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Preface

This volume contains the proceedings of the Fourth Workshop on Gender Bias in Natural Language Pro-
cessing, held in conjunction with the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics – Human Language Technologies (NAACL-HLT2022). This year, the or-
ganization committee changed membership: Kellie Webster made way for Christine Basta and Gabriel
Stanovsky. Kellie has been one of the main reasons for the success of this workshop and we would like
to thank her for her valuable and enthusiastic contribution to this workshop. We are glad to welcome our
two co-organizers and look forward to sharing their insights and expertise.

This year, the workshop received 33 submissions of technical papers (12 long papers, 21 short papers),
of which 28 were accepted (11 long, 17 short), for an acceptance rate of 84%. We are pleased to see
an increased interest compared to our previous editions in the last three years: the submissions have
increased this year to 33 papers compared to 18 papers last year and 19 papers in 2019 and 2020. Fur-
thermore, the high quality of the submissions allowed us to have a higher acceptance rate this year of
84% compared to the previous years, where the acceptance rate was 63%, 68% and 67% respectively.
Once more, we thank the Programme Committee members, who provided extremely valuable reviews in
terms of technical content and bias statements, for the high-quality selection of research works.

The accepted papers cover a wide range of natural language processing research areas. From the core
tasks of NLP, the papers include language modeling and generation, annotation, machine translation,
word embeddings, and evaluation. New aspects regarding the analysis and the debiasing mechanisms
are introduced and we are excited about the discussions these will inspire. Besides English, we have
interesting studies targeting Inuktikut, Hindi and Marathi as well as Chinese, Italian, French and Spanish.
All papers cover a variety of gender (and intersectional) bias studies as well as a taxonomy definition.

Finally, the workshop has two keynotes by speakers of high standing: Kellie Webster and Kevin Robin-
son, Google Research, and Kai-Wei Chang, University of California (UCLA-CS). We also have a panel
under the theme of Evaluating gender bias in NLP and we are looking forward to the insights of this
panel.

We are very pleased to keep the high interest that this workshop has generated over the last three editions
and we look forward to an enriching discussion on how to address bias problems in NLP applications
when we meet at a hybrid event on 15 July 2022!

July 2022
Christine Basta, Marta R. Costa-jussà, Hila Gonen, Christian Hardmeier and Gabriel Stanovsky

Christian Hardmeier was supported by the Swedish Research Council under grant 2017-930.
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Uncertainty and Inclusivity in Gender Bias Annotation: An Annotation Taxonomy
and Annotated Datasets of British English Text
Lucy Havens, Beatrice Alex, Benjamin Bach and Melissa Terras

Debiasing Neural Retrieval via In-batch Balancing Regularization
Yuantong Li, Xiaokai Wei, Zijian Wang, Shen Wang, Parminder Bhatia, Xiaofei
Ma and Andrew Arnold

Gender Biases and Where to Find Them: Exploring Gender Bias in Pre-Trained
Transformer-based Language Models Using Movement Pruning
Przemyslaw Joniak and Akiko Aizawa

Gendered Language in Resumes and its Implications for Algorithmic Bias in
Hiring
Prasanna Parasurama and João Sedoc

The Birth of Bias: A case study on the evolution of gender bias in an English
language model
Oskar Van Der Wal, Jaap Jumelet, Katrin Schulz and Willem Zuidema

Assessing Group-level Gender Bias in Professional Evaluations: The Case of
Medical Student End-of-Shift Feedback
Emmy Liu, Michael Henry Tessler, Nicole Dubosh, Katherine Hiller and Roger
Levy

Unsupervised Mitigating Gender Bias by Character Components: A Case Study
of Chinese Word Embedding
Xiuying Chen, Mingzhe Li, Rui Yan, Xin Gao and Xiangliang Zhang

An Empirical Study on the Fairness of Pre-trained Word Embeddings
Emeralda Sesari, Max Hort and Federica Sarro

Mitigating Gender Stereotypes in Hindi and Marathi
Neeraja Kirtane and Tanvi Anand

A Taxonomy of Bias-Causing Ambiguities in Machine Translation
Michal Měchura
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Analyzing Hate Speech Data along Racial, Gender and Intersectional Axes
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Abstract

Warning: This work contains strong and offen-
sive language, sometimes uncensored.

To tackle the rising phenomenon of hate speech,
efforts have been made towards data curation
and analysis. When it comes to analysis of bias,
previous work has focused predominantly on
race. In our work, we further investigate bias
in hate speech datasets along racial, gender and
intersectional axes. We identify strong bias
against African American English (AAE), mas-
culine and AAE+Masculine tweets, which are
annotated as disproportionately more hateful
and offensive than from other demographics.
We provide evidence that BERT-based models
propagate this bias and show that balancing the
training data for these protected attributes can
lead to fairer models with regards to gender,
but not race.

1 Introduction

Hate Speech. To tackle the phenomenon of on-
line hate speech, efforts have been made to curate
datasets (Davidson et al., 2017; Guest et al., 2021;
Sap et al., 2020). Since datasets in this domain
are dealing with sensitive topics, it is of upmost
importance that biases are kept to a (realistic) mini-
mum and that data is thoroughly analyzed before
use (Davidson et al., 2019a; Madukwe et al., 2020).
In our work, we are contributing to this analysis
by uncovering biases along the racial, gender and
intersectional axes.

Racial1, Gender and Intersectional Biases.
During data collection, biases can be introduced
due to–among other reasons–lack of annotator
training or divergence between annotators and user

∗Equal contribution.
1While the correlation of race and African American En-

glish (AAE) is complicated (Anderson, 2015), in our work we
consider AAE as a proxy for race, since it is a dialect over-
whelmingly used by African Americans (Spears and Hinton,
2010; Spears, 2015).

Figure 1: Distributions of label annotations on DAVID-
SON (neutral, offensive, hateful) for AAE+Masculine,
AAE and SAE (top-to-bottom). AAE has a higher ratio
of offensive examples than SAE, while AAE+Masculine
is both highly offensive and hateful.

demographics. For example, oftentimes the ma-
jority of annotators are white or male (Sap et al.,
2020; Founta et al., 2018). An annotator not in the
‘in-group’ may hold (un)conscious biases based
on misconceptions about ‘in-group’ speech which
may affect their perception of speech from certain
communities (O’Dea et al., 2015), leading to in-
correct annotations when it comes to dialects the
annotators are not familiar with. A salient example
of this is annotators conflating African American
English with hateful language (Sap et al., 2019).

Intersectionality (Crenshaw, 1989) is a frame-
work for examining how different forms of inequal-
ity (for example, racial or gender inequalities) in-
tersect with and reinforce each other. These new
social dynamics need to be analyzed both sepa-
rately and as a whole in order to address challenges
faced by the examined communities. For example,
a black woman does not face inequality based only
on race or only on gender: she faces inequality be-
cause of both these characteristics, separately and
in conjunction. In this work, we are analyzing not
only the racial or gender inequalities in hate speech

1



datasets, but their intersectionality as well.
With research in the area of hate speech, the

NLP community aims at protecting target groups
and fostering a safer online environment. In this
sensitive area, it is pivotal that datasets and models
are analyzed extensively to ensure the biases we
are protecting affected communities from do not
appear in the data itself, causing further marginal-
ization (for example, by removing AAE speech
disproportionately more often).

Contributions. In summary, we (i) investigate
racial, gender and intersectional bias in three hate
speech datasets, Founta et al. (2018); Davidson
et al. (2017); Mathew et al. (2021), (ii) examine
classifier predictions on existing, general-purpose
African/Standard American English (AAE/SAE)
and gendered tweets, (iii) identify model bias
against AAE, masculine and AAE+Masculine
(labeled as both AAE and masculine) tweets,
(iv) show that balancing training data for gender
leads to fairer models.

2 Related Work

Hate speech research has focused on dataset cu-
ration (Davidson et al., 2017; Founta et al., 2018;
Sap et al., 2020; Guest et al., 2021; Hede et al.,
2021; Grimminger and Klinger, 2021) and dataset
analysis (Madukwe et al., 2020; Wiegand et al.,
2019; Swamy et al., 2019). In our work, we further
analyze datasets to uncover latent biases.

It has been shown that data reflects social
bias inherent in annotator pools (Waseem, 2016;
Al Kuwatly et al., 2020; Davidson et al., 2019a,b).
Work has been conducted to identify bias against
AAE (Sap et al., 2019; Zhou et al., 2021; Xia et al.,
2020) and gender (Excell and Al Moubayed, 2021).

Research has also been conducted in identify-
ing disparities in performance across social groups,
with machine learning algorithms underperforming
for certain groups (Tatman, 2017; Buolamwini and
Gebru, 2018; Rudinger et al., 2018).

Kim et al. (2020) investigated whether bias along
the intersectional axis exists in Founta et al. (2018).
While Kim et al. (2020) focused on bias within a
single dataset, in our work we generalize to multi-
ple hate speech datasets. We also examine classifier
behavior and methods to mitigate this bias.

Research from a sociolinguistic perspective has
shown that genders exhibit differences in online
text (Gefen and Ridings, 2005) as well as general
speech (Penelope Eckbert, 2013). In Bamman et al.

