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Abstract

In this paper we explain HIIG’s contribution to
the shared task Text Complexity DE Challenge
2022. Our best-performing model for the task
of automatically determining the complexity
level of a German-language sentence is a com-
bination of a transformer model and a classic
feature-based model, which achieves a mapped
root square mean error of 0.446 on the test data.

1 Introduction

Text complexity is not only a highly interesting
topic from a linguistic perspective; it also has sev-
eral implications on a societal level. A text that
has the appropriate complexity level for a specific
reader not only ensures that the reader can fully
understand the information presented in the text,
but it also keeps the reader engaged and can help
the reader to learn new structures and expand their
vocabulary. This last point is particularly relevant
for language learners and readers who are reading
text in a language that is not their native language.
The Text Complexity DE Challenge focuses on this
specific target group as the task involves predicting
the complexity of a sentence in German, which
have been annotated on a scale of 1 to 7 by German
learners whose language proficiency is at B level
(on the CEFR scale). An overview of the shared
task and the results from all the teams can be found
in (Mohtaj et al., 2022).

In this paper we briefly report on related work
in Section 2, before describing the dataset used
in the shared task in Section 3. In Section 4 we
outline our various approaches to the task, before
reporting on the results and briefly discussing them
in Section 5. In Section 6 we conclude the paper.

2 Related work

Previous work aimed at automatically assessing
the text complexity level of sentences has focused
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mostly on the English language. Stajner et al.
(2017) use the Newsela corpus (English-language
newspaper articles, simplified at multiple levels for
different aged school children) and calculate scores
for unigrams, bigrams and trigrams by looking at
what levels of the corpus they occur in. They exper-
iment with different classifiers and achieve the best
results with a Random Forest. Pitler and Nenkova
(2008) conduct a small-scale analysis on 30 articles
from the Wall Street Journal which have been man-
ually annotated on a scale from 1-5 for the question
of how well-written the article is. They investigate
how various linguistic features correlate with these
scores. Vocabulary and discourse relations are the
strongest predictors of readability, followed by av-
erage number of verb phrases and length of the text.
Lee et al. (2021) work with three English-language
datasets and produce hybrid models which con-
sist of a transformer based model combined with a
feature-based model. They predict 3 and 5 classes
(depending on the dataset) and achieve the state of
the art, with a ROBERTA-based transformer model
performing best.

Work on German-language text complexity as-
sessment is fairly rare. Hancke et al. (2012) look
at text-level binary readability classification using
a corpus of 1627 articles in original form and a
version aimed at children. Their classifier uses
the Sequential Minimal Optimization algorithm
with five groups of features (traditional readabil-
ity formulas, lexical, syntactic, language model,
and morphological), with a best accuracy score of
89.7%. Stodden and Kallmeyer (2020) work with
various corpora from different languages from the
text simplification domain and evaluate 104 differ-
ent features using statistical tests, with the aim to
determine differences between simplified and com-
plex texts. They also work with a German-language
corpus of 1888 texts (Klaper et al., 2013) and find
that the feature lexical complexity, in particular,
is relevant specifically for German texts. Battisti



et al. (2020) build on the same corpus and release
a newer version with 6217 documents. Hewett and
Stede (2021) create a corpus of 2655 texts from on-
line lexica at three different levels (adults, children,
children who are beginner readers) and use knowl-
edge graph based features to estimate conceptual
complexity. In a pairwise classification task they
achieve an accuracy score of 91%.

3 Dataset

The dataset for the challenge consists of sentences
that have been taken from 41 Wikipedia articles
from different article genres. Groups of German
learners, with language levels between A2 and B2,
rated the sentences according to complexity, under-
standability and lexical difficulty on a scale from
1 to 7. For each aspect, the arithmetic mean (or
Mean Opinion Score; MOS) was calculated and
the task was to predict the MOS complexity score
of the sentences. More information on the dataset
can be found in (Naderi et al., 2019).

