text simplification (Garbacea
et al., 2021), the features that contributed to the pre-
dictions are of interest. Santucci et al. (2020) used
the Gini measure and permutation importance to
inspect which text property was important for their
predictions. They reported that the most relevant
features were the syntactic and morphosyntactic
ones. Similarly, Hancke et al. (2012) discovered
the essential features for their classification were
the average word length or the number of complex
nominals in the sentences.

3 Shared task and Dataset

This paper explains our submission to the Ger-
mEval 2022 Shared Task on Text Complexity As-
sessment of German Text (Mohtaj et al., 2022).
The shared task was split into two different phases,
a development and a final phase. During develop-
ment, participants were provided a labeled training
and an unlabeled validation dataset. Predictions
on this validation data could be uploaded to the
competition page with immediate evaluation feed-
back. In contrast, during the final phase, the results
on the final test dataset were only published at
the end of the competition. The two evaluation
datasets, the validation and the final test data, con-
sist of 100 sentences each. The training dataset for
this shared task originates in work by Naderi et al.
(2019). It contains 1000 sentences from the Ger-
man Wikipedia together with a complexity score
ranging from 1 to 7. Naderi et al. (2019) used
crowdsourcing to let non-native speakers of a B
level annotate the respective sentences by their per-
ceived readability and averaged the scores among
the participants. The mean complexity value is
3.016 with a standard deviation of 1.181. There
are 76 sentences with an observed complexity of
1.0, but only two samples with a complexity higher
than six, making the dataset unbalanced towards
the easier sentences. To counteract this imbalance,
we replicated sentences with a complexity higher
than 5.5 multiple times, yielding a dataset with
1054 samples.

The rooted mean squared error (RMSE) between



predicted and correct complexity scores was used
to evaluate a model’s performance. In addition, a
third-order polynomial function was fitted between
the predicted and correct scores to counteract the
bias by subjective annotation of text complexity.
Then, the predicted scores were projected using
this function, and the error was calculated on the
mapped predictions as well (Mohtaj et al., 2022).

4 Approaches

In this section, we explain the three approaches
we explored to predict the complexity score of a
sentence. We did not apply any preprocessing to
the data, i.e., fed the sentences into the model’s
tokenizer directly.

4.1 Learning from text statistics

We analyzed different textual features and read-
ability scores calculated based on them. Table 1
shows which statistics were calculated. On the
one hand, statistics on a sentence level were in-
vestigated, such as the average sentence length or
the maximal depth of the dependency tree. We
assumed that a more complex sentence holds sub-
clauses or multi-word expressions that show in a
high dependency tree depth. For our data, the av-
erage sentence length is similar to the number of
words in a sentence, as our data samples contain
only one sentence. On the other hand, we examined
the characteristics of the words in a sentence, e.g.,
the average number of syllables among all words.
Moreover, the percentage of words consisting of
only one syllable was calculated. These are very
short and easy-to-understand words, i.e., a high
percentage can indicate a simple sentence.

Feature Description

asl Average sentence length
mtd Maximal dependency tree depth
pw6 Percentage of words with at least six

letters
asc Average number of syllables
ps1 Percentage of words with only one

syllable
ps3 Percentage of words with at least

three syllables

Table 1: Statistical features calculated from sentences.

These statistics are part of different readability for-
mulas. Equations 1 to 6 show the formulas for the

scores used in this work. We propose calculating
the Flesh reading easy (FRE) by Amstad (Amstad,
1978), the four Wiener Sachtext formulas (Bam-
berger and Vanacek, 1984) and the SMOG score
(Laughlin, 1969). The FRE formula uses the av-
erage sentence length and the average number of
syllables among all words and returns a value be-
tween 0 and 100, where a higher score indicates bet-
ter readability. The Wiener Sachtext formulas are
a collection of four formulas that slightly vary the
statistics they use and their weights. The formulas
calculate for which school grade between four and
15 the text is suited. Similarly, the SMOG score
returns how many years of education the reader
needs to understand the text. Thus, a lower value
is desirable for the Wiener Sachtext formulas and
the SMOG score. In contrast to the other formulas,
the SMOG score only uses the number of words
with at least three syllables (ns3) as a statistical
measure.

fre_amstad = 180− asl − (58.5 · asc) (1)

wstf1 = 0.1935 · ps3 + 0.1672 · asl (2)

+ 0.1297 · pw6 − 0.875

− 0.0327 · ps1

wstf2 = 0.2007 · ps3 + 0.1682 · asl (3)

+ 0.1373 · pw6 − 2.779

wstf3 = 0.2963 · ps3 + 0.1905 · asl (4)

− 1.1144

wstf4 = 0.2744 · ps3 + 0.2656 · asl (5)

− 1.6930

SMOG = 1.0430 ·
√

ns3 + 3.1291 (6)

We computed the statistics in Table 1 and scores
in Equations 1 to 6 for all samples in our data.
Then, we fitted a support vector regression based on
these statistical vectors as a prediction baseline. For
this, we used the implementation by sklearn and its
default hyperparameters parameters.2 The model
achieved a RMSE of 0.657 and mapped RMSE of
0.647 on the training data.

4.2 Fine-tuning a transformer model
To investigate the complexity prediction quality
of neural networks, we fine-tuned a German Dis-
tilBERT model. We utilized Huggingface (Wolf
et al., 2020) to load and fine-tune the distilbert-
base-german-cased (von Platen, 2020) model. We

2https://scikit-learn.org/stable/
modules/generated/sklearn.svm.SVR.html

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html


trained the model on the shared tasks’ training
data with the default setup of Huggingface’s trainer
API3 for two epochs. Table 2 shows the promising
results achieved by this model on the training, vali-
dation, and final test data. The model outperformed
the statistics-only SVR baseline model by far.

Dataset RMSE RMSE_mapped

training 0.402 0.399
validation 0.405 0.404
final test 0.481 0.460

Table 2: Complexity prediction results by fine-tuned
DistilBERT model.

4.3 Combining DistilBERT embedding with
textual features

The pure text statistics model and the fine-tuned
DistilBERT model yielded promising results. To
take advantage of both their handcrafted features
and deep textual understanding, we combined both
models. We used the last hidden state of the Distil-
BERT model as an embedding of size 768. Then,
we concatenated the embedding with the vector of
statistical measures and readability scores. Finally,
we trained a support vector regression model on
these representations with the same setup as the
statistical SVR. Table 3 highlights the performance
on the three different datasets. With this model,
we achieved fourth place in both the competition’s
development and final evaluation phase.

Dataset RMSE RMSE_mapped

training 0.404 0.403
validation 0.395 0.390
final test 0.466 0.449

Table 3: Complexity prediction results by SVR with
DistilBERT embedding and statistical features.

5 Explaining the predictions

To evaluate which of the suggested statistics and
formulas help to predict the complexity of German
texts, we calculated the SHapley Additive exPla-
nations (SHAP) values (Lundberg and Lee, 2017)

3https://huggingface.co/docs/
transformers/main_classes/trainer#
transformers.TrainingArguments

for each of our models. SHAP measures each fea-
ture’s contribution by masking their different com-
binations and rerunning the predictions with these
masks. Features for which the masked predictions
deviate strongly from the initial prediction have a
substantial impact and are, thus, the most relevant
ones. The SHAP values are calculated per sam-
ple and averaged among them. Figure 1 shows the

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
mean(|SHAP value|) (average impact on model output magnitude)

pc3

ps1

asc

pw6

SMOG

wstf1
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wstf4

mtd

fre_amstad

asl

Figure 1: SHAP values for statistical text features in our
support vector regression model, sorted in descending
order.

mean SHAP values for each feature in the statistical
SVR model (Section 4.1). The most relevant statis-
tic is the average sentence length, i.e., the longer a
sentence is, the more likely it is complex. The FRE
score uses this statistic; thus, it is reasonable that
it has high importance. Even though the Wiener
Sachtext formulas also include this statistic, their
contribution to the predicted score is smaller. They
incorporate more advanced measures like the per-
centage of words with more than three syllables.
As indicated by the small SHAP values, these ad-
ditional statistics are not helping our complexity
prediction model. The third most relevant feature
is the maximum tree depth, indicating how convo-
luted a sentence is.

For a neural network, it is unknown what func-
tionality a specific neuron models. Therefore, a
feature-relevance analysis is not beneficial for inter-
preting a neural network. Instead, we selected the
example sentence “Dieser Vorgang wird Gletscher-
schwund oder Gletscherschmelze genannt.” (“This
process is called glacier recession or glacier
melt.”) and investigated which words have an im-
pact on the prediction. The correct complexity for
this sentence is 2.266667, and our model (Section
4.2) predicts a complexity of 2.373029. Figure 2

https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments
https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments
https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments


Figure 2: DistilBERT prediction on an example sentence (English translation: “This process is called glacier
recession or glacier melt.”): contribution of each word and word chunk to the prediction result.

0.00 0.05 0.10 0.15 0.20 0.25
mean(|SHAP value|) (average impact on model output magnitude)

distil_606

wstf4
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distil_354
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fre_amstad

asl

distil_149

Figure 3: Feature relevance analysis for combined
model: the ten features with highest SHAP values.
“distil_i” indicates the ith index in the DistilBERT em-
bedding.

shows which words and parts of words increase or
decrease the predicted score compared to a base
value. Words like “wird” (“is”) and “oder” (“or”)
have a negative contribution, i.e., they indicate
an easier sentence. Contrary, the word “Vorgang”
(“process”) has the highest positive impact. The
word itself is not very difficult, but it is often used
to describe complex procedures and, thus, can be
seen as a signal for a complex sentence. In Ger-
man, compound nouns such as “Gletscherschwund”
(“glacier recession”) are very common. However,
the DistilBERT tokenizer splits them into multiple
tokens. Therefore, different parts of these com-
pound words have different contributions to the
prediction, making it harder to identify their over-
all contribution.

Finally, Figure 3 depicts another feature rele-
vance analysis, but for the SVR model that com-
bined our neural embedding with statistical text fea-
tures (Section 4.3). The scores were calculated on a
subset of the data, and we only highlight the values
for the ten highest ranking features. The strongest
impact on the prediction comes from the embed-
ding value at index 149, but text statistics like the
average sentence length and Amstad’s FRE score
are also relevant. This implies that both learned
neural features and traditional text statistics im-
pact text complexity prediction. Moreover, they

complement each other to yield the most accurate
predictions. Therefore, we have shown that neural
models have not yet outperformed handcrafted fea-
tures regarding German text complexity prediction.

6 Discussion

Readability is a subjective measure that depends
on the reader’s background knowledge and reading
ability (Crossley et al., 2017). Our work is based on
the shared task’s dataset labeled with a crowdsourc-
ing approach among non-native speakers. There-
fore, the findings in this paper should be tested
for transferability to other datasets and groups of
readers. In addition, the dataset is unbalanced with
an overrepresentation of simple sentences and con-
tains some noise. For example, the sentence “Mar-
tin Luther King Jr (* 15 Januar 1929 in Atlanta als
Michael King Jr; † 4 April 1968 in Memphis) war
ein US-amerikanischer Baptistenpastor und Bürg-
errechtler.” (“Martin Luther King Jr (born January
15, 1929 in Atlanta as Michael King Jr; † April 4,
1968 in Memphis) was a U.S. Baptist pastor and
civil rights activist.”) has a complexity of 1.0, in-
dicating it was a very easy sentence. This shows
that some samples have lower complexity than they
would have when relabeling the dataset.

7 Conclusion

In this paper, we have demonstrated three ap-
proaches for text complexity prediction in German,
one model that relies on handcrafted statistical fea-
tures only, one fine-tuned transformer network, and
a combination of both. In addition, we found that
the feature most indicative of a complex sentence
is the sentence length and that the FRE formula
by Amstad (1978) gives a good indication of text
complexity. Modern transformer architectures with
deep textual understanding can build accurate com-
plexity prediction pipelines. However, they can
still be improved with handcrafted statistical fea-
tures, showing that they have not yet superseded
traditional approaches. In future work, these find-
ings will be extended to a paragraph and full-text
level instead of a sentence-wise prediction.
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Abstract

In this paper, we describe our submission to the
’Text Complexity DE Challenge 2022’ shared
task on predicting the complexity of German
sentences. We compare performance of differ-
ent feature-based regression architectures and
transformer language models. Our best candi-
date is a fine-tuned German Distilbert model
that ignores linguistic features of the sentences.
Our model ranks 7th place in the shared task.1

1 Introduction

Texts are a basic form of human information ex-
change. Too high of a text complexity, however,
can result in text comprehension failures (Bormuth,
1966) and therefore miscommunication. Text com-
plexity and readability assessment are a long known
problem and several computational approaches
and metrics have been proposed (Dascalu, 2012;
Hancke et al., 2012; Collins-Thompson, 2014), re-
lying on different linguistic features and primarily
aiming at English.

Among other application objectives, an adequate,
quantificational metric for text complexity can be
of high benefit to the educational domain (as a
means of providing textual material according to
student levels), writing support systems (as feed-
back) or for other natural language processing tasks
like estimating the complexity of the output of
text simplification systems or chatbots. Most re-
lated tasks focus either on the prediction of com-
plex words (Paetzold and Specia, 2016; Shardlow
et al., 2021) or the assessment of readability lev-
els (Collins-Thompson, 2014). However, the goal
of the ’Text Complexity DE 2022’ shared task is
the prediction of an empirically determined com-
plexity score called ’Mean Opinion Score’ (MOS)
for German sentences. Overall, our best model is
ranked on the 7th place out of 10. In the following,

1Our code is available at
https://github.com/Vipitis/HHUplexity

we present the approach and results of our team
"HHUplexity" in more detail.

1.1 Shared Task Data
The training data (Naderi et al., 2019) for the shared
task contains 1000 sentences from 25 Wikipedia
texts. The development data and test data contain
100 and 210 sentences, respectively, for which the
document distribution is not known. The sentences
were rated by German language learners (between
CEFR level A and B) on a 7 point Likert-scale
regarding their complexity (1 – very easy to 7 – very
complex). The arithmetic mean of these ratings
is the target score – MOS score – of the shared
task. 7.6% of the training samples are rated as very
easy (score = 1), whereas 20.3% are rated as rather
complex (score > 4) and 3.4% have a score higher
than 5.

The root mean squared error (RMSE) after third
order mapping as well as a more balanced RMSE
score (RMSE𝑚𝑎𝑝𝑝𝑒𝑑) are used to evaluate the pre-
dicted MOS scores (Mohtaj et al., 2022).

2 Method

Our main approach is to combine hand-crafted fea-
tures with text embeddings of language models.
Therefore, we have calculated several features as
described in subsection 2.1. To compare the effect
of these features in combination with language mod-
els, we follow two baseline approaches: i) training
different regression models with the features (see
subsection 2.2), and ii) fine-tuning language models
without features (see subsection 2.3). Afterwards,
we combine the features with the language models
in a multimodal model (see subsection 2.4).