Dataset Neutral Offensive Hateful

DAVIDSON 0.92 0.85 0.53
FOUNTA 0.85 0.79 0.47

HATEXPLAIN 0.69 0.55 0.70

Table 1: F1-score of BERT for each label, evaluated on
DAVIDSON, FOUNTA and HATEXPLAIN.

(2014) and Bergsma and Van Durme (2013), gender
classifiers for English tweets were developed with
accuracy of 88% and 85% respectively. In our
work, we develop a gender classifier of tweets as
well, focusing on precision over recall, leading to a
smaller but more accurate sample of gendered data.

3 Datasets

Five English datasets were used: three hate
speech datasets (DAVIDSON, FOUNTA and HA-
TEXPLAIN), one dataset of tweets labeled for race
(GROENWOLD) and one for gender (VOLKOVA).
We adopt the definitions of Davidson et al. (2017)
for hate speech (defined as speech that contains
expressions of hatred towards a group or individual
on the basis of protected attributes like ethnicity,
gender, race and sexual orientation) and offensive
speech (speech that contains offensive language but
is not hateful).

DAVIDSON. In Davidson et al. (2017), a hate
speech dataset of tweets was collected, labeled for
neutral, offensive and hateful language.

FOUNTA. In Founta et al. (2018) a crowd-
sourced dataset of tweets was presented, labeled
for normal, abusive and hateful language. To unify
definitions, we rename normal to neutral language
and abusive to offensive language.

HATEXPLAIN. Mathew et al. (2021) presented
a dataset from Twitter and Gab2 passages. It has
been labeled for normal (neutral), offensive and
hateful language.

GROENWOLD. In Groenwold et al. (2020) a
dataset of African American English and Standard
American English tweets was introduced. The
AAE tweets come from (Blodgett et al., 2016) and
the SAE are direct translations of those tweets pro-
vided by annotators.

VOLKOVA. Volkova et al. (2013) presented a
dataset of 800k English tweets from users with an
associated gender (feminine/masculine).

2Gab is a social platform that has been known to host
far-right groups and rhetoric.
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Dataset Masc. Fem. SAE AAE SAE+Masc. SAE+Fem. AAE+Masc. AAE+Fem.

DAVIDSON 2716 2338 3534 8099 1279 1240 3157 1172
FOUNTA 26307 13615 43330 4177 13486 13257 971 787

HATEXPLAIN 4509 1103 10368 1103 4145 2376 250 240
GROENWOLD AAE 586 613 0 1995 0 0 587 612
GROENWOLD SAE 587 601 1980 0 587 601 0 0

VOLKOVA 41164 58836 37874 3755 16243 21631 1843 1912

Table 2: Protected attribute statistics for DAVIDSON, FOUNTA, HATEXPLAIN, GROENWOLD and VOLKOVA.

4 Experimental Setup

AAE Classifier. To classify tweets as AAE or
SAE, we used the Blodgett et al. (2016) classifier.
We took into consideration tweets with a confi-
dence score over 0.5, which can be interpreted as a
straightforward classifier of AAE/SAE (whichever
class has the highest score is returned).

Gender Classifier. To classify tweets as mas-
culine or feminine, we finetuned BERT-base3 on
Volkova et al. (2013), which includes gender in-
formation as self-reported from authors. We split
the dataset into train/dev/test (50K/25K/25K) and
employed a confidence score of 0.8 as the threshold
for assigning gender to a tweet. For the tweets with
a confidence over the given threshold, precision
was 78.4% when classifying tweets as ‘masculine’
and 79.5% when classifying tweets as ‘feminine’.

Hate Speech Classifiers. For each of the three
hate speech datasets we finetuned BERT-base. We
split each dataset into 80:10:10 (train:dev:test) sets,
used a max sequence length of 256 and trained for
3 epochs, keeping the rest of the hyperparameters
the same. Performance for the development set is
shown in Table 14. In DAVIDSON and FOUNTA,
BERT performs well for neutral and offensive ex-
amples, performance drops for hateful content. In
HATEXPLAIN, BERT overall performs worse, with
slightly better performance for neutral and hateful
examples over offensive ones.

Intersectionality. For our analysis, we classified
tweets from all datasets for gender and race.

5 Intersectionality Statistics

In Table 2, we present statistics for gender, race and
their intersection as found in the three examined
hate speech datasets as well as in GROENWOLD

and VOLKOVA.5 We show that no dataset is bal-
3https://huggingface.co/

bert-base-cased
4Performance on the test set is similar, omitted for brevity.
5Race/gender for the hate speech datasets, gender for

GROENWOLD and race for VOLKOVA have been computed as

anced between AAE and SAE. In FOUNTA and HA-
TEXPLAIN, AAE tweets make up approximately
1/10th of the data. In DAVIDSON, we see stronger
representation of AAE, with the AAE tweets being
almost twice as many as the SAE tweets. DAVID-
SON is also balanced for gender. The other hate
speech datasets, while still not balanced, are more
balanced for gender than they are for race. FOUNTA

has twice as many masculine than feminine tweets
and HATEXPLAIN has four times as many.

In Table 3, we present a breakdown of protected
attributes per class (neutral/offensive/hateful) for
DAVIDSON, FOUNTA and HATEXPLAIN. A main
takeaway for DAVIDSON and FOUNTA is the im-
balance of AAE versus SAE. In SAE, the neutral
class makes up 52% of the data for DAVIDSON and
81% for FOUNTA, while the respective numbers for
AAE are 3% for DAVIDSON and 13% for FOUNTA.

In HATEXPLAIN, AAE and SAE are more bal-
anced, but there is instead imbalance between gen-
ders. For masculine and feminine speech, passages
are neutral at rates of 43% and 61% respectively.
In DAVIDSON, SAE+Feminine speech is viewed
as more offensive than SAE+Masculine (48% vs.
19%), while in HATEXPLAIN, SAE+Masculine is
more hateful than SAE+Feminine (34% vs. 16%).
Finally, when comparing genders in AAE speech,
we see that while AAE+Feminine contains a larger
percentage of offensive tweets (for example, in
FOUNTA, 69% vs. 54% and in HATEXPLAIN, 50%
vs. 21%), AAE+Masculine contains disproportion-
ately more hateful speech (in DAVIDSON, 7% vs.
5%, in FOUNTA, 28% vs. 9% and in HATEXPLAIN,
19% vs. 6%).

Overall, AAE and masculine speech is anno-
tated as more offensive and hateful than SAE
and feminine speech. Further analyzing AAE,
AAE+Masculine is viewed as more hateful than
AAE+Feminine.

described in Section 4.

3



Dataset Masc. Fem. SAE AAE SAE+Masc. SAE+Fem. AAE+Masc. AAE+Fem.
N O H N O H N O H N O H N O H N O H N O H N O H

Davidson 32.2 61.9 5.9 27.7 69.5 2.8 51.8 40.7 7.5 2.8 93.2 4.0 77.0 19.4 3.6 50.0 47.8 2.3 4.7 88.5 6.8 6.8 88.0 5.2
Founta 81.2 12.3 6.4 71.0 25.0 4.0 80.5 14.6 4.9 13.2 69.2 17.6 86.9 7.6 5.5 86.2 11.4 2.4 18.3 53.8 27.9 21.8 69.4 8.8

HateXplain 43.0 23.7 33.3 60.7 24.6 14.8 38.3 26.7 35.0 45.6 39.1 15.3 41.6 24.0 34.4 58.9 25.1 16.0 59.4 21.3 19.4 44.4 50.0 5.6

Table 3: Distribution of protected attribute annotations for neutral/offensive/hateful (N/O/H) examples.

Dataset Masc. Fem. SAE AAE SAE+Masc. SAE+Fem. AAE+Masc. AAE+Fem.
N O H N O H N O H N O H N O H N O H N O H N O H

Random 33.8 63.2 3.0 27.7 71.2 1.1 53.1 40.5 6.4 4.9 94.1 1.0 77.3 19.3 3.4 45.6 53.2 1.2 6.4 91.2 2.4 3.0 94.3 2.7
Balanced 25.3 71.5 3.2 25.4 71.1 3.5 54.3 39.2 6.5 4.3 95.1 1.6 71.0 22.8 6.2 52.3 46.4 2.3 5.8 92.1 2.1 6.2 93.1 0.7

Table 4: Distribution of predictions for protected attributes on random and balanced datasets based on DAVIDSON.
The balanced set is balanced on race (equal number of AAE and SAE tweets) and gender (equal number of feminine
and masculine tweets). Shown are percentages for neutral/offensive/hateful (N/O/H) predictions.

Dataset All AAE

DAVIDSON n*ggerize, sub-
human, bastards,
border, pigfuck-
ing, feminist,
wetbacks, sav-
ages, wetback,
jumpers

queer, n*gros,
n*ggaz, racial,
shittiest, wet,
savage, skinned,
darky, f*gs

FOUNTA moron, insult,
muslims, aggres-
sion, puritan,
haters, arabs,
coloured, ousted,
pedophiles

white, killing,
pathetic, n*gga,
slave, n*ggas,
sells, hell, chil-
dren, violent

HATEXPLAIN towelhead,
muzzrat, mus-
cum, n*gresses,
n*ggerette,
n*glets, mus-
loid, n*ggerish,
n*ggery, gorilla

spic, fuck,
f*ggots, go-
rilla, towel,
sandn*gger, zhid,
c*ons, rag, fowl

Table 5: Top 10 most contributing words for DAVIDSON,
FOUNTA and HATEXPLAIN as computed with LIME
for hateful predictions.