The training dataset consists of 1000 sentences,
the validation set (for development phase) of 100
and the test set (for the evaluation phase) of 210
sentences. Figure 1 shows a histogram of the tar-
get variable (MOS) in the training set (mean=3.02,
stdev=1.18). Some examples from the training set
can be seen in Table 1.

It is also worth mentioning that ‘complexity’ can
be subjective. For example as can be seen in Ta-
ble 1, the second sentence ‘Das Meerwasser ist
leicht basisch’ has a score of 1; whilst the sentence
is clearly short and has a very simple structure,
arguably the words alkaline (basisch) and even sea-
water (Meerwasser) are not usually part of a lan-
guage learner’s vocabulary. The sentence structure
may not be ‘complex’ but the lexical items do seem
more advanced. These kinds of scores may be due
to the fact that participants were also asked to rate
the understandability of a sentence, a score which
was not used in this shared task. The subjective
nature of complexity is a limitation of the dataset
which the shared task organisers try to compensate
for by using a mapped root mean squared error as
a metric, more information can be found in the task
overview paper (Mohtaj et al., 2022).

4 Approaches

In this section we outline our different approaches.
As a baseline, we take the simple approach of pre-
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Figure 1: Histogram of mean opinion scores.

dicting the mean MOS value (3.02) for all samples.
Using this baseline, the root mean squared error
(RMSE) is 1.18.1

4.1 Additional Augmented Data

As the training dataset is not particularly large
(1000 sentences), one of our approaches was to
create additional training data. We used the ex-
tended lexica corpus from Hewett and Stede (2021)
which consists of 86613 sentences at three differ-
ent levels. We created artificial scores on a scale
of 1 to 7 using a simple method. We took the
original labels (1-3) and scaled them using the fea-
ture of sentence length, which we found to be a
strong predictor for complexity. For example, a
sentence with the original label of 1, with one of
the longest sentence lengths for this class would
have a transformed score of around 2.3, whereas
a short sentence originally labelled with 1 would
have a transformed score closer to 1.

We used this additional data together with the
training data in several different models and the
results were consistently worse than the basic base-
line using only the training data. This is most likely
due to the noise that is introduced when producing
these artificial labels, and the fine-grained nature
of the labels. Another reason could also be the dif-
ferent target groups; the shared task data has been
labelled by non-native speakers whereas the lexica
corpus has children as its target group. Children
and non-native speakers are two different target
groups of simplified language with different needs.

4.2 Neural Approach

The neural method we use is to fine-tune a pre-
trained transformer model for our given task. As

1Aside from the final results in Table 2, all reported scores
refer to 20% of the training set and to the non-mapped RMSE.



Original Sentence Literal Translation MOS Complexity
Die Folgen dieser Versauerung betreffen
zunächst kalkskelettbildende Lebewesen, deren
Fähigkeit, sich Schutzhüllen bzw Innenskelette
zu bilden, bei sinkendem pH-Wert nachlässt.

The consequences of this acidification have an
effect on calcium-skeleton-forming organisms,
whose ability to form protective shells or internal
skeletons diminishes with decreasing pH.

5.25

Das Meerwasser ist leicht basisch. Seawater is slightly alkaline. 1

Table 1: Example sentences from the dataset.

our base model, we chose XLM-R (also known as
XLM-RoBERTa) by Conneau et al. (2019).

XLM-R is a self-supervised cross-lingual trans-
former model – trained on 2.5TB of filtered Com-
monCrawl data containing 100 languages – using a
masked language modeling objective. It is mostly
intended to be fine-tuned on downstream tasks
(HuggingFace, 2022), and offers state-of-the-art
performance for many language tasks. Specifically
it outperforms multilingual BERT on a variety of
metrics (Conneau et al., 2019).