2.1 Features
We calculate 349 features of seven main categories:
features based on length, readability assessment fea-
tures, features based on language proficiency, mor-
phological features, syntactic features, morphosyn-

https://github.com/Vipitis/HHUplexity


Feature
Le

ng
th

-b
as

ed

number of words [♠]
number of types
number of characters [♠]
number of syllables [♠]
avg. word length in characters
max. word length in characters
avg. word length in syllables
number of sentences

R
ea

da
bi

lit
y

Flesch Reading Ease Score [♥]
Flesch-Kincaid Grade Level [♥]
Dale-Chall Readability Score
Linsear Write Formula
Automated Readability Index
difficult words

M
or

ph
ol

og
ic

al ratio of negations & negated words
ratio of compounded words & nouns
number of nominalizations
N-gram frequencies
ratio of nouns in cases

M
or

ph
os

yn
ta

ct
ic number of verbs, auxiliaries, nouns, pronouns

ratio of coarse-grained POS-tags [⬥] [♣]
ratio of fine-grained POS-tags (STTS) [⬥] [♣]
noun-to-verb ratio
number of stop words [◀]
ratio of function words [◀]
ratio of named entities

Feature

Sy
nt

ac
tic

max. depth of the dependency parse tree [◀]
max. & avg. distance between tokens in the parse tree
max. & avg. distance between verbs and verb particles in the parse tree
avg. length of NP & VP & PP [⬥]
± projective parse tree [▶]
± head of the parse tree is a noun or verb [▶]
± one child of the head of the parse tree is a subject [▶]
± passive voice [⬥]
± subjunctive mood [⬥]
ratio of multi-word expressions [▶]
number of clauses
ratio of all tokens of coordinating & subordinating clauses [⬥]
ratio of tokens marking relative clauses [⬥]
ratio of tokens marking prepositional phrases [⬥]
ratio of tokens marking referential phrases [▶]

Le
xi

ca
l

ratio of words that are in the vocabulary lists for CEFR levels A1, A2, & B1
type-token ratio [◀]
avg. lemma frequency & rank (based on deCOW)
lexical complexity based on ranks of German FastText embeddings [♥]
max. and avg. rank in the German FastText embeddings [♥]

O
th

er

perplexity score (based on GerPT2)
label of target group and their softmax scores predicted by a fine-tuned model
on this labeling task
cosine similarity between original sentence and backtranslated sentences
into German from English, Turkish, Hungarian, Chinese, and Georgian
avg. imagebility and concreteness score [◀]

Table 1: Overview table of all features per category. The symbols stand for the papers in which the features were
introduced: [♠] Scarton et al. (2018), [♥] Martin et al. (2018), [♣] Kauchak et al. (2014), [⬥] Gasperin et al. (2009),
[◀] Collins-Thompson (2014), [▶] Stodden and Kallmeyer (2020).

tactic features, and other features. An overview
of all features is provided in Table 1. In general
we find that 78% of the features have a significant
Pearson correlation with the MOS target value (p-
value > 0.05). Of those 66% have a weak cor-
relation (|𝑟| < .4), 21% a moderate correlation
(.4 ≤ |𝑟| < .6) and 12% a strong correlation
(.6 ≤ |𝑟|).

However, several features are absolute count fea-
tures such as e.g. syllables or character count that
depend on sentence length. If one transforms these
features into proportional features the rate of fea-
tures having a significant Pearson correlation with
the MOS target value drops to 57%.

Features based on Length. As basic features to
estimate the complexity of a sentence, we consider
the length of the sentence (in words, syllables and
characters) and the length of the words (in syllables
and characters).

Readability Assessment Features. The length
of words and sentences can also be jointly used to
estimate text complexity within traditional readabil-
ity formulas for texts, e.g., Flesch Reading Ease

score or Flesch-Kincaid Grade Level.2 The estab-
lished readability metrics have been calculated for
the original German sentences as well as for auto-
matically translated English sentences (altogether
24 features). It turns out that the German scores
correlate better than or equally well as the English
scores with the exception of the Dale-Chall Read-
ability Score. While Dale-Chall shows no signifi-
cant correlation with the MOS-values for the Ger-
man sentences it correlates with 𝑟 = 0.392 for the
English sentences.

It turns out that these quite simple formulas lead
to the features with the strongest MOS-correlations.
Only four significant features have a Pearson cor-
relation 𝑟-value above 0.7 of which three are estab-
lished readability scores: Linsear Write Formula
with 𝑟 = 0.745, difficult words with 𝑟 = 0.741, Au-
tomated Readability Index (ARI) with 𝑟 = 0.706,
and number of words 𝑟 = 0.701.

Lexical Features and Features based on Lan-
guage Proficiency. Even if a word is short, it
can be still unknown to a user and, therefore, diffi-
cult to understand. In our work, we include some

2We use several readability metrics of the textstat package
(https://pypi.org/project/textstat/).

https://pypi.org/project/textstat/


lexical and language proficiency-based features to
estimate the complexity of a sentence based on the
choice of words. Simple words are often frequent
and complex words more infrequent, so word fre-
quency might help to estimate the complexity of a
sentence (Martin et al., 2018; Collins-Thompson,
2014). We follow two approaches, first, we obtain
the frequency and rank per lemma based on the
deCOW-corpus (Bildhauer and Schäfer, 2014) and
build the average of them per sentence. Second, we
measure the lexical complexity based on the word
ranks in the German FastText Embeddings as well
as obtaining the highest and average position of the
tokens in the sentence.

Additionally, we select vocabulary lists per
CEFR level A1, A2, B1 by the Goethe institute3

and measure the ratio of words in the input sentence
that can be found in the CEFR vocabulary lists. Vo-
cabulary lists for other CEFR levels have not been
available. The correlations with the empirical MOS-
values indicate that the study participants judging
the complexity are familiar with the vocabulary up
to the B1 level. All three correlations (ratio of A1
/ A2 / B1 vocabulary words) are negative and lie
in the range −0.35 ≤ 𝑟 ≤ −0.4. That is the higher
the proportion of A1/A2/B1 vocabulary words, the
less complex the participants judged the sentence.

Morphological Features. Besides the length and
the choice of the words, a morphological analysis
of words can be helpful to assess the complexity
of the sentences. For example, some morphemes
can drastically change the meaning of a word, e.g.,
negation prefixes ("irr-" or "un-"), nominalization
suffixes ("-heit" or "-keit"), or one-token compound
nouns ("Staubecken", "Dampfschiff"). Therefore,
we calculate the number of nominalizations, nega-
tions based on a fix list of affixes, count the number
of n-grams4, as well as the ratio of compounded
words5. Furthermore, we include the ratio of nouns
per case, as the genitive is often difficult to un-
derstand. The non-ngram morphological features
exhibit a significant but weak correlation with the
MOS-values.

Syntactic Features. Besides an analysis of the
words, an analysis of the structure of a sentence
can give additional insights into its complexity be-

3https://www.goethe.de/de/spr/kup/prf/prf.html
4We consider all uni-grams in the training data (char vocab),

and top k n-grams for k=20, n=2, 3, 4, 5.
5The compounded words are obtained by

https://github.com/repodiac/german_compound_splitter.

cause some syntactic structures take longer to pro-
cess and comprehend (Gibson, 1998). To reflect
syntactic complexity in our features, we measure
the maximum depth of the dependency parse tree,
maximum and average distances between words
and number of clauses.6 Based on Gasperin et al.
(2009), we add the average length of noun, verb,
and prepositional phrases, and whether the sentence
is written in active or passive voice and indicative
or subjunctive mood. Furthermore, we check some
regularities in the parse tree based on Stodden and
Kallmeyer (2020) (see Table 1). Based on the parse
tree, we also count the ratio of multi-word expres-
sions and ratio of all tokens of some clauses (see
Table 1). Maximum tree depth has the strongest
correlation (𝑟 = 0.583) with the MOS-values. Tree
width features like average NP or VP length show
a moderate positive correlation as well (𝑟 ≈ 0.4).
A negative correlation is found for the number of
clauses normalized by sentence length (𝑟 = −0.46).

Morphosyntactic Features. Part-of-speech
(POS) tags combine some morphological infor-
mation with syntactic information, therefore we
use the number and ratio of coarse-grained /
fine-grained POS tags and noun-to-verb ratio to
estimate the sentence complexity as similar as in
Gasperin et al. (2009) and Kauchak et al. (2014).
Following Collins-Thompson (2014), we also
include the ratio of function words and stop words
to all tokens as a feature. However, none of these
features has a moderate or strong correlation with
the MOS-score.

Psycholinguistic Features. In readability liter-
ature, psycholinguistic-based features are often
named as relevant features (Collins-Thompson,
2014; Davoodi and Kosseim, 2016). In our
work, we obtain the imageability and concrete-
ness of each word per sentence based on the Con-
creteness and imageability lexicon MEGA.HR-
Crossling (Ljubešić, 2018) and measure the average
per sentence as another feature. Both of these fea-
tures do not show a moderate or strong correlation
which might be due to the absence of the words of
the sentences in the chosen resources.

Perplexity Feature. We calculate the perplexity
of the sentence with "GerPT-2"7. The higher the
perplexity score, the harder to predict the seen sen-

6The number of clauses is heuristically derived by the
clause-splitting method described in Dönicke (2020).

7https://huggingface.co/benjamin/gerpt2

https://www.goethe.de/de/spr/kup/prf/prf.html
https://github.com/repodiac/german_compound_splitter
https://huggingface.co/benjamin/gerpt2


tence and the more unlikely is the input sentence
for the model. Hence, we hypothesize, the higher
the perplexity score, the more uncommon/complex
is the sentence. For the training data the hypothesis
can be confirmed but only by a weak correlation
(𝑟 = 0.214).

Translation-based Features. The idea is to test
whether translation difficulties indicate higher
MOS-values. Therefore, with GoogleTranslator
the sentences have been translated into English,
Turkish, Hungarian, Chinese, and Georgian and
backtranslated into German. These languages vary
in their morphological and syntactic similarity and
in their degree of genetic relationship to German.
For the original and the backtranslated sentences
contextualized embedding vectors have been deter-
mined with a transformer language model8. Finally,
the cosine similarity for the sentence pairs has been
calculated and added as a feature. It turns out that
only Georgian leads to a non significant feature (p-
value = 0.08), all others are significantly correlating
with the MOS-values indeed only weakly. The high-
est correlation is found for Chinese Simplified with
𝑟 = 0.146 and 𝑝 = 0.00.

Text Level. We fine-tune a 3-class text level clas-
sifier on the Lexica corpus (Hewett and Stede,
2021), a dataset with German Wikipedia texts for
three different target groups: younger children,
children and adults. From this dataset we sample
roughly 38k sentences (taken from roughly 1650 dif-
ferent texts), and fine-tune a German BERT model9
to predict one of the three labels: child, youth,
adult. The fine-tuned language model is applied
to the shared task dataset and the softmax scores
for the three labels, as well as the predicted la-
bels are used as additional text level features. All
four text level features have a rather high moderate
correlation with the MOS values: softmax adult
𝑟 = 0.589, softmax youth 𝑟 = −0.447, softmax
child 𝑟 = −0.519, and predicted label 𝑟 = 0.565.
The correlations show that the study participants
judge sentences as less complex if they have a
higher probability of being labeled as ‘child’ or
‘youth’ and as more complex the higher the proba-
bility of the label ‘adult’ is. This indicates that the
German language proficiency level of the partici-
pants is in between the youth and the adult level.

8https://huggingface.co/Sahajtomar/German-semantic
9https://huggingface.co/deepset/gbert-base

2.2 Predicting MOS from features

We have compared different methods to predict
MOS based on the features from the previous sec-
tion. To choose an appropriate model architecture
and hyperparameters, we train and test models on a
5-fold crossvalidation split of the shared task train-
ing data for which MOS scores are available. We
compare linear regression models with different
regularization (Ridge, ElasticNet), and XGBoost
(Chen and Guestrin, 2016). Because XGBoost
achieved the best crossvalidation performance by a
margin of > .05 RMSE compared to the other mod-
els, we only report results for this model. Using the
same 5-fold crossvalidation split, the best hyperpa-
rameters are determined. The best model is an XG-
BoostRegressor10 with n_estimators=2500, a
learning rate of eta=.005, and a max_depth of
5. This model achieves a RMSE of .545 (RMSE
mapped .502) on the final test data.

2.3 Fine-tuning

We have explored fine-tuning a language model
directly on the regression task using Huggingface’s
AutoModelForSequenceClassification for various
models available on Huggingface including English,
German and multilingual versions of BERT (Devlin
et al., 2019) and DistilBERT (Sanh et al., 2019). To
select the best pre-trained model, we have trained
on 900 sentences of the training data and evaluated
RMSE on the remaining 100. With a learning rate
of 2 ∗ 10−5 and 5 epochs. Trading smaller batch
sizes for more steps led to better results where 10
did better than 30 or 50.
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Figure 1: Architecture of the multimodal model that
combines BERT embeddings with feature vectors

10https://docs.getml.com/1.1.0/api/getml.predictors.XGBoostRegressor.html

https://huggingface.co/Sahajtomar/German-semantic
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2.4 Multimodal model
To combine text embeddings and numerical fea-
tures, we have written a custom version of Hugging-
face’s DistilbertForSequenceClassification heavily
inspired by Multimodal-Toolkit (Gu and Budhkar,
2021). BERT embeddings and text features are
combined by a feedforward neural network, the ar-
chitecture of which is displayed in Figure 1.

3 Results

RMSE
XGBoost no ngrams .545
XGBoost all feats .639
ElasticNet no ngrams .672
ElasticNet all feats .659
Ridge no ngrams .669
Ridge all feats .713
bert-base-cased .601
bert-base-german-cased .552
bert-base-german-dbmdz-cased .638
bert-base-multilingual-cased .565
distilbert-base-cased .600
distilbert-base-german-cased .486
xlm-roberta-base .511
distilbert-base-german-cased multimodal .622

Table 2: Results for all models. Boldface results indi-
cate performance on test data via a submission to the
evaluation system. In all other cases, the performance
is measured on a randomly selected held-out split of the
training data. The first line separates regression models
and fine-tuned language models, and the second line
separates the multimodal model.

Results are presented in Table 2. For feature-
based predictors, features and target MOS scores
are transformed by removing the mean and scaling
to unit variance. We find that gradient-boosting
methods (XGBoost) work significantly better than
linear models with ElasticNet or Ridge regulariza-
tion. As shown in Table 2, the ablation of n-gram
features clearly drops the RMSE score for XG-
Boost and Ridge regularization (> 0.04). XGBoost
without n-gram features achieves a RMSE𝑚𝑎𝑝𝑝𝑒𝑑
score of .502 on the test data. For fine-tuned mod-
els, distilbert-base-german-cased was trained on
990 sentences with batch size 10 and 5 epochs.
The submitted result reached .486 RMSE (.473
RMSE𝑚𝑎𝑝𝑝𝑒𝑑) on test data. When combining a
transformer language model and features (subsec-
tion 2.4), we found that our implementation did not
manage to improve results over the fine-tuning base-
line. The best submission for this method reached

.622 RMSE (.524 RMSE𝑚𝑎𝑝𝑝𝑒𝑑). A smaller feature
set based on their importance might improve the
results, similar as shown for the ablation of n-gram
features with XGBoost and Ridge regularization
(see Table 2).

3.1 Distribution of predictions

Figure 2: Distribution of MOS scores in the training
data (70 bins).

On crossvalidated results, we find that many of
our models do not predict the Gaussian distribution
of MOS scores with an additional peak at the low
end (Figure 2). All models correctly identify the
mean scores of the general dataset, but generally
tend to predict MOS scores of a lower standard de-
viation. Across feature-based models, the standard
deviation of predicted scores on validation data is
approximately 20% smaller than the standard devi-
ation of the gold labels. We do not know the true
labels of the validation and testing shared task data,
but assume that this systematic error is also present
in our submissions for these datasets.

4 Conclusion
In our contribution to the shared task, we have com-
pared predictions based on linguistic features with
an approach based on transfer learning, i.e., fine-
tuning a language model. We find that even though
linguistic features achieve relatively high correla-
tion with the MOS scores, they are outperformed by
a "simple" fine-tuned transformer language model.