6 Bias in BERT

We investigate to what extent data bias is learned by
BERT. We compare our findings against a dataset
balanced for race and gender, to examine whether
balanced data leads to fairer models. Namely, we
compare a randomly sampled with a balanced set
the DAVIDSON dataset.6 In the balanced set we
sample the same number of AAE and SAE tweets
(3000) and the same number of masculine and fem-
inine tweets (1750). We also include 8000 neutral

6FOUNTA and HATEXPLAIN were not considered for this
study as they do not contain enough AAE examples to make
confident inferences.

tweets without race or gender labels. For the ran-
domly sampled set, for a fair comparison, we sam-
pled the same number of tweets as the balanced
set.7 All sampling was stratified to preserve the
original label distributions. Results are shown in
Table 4.

In the randomly sampled set, there is an imbal-
ance both for gender and race. For gender, while
masculine tweets are more hateful (3% vs. 1%),
feminine tweets are more offensive (71% vs. 63%).
For race, AAE is marked almost entirely as of-
fensive (94%), while SAE is split in neutral and
offensive (53% and 41%). In the SAE subset of
tweets, there is an imbalance between genders, with
SAE+Feminine being marked disproportionately
more often as offensive than SAE+Masculine (54%
vs. 19%).

6.1 Balanced Training
In Table 4, before balancing, 34% of masculine
and 28% of feminine tweets are marked as neutral.
After balancing, these rates are both at 25%. There
is an improvement in the intersection of AAE and
gender, with the distributions of AAE+Masculine
and AAE+Feminine tweets converging. For SAE,
SAE+Masculine and SAE+Feminine distributions
converge too, although still far apart. Overall, bal-
anced data improves fairness for gender but not for
race, which potentially stems from bias in annota-
tion.

6.2 Interpretability with LIME
In Table 5, we show the top contributing words
for offensive and hateful predictions in DAVIDSON,

7Experiments were conducted with the entirety of the orig-
inal dataset with similar results. They are omitted for brevity.
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FOUNTA and HATEXPLAIN. We see that for AAE,
terms such as ‘n****z’ and ‘n***a’ contribute in
classifying text as non-neutral even though the
terms are part of African American vernacular
(Rahman, 2012), showing that this dialect is more
likely to be flagged. In non-AAE speech (which
includes–but is not exclusive to–SAE), we see the
n-word variant with the ‘-er’ spelling appearing
more often in various forms, which is correctly
picked up by the model as an offensive and hateful
term. On both sets, we also see other slurs, such
as ‘f*ggots’, ‘moron’ and ‘wetback’ (a slur against
foreigners residing in the United States, especially
Mexicans) being picked up, showing the model
does recognize certain slurs and offensive terms.

7 Conclusion

In our work, we analyze racial, gender and inter-
sectional bias in hate speech datasets. We show
that tweets from AAE and AAE+Masculine users
(as classified automatically) are labeled dispropor-
tionately more often as offensive. We further show
that BERT learns this bias, flagging AAE speech as
significantly more offensive than SAE. We perform
interpretability analysis using LIME, showing that
the inability of BERT to differentiate between varia-
tions of the n-word across dialects is a contributing
factor to biased predictions. Finally, we investigate
whether training on a dataset balanced for race and
gender mitigates bias. This method shows mixed
results, with gender bias being mitigated more than
racial bias. With our work we want to motivate
further investigation in model bias not only for the
usual gender and racial attributes, but also for their
intersection.

8 Bias Statement

Research in the sphere of hate speech has produced
annotated data that can be used to train classifiers
to detect hate speech as found in online media. It
is known that these datasets contain biases that
models will potentially propagate. The represen-
tational harm that can be triggered is certain tar-
get groups getting their speech inadvertently cen-
sored/deleted due to existing biases that marginal-
ize certain groups. In our work we investigate
this possibility along intersectional axes (gender
and race). We find that tweets written by female
users are seen as disproportionately more offensive,
while male users write tweets that appear more
hateful.

9 Ethical Considerations

In our work we are dealing with data that can cat-
alyze harm against marginalized groups. We do
not advocate for the propagation or adoption of this
hateful rhetoric. With our work we wish to moti-
vate further analysis and documentation of sensitive
data that is to be used for the training of models
(for example, using templates from Mitchell et al.
(2019); Bender and Friedman (2018)).

Further, while classifying protected attributes
such as race or gender is important in analyzing
and identifying bias, care should be taken for the
race and gender classifiers to not be misused or
abused, in order to protect the identity of users,
especially those from marginalized demographics
who are more vulnerable to hateful attacks and fur-
ther marginalization. In our work we only predict
these protected attributes for investigative purposes
and do not motivate the direct application of such
classifiers. Further, in our work we are using di-
alect (AAE) associated with African Americans as
a proxy to race due to a lack of available annotated
data. It should be noted that not all African Ameri-
cans make use of AAE and not all AAE users are
African Americans.

Finally, in our work we only focused on English
and a specific set of attributes. Namely, we consid-
ered race (African American) and gender. This is a
non-exhaustive list of biases and more work needs
to be done for greater coverage of languages and
attributes.
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Abstract

Gender is a construction in line with social per-
ception and judgment. An important means of
this construction is through languages. When
natural language processing tools, such as word
embeddings, associate gender with the relevant
categories of social perception and judgment, it
is likely to cause bias and harm to those groups
that do not conform to the mainstream social
perception and judgment. Using 12,251 Chi-
nese word embeddings as intermedium, this
paper studies the relationship between social
perception and judgment categories and gen-
der. The results reveal that these grammati-
cal gender-neutral Chinese word embeddings
show a certain gender bias, which is consistent
with the mainstream society’s perception and
judgment of gender. Men are judged by their
actions and perceived as bad, easily-disgusted,
bad-tempered and rational roles while women
are judged by their appearances and perceived
as perfect, either happy or sad, and emotional
roles.

1 Introduction

One of the main ways to construct gender in so-
ciety is through languages. People’s languages
towards infants of different genders can well il-
lustrate the gender construction of languages as
a medium. When people believe that infants are
female, they talk to them more gently. When peo-
ple believe that infants are male, they handle in-
fants more playfully. Through these differential
treatments, boys and girls finally learn to be dif-
ferent (Eckert and McConnell-Ginet, 2013). As
the boys and girls grow up, they start to perform
the “correct” gender manners to be consistent with
the gender judgment and perception of mainstream
society. In other words, gender possesses perfor-
mativity (Butler, 2002). As a result, in the process

†Equal contribution.
‡Corresponding authors.

of construction repetition reinforcement, gender
gradually solidifies the differences that should not
be caused by gender and may cause unexpected
biases and harms. The process is always through
languages which represent the mainstream social
judgment and perception.

As an analytic language, Chinese does have
referential gender and lexical gender, such as
“她” means “she” in referential gender and “爸
爸” means “father” in lexical gender. However,
Chinese lacks grammatical gender, comparing to
French, Spanish and some of the fusional languages
(Cao and Daumé III, 2020). As a result, it is
difficult to find explicit and quantitative clues be-
tween gender and categories in social perception
and judgement in Chinese. Word embedding is
powerful and efficient in Natural Language Pro-
cessing (NLP). Therefore, using word embeddings
to find the implicit gender bias in Chinese can be
an appropriate tool to analyze the associations be-
tween gender and categories in social perception
and judgement. To make it clear, we define four
categories of social perception and judgment and
the linguistic features that can measure their gender
bias, as shown in Table 1.

In this paper, we first gave our definition of gen-
der bias. Then, by using semantic similarity, the
implicit gender bias was measured in 12,251 Chi-
nese word embeddings. Examples articulate that
this measurement can capture the gendered word
embeddings in a language without grammatical
gender. Then, part-of-speech, sentiment polarity,
emotion category, and semantic category were la-
beled to each word. We analyzed the relationships
between gendered word embeddings and linguis-
tic features to find the associations between gen-
der and different categories in social perception
and judgement. Results showed that we perceive
and judge men and women with different social
categories. Men are judged by their actions and
perceived as bad, easily-disgusted, bad-tempered
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Category Definition Linguistic Metrics
Activity To what extent do social perception or description of a person relate one’s Part-of-speech

gender to appearance or action.
Sentiment Polarity To what extent do social perception or judgment of a person relate one’s Sentiment Polarity

gender to positive or negative sentiment.
Emotion Category To what extent do social perception or judgment of a person relate one’s Emotion Category

gender to specific emotion categories, such as anger, happiness and sadness.
Content To what extent do social perception or judgment of a person relate one’s Semantic Category

gender to specific topics, such as psychology, state and abstraction.

Table 1: Definitions and linguistic features of 4 categories of social perception and judgement

and rational roles while women are judged by their
appearances and perceived as perfect, either happy
or sad, and emotional roles. This method is neat,
while it offers a quantitative view to study the rela-
tionship between gender and different categories in
perception and judgement in Chinese society and
culture.

