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Abstract

This paper describes the winning approach in
the first automated German text complexity as-
sessment shared task as part of KONVENS
2022. To solve this difficult problem, the eval-
uated system relies on an ensemble of regres-
sion models that successfully combines both
traditional feature engineering and pre-trained
resources. Moreover, the use of adversarial
validation is proposed as a method for coun-
tering the data drift identified during the de-
velopment phase, thus helping to select rele-
vant models and features and avoid leaderboard
overfitting. The best submission reached 0.43
mapped RMSE on the test set during the final
phase of the competition.

1 Introduction

Automatically assessing how easy to read a text
is has many applications, ranging from text sim-
plification for language learners and people with
disabilities to customizing content for a particular
audience. For this reason, the Natural Language
Processing (NLP) research community have been
organizing shared tasks and compiled linguistic re-
sources aiming to solve this problem, not only in
English but also for other languages.

The Text Complexity DE Challenge 2022 (Mo-
htaj et al., 2022) proposes the evaluation of systems
able to predict the complexity of German texts by
rating each sentence using the Mean Opinion Score
(MOS), derived from annotations from a 7 point
Likert-scale. In order to solve this problem and
addressing the unexpected data drift between train-
ing and testing sets, meta-modeling and adversarial
validation techniques were applied by combining
predictions from multiple estimators via stacked
generalization (Wolpert, 1992) and leveraging both
traditional feature engineering and pre-trained re-
sources. The best submission generated by the

described approach and selected through adversar-
ial validation won the competition by achieving the
lowest mapped Root Mean Squared Error (RMSE)
score 1.

This paper is organized as follows: First, related
work is reviewed in Section 2. Next, Section 3
contains an analysis of the individual models and
feature engineering approaches used for this task.
In Section 4, model selection and adversarial val-
idation strategies are discussed. Further on, the
performance of the system and its components are
detailed in Section 5. Finally, in Section 6 the au-
thor draws the main conclusions and outlines future
work.

2 Related Work

The application of NLP techniques for automatic
textual complexity assessment has received atten-
tion in several languages other than English (Quis-
pesaravia et al., 2016; Finnimore et al., 2019; Forti
et al., 2019), although in an smaller scale. Despite
the differences between languages, the use of lexi-
cal, morphological and word list-derived features
are also common in research works focused on Ger-
man (Weiss et al., 2019). Likewise, related NLP ap-
plications such as readability assessment (Hancke
et al., 2012) or evaluation of text simplification
pipelines (Suter et al., 2016) demonstrated that sim-
ilar approaches used to estimate the complexity of
English texts could be suitable for German as well,
although with some known shortcomings.

3 Methodology

The TextComplexityDE (Naderi et al., 2019)
dataset that consists of 1000 sentences in German
language taken from 23 Wikipedia articles was the
only resource provided by the organizers. In or-
der to solve the challenge, this dataset was used

1https://qulab.github.io/text complexity challlenge/



as training data following two main approaches:
feature engineering based on morphological and
lexical information (Mosquera, 2021) and transfer
learning via pre-trained transformers. The regres-
sion models trained using these two different strate-
gies and the methodology applied to combine their
predictions are described in detail below.

3.1 Feature Engineering Models

Several lexical features were calculated from word
stats extracted from dlexDB (Heister et al., 2011),
SUBTLEX-DE (Brysbaert et al., 2011) and aver-
aged for each text. Likewise, sentence-level metrics
from Textstat 2 and Readability 3 Python libraries
were also used. A description of all the word and
sentence features is as follows (entries ending with
an asterisk denote a feature group):

dlexDB

• typ syls cnt: number of syllables.

• typ freq *: absolute / normalized / log abso-
lute / log normalized / rank / rank123 corpus
frequency.

• typ fam *: absolute / normalized / log ab-
solute / log normalized / rank / rank123 fa-
miliarity (Kennedy et al., 2002) (cumulative
frequency of all words of the same length shar-
ing the same initial trigram).

• typ inf *: absolute / normalized / log absolute
/ log normalized / rank / rank123 regularity
(Kennedy et al., 2002) (the number of words
of the same length sharing the same initial
trigram).

• typ div con *: absolute / normalized / log
absolute / log normalized / rank / rank123
document frequency.

• typ div sen *: absolute / normalized / log
absolute / log normalized / rank / rank123
sentence count.

• typ uniq orth strict pos: length of the short-
est prefix uniquely identifying the word.

• typ uniq orth strict neg: negative offset
for the last character of the shortest prefix
uniquely identifying the word.

2https://pypi.org/project/textstat/
3https://pypi.org/project/readability/

• typ uniq lemma strict pos: length of the
shortest prefix uniquely identifying the lem-
matized word.

• typ uniq lemma strict neg: negative offset
for the last character of the shortest prefix
uniquely identifying the lemmatized word.