References
Felix Bildhauer and Roland Schäfer. 2014. Decow14

lemma frequency list.

John R. Bormuth. 1966. Readability: A new approach.
Reading Research Quarterly, 1(3):79–132.

Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A
scalable tree boosting system. In Proceedings of

https://www.webcorpora.org/opendata/frequencies/german/decow14a/decow14ax.freq10.l.zip
https://www.webcorpora.org/opendata/frequencies/german/decow14a/decow14ax.freq10.l.zip
http://www.jstor.org/stable/747021
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785


the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD
’16, pages 785–794, New York, NY, USA. ACM.

Kevyn Collins-Thompson. 2014. Computational assess-
ment of text readability: A survey of current and fu-
ture research. ITL - International Journal of Applied
Linguistics, 165(2):97–135.

Mihai Dascalu. 2012. Analyzing discourse and text com-
plexity for learning and collaborating: A cognitive
approach based on natural language processing.

Elnaz Davoodi and Leila Kosseim. 2016. CLaC at
SemEval-2016 task 11: Exploring linguistic and
psycho-linguistic features for complex word identi-
fication. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 982–985, San Diego, California. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Tillmann Dönicke. 2020. Clause-level tense, mood,
voice and modality tagging for German. In Proceed-
ings of the 19th International Workshop on Treebanks
and Linguistic Theories, pages 1–17, Düsseldorf, Ger-
many. Association for Computational Linguistics.

Caroline Gasperin, Lucia Specia, Tiago F. Pereira, and
Ra M. Aluisio. 2009. Learning when to simplify
sentences for natural text simplification. In In Pro-
ceedings of ENIA, pages 809–818.

Edward Gibson. 1998. Linguistic complexity: locality
of syntactic dependencies. Cognition, 68(1):1–76.

Ken Gu and Akshay Budhkar. 2021. A package for learn-
ing on tabular and text data with transformers. In Pro-
ceedings of the Third Workshop on Multimodal Artifi-
cial Intelligence, pages 69–73, Mexico City, Mexico.
Association for Computational Linguistics.

Julia Hancke, Sowmya Vajjala, and Detmar Meurers.
2012. Readability classification for German using
lexical, syntactic, and morphological features. In Pro-
ceedings of COLING 2012, pages 1063–1080, Mum-
bai, India. The COLING 2012 Organizing Commit-
tee.

Freya Hewett and Manfred Stede. 2021. Automatically
evaluating the conceptual complexity of German texts.
In Proceedings of the 17th Conference on Natural
Language Processing (KONVENS 2021), pages 228–
234, Düsseldorf, Germany. KONVENS 2021 Orga-
nizers.

David Kauchak, Obay Mouradi, Christopher Pentoney,
and Gondy Leroy. 2014. Text simplification tools:
Using machine learning to discover features that iden-
tify difficult text. 2014 47th Hawaii International
Conference on System Sciences, pages 2616–2625.

Nikola Ljubešić. 2018. Concreteness and imageability
lexicon MEGA.HR-crossling. Slovenian language
resource repository CLARIN.SI.

Louis Martin, Samuel Humeau, Pierre-Emmanuel
Mazaré, Éric de La Clergerie, Antoine Bordes, and
Benoît Sagot. 2018. Reference-less quality estima-
tion of text simplification systems. In Proceedings
of the 1st Workshop on Automatic Text Adaptation
(ATA), pages 29–38, Tilburg, the Netherlands. Asso-
ciation for Computational Linguistics.

Salar Mohtaj, Babak Naderi, and Sebastian Möller. 2022.
Overview of the GermEval 2022 shared task on text
complexity assessment of german text. In Proceed-
ings of the GermEval 2022 Shared Task on Text Com-
plexity Assessment of German Text, Potsdam, Ger-
many. Association for Computational Linguistics.

Babak Naderi, Salar Mohtaj, Kaspar Ensikat, and Se-
bastian Möller. 2019. Subjective assessment of text
complexity: A dataset for german language.

Gustavo Paetzold and Lucia Specia. 2016. SemEval
2016 task 11: Complex word identification. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval-2016), pages 560–569,
San Diego, California. Association for Computational
Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

Carolina Scarton, Gustavo Paetzold, and Lucia Specia.
2018. Text simplification from professionally pro-
duced corpora. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Matthew Shardlow, Richard Evans, Gustavo Henrique
Paetzold, and Marcos Zampieri. 2021. SemEval-2021
task 1: Lexical complexity prediction. In Proceed-
ings of the 15th International Workshop on Semantic
Evaluation (SemEval-2021), pages 1–16, Online. As-
sociation for Computational Linguistics.

Regina Stodden and Laura Kallmeyer. 2020. A multi-
lingual and cross-domain analysis of features for text
simplification. In Proceedings of the 1st Workshop on
Tools and Resources to Empower People with REAd-
ing DIfficulties (READI), pages 77–84, Marseille,
France. European Language Resources Association.

https://doi.org/https://doi.org/10.1075/itl.165.2.01col
https://doi.org/https://doi.org/10.1075/itl.165.2.01col
https://doi.org/https://doi.org/10.1075/itl.165.2.01col
https://doi.org/10.1007/978-3-319-03419-5
https://doi.org/10.1007/978-3-319-03419-5
https://doi.org/10.1007/978-3-319-03419-5
https://doi.org/10.18653/v1/S16-1151
https://doi.org/10.18653/v1/S16-1151
https://doi.org/10.18653/v1/S16-1151
https://doi.org/10.18653/v1/S16-1151
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.tlt-1.1
https://doi.org/10.18653/v1/2020.tlt-1.1
https://doi.org/https://doi.org/10.1016/S0010-0277(98)00034-1
https://doi.org/https://doi.org/10.1016/S0010-0277(98)00034-1
https://doi.org/10.18653/v1/2021.maiworkshop-1.10
https://doi.org/10.18653/v1/2021.maiworkshop-1.10
https://aclanthology.org/C12-1065
https://aclanthology.org/C12-1065
https://aclanthology.org/2021.konvens-1.23
https://aclanthology.org/2021.konvens-1.23
http://hdl.handle.net/11356/1187
http://hdl.handle.net/11356/1187
https://doi.org/10.18653/v1/W18-7005
https://doi.org/10.18653/v1/W18-7005
https://doi.org/10.48550/ARXIV.1904.07733
https://doi.org/10.48550/ARXIV.1904.07733
https://doi.org/10.18653/v1/S16-1085
https://doi.org/10.18653/v1/S16-1085
https://aclanthology.org/L18-1553
https://aclanthology.org/L18-1553
https://doi.org/10.18653/v1/2021.semeval-1.1
https://doi.org/10.18653/v1/2021.semeval-1.1
https://aclanthology.org/2020.readi-1.12
https://aclanthology.org/2020.readi-1.12
https://aclanthology.org/2020.readi-1.12


Pseudo-Labels Are All You Need
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Abstract

Automatically estimating the complexity of
texts for readers has a variety of applications,
such as recommending texts with an appro-
priate complexity level to language learners
or supporting the evaluation of text simplifica-
tion approaches. In this paper, we present our
submission to the Text Complexity DE Chal-
lenge 2022, a regression task where the goal
is to predict the complexity of a German sen-
tence for German learners at level B. Our ap-
proach relies on more than 220,000 pseudo-
labels created from the German Wikipedia and
other corpora to train Transformer-based mod-
els, and refrains from any feature engineering
or any additional, labeled data. We find that
the pseudo-label-based approach gives impres-
sive results yet requires little to no adjustment
to the specific task and therefore could be eas-
ily adapted to other domains and tasks.

1 Introduction

What makes some texts more difficult to read for
learners of a foreign language than others? How
does a complicated sentence construction or the
use of rare vocabulary increase complexity? The
prediction of text complexity with machine learn-
ing methods addresses these questions. In con-
trast to last years’ shared tasks at KONVENS,
which focused on the disambiguation of German
verbal idioms (Ehren et al., 2021), the identifica-
tion of toxic, engaging, and fact-claiming com-
ments (Risch et al., 2021), and scene segmentation
in narrative texts (Zehe et al., 2021), the task of
2022 is about text complexity. In this paper, we
present our submission to this Text Complexity
DE Challenge 2022. It is a shared task addressing
the automatic estimation of the complexity of Ger-
man sentences for readers, in particular, German
learners at level B. The provided training dataset
contains about 1000 sentences and the test dataset

about 300 sentences in German. Figure 1 shows
an exemplary sentence from the shared task dataset
in German, an English translation, and the arith-
metic mean of ratings from all annotators. With a
seven-level Likert-scale with values ranging from
very easy (1) to very complex (7), this task is a
regression task and it is evaluated using the Root
Mean Squared Error (RMSE). A third-order map-
ping is applied before the error is measured so that
the impact of any systematic bias in the predictions
on the metrics is reduced. Thereby, the focus of the
evaluation is shifted towards ranking sentences cor-
rectly with regards to their complexity rather then
assigning the correct absolute complexity score.
We refer to the overview paper of the shared task
for more details about the dataset and the overall
results (Mohtaj et al., 2022).

The remainder of this paper is structured as fol-
lows. Section 2 summarizes related work on text
complexity estimation and on pseudo-labeling tech-
niques for machine learning. We describe our ap-
proach in Section 3 and its evaluation in Section 4,
with experiments on the validation dataset provided
by the shared task organizers. We conclude in Sec-
tion 5 and provide an outlook on future work.

2 Related Work

Research on reading complexity of German texts
is so far relatively scarce with several papers intro-
ducing datasets of annotated German sentences or
longer texts and mostly feature-based approaches
for text complexity prediction. First of all, there is
a dataset with sentence-level annotations, which
is the basis of this shared task (Naderi et al.,
2019). Rios et al. (2021) introduce a dataset for
document-level text complexity with the applica-
tion focus of text simplification and there are two
other document-level text complexity datasets by
Battisti et al. (2020) and by Hewett and Stede



German Sentence: Als Versauerung der
Meere wird die Abnahme des pH-Wertes des
Meerwassers bezeichnet.
English Translation: Ocean acidification is
the term used to describe the decrease in the
pH of seawater.
Compexity Score: 2.13

German Sentence: Nach chemischer
Härtung des Rußes war er in der Lage, auf
galvanoplastischem Wege ein Zink-Positiv
und von diesem ein Negativ der Platte
anzufertigen, das als Stempel zur Pressung
beliebig vieler Positive genutzt werden konnte
– die Schallplatte war erfunden.
English Translation: After chemical hard-
ening of the carbon black, he was able to
produce a zinc positive by galvanoplastic
means and from this a negative of the record,
which could be used as a stamp for pressing
any number of positives - the record was
invented.
Complexity Score: 4.70

Figure 1: Two sentences from the training dataset.

(2021). The latter follows the format of a simi-
lar study (Hulpus, et al., 2019) based on a dataset
of English newspaper articles (Xu et al., 2015).
Another dataset is from a Kaggle challenge called
CommonLit Readability Prize, where the task is to
rate the complexity of literary passages for school
grades 3-12.1 Last but not least, there are unla-
beled datasets of German texts with simple lan-
guage, such as the Tagesschau/Logo corpus and
the Geo/Geolino corpus (Weiß and Meurers, 2018)
or Klexikon (Aumiller and Gertz, 2022). These
datasets cannot be used directly for fine-tuning
models on the text complexity prediction task due
to the lack of annotations. However, we show in
our approach that they can be used in combination
with pseudo-labeling.

Similar to the pseudo-labeling approach that we
use, there is a data augmentation technique where
a slow but more accurate cross-encoder model is
used to label a large set of otherwise unlabeled data
samples (Thakur et al., 2021). This technique aug-
ments the training data for a faster, less complex

1https://www.kaggle.com/competitions/
commonlitreadabilityprize/

bi-encoder model to address a pairwise sentence
ranking task. Du et al. (2021) present a data aug-
mentation method where given a small, labeled
training dataset, they retrieve additional training
samples from a large unlabeled dataset and then
label these samples automatically with a model
trained on the original, smaller training dataset.
The resulting augmented, synthetic dataset can then
be used to train another model that generalizes bet-
ter to unseen data. Of the related work presented,
this approach, also referred to as self-training, is
the most similar to the approach we present in this
paper. The main difference is that Du et al. (2021)
tailor their approach mainly to domain-specific pre-
training, whereas we focus on task-specific fine-
tuning. Xie et al. (2019) extend the self-training
method by intentionally adding noise to the training
process to foster better generalization of the trained
models. Further, they repeat the self-training pro-
cess several times, so that the model trained on
pseudo-labels is again used to create another set
of pseudo-labels, which are in turn used to train
another model and so on. As this iterative approach
is very resource-intensive in terms of training time,
we limit our approach to only one iteration. How-
ever, no inherent limitation prevents our approach
from more training iterations. To the best of our
knowledge, there are no published approaches that
use neural language models for the particular task
of complexity prediction of German texts, but only
of English texts (Martinc et al., 2021).

3 A Semi-Supervised Learning Approach
for Text Complexity Prediction

Our semi-supervised learning approach uses neu-
ral language models based on the Transformer ar-
chitecture (Vaswani et al., 2017). As pre-trained
models that are not fine-tuned to a specific natu-
ral language processing task yet, we use GBERT
and GELECTRA models by Chan et al. (2020)
and an XLM-RoBERTa model by Conneau et al.
(2020). Given that the training dataset provided
by the shared task organizers is relatively small for
fine-tuning these pre-trained models, the core idea
of our approach is to increase the number of train-
ing samples by automatically generating pseudo-
labels. Figure 2 visualizes the different steps of the
entire approach with its three main steps: pseudo-
labeling, fine-tuning, and ensembling. For the im-
plementation of these steps, we use the two open

https://www.kaggle.com/competitions/commonlitreadabilityprize/
https://www.kaggle.com/competitions/commonlitreadabilityprize/
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Figure 2: Overview of the different steps that comprise the pseudo-labeling, fine-tuning, and ensembling approach.

source frameworks FARM2 and Haystack3.
The first step is to create a large corpus of Ger-

man sentences with varying text complexity to
serve as a source for the pseudo-label sentences.
This corpus comprises the following resources:

• eight random subparts of a German Wikipedia
dump (about 8 percent of all 2.3 million Ger-
man Wikipedia articles as of 2019),4

• 130,000 news articles from the German news
platform Zeit Online,5

• three million sentences from German newspa-
per texts as part of the Leipzig Corpus Collec-
tion (Goldhahn et al., 2012),

• the Geo/Geolino/Tagesschau/Logo cor-
pus (Weiß and Meurers, 2018),

• the Corpus Simple German (all subsets except
for Klexikon),6

• the Klexikon (Aumiller and Gertz, 2022), and

• the Hurraki dictionary for plain language.7

Combining these datasets results in a total of
12,955,913 sentences. As some of them appear
more than once, this corresponds to 12,562,164 dis-
tinct sentences. Each of them is embedded using a
SentenceTransformers msmarco-distilbert
model8 (Reimers and Gurevych, 2019) and added
to an OpenSearch index. Further, we fine-tune a
deepset/gbert-large model on the task of
sentence complexity on all of the provided train-
ing labels as a baseline. Subsequently, to get our

2https://github.com/deepset-ai/farm
3https://github.com/deepset-ai/

haystack
4The most recent dump is available online: https://

dumps.wikimedia.org/dewiki/20220720/
5https://www.zeit.de
6https://daniel-jach.github.io/

simple-german/simple-german.html
7https://hurraki.de
8sentence-transformers/msmarco-

distilbertmultilingual-en-de-v2-tmp-
lng-aligned

set of pseudo-labels, we embed each of the sen-
tences in the provided training set with the same
SentenceTransformers msmarco-distilbert
model and retrieve the 500 most similar sentences
from our large corpus of German sentences as po-
tential pseudo-labels. The baseline complexity
scorer model produces a complexity score for each
potential pseudo-label. To keep roughly the same
distribution as in the original training dataset, we
filter the generated pseudo-labels in the following
way: we keep only those sentences whose predicted
score does not deviate more than the standard de-
viation of the ratings of the original sentence used
to retrieve the 500 potential pseudo-labels. This
filtering results in a total of 228,796 pseudo-labels.
Table 1 lists the number of pseudo-labels originat-
ing from the different data sources.