2 Bias Statement

In this paper, we study stereotypical associations
between gender and different categories in social
perception and judgment through Chinese word
embeddings. Most of the Chinese words are gram-
matical gender-neutral. However, if the Chinese
word embeddings show gender differences in differ-
ent categories of part-of-speech, sentiment polarity,
emotion category and semantic category, it may
show that these gender-neutral word embeddings
represent our stereotypes towards different genders.
For example, we always judge a woman by her ap-
pearance but judge a man by his action. Although
these stereotypical generalizations may not be neg-
ative, once these stereotypical representations are
used in downstream NLP applications, the sys-
tem may ignore, or even do harms to those people
who are not consistent with the mainstream social
perception and judgement of gender. Hence, this
stereotypical association can be regarded as bias
which may cause representational harms (Blodgett
et al., 2020). In other words, the uniqueness be-
tween person and person is erased, and the system
only retains gender differences. The ideal state
is that people will not be treated unfairly because
of their genders, especially to those are not con-
sistent with the mainstream social perception and
judgement of gender, and the system should not
emphasize certain characteristics of a person ac-
cording to one’s gender.

3 Dataset

The Chinese word embeddings1 we selected were
pre-trained with Baidu Encyclopedia Corpus, us-
ing word2vec model and the method of Skip-Gram
with Negative Sampling (SGNS). The size of Baidu
Encyclopedia corpus is 4.1GB and the corpus con-
tains 745M tokens (Li et al., 2018). Baidu En-
cyclopedia is an open online encyclopedia like
Wikipedia, with entries covering almost all areas
of Chinese knowledge. The encyclopedia char-
acteristic of Baidu Encyclopedia determines that
the language it uses is more objective and gender-
neutral. The total amount of the word embeddings
is 636,013 and each word embedding contains 300
dimensions. After labelling part-of-speech, senti-
ment polarity, emotion category, and semantic cate-
gory, only 12,376 words contain all the information
we need. Then, we calculated Odds Ratio (OR)
values of each word and only selected those within
three standard deviations from the mean. At last,
we kept 12,251 word embeddings as our dataset.
Almost all the words are gender-neutral as Chinese
is a language without grammatical gender. Differ-
ent token numbers of Chinese word embeddings
in part-of-speech, sentiment polarity, emotion cate-
gory, and semantic category are shown in Table 2.

Part-of-speech. The part-of-speech labels were
selected from Affective Lexicon Ontology2 (Xu
et al., 2008). As we all know, the part-of-speech of
many Chinese words may change in different con-
texts. However, the Chinese word embedding we
chose is not contextualized. Among the 12,251
words in our dataset, only 37 words are multi-
category words. We thought that the number is
small and would not affect the results and analysis.
Therefore, we chose one of the tags in Affective

1https://github.com/Embedding/
Chinese-Word-Vectors

2http://ir.dlut.edu.cn/info/1013/1142.
htm
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Part-of-speech Adjective Adverb Idiom Noun Prep Verb Net-words Total
Tokens 3586 39 3417 2618 63 2514 14 12251
Sentiment Polarity Positive Negative Neutral Both Total
Tokens 4675 4628 2908 40 12251
Emotion Category Disgust Good Sadness Fear Anger Happiness Astonishment Total
Tokens 4694 4858 917 538 169 99 976 12251
Semantic Category Activity Action Object Association Aid language Characteristic Honorific language Total
Tokens 2037 177 367 279 167 4418 22

12251Person State Time and space Abstraction Psychology
829 1009 1561 1252 133

Table 2: Word embedding tokens labeled in different linguistic features in our dataset

Lexicon Ontology as its part-of-speech label for
analysis. There are 7 labels of the part-of-speech.
To balance the amount for analysis, we only chose
the words labeled “noun”, “verb” and “adjective”
to compute and analyze. Here, we assume that
nouns and adjectives are related to the appearance
of what people perceive and judge, while verbs are
related to action.

Sentiment Polarity. Affective Lexicon Ontology
also offers 4 labels of the sentiment polarity, and we
chose the words labeled “positive” and “negative”
to analyze.

Emotion Category. According to Ekman’s six
basic emotions (Ekman, 1999) and the characteris-
tic of Chinese, the Affective Lexicon Ontology of-
fers 7 labels for the sentiment category: “good” (in-
cluding “respect”, “praise”, “believe”, “love” and
“wish” to make a more detailed division of com-
mendatory emotion), “anger”, “disgust”, “fear”,
“happiness”, “sadness”, and “astonishment”.

Semantic Category. Our semantic category la-
bels are from HIT IR-Lab Tongyici Cilin (Ex-
tended)3. It organized all the entries in a tree-like
hierarchy, and divided the words into 12 seman-
tic categories. We only chose the top 5 categories
related to human and with the largest number of
tokens to analyze: “abstraction”, “activity”, “char-
acteristic”, “state” and “psychology”.

4 Experiments

In this section, we will illustrate the methodology
to analyze the gendered word embeddings and how
they are associated to different categories in our
social perception and judgement. We first used se-
mantic similarity and odds ratio to evaluate each
word embedding. Then, independent-samples t
test, one-factor Analysis of Variance (ANOVA) and

3https://github.com/Xls1994/Cilin

Kruskal-Wallis test were used respectively to an-
alyze the relationships between gender and cate-
gories in social perception and judgement.

Masculine Words Meaning Feminine Words Meaning
爸爸 dad 妈妈 mom
父亲 father 母亲 mother
姥爷 mother’s father 姥姥 mother’s mother4

外公 mother’s father 外婆 mother’s mother5

爷爷 father’s father 奶奶 father’s mother
哥哥 elder brother 姐姐 elder sister
弟弟 younger brother 妹妹 younger sister
儿子 son 女儿 daughter
男友 boyfriend 女友 girlfriend
叔叔 uncle 阿姨 aunt
他 he 她 she
男 male 女 female
男人 men 女人 women
男子 man 女子 woman
男士 Mr. 女士 Ms.
先生 Sir 小姐 Miss
男孩 boy 女孩 girl
男性 males 女性 females

Table 3: Gendered Words

Semantic Similarity. We first selected and trans-
lated 14 masculine words and corresponding 14
feminine words as Gendered Words G into Chinese
from related study in English (Nadeem et al., 2020),
showed in Table 3. These words are lexical gen-
der words or referential gender words in Chinese.
Then, we calculated the cosine similarity as the
semantic similarity S between each word embed-
ding in our dataset W and the word embeddings of
Gendered Words G according to equation 1. Here,
n means the total dimension of each word embed-
ding. We took the mean cosine similarity between
one W and the total Feminine word embeddings as
the Feminine Similarity Sf . Masculine Similarity
Sm of one W is as the same. The closer to 1 the
value of S is, the word W is more masculine or
feminine.

S =

∑n
i=1Wi ×Gi√∑n

i=1(Wi)2 ×
√∑n

i=1(Gi)2
(1)

4“姥爷” and “姥姥” are usually used in northern China.
5“外公” and “外婆” are usually used in southern China.
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Odds Ratio. OR (Szumilas, 2010) was used to
calculate the Gendered value OR of each word
embedding W in our dataset as equation 2 shows.
Here, N is the total number of word embeddings in
our dataset. To facilitate the test, we selected OR
values within three standard deviations from the
mean and normalized all data to ORG∈ [−1, 1].

OR(w) =
Sm(W )

∑N
j=1 Sm(Wj)

/
Sf (W )

∑N
j=1 Sf (Wj)

(2)

The closer the ORG is to 1, the more masculine
the word is. The closer the ORG is to -1, the more
feminine the word is.

Independent-samples T Test. On sentiment po-
larity, we conducted an independent-sample t test
of ORG value to explore the relationship between
gender and sentiment polarity in social perception
and judgement as the variances are homogeneous.

One-factor ANOVA. On part-of-speech, we con-
ducted one-factor ANOVA of ORG value to ex-
plore the relationship between gender and activity
in social perception and judgement as the different
token numbers in part-of-speech are sufficient and
approximate.

Kruskal-Wallis test. On the categories of emo-
tion category and semantic category, we conducted
Kruskal-Wallis test of ORG value respectively to
explore the relationships between gender and emo-
tion category and content in social perception and
judgement as the variances in these two categories
are different and the token numbers vary widely.

5 Results

Gendered Word Embeddings. We selected the
top 5 masculine and feminine word embeddings
of grammatical gender-neutral words according to
the ORG value showed in Table 4. It is clear to
see that the masculine words are related to “war”
and “power” and the feminine words are related
to “flower” and “beauty” which conforms to our
stereotypes of gender. It indicates our measure-
ment can detect the implicit gender bias in word
embeddings of the language without grammatical
gender.