• typ pia avgcondprob big: average condi-
tional probability of a word, based on an eval-
uation of all bigrams having this word as their
second component.

• typ pia avginfcont big: average information
content of a word, based on an evaluation of
all bigrams having this word as second com-
ponent (Piantadosi et al., 2011).

• typ pia avgcondprob trig: average condi-
tional probability of a word, based on an evalu-
ation of all triigrams having this word as their
third component.

• typ pia avginfcont trigr: average informa-
tion content of a word, based on an evaluation
of all trigrams having this word as third com-
ponent (Piantadosi et al., 2011).

• typ cts cumfreq token *: absolute / normal-
ized / log absolute / log normalized / rank /
rank123 cumulative corpus frequency of all
character trigrams contained in the word.

• typ cts cumfreq type *: absolute / normal-
ized / log absolute / log normalized / rank /
rank123 cumulative lexicon frequency of all
character trigrams contained in the word.

• typ init trigr *: absolute / normalized / log
absolute / log normalized / rank / rank123 cu-
mulative frequency of all words sharing the
same initial character trigram (Lima and In-
hoff, 1985).

• typ nei col all cnt abs: absolute number of
orthographic neighbors (Coltheart, 1977).

• typ syls cumfreq token *: absolute / nor-
malized / log absolute / log normalized / rank
/ rank123 cumulative corpus frequency of all
syllables contained in the word.

• typ syls cumfreq type *: absolute / normal-
ized / log absolute / log normalized / rank /
rank123 cumulative lexicon frequency of all
syllables contained in the word.



SUBTLEX-DE

• WFfreqcount: target word frequency in the
German subtitle corpus.

• spell-check OK (1/0): 1 if the word had no
spelling errors, 0 otherwise.

• CUMfreqcount: case-independent word fre-
quency in the German subtitle corpus.

• SUBTLEX: frequency per million based on
CUMfreqcount.

• lgSUBTLEX: log10(CUMfreqcount+1).

• Google00: word frequency based on Google
2000-2009 Books corpus.

• Google00cum: case-independent word fre-
quency based on Google 2000-2009 Books
corpus.

• Google00pm: Google frequency per million
words.

• lgGoogle00: log10(Google00cum+1).

Sentence Readability

• Kincaid: Kincaid grade level.

• ARI: Automated readability index (Senter and
Smith, 1967).

• Coleman-Liau: Coleman-Liau readability
score (Coleman and Liau, 1975).

• Flesch reading ease: Flesh reading ease score
(Flesch, 1948).

• Gunning-Fog index: Gunning-Fog readabil-
ity index (Gunning et al., 1952).

• LIX: LIX readability score (Anderson, 1983).

• SMOG index: SMOG readability index
(Mc Laughlin, 1969).

• RIX: RIX readability score (Anderson, 1983).

• Dale-Chall index: Dale-Chall readability in-
dex (Chall and Dale, 1995) of the whole sen-
tence.

• Wiener Sachtextformel: grade level for Ger-
man texts (Schulz et al., 1985)

Linear regression and gradient boosting models
were trained with all the above features with default
hyper-parameters. The 2 resulting estimators are
referred across the paper as LR and LGB (Ke et al.,
2017) respectively.

A list of the top 20 features in terms of minimum
redundancy and maximum relevance (mRMR)
(Ding and Peng, 2003) can be found in Table 1.

Table 1: Top 20 features (minimal-optimal set).

Feature
RIX
ARI
Kincaid
GunningFogIndex
LIX
SMOGIndex
typ init trigr abs
wiener sachtextformel
FleschReadingEase
typ init trigr nor
Google00
Coleman-Liau
typ uniq orth strict pos
Google00pm
DaleChallIndex
typ syls cumfreq type rank123
Google00cum
typ uniq lemma strict pos
typ cts cumfreq type abslog
typ fam abs

3.2 Transformer Models
Regression models using neural network architec-
tures based on the Transformer were trained via
fine-tuning on the dataset provided by the task or-
ganizers. A selection of the estimators that were
used in order to generate some of the best scoring
submissions is as follows:

• NN: BERT (Devlin et al., 2019) fine-tuned for
1 epoch 4.

• NNr: BERT fine-tuned for 1 epoch (reverse
word order) 5.

• NN3: RoBERTa (Liu et al., 2019) fine-tuned
for 3 epochs 6.

4https://huggingface.co/dbmdz/bert-base-german-cased
5https://huggingface.co/dbmdz/bert-base-german-cased
6https://huggingface.co/xlm-roberta-base



• NN5: BERT fine-tuned for 2 epochs 7.