The pseudo-labels are used to fine-tune different
Transformer-based models on the task of complex-
ity scoring. We fine-tune deepset/gelectra-
large, deepset/gbert-large and xlm-
roberta-large using three different seeds for
each model, resulting in a total of nine models.
Subsequently, we fine-tune each of these models
using five-fold cross-validation with the original
training set, resulting in a total of 45 models. Fi-
nally, to combine these 45 models into an ensemble
providing a single prediction score per data sample,
we train linear regression models on the out-of-fold
predictions from the previous cross-validations.

4 Experiments

We evaluate four different settings using five-fold
cross-validation:

• a baseline deepset/gbert-large
model fine-tuned on the provided training set,

• an ensemble of nine models fine-tuned
only on pseudo-labels and with three dif-
ferent random seeds, scores aggregated
by mean (deepset/gbert-large,
deepset/gelectra-large, xlm-
roberta-large

https://github.com/deepset-ai/farm
https://github.com/deepset-ai/haystack
https://github.com/deepset-ai/haystack
https://dumps.wikimedia.org/dewiki/20220720/
https://dumps.wikimedia.org/dewiki/20220720/
https://www.zeit.de
https://daniel-jach.github.io/simple-german/simple-german.html
https://daniel-jach.github.io/simple-german/simple-german.html
https://hurraki.de


Table 1: Number of pseudo-labeled sentences with the average length in characters, and the average mean opinion
score per data source. The text complexity of the sources differs with Wikipedia and Hurraki being the most,
respectively least difficult.

Data Source #Sentences ∅∅∅Length ∅∅∅MOS

GERMAN WIKIPEDIA 137,228 133 3.0
ZEIT ONLINE 47,613 108 2.5
3 MILLION NEWS SENTENCES 25,928 110 2.6
GEO/GEOLINO/TAGESSCHAU/LOGO 7,971 98 2.5
CORPUS SIMPLE GERMAN 4,896 93 2.3
KLEXIKON 3,600 75 2.0
HURRAKI 1,559 43 1.5

• an ensemble of 45 models fine-tuned on
pseudo-labels and the provided training set,
with scores aggregated by mean, and

• an ensemble of 45 models fine-tuned on
pseudo-labels and the provided training set,
with scores aggregated by a linear model.

We submitted the predictions of each of the last
three settings to the shared task competition.9

The first setting serves as our baseline with a
deepset/gbert-large model fine-tuned on
the provided training data. The model is trained
on each of the cross-validation folds using early
stopping for a maximum of four epochs. Each
training run was tracked using MLflow and can be
found here.

The second setting is an ensemble of the
language models deepset/gbert-large,
deepset/gelectra-large and xlm-
roberta-large. Each of these models is
fine-tuned for two epochs on the pseudo-labels
described in Section 3 using three different random
seeds. This results in an ensemble of nine models.
One training run takes approximately three hours
on an NVIDIA Tesla V100 GPU with 16 GB of
RAM.

For the third and fourth setting, we fine-tune
the resulting models of the previous step on the
provided training dataset. To further increase the
number of models in the ensemble, we perform
five-fold cross-validation on each of the nine mod-
els, resulting in a total of 45 models. Again, each
training run was tracked using MLflow and can
be found here. To ensemble these 45 models, we
use two different techniques. The third setting ag-
gregates each individual score into a single score

9https://codalab.lisn.upsaclay.fr/
competitions/4964

by simply taking the arithmetic mean of all scores.
The fourth setting trains a linear ridge regression
model on the out-of-fold predictions for each model
that we trained, resulting in five linear regression
models. Applying these linear regression models
decreases the number of scores from 45 to 5. To
get a single score out of these five scores, we calcu-
late their arithmetic mean. Table 2 summarizes the
hyperparameters that are used to train the models
for the different described settings.

Table 3 lists the cross-validation RMSE on the
provided training set. As expected, the approach
of using pseudo-labels in combination with ensem-
bling outperforms the simple baseline. We observe
that fine-tuning the models only on the pseudo-
labels already outperforms the baseline that uses
only the original training data. Performance im-
proves further if the models that were fine-tuned
on the pseudo-labels are additionally fine-tuned on
the original training data. Moreover, using a linear
model to aggregate the individual scores instead of
using the plain average does not further improve
the final score. The best setting, consisting of an
ensemble of 45 Transformer models fine-tuned on
both the pseudo-labels and the provided training
data, with results aggregated using a linear regres-
sion model, yields an RMSE of 0.433.

5 Conclusion

In this paper, we presented our submission to the
Text Complexity DE Challenge 2022. We lever-
aged pseudo-labeled sentences from Wikipedia and
several other publicly available, unlabeled corpora.
Based on the labeled training dataset from the
shared task and the additional pseudo-labeled data,
we fine-tuned Transformer-based neural language
models. Our best ensemble model achieved an

https://public-mlflow.deepset.ai/#/compare-runs?runs=[%22189a619c257d42bb81740547d982bc62%22,%22a96714b9e9b64eb79f40dc771fc43dd8%22,%22d86720d85b4845909782756c3b511a77%22,%22bad0a5b2197e4c42ad55e2c379c4cf18%22,%22b20dac7cb1e942cbb7ccc59357898080%22]&experiment=560
https://public-mlflow.deepset.ai/#/compare-runs?runs=[%22d4d4ba81b7084ee29f51c07248f841a1%22,%22cb51b7a5ae5445f4a908c0229925cb54%22,%2299212c9a951543f8aaea7a2c64fd63ef%22,%220928389a5c914b8581113358a29340c4%22,%2227ac05a160ed428eb0f1b0f07d2a73ed%22,%22f2240f0f8fed4f6590420321a80e52fd%22,%22362f8a5343a14aa2b13d00f513e19052%22,%220539b876f74a4a508100816a476de8e2%22,%22c54a757edc7444b79566b395087aa7b5%22,%2209557849f8b54e1aab247fa00283b78d%22,%223cf22a6a8ba14bf0b64d1ccbaf6bf3f3%22,%223a3d19acaf584d999f5c07820e9a116d%22,%2267890d23fb7349d68ded69901e5b4a4f%22,%22ad96d9e0dc1b403b880d51149c1231fd%22,%228f2dc5c7cc29489d9698d2270297e292%22,%22ea178a505a5b43fb9c1cb84668403d90%22,%22f446a239dd0c40edbeda2521827eaa77%22,%22730c33aa3cfb4ad28a23e0cad47471bb%22,%22771763983a534f2e814ed751b502f84a%22,%22230d9af487b44295bad59f57e80e1f13%22,%2237929400152f4d2084116a87b721c939%22,%22e55f70f3da20484889ab5e8810f76f32%22,%220b0a3213a5c449f58afbd5c98989316d%22,%221fb62d0ff447430c9bda9e5b5700318e%22,%22e5af89a3109f4fc9b32d11ed1fbaa3c0%22,%2243d792fee61c4f4d9e604e5921efb40f%22,%2292dee3ad99714e49b563488f6d198bd3%22,%22b40a28ee733a46cda76ceaca85cfb222%22,%22b410aee81f5b45a3947a7fdcff504e10%22,%225497a0f5d64d412baa020fc925f51695%22,%2269317267890c412eb3e6625c3d9617c6%22,%227d97ace6cd7c4dffba1428d15caa21af%22,%228ee83e5bdec8412ba3d9acf288dd02fb%22,%22cb9e6d9f79a44a05a7d590e4bde129bf%22,%22b0a241c8650140839c5b5eb64a05a50a%22,%2248cfa0218fe9408fb288191eaf99b28c%22,%22847dfa3a3155414e8710e11f553015b2%22,%22ab739830d0b141c896c898147916da1d%22,%227e71372bacc3413786089713eadfcf00%22,%22de5418458c444c3d85bf61c5c2f76196%22,%2203741051db1f48c08377f57750547c50%22,%220d4545ecb2a047abbdab64a7145c0f30%22,%2276788ee2ccb845bf9cc3262ebeddab4d%22,%221a6f42548703452c99701b04d6414e65%22,%22a04c3c0dc45e48e48073d93ff52e4f98%22]&experiment=560
https://codalab.lisn.upsaclay.fr/competitions/4964
https://codalab.lisn.upsaclay.fr/competitions/4964


Table 2: Hyperparameters for fine-tuning the language models on the pseudo-labels and the provided training data.

Hyperparameter Fine-Tuning on Pseudo-Labels Fine-Tuning on Training Set

Learning rate 1e-5 1e-6
LR schedule linear linear
Warm-up steps 10% 10%
Batch size 20 for xlm-roberta-large,

32 otherwise
20 for xlm-roberta-large,

32 otherwise
Early stopping 6 4

(Max.) epochs 2 4
Optimizer Adam Adam
Max sequence length 128 128

Table 3: Cross-validation RMSE.

Model 1 2 3 4 5 ∅∅∅

Baseline 0.512 0.460 0.440 0.398 0.488 0.460
Ensemble pseudo-labels only 0.500 0.462 0.381 0.450 0.442 0.447
Ensemble simple mean aggregation 0.491 0.443 0.374 0.443 0.426 0.435
Ensemble linear model aggregation 0.445 0.455 0.405 0.443 0.418 0.433

RMSE of 0.433 in cross-validation on the public
dataset without third-order mapping and an RMSE
of 0.454 on the private test dataset with third-order
mapping (0.484 without third-order mapping). For
future work, our trained model could be used to cre-
ate more pseudo-labels for another iteration of the
entire approach, presumably resulting in a model
that generalizes even better to unseen test data.
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Abstract

This paper describes the winning approach in
the first automated German text complexity as-
sessment shared task as part of KONVENS
2022. To solve this difficult problem, the eval-
uated system relies on an ensemble of regres-
sion models that successfully combines both
traditional feature engineering and pre-trained
resources. Moreover, the use of adversarial
validation is proposed as a method for coun-
tering the data drift identified during the de-
velopment phase, thus helping to select rele-
vant models and features and avoid leaderboard
overfitting. The best submission reached 0.43
mapped RMSE on the test set during the final
phase of the competition.

1 Introduction

Automatically assessing how easy to read a text
is has many applications, ranging from text sim-
plification for language learners and people with
disabilities to customizing content for a particular
audience. For this reason, the Natural Language
Processing (NLP) research community have been
organizing shared tasks and compiled linguistic re-
sources aiming to solve this problem, not only in
English but also for other languages.

The Text Complexity DE Challenge 2022 (Mo-
htaj et al., 2022) proposes the evaluation of systems
able to predict the complexity of German texts by
rating each sentence using the Mean Opinion Score
(MOS), derived from annotations from a 7 point
Likert-scale. In order to solve this problem and
addressing the unexpected data drift between train-
ing and testing sets, meta-modeling and adversarial
validation techniques were applied by combining
predictions from multiple estimators via stacked
generalization (Wolpert, 1992) and leveraging both
traditional feature engineering and pre-trained re-
sources. The best submission generated by the

described approach and selected through adversar-
ial validation won the competition by achieving the
lowest mapped Root Mean Squared Error (RMSE)
score 1.

This paper is organized as follows: First, related
work is reviewed in Section 2. Next, Section 3
contains an analysis of the individual models and
feature engineering approaches used for this task.
In Section 4, model selection and adversarial val-
idation strategies are discussed. Further on, the
performance of the system and its components are
detailed in Section 5. Finally, in Section 6 the au-
thor draws the main conclusions and outlines future
work.

2 Related Work

The application of NLP techniques for automatic
textual complexity assessment has received atten-
tion in several languages other than English (Quis-
pesaravia et al., 2016; Finnimore et al., 2019; Forti
et al., 2019), although in an smaller scale. Despite
the differences between languages, the use of lexi-
cal, morphological and word list-derived features
are also common in research works focused on Ger-
man (Weiss et al., 2019). Likewise, related NLP ap-
plications such as readability assessment (Hancke
et al., 2012) or evaluation of text simplification
pipelines (Suter et al., 2016) demonstrated that sim-
ilar approaches used to estimate the complexity of
English texts could be suitable for German as well,
although with some known shortcomings.

3 Methodology

The TextComplexityDE (Naderi et al., 2019)
dataset that consists of 1000 sentences in German
language taken from 23 Wikipedia articles was the
only resource provided by the organizers. In or-
der to solve the challenge, this dataset was used

1https://qulab.github.io/text complexity challlenge/



as training data following two main approaches:
feature engineering based on morphological and
lexical information (Mosquera, 2021) and transfer
learning via pre-trained transformers. The regres-
sion models trained using these two different strate-
gies and the methodology applied to combine their
predictions are described in detail below.

3.1 Feature Engineering Models

Several lexical features were calculated from word
stats extracted from dlexDB (Heister et al., 2011),
SUBTLEX-DE (Brysbaert et al., 2011) and aver-
aged for each text. Likewise, sentence-level metrics
from Textstat 2 and Readability 3 Python libraries
were also used. A description of all the word and
sentence features is as follows (entries ending with
an asterisk denote a feature group):

dlexDB

• typ syls cnt: number of syllables.

• typ freq *: absolute / normalized / log abso-
lute / log normalized / rank / rank123 corpus
frequency.

• typ fam *: absolute / normalized / log ab-
solute / log normalized / rank / rank123 fa-
miliarity (Kennedy et al., 2002) (cumulative
frequency of all words of the same length shar-
ing the same initial trigram).

• typ inf *: absolute / normalized / log absolute
/ log normalized / rank / rank123 regularity
(Kennedy et al., 2002) (the number of words
of the same length sharing the same initial
trigram).

• typ div con *: absolute / normalized / log
absolute / log normalized / rank / rank123
document frequency.

• typ div sen *: absolute / normalized / log
absolute / log normalized / rank / rank123
sentence count.

• typ uniq orth strict pos: length of the short-
est prefix uniquely identifying the word.

• typ uniq orth strict neg: negative offset
for the last character of the shortest prefix
uniquely identifying the word.

2https://pypi.org/project/textstat/
3https://pypi.org/project/readability/

• typ uniq lemma strict pos: length of the
shortest prefix uniquely identifying the lem-
matized word.

• typ uniq lemma strict neg: negative offset
for the last character of the shortest prefix
uniquely identifying the lemmatized word.

• typ pia avgcondprob big: average condi-
tional probability of a word, based on an eval-
uation of all bigrams having this word as their
second component.

• typ pia avginfcont big: average information
content of a word, based on an evaluation of
all bigrams having this word as second com-
ponent (Piantadosi et al., 2011).

• typ pia avgcondprob trig: average condi-
tional probability of a word, based on an evalu-
ation of all triigrams having this word as their
third component.

• typ pia avginfcont trigr: average informa-
tion content of a word, based on an evaluation
of all trigrams having this word as third com-
ponent (Piantadosi et al., 2011).