The fact that XLM-R has great performance out
of the box and is multilingual, make it a suitable
choice for the challenge. We downloaded the pre-
trained model using the Hugging Face Python li-
brary.2 We changed the model head to a (single)
regressor layer plus a dropout, inspired by Kozodoi
(2022). (As is typical, the weights for the new lay-
ers are randomly assigned, while the rest of the
model is initialized to the pretrained weights.) We
used a custom trainer to set RMSE as the loss func-
tion, and did not freeze any of the layers for higher
accuracy. For preprocessing, was used the XLM-R
Tokenizer with padding and truncation, which is
how this model expects the data.

During the earlier phases of the Text Complexity
DE challenge, we used a simple 80:20 data split for
training and validation; and observed that our mod-
ified XLM-R model performed quite well after 10
training epochs with the default AdamW optimizer.
For the final stage of the challenge, we adopted
k-fold validation (with k=5) to ensure that all the
available data was used during training. Thus we
ended up with five models (with RMSEs between
0.55 and 0.70). For the actual predictions on the
test dataset, we averaged the prediction of these
five models.

4.3 Feature-based Approach

A further approach was to use the 43 ‘single fea-
tures’ which Stodden and Kallmeyer (2020) ap-
plied in their cross-lingual study on text complexity

2We chose the base model, not large, so that the training
could be done efficiently on our laptop GPU.

(see Section 2). These features are calculated using
sentences as input; we therefore did not perform
any additional pre-processing. We applied feature
ranking using the recursive feature elimination im-
plementation from scikit-learn (Pedregosa et al.,
2011) and used the top 34 features; the full list of
features can be found in Appendix A. The most
important features were number of words per sen-
tence, number of syllables per sentence and number
of characters per word. We used these with a lin-
ear regression model, using the default parameters
from scikit-learn. When applied to the training data
in a 80/20 split, the RMSE was 0.7. We then re-
trained the model in the whole training set before
using the official test data set as input (the results of
which can be seen in Table 2). Approaches using
sentence embeddings or lexical complexity values
derived from our additional data did not beat our
simple baseline on the training set and so were
therefore not pursued any further.

5 Ensemble Results & Discussion

Our final approach is to combine our feature-based
and neural approach by averaging the outputs of
these two models.3

While both our transformer and feature-based
models perform better than the baseline RMSE,
among them, the transformer model does generally
better on different data splits. Thus, it might seem
paradoxical that our final model is a weighted av-
erage (ensemble) of the two. Using an ensemble
method is, however, a theoretically sound practice,
and quite common in machine learning competi-
tions.

In the words of Page (2018), “To rely on a single
model is hubris. It invites disaster. [...] Wisdom
can be achieved by averaging models.” Simply ex-
plained, due to both over-fitting and under-fitting,
any one model will predict some samples (espe-
cially among the unobserved) quite wrongly. As
long as the individual models in the collection do

3Our implementation can be found at
https://github.com/hadiasghari/konvens22-shared-task



not share a common bias, then any diverse collec-
tion of the models will be more accurate than the
average member—an implication of the so called
diversity prediction theorem (Page, 2018).

To illustrate the point, we can compare the pre-
dictions from both models on the test dataset (Fig-
ure 2). The Pearson correlation coefficient be-
tween the two is 0.85. On average, the predictions
are close, with the transformer model predicting
slightly lower scores. In about ten percent of the
samples, the difference between the predictions is
bigger than 1, and crucially, in both directions.4
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Figure 2: Histogram of mean opinion scores.

Closer to home and in the readability assessment
(RA) literature, Lee et al. (2021) also propose using
ensemble methods. In particular “[when] a trans-
former shows weak performance on small datasets,
there must be some additional measures done to
supply the final model (e.g. ensemble) with more
linguistic information”, adding that such studies
are rare in RA.

The final results on the test dataset are presented
in Table 2. We hypothesized that since our trans-
former model does slightly better than our feature
based model, a weighted average favoring the for-
mer might yield better accuracy, which turned out
to be the case.5

4Without the MOS scores for the test dataset, we can only
speculate about this discrepancy between the two model pre-
dictions. See Appendix B for a few examples.