Gender and Activity. We define activity as the
extent to which we perceive or describe a person’s
gender in relation to one’s appearance or action.
Here, we think that verbs can represent perceiving

Word Meaning Part-of-speech ORG

所向披靡 invincible idiom 1
戎马 army horse noun 0.9985
让位 abdicate verb 0.9968
广开言路 open communication idiom 0.9918
死守 defend to death verb 0.9906
盛开 bloom verb -1
婵娟 moon adjective -0.9933
火树银花 Hottest Silver idiom -0.9927
并蒂莲 Twin flowers idiom -0.9879
天仙 fairy noun -0.9811

Table 4: The top 5 masculine and feminine word embed-
dings of grammatical gender-neutral words according
to the ORG value

and describing a person’s action, and nouns and
adjectives can represent perceiving and describ-
ing a person’s appearance. Figure 1(a) shows that
verbs (M=0.022) are more masculine than nouns
(M=0.003) and adjectives (M=-0.064) and they
have significant differences (p<0.001). It means
that in social perception and judgment, we asso-
ciate actions with men, appearances with women.
It may indicate that we always perceive a woman
with her appearance and judge a man by his action
(Caldas-Coulthard and Moon, 2010). Sociolinguis-
tic clues support this conjecture. Appearance is
seen as applicable to the female gender category as
there are subcategories elaborated specifically for
women far more than men (Eckert and McConnell-
Ginet, 2013). This supports that our society empha-
sizes appearance on women rather than men. Other
studies also show that we use positive adjectives to
describe a woman’s body rather than a man (Hoyle
et al., 2019). The most representative example is
in mate selection. Men care much about women’s
appearance and women care much about men’s
power, status and wealth (Baker, 2014). Once man-
action and woman-appearance associations are es-
tablished, it may cause gender bias. The systems
emphasize a woman’s appearance over her other
strengths, which may hurt women who are less
attractive.

Gender and Sentiment Polarity. Figure 1(b)
shows that positive words (M=-0.017) are more
feminine than negative words (M=0.034) and they
have significant difference (p<0.001). This asso-
ciates men with negative sentiments and women
with positive ones. This may imply that in our so-
ciety, we perceive women in a positive way and
we can perceive men in a negative way. It can
be reflected fully in children’s literature which al-
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(a) (b)

(c) (d)

Figure 1: The distribution of ORG in part-of-speech, sentiment polarity, emotion category, and semantic category

ways portrays “a good girl” and “a bad boy” (Pe-
terson and Lach, 1990; Stevinson Hillman, 1974;
Kortenhaus and Demarest, 1993). This point can be
explained by the different gender views on compli-
ments. Women are more likely to compliment and
be complimented than men, because for women,
compliments strengthen their solidarity with others
in the communities of practice. However, compli-
menting men can challenge a men’s authority and
power because complimenting a man implies that
he is being judged (Tannen, 1991; Holmes, 2013).
Over time, women tend to develop a steady bond
with positive sentiments. This seems to be a pro-
tection for women, but it is actually a benevolent
sexism (Glick and Fiske, 2001). The negative man
image indicates that we have a certain tolerance
to man, while the positive woman image is more
like a bondage to women. We expect women to be

gentle and submissive all the time, while men can
be negative and aggressive.

Gender and Emotion Category. Figure 1(c)
shows that from the most masculine to the most
feminine, the emotion categories are disgust
(M=0.030), anger (M=0.025), good (M=-0.003),
fear (M=-0.025), astonishment (M=-0.083), sad-
ness (M=-0.089), and happiness (M=-0.130). Dis-
gust and anger emotions have significant differ-
ences with other emotions (p<0.05). It indicates
that we associate disgust and anger emotions with
men rather than women. Sadness and happiness
emotions have significant difference with other
emotions (p<0.05). It indicates that we associate
happiness and sadness emotions with women rather
than men. Thus, in our social perception and judg-
ment, men may be viewed with negative emotions,
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such as anger and disgust, while women are ei-
ther happy or sad. In movies and books, whether
women are sad and happy depending highly on
men, and most of men in books and movies do
not show intense emotions of happiness or sad-
ness (Xu et al., 2019). When annotators annotated
the author’s gender for tweets with unknown gen-
der of authors, the tweets contained anger emotion
will be regarded as the most confident male clues,
while happy emotion as the most confident female
clues (Flekova et al., 2016). These stereotypes as-
sociating emotions with genders can lead to bias.
Anger and disgust are active emotions, meaning
men are free to express their negative emotions.
While happy and sad emotions related to women
are often passive, meaning that women are domi-
nated. The system may learn such bias when gen-
erating text. It may place women in a subordinate
position to men.

Gender and Content. Here, Content refers to the
specific topics we associate with a gender role. Fig-
ure 1(d) shows that activity words (M=0.057) are
the most masculine while psychology words (M=-
0.050) are the most feminine. Activity words have
significant difference with other words (p<0.001).
So are the psychology words (p<0.05). This links
men to activity and women to psychology. If we
regard activity as a concrete rational action and psy-
chology as an emotional cognition, then in society,
man may be a rational role and woman may be an
emotional role. In study of different languages used
by men and women, it is found that women pre-
fer to use more emotional words than men (Savoy,
2018). Our society has a strong normative view that
women are interested in connecting with others and
promoting warmth around them. Men are gener-
ally not interested in other people and relationships.
Men should focus on their goals and achievements
and what they can do. As a result, women have a
strong motivation to show attachment, a desire to
promote the emotional feelings and downplay their
personal goals and aspirations. Men, by contrast,
have powerful motivations to appear strong and ra-
tional, to mask emotions, and to hide a desire to be
intimate with others (Eckert and McConnell-Ginet,
2013). Such stereotypes suppress man’s emotional
needs and ignore woman’s rational power.

6 Related Works

It was studied that word embeddings contain all
kinds of biases in human society, including gen-

der bias. These biases come from the biased data
in the corpus which reflect the biased languages
we use daily and from the bias of the annotators
when they annotate the datasets (Van Durme, 2009).
NLP algorithms may amplify the biases contained
in the datasets (Sun et al., 2019). Some word em-
beddings of neutral words such as “nurse”, “so-
cial” were proved to have closer similarities with
gender words (e.g. “male”, “boy”, “female”, and
“girl”) (Friedman et al., 2019; Garg et al., 2018;
Brunet et al., 2019; Wevers, 2019; Santana et al.,
2018; Mishra et al., 2019; Zhao et al., 2018). The
latest contextualized word embeddings also have
gender bias but the degree of the bias may not as
much as that of traditional word embeddings (Zhao
et al., 2019; Basta et al., 2019; Kurita et al., 2019;
Swinger et al., 2019). In addition, multilingual em-
beddings contain gender bias (Lewis and Lupyan,
2020) and the bias is related to the types of different
languages (Zhao et al., 2020). Word Embedding
Association Test (WEAT) can be used to measure
gender bias in word embeddings (Caliskan et al.,
2017; Tan and Celis, 2019; Chaloner and Maldon-
ado, 2019) and this method can also be expanded
to sentence level as Sentence Encoder Association
Test (SEAT) (May et al., 2019). Another method to
detect and measure the gender bias in word embed-
dings is to analyze gender subspace in embeddings
(Bolukbasi et al., 2016; Manzini et al., 2019). But
this method may not show the whole gender bias
in word embeddings. Some of the implicit gender
bias cannot be measured and caught (Gonen and
Goldberg, 2019).

7 Conclusion

In this paper, we used word embeddings to de-
tect and measure the implicit gender bias in a lan-
guage without grammatical gender. Relationships
between gender and four categories in social per-
ception and judgement are also shown according to
our measurement values. Word embeddings show
that we judge a woman by her appearance and per-
ceive her as a “perfect”, either happy or sad, and
emotional role while we judge a man by his ac-
tion and perceive him as a “bad”, easily-disgusted,
bad-tempered, and rational role. It may cause gen-
der bias. This systematic bias intensifies gender
differences, solidifies stereotypes about men and
women, erases the uniqueness of differences be-
tween person and person, and harms those do not
conform to mainstream social perception and judg-
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ment and those who do not fit in the gender di-
chotomy. In the future, we can choose more di-
mensions rather than man/woman for investigation,
such as in-group/inter-group, animate/inanimate,
collectivism/individualism, etc.
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Hanna Wallach. 2020. Language (technology) is
power: A critical survey of “bias” in nlp. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 5454–5476.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou,
Venkatesh Saligrama, and Adam T Kalai. 2016. Man
is to computer programmer as woman is to home-
maker? debiasing word embeddings. Advances in
Neural Information Processing Systems, 29:4349–
4357.

Marc-Etienne Brunet, Colleen Alkalay-Houlihan, Ash-
ton Anderson, and Richard Zemel. 2019. Understand-
ing the origins of bias in word embeddings. In In-
ternational Conference on Machine Learning, pages
803–811. PMLR.

Judith Butler. 2002. Gender Trouble. Routledge.

Carmen Rosa Caldas-Coulthard and Rosamund Moon.
2010. ‘curvy, hunky, kinky’: Using corpora as tools
for critical analysis. Discourse & Society, 21(2):99–
133.

Aylin Caliskan, Joanna J Bryson, and Arvind Narayanan.
2017. Semantics derived automatically from lan-
guage corpora contain human-like biases. Science,
356(6334):183–186.