• typ cts cumfreq token *: absolute / normal-
ized / log absolute / log normalized / rank /
rank123 cumulative corpus frequency of all
character trigrams contained in the word.

• typ cts cumfreq type *: absolute / normal-
ized / log absolute / log normalized / rank /
rank123 cumulative lexicon frequency of all
character trigrams contained in the word.

• typ init trigr *: absolute / normalized / log
absolute / log normalized / rank / rank123 cu-
mulative frequency of all words sharing the
same initial character trigram (Lima and In-
hoff, 1985).

• typ nei col all cnt abs: absolute number of
orthographic neighbors (Coltheart, 1977).

• typ syls cumfreq token *: absolute / nor-
malized / log absolute / log normalized / rank
/ rank123 cumulative corpus frequency of all
syllables contained in the word.

• typ syls cumfreq type *: absolute / normal-
ized / log absolute / log normalized / rank /
rank123 cumulative lexicon frequency of all
syllables contained in the word.



SUBTLEX-DE

• WFfreqcount: target word frequency in the
German subtitle corpus.

• spell-check OK (1/0): 1 if the word had no
spelling errors, 0 otherwise.

• CUMfreqcount: case-independent word fre-
quency in the German subtitle corpus.

• SUBTLEX: frequency per million based on
CUMfreqcount.

• lgSUBTLEX: log10(CUMfreqcount+1).

• Google00: word frequency based on Google
2000-2009 Books corpus.

• Google00cum: case-independent word fre-
quency based on Google 2000-2009 Books
corpus.

• Google00pm: Google frequency per million
words.

• lgGoogle00: log10(Google00cum+1).

Sentence Readability

• Kincaid: Kincaid grade level.

• ARI: Automated readability index (Senter and
Smith, 1967).

• Coleman-Liau: Coleman-Liau readability
score (Coleman and Liau, 1975).

• Flesch reading ease: Flesh reading ease score
(Flesch, 1948).

• Gunning-Fog index: Gunning-Fog readabil-
ity index (Gunning et al., 1952).

• LIX: LIX readability score (Anderson, 1983).

• SMOG index: SMOG readability index
(Mc Laughlin, 1969).

• RIX: RIX readability score (Anderson, 1983).

• Dale-Chall index: Dale-Chall readability in-
dex (Chall and Dale, 1995) of the whole sen-
tence.

• Wiener Sachtextformel: grade level for Ger-
man texts (Schulz et al., 1985)

Linear regression and gradient boosting models
were trained with all the above features with default
hyper-parameters. The 2 resulting estimators are
referred across the paper as LR and LGB (Ke et al.,
2017) respectively.

A list of the top 20 features in terms of minimum
redundancy and maximum relevance (mRMR)
(Ding and Peng, 2003) can be found in Table 1.

Table 1: Top 20 features (minimal-optimal set).

Feature
RIX
ARI
Kincaid
GunningFogIndex
LIX
SMOGIndex
typ init trigr abs
wiener sachtextformel
FleschReadingEase
typ init trigr nor
Google00
Coleman-Liau
typ uniq orth strict pos
Google00pm
DaleChallIndex
typ syls cumfreq type rank123
Google00cum
typ uniq lemma strict pos
typ cts cumfreq type abslog
typ fam abs

3.2 Transformer Models
Regression models using neural network architec-
tures based on the Transformer were trained via
fine-tuning on the dataset provided by the task or-
ganizers. A selection of the estimators that were
used in order to generate some of the best scoring
submissions is as follows:

• NN: BERT (Devlin et al., 2019) fine-tuned for
1 epoch 4.

• NNr: BERT fine-tuned for 1 epoch (reverse
word order) 5.

• NN3: RoBERTa (Liu et al., 2019) fine-tuned
for 3 epochs 6.

4https://huggingface.co/dbmdz/bert-base-german-cased
5https://huggingface.co/dbmdz/bert-base-german-cased
6https://huggingface.co/xlm-roberta-base



• NN5: BERT fine-tuned for 2 epochs 7.

3.3 Ensemble
Meta-modeling techniques were applied in order
to combine base models into single predictors by
using stacking generalization. The second level
algorithm used for this task was linear regression
which used the following weights for Ensemble1
and Ensemble2 respectively:

Ensemble1 = 0.18 × LR + 0.17 × LGB +
0.21×NN + 0.39×NNr

Ensemble2 = 0.1×LR+0.05×LGB+0.02×
NN+0.05×NNr+0.25×NN3+0.478×NN5

The out-of-fold cross validation scores of the
base and meta models can be found in Table 2 .

Table 2: Train set errors calculated with 5-fold cross
validation.

Model RMSE MAE
LR 0.726 0.585
LGB 0.707 0.561
NN 0.685 0.542
NNr 0.662 0.527
NN3 0.673 0.531
NN5 0.61 0.477
Ensemble1 0.625 0.5
Ensemble2 0.588 0.464

4 Model Selection and Adversarial
Validation

In the final phase of the competition it became clear
that validation and test data had relevant dissimi-
larities. Some potential reasons were identified
by the participants such as the application of non-
random splits or different pre-processing 8. While
this is not a totally uncommon phenomenon in NLP
(Karpov, 2017; Mosquera, 2020) to the best of the
authors’ knowledge there have not been many ef-
forts to address this problem in comparison with
other domains.

The use of adversarial validation as a solution to
identify concept drift has been explored recurrently
in the literature (Pan et al., 2020). However, due
the relatively small data sizes involved, the usual
approach of training a binary classifier between

7https://huggingface.co/amine/bert-base-5lang-cased
8https://codalab.lisn.upsaclay.fr/forums/4964/741/

train/dev/test sets and selecting the data points
with the closest distribution (Qian et al., 2021) was
deemed sub-optimal. Therefore, Principal Compo-
nent Analysis (PCA) was used instead in order to
calculate low-dimensional projections of the eval-
uation datasets and estimate their drift from the
training data by analyzing the reconstruction errors.
Taking that into account, the author hypothesized
that models using features that would remain stable
across different data splits based on the criteria de-
fine above would exhibit better correlation between
the errors estimated during cross-validation and the
final scores.

In Table 3, it can be observed that the Ensemble1
meta-model could be affected by the data drift and
its estimated performance during the development
phase would likely not translate to the final phase
evaluation. These insights were particularly rele-
vant since development phase models were also par-
tially tuned using feedback from the public leader-
board and ignoring this valuable information would
have resulted in a non-optimal model and feature
selection.

Table 3: PCA reconstruction errors against train (3 com-
ponents, 0.95 variance).

Model Train Development Test
Ensemble1 0.0275 0.0311 0.029
Ensemble2 0.0329 0.0334 0.0328

5 Results

Aiming to compensate for the possible variance
between several subjective ratings, the challenge
organizers decided to use a custom evaluation met-
ric by applying a 3rd order linear mapping func-
tion per each dataset before calculating the error,
which meant that the RMSE score would always
differ from the mapped RMSE. Considering that
the mapping function was unknown to the partici-
pants, RMSE was used instead as the main metric
for local validation and optimization purposes.

While in practice, the mapped scores seemed to
correlate with the local validation, rankings based
on RMSE scores differed substantially from rank-
ings derived from the mapped version. This was
particularly obvious during the development phase
9 where only 2 out of 14 participants (5 out of 14
during the final phase) had the same ranking when

9https://codalab.lisn.upsaclay.fr/competitions/4964#results



considering both mapped and original RMSE met-
rics which highlights the extra difficulty added by
the chosen evaluation metric for this competition.

In Table 4 the results for the highest ranked sub-
missions generated by the described approach dur-
ing different phases of the competition are listed.
As expected after the adversarial validation step,
the meta-model Ensemble1, which produced a high
score solution during the evaluation phase (lowest
RMSE, second best mapped RMSE overall), under-
performed in the final phase and would have ended
up in the 9th position in absence of better submis-
sions after being affected by the aforementioned
data drift. On the other hand, the meta-model En-
semble2 had similar reconstruction errors in all
the datasets and ended up generating the winning
submission.

Table 4: Task results (mapped RMSE and RMSE) for se-
lected submissions during different competition phases.

Model Development Test
Ensemble1 0.326 - 0.361 0.484 - 0.502
Ensemble2 n/a 0.43 - 0.446

Since the challenge organizers decided to not
release the labels of the evaluation datasets and
disabled post-competition submissions, additional
ablation analysis can not be performed in this sec-
tion.

6 Conclusions and Future Work

This paper introduces a meta-model for German
text complexity estimation using both manual fea-
ture engineering and neural networks. The use of
adversarial validation by comparing feature distri-
bution changes between different datasets is pro-
posed as a mechanism to detect data drift via PCA
reconstruction errors. The described system has
achieved the first ranking in mapped RMSE in
the Text Complexity DE Challenge of KONVENS
2022. In a future work, this approach can be
extended through AutoNLP techniques in order
to build multi-lingual text complexity estimation
solutions that could be integrated in other NLP
pipelines.
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Abstract

This paper describes our submission to the
Text Complexity DE Challenge 2022 (Mohtaj
et al., 2022). We evaluate a pairwise regression
model that predicts the relative difference in
complexity of two sentences, instead of predict-
ing a complexity score from a single sentence.
In consequence, the model returns samples of
scores (as many as there are training sentences)
instead of a point estimate. Due to an error in
the submission, test set results are unavailable.
However, we show by cross-validation that pair-
wise regression does not improve performance
over standard regression models using sentence
embeddings taken from pretrained language
models as input. Furthermore, we do not find
the distribution standard deviations to reflect
differences in “uncertainty” of the model pre-
dictions in an useful way.

1 Introduction

This paper describes our submission to the Text
Complexity DE Challenge 2022 (Mohtaj et al.,
2022). The task is to predict the linguistic com-
plexity of a given sentence. The task is defined
as a regression task, where labels are ∈ [1, 7]. La-
bels are averaged human ratings, who rated the
sentences for complexity, understandability, and
lexical defficulty (see (Naderi et al., 2019a) for
details). Only complexity labels are taken into ac-
count in this shared task. The train set consists of
1000 labelled sentences, the development set con-
sists of 100 sentences, and the test set contains 210
sentences. Only the labels of training sentences
where ever revealed to participants.

In this paper, we evaluate pairwise regression for
complexity score prediction. Instead of predicting
a single complexity score from a single sentence,
we predict the relative difference in complexity of
two sentences. In practise, this results in a distri-
bution over complexity scores instead of a point
estimate, because we predict the relative difference

for each training sentence. However, further analy-
sis reveals that pairwise regression neither performs
better than standard regression nor does the stan-
dard deviation of score distributions contain useful
information about model performance.

Furthermore, due to an erroneous submission
we do not have test set score for this shared task.
Therefore, all our analyses and observations are
based on 10-fold cross-validation on the training
data.

2 Related Work

Readability scoring of texts is has been researched
for over a century. Research started by develop-
ing readability formulas based on surface features
such as token counts or type-token ratios. Mod-
ern approaches use statistical methods, especially
supervised learning, to learn readability models.
Here, readability scoring can be defined both as a
regression task (Naderi et al., 2019a; vor der Brück
et al., 2008) and a classification task (Hancke et al.,
2012; Weiss et al., 2021). Features usually rely
on broad linguistic modelling (Weiß and Meurers,
2018; Naderi et al., 2019b).

Recently, deep neural networks have also been
proposed for predicting readability labels (Martinc
et al., 2021). Furthermore, the utility of linguistic
features compared to deep representations was put
into question by Deutsch et al. (2020). However,
the main disadvantage of deep neural networks is
their black-box nature. This is especially problem-
atic, because practical applications of readability
models generally require an especially high level of
transparency, for example in an educational context
(for giving feedback) or for essay scoring (where
grades should be explainable and fair).

3 Method

In this section, we describe our approach at predict-
ing the linguistic complexity of given sentences.
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Figure 1: Distribution of scores predicted by a pair-
wise regression model for sentence “Infolge des gravita-
tionsbedingten Auslaufens (Drainage) der zwischen den
Seifenfilmoberflächen befindlichen Flüssigkeit dünnt
eine Seifenblase in ihrem oberen Teil zunehmend aus.”

We train deep learning models (described in Sec-
tion 3.1) and also compare them to a traditional
machine learning model based on linguistic fea-
tures (see Section 3.2).

3.1 Pairwise Regression

Our main model is a deep learning model trained
in a supervised fashion. Instead of directly predict-
ing the complexity score from a single sentence,
we use sentence pairs as inputs. Given a pair of
sentences, we predict the difference in complexity
of the sentences. At test time, after the model was
trained, we predict the label of an unseen sentence
by predicting the relative differences in difficulty
to all sentences in the training set (in case of large
training sets, taking a subset would also be pos-
sible). Because we know the true labels of train
sentences, we use them to calculate an estimate of
the complexity of the unseen sentence for every
sentence in the training set. This gives us a sample
of estimated complexity scores. We can arrive at a
final estimate by taking the mean, or estimating the
mode of the resulting distribution in a different way.
An example of a predicted distribution produced
by one of our models is in Figure 1.

Our main motivations for pairwise regression in-
stead of single-sentence regression are: Given the
data for this task is relatively small (1000 sentences
in the train set), using sentence pairs is an easy way
to increase the data set size. Furthermore, pairwise
regression makes more use of the given data by
treating sentences not only as isolated datapoints,
but seeing them in relation to all other sentences in
the dataset. Also, previous work (Lee and Vajjala,

2022; Weiss and Meurers, 2022) showed promising
performance of pairwise readability ranking mod-
els. Therefore, we wanted to evaluate whether this
also is true for a regression setting. In detail, or
model is designed as follows:

Sentence Embedding First, we encode a sen-
tence by 3 different openly available pretrained
language models models:

• GOTTBERT (Scheible et al., 2020).1 The sen-
tence embeddings is calculated by averaging
embeddings of all non-special tokens.

• dbmz’s German BERT (cased) model.2 The
sentence embedding is simply the embedding
of the “[CLS]” token.

• A multilingual sentence transformer model
(Reimers and Gurevych, 2020).3 We found
German pretrained sentence transformers to
not perform as well.

We concatenate all 3 embeddings to arrive at the
final encoding of a sentence. Note that we do not
fine-tune the pretrained models, but simply use
them as feature extractors.

Prediction First, we transform each sentence sep-
arately (using the same model) by a MLP with 2
hidden layers and GELU activation. Then, we con-
catenate the transformed sentence embeddings and
use a MLP with 1 hidden layer and GELU activa-
tion to predict the complexity difference. Option-
ally, we also predict the absolute complexity score
of the input sentences. A visualisation of the model
is shown in Figure 2.

Training Setup All models are implemented in
PyTorch (Paszke et al., 2019). We train models
for 6 epochs using batch size 32, dropout proba-
bility 0.3 (applied before every linear layer) and
hidden sizes 300 and 600 (the first hidden layer
of each MLP is twice the standard hidden size).
In each of the 6 epochs, the model is trained on
all combinations of sentences. Given the size of
the present dataset, this is feasible, but in case of
larger datasets sampling combinations is an option.

1https://huggingface.co/uklfr/
gottbert-base

2https://huggingface.co/dbmdz/
bert-base-german-cased

3https://huggingface.
co/sentence-transformers/
distiluse-base-multilingual-cased-v1

https://huggingface.co/uklfr/gottbert-base
https://huggingface.co/uklfr/gottbert-base
https://huggingface.co/dbmdz/bert-base-german-cased
https://huggingface.co/dbmdz/bert-base-german-cased
https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1
https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1
https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1
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Figure 2: Flowchart showing how the pairwise regression model predicts relative complexity difference scores.
Blue blocks are data and red blocks are neural networks.