5In future work, the averaging weights could themselves
be learnt from the data, and obviously, more models be added
to the ensemble.

RMSE Model Description
0.541 Linear regression (feature based)
0.484 Ensemble 70:30 (lr:xlmr)
0.479 XLM-R (without k-fold)
0.458 XLM-R (with k-fold)
0.457 Ensemble 50:50
0.450 Ensemble 40:60
0.446 Ensemble 30:70 (lr:xlmr)

Table 2: Mapped RMSE results for different models
(more information on the mapping can be found in the
shared task overview paper (Mohtaj et al., 2022))

6 Conclusion

In this paper we explained our contribution to the
shared task Text Complexity DE Challenge 2022.
We experimented with both neural and feature-
based approaches. Our best-performing model is
a weighted average of a fine-tuned XLM-R trans-
former model and a classic feature-based model
with linear regression. The ensemble achieves a
mapped root square mean error of 0.446 on the test
data which is better than either of the models alone.
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Appendix

A Features Used

The features we used in our feature-based model
(discussed in Section 4.3) include6:
get type token ratio, get ratio of function words, get
ratio of coordinating clauses, get ratio of subordi-
nate clauses, get ratio prepositional phrases, get
ratio relative phrases, get ratio clauses, get ratio
named entities, check if head is noun, check if one
child of root is subject, check passive voice, is non
projective, get ratio of nouns, get ratio of verbs, get
ratio of adjectives, get ratio of adpositions, get ra-
tio of adverbs, get ratio of auxiliary verbs, get ratio
of conjunctions, get ratio of determiners, get ratio
of numerals, get ratio of particles, get ratio of pro-
nouns, get ratio of punctuation, count words, count
sentences, count syllables in sentence, count words
per sentence, count syllables per sentence, count
characters per word, count syllables per word, max
pos in freq table, average pos in freq table, sentence
fkgl.

B Discrepancy between Model
Predictions

Without the MOS scores for the test dataset, we can
only speculate about this discrepancy between the
two model predictions. After manually inspecting
some cases, we found that when the prediction of
the feature-based model was higher (i.e. more com-
plex) than the transformer model, these were long
sentences which in fact were often just lists. When
the prediction of the transformer model was higher,
these were often shorter sentences with uncommon
words (often compounds). See Table 3 for some
examples.

6From the implementation from Stodden and Kallmeyer
(2020): https://github.com/rstodden/text-simplification-
evaluation
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ID Sentence Translation XLMR LR
2115 "Die danach häufigsten Wohnungstypen waren

Wohnungen in kleinen Apartmentkomplexen
(2–9 Einheiten, 12,8 % der Bevölkerung),
Wohnungen in mittleren Apartmentkomplexen
(10–49 Einheiten, 7,9 %), Einfamilienreihen-
häuser (5,9 %), Mobilheime (5,7 %), Wohnungen
in großen Apartmentkomplexen (50+ Einheiten,
5,0 %) und Boote, Wohnmobile und Ähnliches
(0,1 %)."

The next most common housing types were flats
in small apartment complexes (2-9 units, 12.8
% of the population), flats in medium apartment
complexes (10-49 units, 7.9 %), single-family
terraced houses (5.9 %), mobile homes (5.7 %),
flats in large apartment complexes (50+ units, 5.0
%), and boats, mobile homes, and the like (0.1
%).

3.233 4.624

2053 "Daneben gibt es auch konfessionelle (VkdL im
CGB) und weitere Verbände (Waldorflehrkräfte,
Lehrkräfte der Montessori-Schulen)."

There are also confessional (VkdL (Association
of Catholic German Teachers) in the CGB (Chris-
tian Trade Union Federation of Germany)) and
other associations (Waldorf teachers, Montessori
school teachers).

3.123 2.393

Table 3: Example predictions on the test set with large discrepancy between the transformer (XLMR) and the feature
based linear regression (LR) models.