3.3 Ensemble
Meta-modeling techniques were applied in order
to combine base models into single predictors by
using stacking generalization. The second level
algorithm used for this task was linear regression
which used the following weights for Ensemble1
and Ensemble2 respectively:

Ensemble1 = 0.18 × LR + 0.17 × LGB +
0.21×NN + 0.39×NNr

Ensemble2 = 0.1×LR+0.05×LGB+0.02×
NN+0.05×NNr+0.25×NN3+0.478×NN5

The out-of-fold cross validation scores of the
base and meta models can be found in Table 2 .

Table 2: Train set errors calculated with 5-fold cross
validation.

Model RMSE MAE
LR 0.726 0.585
LGB 0.707 0.561
NN 0.685 0.542
NNr 0.662 0.527
NN3 0.673 0.531
NN5 0.61 0.477
Ensemble1 0.625 0.5
Ensemble2 0.588 0.464

4 Model Selection and Adversarial
Validation

In the final phase of the competition it became clear
that validation and test data had relevant dissimi-
larities. Some potential reasons were identified
by the participants such as the application of non-
random splits or different pre-processing 8. While
this is not a totally uncommon phenomenon in NLP
(Karpov, 2017; Mosquera, 2020) to the best of the
authors’ knowledge there have not been many ef-
forts to address this problem in comparison with
other domains.

The use of adversarial validation as a solution to
identify concept drift has been explored recurrently
in the literature (Pan et al., 2020). However, due
the relatively small data sizes involved, the usual
approach of training a binary classifier between

7https://huggingface.co/amine/bert-base-5lang-cased
8https://codalab.lisn.upsaclay.fr/forums/4964/741/

train/dev/test sets and selecting the data points
with the closest distribution (Qian et al., 2021) was
deemed sub-optimal. Therefore, Principal Compo-
nent Analysis (PCA) was used instead in order to
calculate low-dimensional projections of the eval-
uation datasets and estimate their drift from the
training data by analyzing the reconstruction errors.
Taking that into account, the author hypothesized
that models using features that would remain stable
across different data splits based on the criteria de-
fine above would exhibit better correlation between
the errors estimated during cross-validation and the
final scores.

In Table 3, it can be observed that the Ensemble1
meta-model could be affected by the data drift and
its estimated performance during the development
phase would likely not translate to the final phase
evaluation. These insights were particularly rele-
vant since development phase models were also par-
tially tuned using feedback from the public leader-
board and ignoring this valuable information would
have resulted in a non-optimal model and feature
selection.

Table 3: PCA reconstruction errors against train (3 com-
ponents, 0.95 variance).

Model Train Development Test
Ensemble1 0.0275 0.0311 0.029
Ensemble2 0.0329 0.0334 0.0328

5 Results

Aiming to compensate for the possible variance
between several subjective ratings, the challenge
organizers decided to use a custom evaluation met-
ric by applying a 3rd order linear mapping func-
tion per each dataset before calculating the error,
which meant that the RMSE score would always
differ from the mapped RMSE. Considering that
the mapping function was unknown to the partici-
pants, RMSE was used instead as the main metric
for local validation and optimization purposes.

While in practice, the mapped scores seemed to
correlate with the local validation, rankings based
on RMSE scores differed substantially from rank-
ings derived from the mapped version. This was
particularly obvious during the development phase
9 where only 2 out of 14 participants (5 out of 14
during the final phase) had the same ranking when

9https://codalab.lisn.upsaclay.fr/competitions/4964#results



considering both mapped and original RMSE met-
rics which highlights the extra difficulty added by
the chosen evaluation metric for this competition.

In Table 4 the results for the highest ranked sub-
missions generated by the described approach dur-
ing different phases of the competition are listed.
As expected after the adversarial validation step,
the meta-model Ensemble1, which produced a high
score solution during the evaluation phase (lowest
RMSE, second best mapped RMSE overall), under-
performed in the final phase and would have ended
up in the 9th position in absence of better submis-
sions after being affected by the aforementioned
data drift. On the other hand, the meta-model En-
semble2 had similar reconstruction errors in all
the datasets and ended up generating the winning
submission.

Table 4: Task results (mapped RMSE and RMSE) for se-
lected submissions during different competition phases.

Model Development Test
Ensemble1 0.326 - 0.361 0.484 - 0.502
Ensemble2 n/a 0.43 - 0.446

Since the challenge organizers decided to not
release the labels of the evaluation datasets and
disabled post-competition submissions, additional
ablation analysis can not be performed in this sec-
tion.

6 Conclusions and Future Work

This paper introduces a meta-model for German
text complexity estimation using both manual fea-
ture engineering and neural networks. The use of
adversarial validation by comparing feature distri-
bution changes between different datasets is pro-
posed as a mechanism to detect data drift via PCA
reconstruction errors. The described system has
achieved the first ranking in mapped RMSE in
the Text Complexity DE Challenge of KONVENS
2022. In a future work, this approach can be
extended through AutoNLP techniques in order
to build multi-lingual text complexity estimation
solutions that could be integrated in other NLP
pipelines.
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