The number of 6 epochs was found to work best
by manual hyperparameter exploration. The opti-
mizer is SGD with weight decay coefficient 1e-4.
We set the learning rate according to a One-Cycle-
Scheduler (Smith and Topin, 2019) with maximum
learning rate 0.001. As regression loss, we use the
smoothed L1 metric.

3.2 Baselines
In addition to the pairwise regression model de-
scribed in Section 3.1, we evaluate 2 baselines:

One baseline is a random forest model trained
on linguistic features extracted by CTAP (Chen
and Meurers, 2016; Weiss et al., 2021).4 We ex-
tract all features available for German. Then, we
remove all features that resulted in NaN for at least
1 sentence, and we remove constant features. We
train a random forest model using the scikit-learn
implementation (Pedregosa et al., 2011) with the
following hyperparameters: The number of trees is
450, the maximum percentage of features used for
calculating splits is 85%, and both the minimum
number of datapoints required for internal and leaf
splits is 5.

Secondly, we train a simple (i.e. without pair-
wise regression) MLP regressor to predict complex-
ity scores from single sentences. To be as compa-
rable as possible to the pairwise regression model,
we use the same hyperparameters. However, due to
the different datasets, we need to change the num-
ber of epochs. We found 500 epochs to work best.
Also, we evaluate all 3 pretrained language models
as feature extractors and the combination of their
sentence embeddings.

4 Results

Here, we present performance results of the pair-
wise regression model (see Section 3.1) and base-
lines (see Section 3.2). Unfortunately, we cannot

4http://sifnos.sfs.uni-tuebingen.de/
ctap/

present the shared task’s test set scores due to an
erroneous submission: Instead of submitting re-
sults on the real test set, we accidentally submitted
results on a custom test set that we had created for
internal evaluation. This error remained unnoticed
until after the submission deadline. Therefore, we
decide to report 10-fold cross-validation results on
the training set, because we do also not have devel-
opment set scores for all baselines and ablations.

Results for the pairwise regression model are
in Table 1. Here, we can make 2 observations:
Firstly, models perform similarly, but the best per-
forming models only use GottBERT as sentence
encoder. This suggests that the GottBERT model is,
among the evaluated models, best at representing
complexity-relevant features. Secondly, addition-
ally predicting absolute complexity scores does not
have a visible effect on the performance. Therefore,
replacing absolute complexity score predictions by
relative score predictions is possible.

In Figure 3, we show the loss curve for a pair-
wise regression model only predicting the relative
difference and using all sentence embeddings. The
curve shows that the loss starts to decrease quickly
after about half an epoch. This may be an artifact of
the initially very low learning rate due to the One-
Cycle-Scheduler. After about 2 epochs, the loss
only shows little improvements. This suggests that
training for fewer epochs may already be sufficient.
However, given that we did not observe better gen-
eralisation performance with shorter training, this
may also suggest that the model is somewhat robust
to longer training and still does not overfit the data.

Results for the baselines are in Table 2. The
best performing model uses all 3 sentence embed-
dings and also yields the best overall results. This
puts benefits of pairwise regression into question,
since they apparently do not yield improvements
in performance. However, neural models generally
outperform the non-neural baseline, although the
difference is not very large in absolute terms. Also,

http://sifnos.sfs.uni-tuebingen.de/ctap/
http://sifnos.sfs.uni-tuebingen.de/ctap/
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Figure 3: Loss curve for pairwise regression model
(GottBERT + BERT + S-BERT + Only ∆). For each
step, we display the loss mean and standard deviation
(shaded area) calculated from the 10 cross-validation
runs.

the non-neural baseline has the advantage of being
interpretable to some degree. We would also like to
note that the neural models outperform the results
reported by Naderi et al. (2019b) and Weiss and
Meurers (2022), who use a similar setup. Finally,
we note that the model based on sentence trans-
formers did not converge and would need more
epochs. For the sake of comparability, we decide to
still keep the setup the same for all baseline models.

5 Analysis

In Section 4, we have established that pairwise re-
gression does not achieve better performance than
direct prediction of absolute complexity scores.
However, we are still interested in whether having
a distribution of scores instead of a single score can
provide additional insights. For example, it would
be of advantage if we could use the score sample
standard deviation to detect uncertain predictions,
i.e. sentences where the model is not confident
about the complexity. To be able to do this, the
sample standard deviation has to correlate with the
prediction error. This is, however, not the case:
Figure 4 shows that while most errors are small,
sentence score distributions that result in larger pre-
diction errors do not have larger standard deviation.
In fact, Pearson correlation is −0.18, however the
negative value could be an artifact of the small num-
ber of large errors. Therefore, we conclude that the
score distribution predicted by pairwise regression
models does not provide further insights into the
model predictions.

Finally, we also evaluate whether we can find
linguistic features that are informative about which

Only ∆ GottBERT BERT S-BERT RMSE

✓ ✓ ✓ ✓ 0.6270
✓ ✓ ✓ 0.6333
✓ ✓ ✓ 0.6130
✓ ✓ 0.6178
✓ ✓ ✓ 0.6596
✓ ✓ 0.6830
✓ ✓ 0.6725

✓ ✓ ✓ 0.6315
✓ ✓ 0.6375
✓ ✓ 0.6188
✓ 0.6170

✓ ✓ 0.6593
✓ 0.6769

✓ 0.6706

Table 1: Ablation results of various pairwise regres-
sion configurations (10-fold cross-validation on training
set). “Only ∆” mean whether we only predict the rel-
ative score differences or also predict abolute scores.
“GottBERT”, “BERT”, “S-BERT” are the different sen-
tence embedding models described in Section 3.1.

Model RMSE

GottBERT 0.6123
BERT 0.6639
S-BERT 1.1612
Combined 0.6068

Random Forest 0.6946

Table 2: RMSE results (10-fold cross-validation on
training set) for baselines. “Combined” means represent-
ing sentences by concatenating sentence embeddings
calculated by all 3 pretrained models. Random Forest
uses linguistic features extracted by CTAP.

sentences are hard to score by the deep learning
models. To evaluate this, we conduct another
10-fold cross-validation experiment using a Lasso
model (scikit-learn implementation) to predict the
squared error from linguistic features. However,
the resulting R2-score is only 0.02, which is barely
better than always predicting the average. There-
fore we conclude that linguistic features in this case
cannot help detect sentences that are difficult for the
deep models to score and we refrain from further
analysing the importance of individual features.

6 Discussion

We evaluated pairwise regression in comparison to
standard regression (predicting a single complex-
ity score from a single sentence). Our results are
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Figure 4: Scatter plot showing the relationship of stan-
dard deviation of score distributions predicted by a pair-
wise regression model (only ∆, all embeddings).

largely negative, showing that pairwise regression
does not perform better than standard regression
and the resulting score distribution does not seem
to have additional use over the point estimates re-
turned by standard regression. Furthermore, there
seems to be no trend that can be captured by lin-
guistic features about which sentences are more
difficult to score by deep learning based models.

On the positive side, our evaluations show that
pairwise regression and standard regression can be
exchanged with only very little difference in predic-
tion quality, and that deep learning based models
perform somewhat better than models based on
linguistic features.
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Abstract

The task of quantifying the complexity of writ-
ten language presents an interesting endeavor,
particularly in the opportunity that it presents
for aiding language learners. In this pursuit,
the question of what exactly about natural lan-
guage contributes to its complexity (or lack
thereof) is an interesting point of investigation.
We propose a hybrid approach, utilizing shal-
low models to capture linguistic features, while
leveraging a fine-tuned embedding model to en-
code the semantics of input text. By harmoniz-
ing these two methods, we achieve competitive
scores in the given metric, and we demonstrate
improvements over either singular method. In
addition, we uncover the effectiveness of Gaus-
sian processes in the training of shallow models
for text complexity analysis.

1 Introduction

In this paper, we present a novel approach for the
quantification of text complexity in the German
language, as part of the Text Complexity DE Chal-
lenge 2022 (Mohtaj et al., 2022). Specifically, we
emphasize a hybrid method for building a text com-
plexity model, which combines a feature-based,
shallow regression model with a fine-tuned XLM-
RoBERTa model. In doing so, we hope to capture
to the fullest both the linguistic aspects that con-
tribute to text complexity, as well as the semantic
factors. In the following Section 2, we briefly de-
scribe the task at hand, as well as the data used to
train and test our models. Next, Section 3 intro-
duces Gaussian Processes, which become central to
our hybrid system. Likewise, fine-tuning RoBERTa
for use in regression tasks is covered in Section 4.
These concepts are brought together in 6, which
describes our overall model architecture for the
task. Before this, the feature set used to train both
models is illustrated in Section 5. In Section 7,
we present results from the training and validation

∗These authors contributed equally.

phases, in which our model achieved the best score
for this task’s chosen metric. In the ensuing Sec-
tion 8, we perform a qualitative analysis of our ap-
proach and lessons learned. Finally, Section 9 pro-
vides a few concluding remarks. The systems (and
code used to create them) are publicly available un-
der https://github.com/sebischair/
Text-Complexity-DE-2022.

2 Dataset and Task

The dataset used in this task was first presented by
Naderi et al. (2019). It consists of 1000 German
language sentences sourced from 23 Wikipedia
articles. These articles have been classified into
three different genres. These sentences are anno-
tated with ratings of 1-7 in the category of Com-
plexity, Understandability, and Lexical complexity.
These ratings are presented as a Mean Opinion
Score (MOS), which is represented as the aver-
age scoring of the annotators. The sentences were
scored by German language learners from A2 to
B2 levels. For example, the sentence “Eine Seifen-
blase entsteht, wenn sich ein dünner Wasserfilm mit
Seifenmolekülen vermischt.” is scored with 2.9.

For this challenge, one unified MOS score was
given. How this score was derived from the original
three scores is not explained. The original 1000
sentences are the same.

With this dataset, the task becomes to train a
regression model that predicts the complexity of a
sentence (i.e. MOS) from the sentence text. This
score is intended to aid in the quantification of text
complexity for language learners, as well as in the
evaluation of the simplified text.

3 Gaussian Processes

A popular area in Machine Learning, particularly
near the turn of the century, rested in the study
of “kernel machines”, which include the popular
Support Vector Machines, but also the lesser known
Gaussian Process Models (Rasmussen, 2003). At

https://github.com/sebischair/Text-Complexity-DE-2022
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their core, Gaussian Processes (GPs) are powerful
in the way they incorporate probabilistic thinking
into kernel machines, making them a particularly
suitable tool for supervised machine learning in
small data settings (Urtasun and Darrell, 2007).

Literally, Gaussian processes are built upon mul-
tivariate Gaussian (normal) distributions, defined
by a mean vector µ and covariance matrix Σ, i.e.:

X⃗ =
[
X1 X2 ... XN

]
∼ N (µ,Σ)

This particular distribution has the useful property
of being closed under marginalization (probability
distribution of partitions) and conditioning (proba-
bility of one variable depending on another).

The main goal of Gaussian processes is to learn
the underlying distribution of training data. Key
to this process is the utilization of Bayesian infer-
ence, in which one assumes a prior and updates this
hypothesis based upon new data. When modeling
using Gaussian processes, a prior with dimension-
ality equal to that of the unseen points is chosen. A
kernel is used to generate the covariance matrix Σ
by evaluating it on all training points.

In order to form the posterior distribution (i.e.
train the model), the model observes training data,
and conditions the current distribution based upon
these new points. As new data comes in, the set
of functions that the model can take is constrained,
as only those functions exactly containing the new
points are valid. The change in distribution induced
by observing new points is reflected in an adjust-
ment of the mean and standard deviation (achieved
through marginalization). In addition, uncertainty
in the data is modeled by adding an error term to
the training points, modeled by ϵ ∼ N (µ, ψ2).

Predictions from a trained Gaussian process
model are made simply by sampling from the dis-
tribution of the model. In this way, Gaussian pro-
cesses interestingly combine the ability to model
(understand) the underlying distribution of the data
at hand, as well as make accurate predictions from
unseen instances. They, therefore, present a promis-
ing, powerful, and efficient method for tackling
regression tasks (Williams and Rasmussen, 1995).

4 XLM-RoBERTa for Regression

Large pre-trained language models (PLMs) based
on the transformer architecture (Vaswani et al.,
2017) have achieved state-of-the-art performance
on a wide array of common NLP tasks. Devlin

et al. (2019) introduced BERT as a powerful lan-
guage representation model that learns deep con-
textual representations of words. RoBERTa (Liu
et al., 2019) is a robustly optimized extension of the
BERT model. Both of these models work primarily
on English text, so we decided to use the multilin-
gual model XLM-RoBERTa (XLM-R), a variation
of RoBERTa trained on data written in one hundred
languages (Conneau et al., 2020). This model can
recognize the language of an unseen textual input
and achieves remarkable performance on a variety
of non-English tasks, beating even the monolingual
models optimized for specific languages.

The key benefit of using PLMs is the ability to
load the already pre-learned contextual word em-
beddings and then to fine-tune them for the spe-
cific downstream task at hand. We tried out dif-
ferent pre-trained models for XLM-R and the best-
performing ones for this task were the original xlm-
roberta-base, twitter-xlm-roberta-base, and xlm-
roberta-base-wikiann-ner. While PLMs like XLM-
R are more commonly used for classification tasks,
they can also be adapted for regression tasks. We
achieved this by adding a new linear layer on top
of the XLM-R. This linear layer had as its input
the outputs of the final (12th) layer of XLM-R and
learned what weights to assign to them.

Since our dataset contains only around 1000 ex-
amples, the process of fine-tuning had to be carried
out carefully in order to prevent overfitting. Hyper-
parameters used were: number of folds 5, number
of epochs 3, batch size 16, max. length of 100,
no weight decay. The starting learning rate was
10−5, after one third of all layers 5 · 10−5, and af-
ter two thirds it was 10−4. The idea behind this
was that lower encoder layers can be understood
as learning the lexical and syntactical features of
the text, whereas higher layers model the semantic
representation of it. For the task of text complex-
ity, low-level features are more important so more
emphasis was placed on them.

5 Feature Selection

The complete set of crafted features for model train-
ing is listed in Table 1. These features are separated
into categories, followed a brief description, with
supporting notes at the bottom. The character-,
token-, and POS-based features were inspired by
Falkenjack et al. (2013) and Chatzipanagiotidis
et al. (2021). Before feature creation, preprocess-
ing included stopword removal and lemmatization.