Yang Trista Cao and Hal Daumé III. 2020. Toward
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Abstract

The representations in large language models
contain multiple types of gender information.
We focus on two types of such signals in En-
glish texts: factual gender information, which
is a grammatical or semantic property, and gen-
der bias, which is the correlation between a
word and specific gender. We can disentangle
the model’s embeddings and identify compo-
nents encoding both types of information with
probing. We aim to diminish the stereotypi-
cal bias in the representations while preserving
the factual gender signal. Our filtering method
shows that it is possible to decrease the bias of
gender-neutral profession names without sig-
nificant deterioration of language modeling ca-
pabilities. The findings can be applied to lan-
guage generation to mitigate reliance on stereo-
types while preserving gender agreement in
coreferences.1

1 Introduction

Neural networks are successfully applied in natural
language processing. While they achieve state-
of-the-art results on various tasks, their decision
process is not yet fully explained (Lipton, 2018).
It is often the case that neural networks base their
prediction on spurious correlations learned from
large uncurated datasets. An example of such a spu-
rious tendency is gender bias. Even the state-of-the-
art models tend to counterfactually associate some
words with a specific gender (Zhao et al., 2018a;
Stanovsky et al., 2019). The representations of pro-
fession names tend to be closely connected with
the stereotypical gender of their holders. When the
model encounters the word “nurse”, it will tend to
use female pronouns (“she”, “her”) when referring
to this person in the generated text. This tendency
is reversed for words such as “doctor”, “professor”,
or “programmer”, which are male-biased.

1Our code is available on GitHub: github.com/
tomlimi/Gender-Bias-vs-Information

Figure 1: A schema is presenting the distinction be-
tween gender bias of nouns and factual (i.e., grammat-
ical) gender in pronouns. We want to transform the
representations to mitigate the former and preserve the
latter.

It means that the neural model is not reliable
enough to be applied in high-stakes language pro-
cessing tasks such as connecting job offers to ap-
plicants’ CVs (De-Arteaga et al., 2019). If the
underlying model was biased, the high-paying
jobs, which are stereotypically associated with men,
could be inaccessible for female candidates. When
we decide to use language models for that purpose,
the key challenge is to ensure that their predictions
are fair.

The recent works on the topics aimed to dimin-
ish the role of gender bias by feeding examples of
unbiased text and training the network (de Vassi-
mon Manela et al., 2021) or transforming the rep-
resentations of the neural networks post-hoc (with-
out additional training) (Bolukbasi et al., 2016).
However, those works relied on the notion that to
de-bias representation, most gender signal needs
to be eliminated. It is not always the case, pro-
nouns and a few other words (e.g.:“king” -“queen”;
“boy” - “girl”) have factual information about gen-
der. A few works identified gendered words and
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exempted them from de-biasing (Zhao et al., 2018b;
Kaneko and Bollegala, 2019). In contrast to these
approaches, we focus on contextual word embed-
dings. In contextual representations, we want to
preserve the factual gender information for gender-
neutral words when it is indicated by context, e.g.,
personal pronoun. This sort of information needs to
be maintained in the representations. In language
modeling, the network needs to be consistent about
the gender of a person if it was revealed earlier
in the text. The model’s ability to encode factual
gender information is crucial for that purpose.

We propose a method for disentangling the fac-
tual gender information and gender bias encoded
in the representations. We hypothesise that seman-
tic gender information (from pronouns) is encoded
in the network distinctly from the stereotypical
bias of gender-neutral words (Figure 1). We apply
an orthogonal probe, which proved to be useful,
e.g., in separating lexical and syntactic informa-
tion encoded in the neural model (Limisiewicz and
Mareček, 2021). Then we filter out the bias sub-
space from the embedding space and keep the sub-
space encoding factual gender information. We
show that this method performs well in both de-
sired properties: decreasing the network’s reliance
on bias while retaining knowledge about factual
gender.

1.1 Terminology
We consider two types of gender information en-
coded in text:

• Factual gender is the grammatical (pronouns
“he”, “she”, “her”, etc.) or semantic (“boy”,
“girl”, etc.) feature of specific word. It can also
be indicated by a coreference link. We will
call words with factual gender as gendered in
contrast to gender-neutral words.

• Gender bias is the connection between a
word and the specific gender with which it
is usually associated, regardless of the factual
premise.2 We will refer to words with gender
bias as biased in contrast to non-biased.

Please note that those definitions do not preclude
the existence of biased and at the same time gender-
neutral words. In that case, we consider bias stereo-
typical and aim to mitigate it in our method. On the

2For instance, the words “nurse”, “housekeeper” are as-
sociated with women, and words “doctor”, “mechanic” with
men. None of those words has a grammatical gender marking
in English.

other hand, we want to preserve bias in gendered
words.

2 Methods

We aim to remove the influence of gender-biased
words while keeping the information about factual
gender in the sentence given by pronouns. We
focus on interactions of gender bias and factual
gender information in coreference cues of the fol-
lowing form:

[NOUN] examined the farmer for injuries because
[PRONOUN] was caring.

In English, we can expect to obtain the factual
gender from the pronoun. Revealing one of the
words in coreference link should impact the pre-
diction of the other. Therefore we can name two
causal associations:

CI : biasnoun → f. genderpronoun

CII : f. genderpronoun → biasnoun

In our method, we will primarily focus on two
ways bias and factual gender interact. For gender-
neutral nouns (in association CI ), the effect on
predicting masked pronouns would be primarily
correlated with their gender bias. At the same time,
the second association is desirable, as it reveals
factual gender information and can improve the
masked token prediction of a gendered word. We
define two conditional probability distributions cor-
responding to those causal associations:

PI(ypronoun|X, b)

PII(ynoun|X, f)
(1)

Where y is a token predicted in the position of
pronoun and noun, respectively; X is the context
for masked language modeling. b and f are bias
and factual gender factors, respectively. We model
the bias factor by using a gender-neutral biased
noun. Below we present examples for introducing
female and male bias: 3

Example 1:

bf The nurse examined the farmer for injuries because
[PRONOUN] was caring.

bm The doctor examined the farmer for injuries because
[PRONOUN] was caring

3We use [NOUN] and [PRONOUN] tokens for a better
explanation, in practice, they both are masked by the same
mask token, e.g. [MASK] in BERT (Devlin et al., 2019).
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Similarly, the factual gender factor is modeled
by introducing a pronoun with a specific gender in
the sentence:

Example 2:

ff [NOUN] examined the farmer for injuries because she
was caring.

fm [NOUN] examined the farmer for injuries because he
was caring.

We aim to diminish the role of bias in the predic-
tion of pronouns of a specific gender. On the other
hand, the gender indicated in pronouns can be use-
ful in the prediction of a gendered noun. Mathemat-
ically speaking, we want to drop the conditionality
on bias factor in PI from eq. (1), while keeping the
conditionality on gender factor in PII .

PI(ypronoun|X, b) → PI(ypronoun|X)

PII(ynoun|X, f) ̸→ PII(ynoun|X)
(2)

To decrease the effect of gender signal from the
words other than pronoun and noun, we introduce
a baseline, where both pronoun and noun tokens
are masked:

Example 3:

∅ [NOUN] examined the farmer for injuries because
[PRONOUN] was caring.

2.1 Evaluation of Bias
Manifestation of gender bias may vary significantly
from model to model and can be attributed mainly
to the choice of the pre-training corpora as well as
the training regime. We define gender preference
in a sentence by the ratio between the probability
of predicting male and female pronouns:

GP (X) =
PI([pronounm]|X)

PI([pronounf ]|X)
(3)

To estimate the gender bias of a profession name,
we compare the gender preference in a sentence
where the profession word is masked (example 3
from the previous paragraph) and not masked (ex-
ample 1). We define relative gender preference:

RGPnoun = log(GP (Xnoun))− log(GP (X∅)) (4)

Xnoun denotes contexts in which the noun is re-
vealed (example 1), and X∅ corresponds to exam-
ple 3, where we mask both the noun and the pro-
noun. Our approach focuses on the bias introduced
by a noun, especially profession name. We subtract

log(GP (X∅)) to single out the bias contribution
coming from the noun.4 We use logarithm, so the
results around zero would mean that revealing noun
does not affect gender preference.5

2.2 Disentangling Gender Signals with
Orthogonal Probe

To mitigate the influence of bias on the predictions
eq. (2), we focus on the internal representations
of the language model. We aim to inspect con-
textual representations of words and identify their
parts that encode the causal associations CI and
CII . For that purpose, we utilize orthogonal struc-
tural probes proposed by Limisiewicz and Mareček
(2021).

In structural probing, the embedding vectors are
transformed in a way so that distances between
pairs of the projected embeddings approximate a
linguistic feature, e.g., distance in a dependency
tree (Hewitt and Manning, 2019). In our case, we
want to approximate the gender information in-
troduced by a gendered pronoun f (factual) and
gender-neutral noun b (bias). The f takes the val-
ues −1 for female pronouns and, 1 for male ones,
and 0 for gender-neutral “they”. The b is the rela-
tive gender preference (eq. (4)) for a specific noun
(b ≡ RGPnoun).

Our orthogonal probe consists of three trainable
components:

• O: orthogonal transformation, mapping rep-
resentation to new coordinate system.

• SV : scaling vector, element-wise scaling of
the dimensions in a new coordinate systems.
We assume that dimensions that store probed
information are associated with large scaling
coefficients.

• i: intercept shifting the representation.