Feature Description

CHARACTER-BASED*

Avg_chars Average number of characters per token in sentence
Tokens_N Number of tokens in sentence with length > N1

TOKEN-BASED*

Type_token Distinct number of token types
Carroll_TTR Carroll’s Corrected TTR measure

COMMON WORDS*

Num_common Number of tokens found in the top 500 most common German words2

Common_score Cumulative score based upon rank in top 500 list
SENTENCE ATTRIBUTES*

Sentence_length Length of sentence, i.e. number of tokens
Longest_word Length of the longest word in a sentence
Commas Number of commas in the sentence
Parentheses Number of (open) parentheses characters
Digits Number of numerical digits in the sentence
Quotes Number of quotation characters (ór )̈ in the sentence
Avg_word_length Average length of words in the sentence
Wordrank_score Overall score calculated from German Wiki frequency list3

POS TAGS*

POS_ratio Ratio of (spaCy.pos_) POS Tags in sentence 4

TAG_ratio Ratio of (spaCy.tag_) detailed POS Tags in sentence5

SPACY FEATURES*

Dep_length Cumulative length (width) of dependencies in sentence
Ne_length Total length of all named entities in sentence
Ne Number of named entities in sentence
L2_norm L2 Norm of spaCy word vector representations
Vec_exists Number of sentence tokens for which a spaCy vector exists

SYNTAX TREE

Syn_height Height of syntax tree
Leaves Number of leaves in syntax tree
Subtrees Number of subtrees in syntax tree
Leaf_distance Cumulative distance between the leave nodes in the sentence

SYLLABLES

Tot_syl Total number of syllables in sentence
Avg_syl Average number of syllables per word
Single_syl Number of single syllable words in sentence

READABILITY6

Flesch Flesch reading ease score
Flesch_mod Modified Flesch score
Easy_words Number of words in sentence with ≤ 2 syllables
Hard_words Number of words in sentence with > 2 syllables
Gunning_fog Gunning Fog readability index
Mod_smog SMOG readability index
Mod_forcast Forcast readability formula
Ari Automated readability index
Linsear Linsear write readability metric

WORDNET7,†

Synset_exists Number of lemmas in sentence for which a synset exists
Synset_depth Cumulative maximum depth of all existing synsets in sentence
Hyponyms Cumulative number of hyponyms for existing synsets
Senses Cumulative number of word senses for existing synsets
Syn_def Total length of synset definitions for all existing synsets
Avg_path Average path length from one synset to the next, in sequential order

EXPERIMENTAL†

Scrabble_new Scrabble score using the new German Scrabble point values
Scrabble_old Scrabble score using the old German Scrabble point values

1 for N ∈ {2, 6, 7, 8, 10}
2 https://www.thegermanprofessor.com/top-500-german-words/
3 https://github.com/gambolputty/dewiki-wordrank
4 for POS ∈ {’ADJ’, ’ADP’, ’ADV’, ’AUX’, ’NOUN’, ’NUM’, ’PRON’,’PROPN’, ’VERB’, ’X’}
5 for TAG ∈{’ADJA’, ’ADJD’, ’ADV’, ’APPR’, ’ART’, ’KON’, ’KOUS’, ’NN’, ’PRELS’, ’VAFIN’, ’VVFIN’, ’VVPP’}
6 Where applicable, scores are modified for single sentences (denoted by mod)
7 Using the Open German WordNet: https://github.com/hdaSprachtechnologie/odenet
* Features in these categories are calculated on the logarithmic scale, with either add-1 or add-0.1 smoothing, where necessary
† These features were not used in the final model (best test score)

Table 1: Feature Set

https://www.thegermanprofessor.com/top-500-german-words/
https://github.com/gambolputty/dewiki-wordrank
https://github.com/hdaSprachtechnologie/odenet


6 A Hybrid System

The development of the eventual final model took
place in an iterative fashion. First, an array of
popular shallow models were tested. In this pro-
cess, the discovery of the effectiveness of Gaussian
processes for this specific task led the authors to
choose these particular models for tuning. The ker-
nel used was the sum of Constant, Matern, and
White kernels, optimized with 10 restarts. As the
training of Gaussian process models seemed to hit
a plateau, a deeper approach was pursued, namely
using RoBERTa. This achieved good results (see
Section 7), leading the authors to believe that some
deep component was key to the task at hand.

Due to the documented success of stacking and
ensemble methods (Pavlyshenko, 2018; Ganaie
et al., 2021), the authors considered a third ap-
proach in which the best shallow and deep mod-
els (GPs and RoBERTa) were to be stacked. Con-
cretely, the predictions of the two models could be
harmonized in a way that combines the strengths
of both. Traditionally, stacking is performed by
training a “meta-model”, which learns the optimal
way to combine the outputs of the “level 0” models.

With this in mind, the authors took a simplified
approach to stacking, in which the output predic-
tions of the Gaussian process model and the fine-
tuned XLM-RoBERTa were simply averaged. This
resulted in the “meta” predictions, which were then
used for submissions. In the development phase,
this method proved to be the most effective, far out-
performing both individual models. As such, a hy-
brid system was created, which was later utilized in
the test phase. Results from the development phase
are outlined in Section 7, where the performance
of the individual and hybrid models are displayed.

7 Training and Results

In the following Table 2, we present the results
from the development phase of the challenge. In
particular, we include both the traditional Root
Mean Squared Error (RMSE) for each model, as
well as the RMSE_Mapped metric used for this
specific task. Since the MOS of human annotators
inherently includes subjective biases and offsets,
some statistical uncertainty is always present in
the scores (Yi et al., 2022). Therefore, a linear
mapping function is applied to the RMSE in order
to compensate for the possible variance between
several subjective experiments. It should be noted
that the specifics on how to calculate this mapped

Model RMSE RMSE_mapped
Lasso Regression – 0.515
Ridge Regression – 0.507
XGBoost Regression 0.520 0.490
Partial Least Sq. Regression 0.492 0.462
LightGBM Regression 0.465 0.434
Random Forest Regression 0.457 0.427
Gaussian Process Regression 0.453 0.401

w/ 50% train data 0.447 0.380
+ 20-dim PCA 0.442 0.377
+ noisy targets 0.427 0.373

XLM-RoBERTa (SQuAD 2.0) 0.443 0.442
XLM-RoBERTa (WikiAnn) 0.434 0.424
XLM-RoBERTa (Twitter) 0.434 0.420

w/ 70% train data 0.430 0.393
XLM-RoBERTa (Base) 0.426 0.415

w/ 150 features 0.438 0.403
w/ 20-dim PCA 0.440 0.399
w/ 70% train data 0.433 0.384

XLM-R (0.415) + GP (0.377) 0.395 0.349
XLM-R (0.399) + GP (0.377) 0.415 0.342
XLM-R (0.384) + GP (0.373) 0.397 0.331
XLM-R (0.384) + GP (0.377) 0.408 0.328
XLM-R (0.393) + GP (0.373) 0.394 0.328
XLM-R (0.393) + GP (0.377) 0.401 0.324

Table 2: Development Phase Results

metric were not provided for this challenge.
In Table 2, bolded are the best-performing

shallow and deep models, as well as the best-
performing stacked model, which did not use either
of the two best single models. The most effective
shallow model was the Gaussian process regressor
that used our handcrafted features described in Sec-
tion 5 and Table 1 to learn the optimal distribution
over the training data. Only 50% of training data
was randomly selected and used to train the model
since this provided the optimal performance, as
measured by the mapped RMSE metric.

Model RMSE RMSE_mapped
XLM-R (Base, 70% train)

0.514 0.489
+ GP (20-dim PCA, 50% train)
XLM-R (WikiAnn, 70% train)

0.518 0.488
+ GP (20-dim PCA, 50% train)
XLM-R (Twitter, 70% train)

0.518 0.465
+ GP (20-dim PCA, 50% train)
XLM-R (Base + 20-dim PCA)

0.473 0.459
+ GP (20-dim PCA, 50% train)
XLM-R (Twitter, 60% train)

0.485 0.457
+ GP (20-dim PCA, 50% train)

Table 3: Final Phase Results

The best-performing deep model was the base
model of XLM-RoBERTa. Although adding our
handcrafted features to it improved the perfor-
mance, the trick of using a reduced training data
set again provided us with the best results (70% of



the training data). For the final stacked model, vari-
ous combinations of GP and XLM-R models were
tried out. The optimal combination turned out to be
the XLM-RoBERTa fine-tuned on a Twitter dataset
and the Gaussian Process using a 20-dimensional
PCA representation of handcrafted features. This
hybrid model achieved the mapped RMSE score of
0.324, which was the winning score (1st place) of
the development phase of the competition.

Table 3 shows the results of the models sub-
mitted for the final phase of the competition. The
authors decided to submit the best-performing mod-
els from the previous phase. The best-scoring
model was later revealed to be the stacked combi-
nation of the XLM-RoBERTa pre-trained on Twit-
ter and the Gaussian process with 20-dimensional
PCA features, both models trained on reduced
data. This came as no surprise as this was also the
best-performing model in the previous phase. The
model achieves the mapped RMSE score of 0.457,
which resulted in 6th place in the final phase.

8 Discussion

Here, the authors reflect on lessons learned, useful
findings, and possible future directions.

A useful and somewhat surprising finding came
with the excellent performance of Gaussian pro-
cesses, particularly during the development phase.
In pondering why this occurred, one can look to
the nature of GPs in conjunction with the specifics
of the text complexity task. At their core, Gaussian
process models aim to capture the underlying dis-
tribution of data that is complex. Furthermore, GPs
seem to shine when the amount of training data
is relatively small, e.g. under 1000 instances. As
such, GPs may have been a logical choice for this
task, which comprised of a quite small dataset and
whose goal represents a quite complex regression
task. Indeed, the quantification of text complexity
proves to be challenging to reason about. Neverthe-
less, the effectiveness shown by GPs merits their
consideration in future, related tasks.

Regarding XLM-RoBERTa, it cannot be denied
that its inclusion greatly strengthened the final
model. It is interesting, though, that the model
performance quite significantly varied based upon
the particular pre-trained model that was chosen.
In this light, a potential future direction would in-
volve further investigation into better models, as
well as why these might be superior. Similarly, a
more focused tuning of the hyperparameters for

the fine-tuning process could have been performed.
This likewise remains as future work.

In the creation of the hybrid model which was
eventually used in the test phase, an interesting
lesson was learned regarding how to “stack” our
two best models. A more systematic way of doing
so would be to learn a meta-model, i.e. a simple
linear regression model, to stack on top of our GP
+ RoBERTa hybrid. As it turns out, learning such
a model actually performed worse than a simple
average of the two models’ predictions. In this way,
simplicity won the day in regards to the design of a
well-performing hybrid regression model.

The analysis of our feature set also produces in-
teresting insights. As a cursory analysis, heatmaps
illustrating the correlation amongst features and
to the target values are presented in Figures 1 and
2 in the Appendix. The question then becomes
whether more features should have been included,
particularly those with a firm linguistic foundation.

This notion is grounded in the authors’ initial
intuition that was used to produce the feature set.
Interesting findings were gained here, too, such as
the relatively high correlation of complex linguistic
concepts (e.g. passive voice, genitive case, depth of
syntax tree) to the MOS. We pose that such linguis-
tic thinking is important for further improvements.

As already alluded to, the complexity of the data
itself, or rather the ability to describe it effectively
via features, proved to be a central problem in tack-
ling the task at hand. In the process of studying
the datasets, the authors noticed particular charac-
teristics that could be crucial to feature creation.
Of these, notable observations include the pres-
ence of rare-occurring symbols (e.g. §), as well as
sentences that are clearly “simplified” sentences,
rather than sourced directly from Wikipedia. Pos-
sible discrepancies between the dev and test sets
were also observed. Accounting for such factors in
the features is likely key to model performance.

9 Conclusion

In this paper, we discuss our novel approach to the
quantification of text complexity in the German
language. In particular, we present a hybrid model
using Gaussian Processes and a fine-tuned XLM-
RoBERTa. We also provide our full feature set,
which to be best of the authors’ knowledge includes
features not previously presented in the literature.
Finally, we discuss our results in the challenges
and reflect upon their implications for future work.
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Figure 1 shows a correlation heatmap of (selected)
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Figure 2: Feature - MOS Correlation Heatmap
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2ORDIX AG – Team Data Science

3Institute for Data-Driven Technologies
FH Aachen University of Applied Sciences, Jülich, Germany
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Abstract

Reliable methods for automatic readability as-
sessment have the potential to impact a vari-
ety of fields, ranging from machine translation
to self-informed learning. Recently, large lan-
guage models for the German language (such
as GBERT and GPT-2-Wechsel) have become
available, allowing to develop Deep Learning
based approaches that promise to further im-
prove automatic readability assessment. In this
contribution, we studied the ability of ensem-
bles of fine-tuned GBERT and GPT-2-Wechsel
models to reliably predict the readability of
German sentences. We combined these mod-
els with linguistic features and investigated
the dependence of prediction performance on
ensemble size and composition. Mixed en-
sembles of GBERT and GPT-2-Wechsel per-
formed better than ensembles of the same size
consisting of only GBERT or GPT-2-Wechsel
models. Our models were evaluated in the
GermEval 2022 Shared Task on Text Com-
plexity Assessment on data of German sen-
tences. On out-of-sample data, our best en-
semble achieved a root mean squared error of
0.435.

1 Introduction

Automatic Readability Assessment (ARA) is a
well-known challenge in natural language process-
ing (NLP) research (Martinc et al., 2021; Vajjala,
2021; Collins-Thompson, 2014). Systems for re-
liable readability assessment have the potential to
support readers with learning disabilities, inform
self-directed learning, or help control the reading
level of automatically generated text translations
(Vajjala, 2021).

The development of methods for text readability
assessment may be described in three phases. (i)
Traditional text readability formulas were based on

statistical measures of lexical and syntactic features
(such as word difficulty and length). Techniques
from NLP further improved upon traditional for-
mulas by incorporating high-level textual features
such as semantic and discursive text characteristics
(Martinc et al., 2021). (ii) In the early 21st century,
engineered linguistic features were used to train
shallow classifiers and regressors from machine
learning (such as support vector machines and de-
cision trees) which further improved prediction ac-
curacy (Collins-Thompson, 2014). (iii) The latest
phase has been characterized by the advent of large
language models (LLMs) developed in the Deep
Learning community. Such neural networks learn
features (vector representations of text) automati-
cally from large text corpora during self-supervised
pretraining. Successful network architectures such
as BERT (Devlin et al., 2019; Rogers et al., 2020)
or GPT (Radford and Narasimhan, 2018; Radford
et al., 2019; Brown et al., 2020) closely follow the
influential transformer model (Vaswani et al., 2017)
that allows for efficient modeling of long-range cor-
relations in texts. By combining representations
derived from BERT with linguistic features, recent
studies observed increased accuracy in assessing
the readability of English texts (Lee et al., 2021;
Imperial, 2021).

Training large language models requires large
text corpora, a prerequisite that is difficult to meet
in languages with fewer resources (compared to
English) such as German. Thus, most approaches
to assess the readability of German texts have been
based on linguistic features and traditional mod-
els from statistical learning such as polynomial
regression, support vector machines, or random
forests (Hancke et al., 2012; Weiß and Meurers,
2018; Naderi et al., 2019b; Weiß et al., 2021).



Only recently, large language models have be-
come available for German, most notably GBERT
(Chan et al., 2020), which is based on BERT, and
GPT-2-Wechsel (Minixhofer et al., 2021) which
was derived from the English GPT-2 model (Rad-
ford et al., 2019). It is largely unknown to which
extent these German language models can improve
the automatic readability assessment of German
texts.

In this contribution, we investigate the ability of
ensembles of GBERT and GPT-2-Wechsel models
to assess the readability of German sentences. We
combine these models with traditional linguistic
features and evaluate our approach on a recently
published dataset of German sentences (Naderi
et al., 2019a). Inspired by previous work on en-
sembling large language models (Risch and Krestel,
2020; Bornheim et al., 2021), we studied the depen-
dence of model accuracy on the number of ensem-
ble members and ensemble composition. Finally,
we describe the models that were evaluated in the
GermEval 2022 Shared Task on Text Complexity
Assessment (Mohtaj et al., 2022). The implementa-
tion details of our experiments (Team “AComplex-
ity”) are available online1.

2 Data and tasks

The dataset consisted of 1000 labeled sentences
(Naderi et al., 2019a) and was provided by the or-
ganizers of the GermEval 2022 Shared Task on Text
Complexity Assessment (Mohtaj et al., 2022). The
sentences were drawn from 23 Wikipedia articles.
250 of these sentences were manually simplified
by native German speakers (Naderi et al., 2019a).

The scores (labels) were obtained via an online
survey system. Participants were asked to rate the
complexity, understandability, and lexical difficulty
of the sentences on a 7-point Likert scale. On this
scale, 1 denotes the lowest and 7 the highest pos-
sible value (Naderi et al., 2019a). In total, 10650
valid sentence ratings were collected, distributed
among the 1000 sentences.

Following a data screening procedure, 5 to 18
ratings per sentence were deemed valid and then
used to calculate the arithmetic mean, called the
Mean Opinion Score (MOS), of each metric (Naderi
et al., 2019a).

The shared task was to predict the MOS of the
text complexity of German sentences. Since the
MOS was defined as a decimal value (see figure

1https://github.com/dslaborg/tcc2022

Figure 1: Histogram of Mean Opinion Scores (MOS)
for the sentences in the dataset.

Bei der Tour de France liegt die höchste Durchschnitts-

geschwindigkeit eines Fahrers bei 41 km/h. (MOS: 1.5)

Für die Union resultiert daraus sowohl ein Akzep-

tanzproblem bei den EU-Bürgern, denen “Brüssel”

immer undurchsichtiger erscheint, als auch die mit

dem Mitgliederwachstum verbundene Schwierigkeit,

im bestehenden Institutionengefüge die Arbeits-

und Handlungsfähigkeit der einzelnen Organe zu

gewährleisten. (MOS: 6.33)

Figure 2: Samples (German sentences) from the dataset
of the GermEval 2022 Shared Task on Text Complexity
Assessment. Numbers in parentheses denote text com-
plexity scores.

2), we approached this task as a regression prob-
lem. The distribution of complexity scores (see
figure 1) suggests that complex sentences are much
less common within the dataset than simpler ones.
Following previous work, we considered text com-
plexity as a proxy of text readability (Wray and
Janan, 2013).

3 Methods

3.1 Preprocessing and data splits
Preprocessing. All datasets (training, validation,
and test data) were preprocessed in the same way.
First, we cleaned up all sentences by removing
the leading and trailing quotation marks that were
added by the CSV format to mask sentences con-
taining comma separators. In the next step, all
sentences were tokenized with model-specific to-
kenizers and padded to a uniform length of 128
tokens.

Data splits. During the model exploration phase,

https://github.com/dslaborg/tcc2022


models were evaluated with a 5-fold cross valida-
tion scheme (each of the five folds contained 20%
of the randomly shuffled training data). Addition-
ally, we randomly selected 10% of the data in the
training folds (i.e., 8% of the whole training data)
as an early stopping set (see section 3.4). Thus, all
models in the model exploration phase were trained
on 72% of the training data.

To optimize model fitting, the final models that
were submitted to the GermEval 2022 Shared
Task on Text Complexity Assessment were retrained
on all available training data, aside from a small
dataset that was used for early stopping. The early
stopping set consisted of 7.5% of the training data
and consequently, all final models were trained on
92.5% of the training data.

3.2 Readability Features

We incorporated various traditional features in the
training of our models that are commonly used in
text readability and complexity assessment tasks.
The features were generated using two publicly
available libraries (van Cranenburgh, 2019; Proisl,
2022) and include simple sentence-based measures
such as sentence length and punctuation as well as
more complex measures such as word rarity. Fur-
thermore, we included some customized features
based on the number of words in a sentence that
exceed a given amount of characters. To increase
the amount and variety of the available features,
we translated all sentences to English and calcu-
lated the features for the original German sentences
as well as the English translations. In total, 154
features were created for each sentence.

3.3 Models

We studied two German language models. The
GBERT model (Chan et al., 2020) is based on
the BERT architecture (Devlin et al., 2019). We
used model weights of the pretrained gbert-large2

variant, which includes a tokenizer with a vocab-
ulary size of 31000 case-sensitive tokens, has ap-
proximately 336 million parameters and a hidden
state size of 1024. Each tokenized sentence was
prepended with a classification token that was used
for the next sentence prediction task during pre-
training (Devlin et al., 2019).

The second model is a German GPT-2-Wechsel
model (Minixhofer et al., 2021) based on the GPT-2

2https://huggingface.co/deepset/
gbert-large

architecture (Radford et al., 2019). We used model
weights of a pretrained gpt2-xl-wechsel-german3

variant that was derived from the GPT-2-XL4

model (Radford et al., 2019) using the WECHSEL
method (Minixhofer et al., 2021). The tokenizer
has a vocabulary size of 50000 case-sensitive to-
kens, while the model has roughly 1.5 billion pa-
rameters and a hidden state size of 1600. Since
GPT-like models are usually not used for regres-
sion tasks, we needed to adjust the tokenizer as
follows. First, we introduced a padding token that
was used to pad all sentences to a uniform length
of 128 tokens (see section 3.1). Second, we put a
beginning of sequence token in front and added an
end of sequence token to the end of every tokenized
sentence.

For each transformer model, we employed two
different multi-layer perceptron models (MLP) as
regression heads. The first MLP was used to fine-
tune the transformer models on the given training
data and did not use the manually created readabil-
ity features (see section 3.2). The second MLP
was used after finetuning to incorporate the read-
ability features and consisted of a fully connected
layer, followed by ReLu activations and an output
layer with one neuron and a linear activation for
regression. The input vector for the second MLP
consisted of the output of the last hidden state of the
respective transformer model and 154 readability
features calculated for each sentence.

3.4 Training
Evaluation score. To assess the prediction perfor-
mance of each model, we calculated the root mean
squared error (RMSE),

RMSE =
√

1
N

∑N
i=1(ŷi − yi)2,

where yi denotes the true readability score, ŷi the
predicted readability scores, and N the number of
samples in the dataset. During model exploration,
the RMSE was determined for each validation fold
of the 5-fold cross validation scheme. We con-
sidered the average of these RMSE values as an
indicator of model performance.

Training scheme. The training was carried out
in two phases. In the first phase, we added a re-
gression head to each model, used an AdamW op-
timizer (Loshchilov and Hutter, 2019) with a batch

3https://huggingface.co/malteos/
gpt2-xl-wechsel-german

4https://huggingface.co/gpt2-xl

https://huggingface.co/deepset/gbert-large
https://huggingface.co/deepset/gbert-large
https://huggingface.co/malteos/gpt2-xl-wechsel-german
https://huggingface.co/malteos/gpt2-xl-wechsel-german
https://huggingface.co/gpt2-xl


size of 16 and a learning rate of η = 5 · 10−5 with a
linear warmup on the first 30% of the training steps
from 0 to η. About every half training epoch (every
23 gradient updates during model exploration or
every 28 gradient updates when training the sub-
mitted models), the models were evaluated on the
early stopping set. If the training lasted for 100
epochs or the RMSE did not decrease for five con-
secutive evaluations, the training was stopped and
the model with the lowest RMSE on the early stop-
ping set was returned. This stopping mechanism
was not used during the first 300 gradient updates
of the training to prevent underfitting.

In the second phase of the training, the regres-
sion heads were discarded and the output of the last
hidden state for each sentence of the dataset was ex-
tracted as follows. For GBERT, we used the output
of the classification token. For GPT-2-Wechsel, we
extracted the output of the end of sequence token.
To create a feature vector for each sentence, we
combined the output of the respective transformer
model with the readability features calculated for
each sentence. We trained a multi-layer perceptron
(MLP) with two layers (see 3.3) with the RMSprop
optimizer, a batch size of 16, and a constant learn-
ing rate of η = 10−3. The MLPs were evaluated on
the early stopping set after each training epoch. Af-
ter 5000 epochs or if the RMSE did not decrease for
100 consecutive epochs, the training was stopped
and the model with the lowest RMSE on the early
stopping set was returned.

During inference, to predict a score for a given
sentence, a feature vector was created by combin-
ing readability features with the output of the fine-
tuned transformer model. The feature vector served
as an input to the trained MLP which calculated
the readability score.

Loss functions. We used the mean squared error
loss for training all transformer models and MLPs.

3.5 Ensembling

To counteract the effects of overfitting that of-
ten occur when training large models on small
datasets, we combined our trained models in en-
sembles (Risch and Krestel, 2020; Bornheim et al.,
2021). Ensemble members differed in the initial
model weights of the regression heads and the ran-
domly selected early stopping set. We determined
the predictions of an ensemble by averaging the
predicted scores of the ensemble members.

0 10 20 30 40 50 60
ensemble size

0.56

0.58

0.60

0.62

0.64

0.66

m
ea

n 
of

 a
ve

ra
ge

 R
M

SE
 sc

or
es GPT-2-Wechsel

GPT-2-Wechsel + GBERT
GBERT

Figure 3: Dependence of the mean of the average root
mean squared error (lines) on ensemble size for differ-
ent ensemble compositions. Standard deviations are
shown as shaded areas.

3.6 Postprocessing

When evaluating our ensembles on the provided
test set during the final phase of the competition,
we found that some trained models predicted read-
ability scores smaller than 1.0 for a few sentences
in the test set. Since the 7-point Likert scale used
by the human annotators to score text readability
started at a value of 1.0 (see section 2), we deemed
all predicted values smaller than 1.0 as invalid and
removed them in the ensembling process. Thus,
the predictions of an ensemble were created by av-
eraging only the predicted scores larger than 1.0.
We hypothesize that the scores smaller than 1.0 on
the test data were caused by a distribution shift in
the generated readability features.

4 Results

Model exploration. During model exploration we
investigated the performance (measured by the av-
erage RMSE) of ensembles with different ensem-
ble sizes and compositions. The ensembles con-
sisted of 1 to 60 models in three different composi-
tions: (i) GBERT models only, (ii) GPT-2-Wechsel
models only, (iii) a combination of GBERT and
GPT-2-Wechsel models. In (iii), we combined both
model types equally, so that an ensemble of 60 mod-
els consisted of 30 GBERT and 30 GPT-2-Wechsel
models.

To investigate the dependence of prediction per-
formance on ensemble size, we applied a bootstrap-
ping scheme following (Risch and Krestel, 2020;
Bornheim et al., 2021). In total, we trained 100
models each of GBERT and GPT-2-Wechsel on



each cross-validation split. Given a specific en-
semble size, we then randomly sampled with re-
placement 1000 ensembles from the set of trained
models and measured the RMSE of each ensemble
on each validation fold. The attained RMSE scores
were then averaged over the 5 validation folds, so
that we obtained 1000 averaged RMSE scores for
each ensemble size.

Figure 3 shows the mean and standard devia-
tion of the averaged RMSE scores for different
ensemble sizes and compositions. Each ensem-
ble composition benefited from increasing ensem-
ble size, as the mean RMSE decreased consider-
ably up to an ensemble size of 20 models, beyond
which the RMSE decreased only slowly. Increasing
the ensemble size also affected the stability of the
ensembles’ predictions, as can be observed from
the decreasing standard deviation of all three en-
semble compositions. Our findings are consistent
with previous work (Risch and Krestel, 2020; Born-
heim et al., 2021) which reported improvements in
predictive performance when increasing ensemble
sizes.

Furthermore, figure 3 shows large differences in
the performance of the three ensemble composi-
tions. The ensemble that consisted of only GBERT
models performed the worst with a mean RMSE of
0.589 at ensemble size 60. Using GPT-2-Wechsel
models instead of GBERT models reduced the
mean RMSE to 0.572, and combining both model
types in a mixed ensemble of 30 GPT-2-Wechsel
and 30 GBERT models further improved the scores
to 0.565.

Submitted models. Based on our results in the
model exploration phase, we decided to submit two
different ensembles in the final phase of the com-
petition: (i) an ensemble of 340 GPT-2-Wechsel
models and (ii) an ensemble of 100 GPT-2-Wechsel
and 100 GBERT models. We chose not to submit
an ensemble of only GBERT models due to the
subpar performance observed during model explo-
ration. All models were fine-tuned using all avail-
able training data, aside from a small dataset (7.5%
of the training data) used for early stopping (see
section 3).

On the test data of the shared task, ensem-
bles (i) and (ii) achieved RMSE values of 0.461
(mapped RMSE: 0.4545) and 0.442 (mapped
RMSE: 0.4355), respectively (Mohtaj et al., 2022).

5A linear mapping function was used by the competition
organizers; see section 7.3 of the recommendation ITU-T
P.1401.

Ensemble (ii) ranked 2nd in the competition.

5 Conclusion

We studied the ability of ensembles of fine-tuned
German language models to reliably predict the
readability of German sentences. All proposed
models also used traditional linguistic features that
slightly increased prediction performance (data not
shown), consistent with previous reports on text
readability assessment of English texts (Imperial,
2021; Lee et al., 2021). We observed mixed ensem-
bles of GBERT and GPT-2-Wechsel to better pre-
dict readability scores than ensembles of the same
size consisting of only GBERT or GPT-2-Wechsel
models. Furthermore, prediction accuracy as quan-
tified by the root mean squared error decreased
with increasing ensemble size, which resembled
findings for hate speech classification reported pre-
viously (Risch and Krestel, 2020; Bornheim et al.,
2021).
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2020. German’s next language model. In Proc. 28th
Int. Conf. on Computational Linguistics, COLING
2020, pages 6788–6796, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Kevyn Collins-Thompson. 2014. Computational as-
sessment of text readability: A survey of current and
future research. Int. J. Appl. Linguistics, 165(2):97–
135.

Andreas van Cranenburgh. 2019. Readabil-
ity. https://github.com/andreasvc/
readability/releases/tag/v0.3.1.

http://arxiv.org/abs/2109.03094
http://arxiv.org/abs/2109.03094
http://arxiv.org/abs/2109.03094
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/2020.coling-main.598
https://doi.org/https://doi.org/10.1075/itl.165.2.01col
https://doi.org/https://doi.org/10.1075/itl.165.2.01col
https://doi.org/https://doi.org/10.1075/itl.165.2.01col
https://github.com/andreasvc/readability
https://github.com/andreasvc/readability
https://github.com/andreasvc/readability/releases/tag/v0.3.1
https://github.com/andreasvc/readability/releases/tag/v0.3.1


Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proc. 2019 Conf. North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-
HLT 2019, volume 1, pages 4171–4186, Minneapo-
lis, MN, USA. Association for Computational Lin-
guistics.

Julia Hancke, Sowmya Vajjala, and Detmar Meurers.
2012. Readability classification for German using
lexical, syntactic, and morphological features. In
COLING 2012, 24th Int. Conf. on Computational
Linguistics, Proc. Conf.: Technical Papers, pages
1063–1080, Mumbai, India. Indian Institute of Tech-
nology Bombay.

Joseph Marvin Imperial. 2021. BERT embeddings for
automatic readability assessment. In Proceedings of
the International Conference on Recent Advances in
Natural Language Processing (RANLP 2021), Held
Online, 1-3September, 2021, pages 611–618. IN-
COMA Ltd.

Bruce W. Lee, Yoo Sung Jang, and Jason Hyung-
Jong Lee. 2021. Pushing on text readability assess-
ment: A transformer meets handcrafted linguistic
features. In Proc. 2021 Conf. on Empirical Meth-
ods in Natural Language Processing, EMNLP 2021,
pages 10669–10686, Punta Cana, Dominican Repub-
lic (Virtual). Association for Computational Linguis-
tics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th Int. Conf. on
Learning Representations, ICLR 2019, New Orleans,
LA, USA.

Matej Martinc, Senja Pollak, and Marko Robnik-
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