O is a tunable orthogonal matrix of size demb ×
demb, SV and i are tunable vectors of length demb,
where demb is the dimensionality of model’s em-
beddings. The probing losses are the following:

LI =
∣∣||SV I ⊙ (O · (hb,P − h∅,P ))− iI ||d − b

∣∣
LII =

∣∣||SV II ⊙ (O · (hf,N − h∅,N ))− iII ||d − f
∣∣,

(5)

4Other parts of speech may also introduce gender bias, e.g.,
the verb “to work”. We note that our setting can be generalized
to all words, but it is outside of the scope of this work.

5The relative gender preference was inspired by total effect
measure proposed by Vig et al. (2020).
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where, hb,P is the vector representation of masked
pronoun in example 1; hf,N is the vector repre-
sentation of masked noun in example 2; vectors
h∅,P and h∅,N are the representations of masked
pronoun and noun respectively in baseline example
3.

To account for negative values of target factors
(b and f ) in eq. (5), we generalize distance metric
to negative values in the following way:

||−→v ||d = ||max(
−→
0 ,−→v )||2 − ||min(

−→
0 ,−→v )||2

(6)
We jointly probe for both objectives (orthogo-

nal transformation is shared). Limisiewicz and
Mareček (2021) observed that the resulting scaling
vector after optimization tends to be sparse, and
thus they allow to find the subspace of the embed-
ding space that encodes particular information.

2.3 Filtering Algorithm
In our algorithm we aim to filter out the latent
vector’s dimensions that encode bias. Particularly,
we assume that, when ||hb,P − h∅,P || → 0 then
PI(ypronoun|X, b) → PI(ypronoun|X)

We can diminish the information by masking
the dimensions with a corresponding scaling vector
coefficient larger than small ϵ.6 The bias filter is
defined as:

F−b =
−→
1 [ϵ > abs(SVI)], (7)

where abs(·) is element-wise absolute value and−→
1 is element-wise indicator. We apply this vector
to the representations of hidden layers:

ĥ = OT · (F−b ⊙ (O · h) + abs(SVI)⊙ iI) (8)

To preserve factual gender information, we pro-
pose an alternative version of the filter. The di-
mension is kept when its importance (measured by
the absolute value of scaling vector coefficient) is
higher in probing for factual gender than in probing
for bias. We define factual gender preserving filter
as:

F−b,+f = F−b +
−→
1 [ϵ ≤ abs(SVI) < abs(SVII)]

(9)
The filtering is performed as in eq. (8) We ana-

lyze the number of overlapping dimensions in two
scaling vectors in Section 3.2.

6We take epsilon equal to 10−12. Our results weren’t
particularly vulnerable to this parameter, we show the analysis
in appendix C.

3 Experiments and Results

We examine the representation of two BERT mod-
els (base-cased: 12 layers, 768 embedding size; and
large-cased: 24 layers, 1024 embedding size, De-
vlin et al. (2019)), and ELECTRA (base-generator:
12 layers, 256 embedding size Clark et al. (2020)).
All the models are Transformer encoders trained
on the masked language modeling objective.

3.1 Evaluation of Gender Bias in Language
Models

Before constructing a de-biasing algorithm, we
evaluate the bias in the prediction of three language
models.

We evaluate the gender bias in language mod-
els on 104 gender-neutral professional words from
the WinoBias dataset (Zhao et al., 2018a). The
authors analyzed the data from the US Labor Force
Statistics. They annotated 20 professions with the
highest share of women as stereotypically female
and 20 professions with the highest share of men
as stereotypically male.

We run the inference on the prompts in five for-
mats presented in Table 1 and estimate with equa-
tion eq. (4). To obtain the bias of the word in the
model, we take mean RGPnoun computed on all
prompts.

3.1.1 Results
We compare our results with the list of stereotypical
words from the annotation of Zhao et al. (2018a).
Similarly, we pick up to 20 nouns with the highest
and positive RGP as male-biased and up to 20
nouns with the lowest and negative RGP as female-
biased. These lists differ for models.

Table 2 presents the most biased words accord-
ing to three models. Noticeably, there are differ-
ences between empirical and annotated bias. Espe-
cially word “salesperson” considered male-biased
based on job market data was one of the most
skewed toward the female gender in 2 out of 3
models. The full results of the evaluation can be
found in appendix D.

3.2 Probing for Gender Bias and Factual
Gender Information

We optimize the joint probe, where orthogonal
transformation is shared, while scaling vectors
and intercepts are task specific. The probing ob-
jective is to approximate: CI ) the gender bias
of gender-neutral nouns (b ≡ RGPnoun); and
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Prompt PRONOUN PRONOUN 2

[PRONOUN] is [NOUN]. She He
[PRONOUN] was [NOUN]. She He
[PRONOUN]works as [NOUN]. She He
[PRONOUN] job is [NOUN]. Her His
[NOUN]said that [PRONOUN] loves [PRONOUN 2] job. he she her his
[NOUN] said that [PRONOUN] hates [PRONOUN 2] job. she he her his

Table 1: List of evaluation prompts used in the evaluation of relative gender preference. The tag [NOUN] masks a
noun accompanied by an appropriate determiner.

Most Female Biased Most Male Biased

NOUN N Models Avg. RGP Annotated NOUN N Models Avg. RGP Annotated

housekeeper 3/3 -2.009 female carpenter 3/3 0.870 male
nurse 3/3 -1.840 female farmer 3/3 0.753 male
receptionist 3/3 -1.602 female guard 3/3 0.738 male
hairdresser 3/3 -0.471 female sheriff 3/3 0.651 male
librarian 2/3 -0.279 female firefighter 3/3 0.779 neutral
victim 2/3 -0.102 neutral driver 3/3 0.622 male
child 2/3 -0.060 neutral mechanic 2/3 0.719 male
salesperson 2/3 -0.056 male engineer 2/3 0.645 neutral

Table 2: Evaluated empirical bias in analyzed Masked Language Models. Column number shows the count of
models for which the word was considered biased. Annotated is the bias assigned in Zhao et al. (2018a) based on
the job market data.

CII ) the factual gender information of pronouns
(f ≡ f. genderpronoun).

We use WinoMT dataset7 (Stanovsky et al.,
2019) which is a derivate of WinoBias dataset
(Zhao et al., 2018a). Examples are more challeng-
ing to solve in this dataset than in our evaluation
prompts (Table 1). Each sentence contains two po-
tential antecedents. We use WinoMT for probing
because we want to separate probe optimization
and evaluation data. Moreover, we want to iden-
tify the encoding of gender bias and factual gender
information in more diverse contexts.

We split the dataset into train, development, and
test sets with non-overlapping nouns, mainly pro-
fession names. They contain 62, 21, and 21 unique
nouns, corresponding to 2474, 856, and 546 sen-
tences. The splits are designed to balance male and
female-biased words in each of them.

3.2.1 Results
The probes on the models’ top layer give a good
approximation of factual gender – Pearson corre-

7The dataset was originally introduced to evaluate gender
bias in machine translation.

lation between predicted and gold values in the
range from 0.928 to 0.946. Pearson correlation for
bias was high for BERT base (0.876), BERT large
(0.946), and lower for ELECTRA (0.451).8

We have identified the dimensions encoding con-
ditionality CI and CII . In Figure 2, we present
the number of dimensions selected for each objec-
tive and their overlap. We see that bias is encoded
sparsely in 18 to 80 dimensions.

3.3 Filtering Gender Bias

The primary purpose of probing is to construct
bias filters based on the values of scaling: F−b

and F−b,+f . Subsequently, we perform our de-
biasing transformation eq. (7) on the last layers of
the model. The probes on top of each layer are
optimized separately.

After filtering, we again compute RGP for all
professions. We monitor the following metrics to
measure the overall improvement of the de-biasing
algorithm on the set of 104 gender-neutral nouns
SGN :

8For ELECTRA, we observed higher correlation of the
bias probe on penultimate layer 0.668.
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(a) BERT base (out of 768 dims) (b) BERT large (out of 1024 dims) (c) ELECTRA (out of 256 dims)

Figure 2: The number of selected dimensions for each of the tasks: CI , CII , and shared for both tasks.

MSEGN =
1

|SGN |
∑

w∈SGN

RGP (w)2 (10)

Mean squared error show how far from zero
RGP is. The advantage of this metric is that the
bias of some words cannot be compensated by the
opposite bias of others. The main objective of de-
biasing is to minimize mean squared error.

MEANGN =
1

|SGN |
∑

w∈SGN

RGP (w)2 (11)

Mean shows whether the model is skewed to-
ward predicting specific gender. In cases when the
mean is close to zero, but MSE is high, we can
tell that there is no general preference of the model
toward one gender, but the individual words are
biased.

V ARGN = MSEGN −MEAN2
GN (12)

Variance is a similar measure to MSE. It is
useful to show the spread of RGP when the mean
is non-zero.

Additionally, we introduce a set of 26 gen-
dered nouns (SG) for which we expect to observe
non-zero RGP . We monitor MSE to diagnose
whether semantic gender information is preserved
in de-biasing:

MSEG =
1

|SG|
∑

w∈SG

RGP (w) (13)

3.3.1 Results
In Table 3, we observe that in all cases, gender
bias measured by MSEGN decreases after filter-
ing of bias subspace. The filtering on more than

Setting FL MSE MSE MEAN V AR
gendered gender-neutral

BERT B - 6.177 0.504 0.352 0.124
-bias 1 2.914 0.136 -0.056 0.133

2 2.213 0.102 -0.121 0.088
+f. gender 1 3.780 0.184 -0.067 0.180

2 2.965 0.145 -0.144 0.124

ELECTRA - 1.360 0.367 0.163 0.340
-bias 1 0.100 0.124 0.265 0.054

2 0.048 0.073 0.200 0.033
+f. gender 1 0.901 0.186 0.008 0.185

2 0.488 0.101 -0.090 0.093

BERT L - 1.363 0.099 0.235 0.044
-bias 1 0.701 0.051 0.166 0.024

2 0.267 0.015 0.069 0.011
4 0.061 0.033 0.162 0.007

+f. gender 1 1.156 0.057 0.145 0.036
2 0.755 0.020 0.011 0.020
4 0.292 0.010 0.037 0.009

AIM: ↑ ↓ ≈ 0 ↓

Table 3: Aggregation of relative gender preference in
prompts for gendered and gender-neutral nouns. FL
denotes the number of the model’s top layers for which
filtering was performed.

one layer usually further brings this metric down.
It is important to note that the original model dif-
fers in the extent to which their predictions are
biased. The mean square error is the lowest for
BERT large (0.099), noticeably it is lower than in
other analyzed models after de-biasing (except for
ELECTRA after 2-layer filtering 0.073).

The predictions of all the models are skewed
toward predicting male pronoun when the noun is
revealed. Most of the pronouns used in the evalua-
tion were professional names. Therefore, we think
that this result is the manifestation of the stereotype
that career-related words tend to be associated with
men.

After filtering BERT base becomes slightly
skewed toward female pronouns (MEANGN < 0).
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Setting FL Accuracy
BERT L BERT B ELECTRA

Original - 0.516 0.526 0.499
-bias 1 0.515 0.479 0.429

2 0.504 0.474 0.434
4 0.479 - -

+f. gender 1 0.515 0.479 0.434
2 0.510 0.480 0.433
4 0.489 - -

Table 4: Top-1 accuracy for all tokens in EWT UD
(Silveira et al., 2014). FT is the number of the model’s
top layers for which filtering was performed.

For the two remaining models, we observe that
keeping factual gender signal performs well in de-
creasing MEANGN .

Another advantage of keeping factual gender
representation is the preservation of the bias in
semantically gendered nouns, i.e., higher MSEG.

3.4 How Does Bias Filtering Affect Masked
Language Modeling?

We examine whether filtering affects the model’s
performance on the original task. For that pur-
pose, we evaluate top-1 prediction accuracy for
the masked tokens in the test set from English
Web Treebank UD (Silveira et al., 2014) with 2077
sentences. We also evaluate the capability of the
model to infer the personal pronoun based on the
context. We use the GAP Coreference Dataset
(Webster et al., 2018) with 8908 paragraphs. In
each test case, we mask a pronoun referring to a
person usually mentioned by their name. In the
sentences, gender can be easily inferred from the
name. In some cases, the texts also contain other
(un-masked) gender pronouns.

3.4.1 Results: All Tokens
The results in Table 4 show that filtering out bias
dimensions moderately decrease MLM accuracy:
up to 0.037 for BERT large; 0.052 for BERT base;
0.07 for ELECTRA. In most cases exempting fac-
tual gender information from filtering decreases the
drop in results.

3.4.2 Results: Personal Pronouns in GAP
We observe a more significant drop in results in the
GAP dataset after de-biasing. The deterioration can
be alleviated by omitting factual gender dimensions
in the filter. For BERT large and ELECTRA this
setting can even bring improvement over the orig-
inal model. Our explanation of this phenomenon

Setting FL
Accuracy

Overall Male Female

BERT L - 0.799 0.816 0.781
-bias 1 0.690 0.757 0.624

2 0.774 0.804 0.744
4 0.747 0.770 0.724

+f. gender 1 0.754 0.782 0.726
2 0.785 0.801 0.769
4 0.801 0.807 0.794

-f. gender 1 0.725 0.775 0.675
2 0.763 0.788 0.738
4 0.545 0.633 0.458

BERT B - 0.732 0.752 0.712
-bias 1 0.632 0.733 0.531

2 0.597 0.706 0.487
+f. gender 1 0.659 0.734 0.584

2 0.620 0.690 0.549

-f. gender 1 0.634 0.662 0.606
2 0.604 0.641 0.567

ELECTRA - 0.652 0.680 0.624
-bias 1 0.506 0.731 0.280

2 0.485 0.721 0.249
+f. gender 1 0.700 0.757 0.642

2 0.691 0.721 0.661

-f. gender 1 0.395 0.660 0.129
2 0.473 0.708 0.239

Table 5: Top-1 accuracy for masked pronouns in GAP
dataset (Webster et al., 2018). FT is the number of the
model’s top layers for which filtering was performed.

is that filtering can decrease the confounding in-
formation from stereotypically biased words that
affect the prediction of correct gender.

In this experiment, we also examine the filter,
which removes all factual-gender dimensions. Ex-
pectedly such a transformation significantly de-
creases the accuracy. However, we still obtain rela-
tively good results, i.e., accuracy higher than 0.5,
which is a high benchmark for choosing gender by
random. Thus, we conjecture that the gender signal
is still left in the model despite filtering.

Summary of the Results: We observe that the
optimal de-biasing setting is factual gender preserv-
ing filtering (F−b,+f ). This approach diminishes
stereotypical bias in nouns while preserving gen-
der information for gendered nouns (section 3.3).
Moreover, it performs better in masked language
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modeling tasks (section 3.4).

4 Related Work

In recent years, much focus was put on evaluat-
ing and countering bias in language representations
or word embeddings. Bolukbasi et al. (2016) ob-
served the distribution of Word2Vec embeddings
(Mikolov et al., 2013) encode gender bias. They
tried to diminish its role by projecting the embed-
dings along the so-called gender direction, which
separates gendered words such as he and she. They
measure the bias as cosine similarity between an
embedding and the gender direction.

GenderDirection ≈ −→
he−−→

she (14)

Zhao et al. (2018b) propose a method to diminish
differentiation of word representations in the gen-
der dimension during training of the GloVe embed-
dings (Pennington et al., 2014). Nevertheless, the
following analysis of Gonen and Goldberg (2019)
argued that these approaches remove bias only par-
tially and showed that bias is encoded in the multi-
dimensional subspace of the embedding space. The
issue can be resolved by projecting in multiple di-
mensions to further nullify the role of gender in
the representations (Ravfogel et al., 2020). Drop-
ping all the gender-related information, e.g., the
distinction between feminine and masculine pro-
nouns can be detrimental to gender-sensitive appli-
cations. Kaneko and Bollegala (2019) proposed a
de-biasing algorithm that preserves gendered infor-
mation in gendered words.

Unlike the approaches above, we work with con-
textual embeddings of language models. Vig et al.
(2020) investigated bias in the representation of the
contextual model (GPT-2, Radford et al. (2019)).
They used causal mediation analysis to identify
components of the model responsible for encod-
ing bias. Nadeem et al. (2021) and Nangia et al.
(2020) propose a method of evaluating bias (includ-
ing gender) with counterfactual test examples, to
some extent similar to our prompts.

Qian et al. (2019) and Liang et al. (2020) employ
prompts similar to ours to evaluate the gender bias
of professional words in language models. The
latter work also aims to identify and remove gender
subspace in the model. In contrast to our approach,
they do not guard factual gender signal.

Recently, Stanczak and Augenstein (2021) sum-
marized the research on the evaluation and mitiga-
tion of gender bias in the survey of 304 papers.

5 Discussion

5.1 Bias Statement
We define bias as the connection between a word
and the specific gender it is usually associated with.
The association usually stems from the imbalanced
number of corpora mentions of the word in male
and female contexts. This work focuses on the
stereotypical bias of nouns that do not have other-
wise denotation of gender (semantic or grammat-
ical). We consider such a denotation as factual
gender and want to guard it in the models’ repre-
sentation.

Our method is applied to language models, hence
we recognize potential application in language gen-
eration. We envision the case where the language
model is applied to complete the text about a per-
son, where we don’t have implicit information
about their gender. In this scenario, the model
should not be compelled by stereotypical bias to
assign a specific gender to a person. On the other
hand, when the implicit information about a per-
son’s gender is provided in the context, the gener-
ated text should be consistent.

Language generation is becoming ubiquitous in
everyday NLP applications (e.g., chat-bots, auto-
completion Dale (2020)). Therefore it is important
to ensure that the language models do not propagate
sex-based discrimination.

The proposed method can also be implemented
in deep models for other tasks, e.g., machine trans-
lation systems. In machine translation, bias is es-
pecially harmful when translating from English
to languages that widely denote gender grammati-
cally. In translation to such languages generation of
gendered nouns tends to be made based on stereo-
typical gender roles instead of factual gender infor-
mation provided in the source language (Stanovsky
et al., 2019).

5.2 Limitations
It is important to note that we do not remove the
whole of the gender information in our filtering
method. Therefore, a downstream classifier could
easily retrieve the factual gender of a person men-
tioned in a text, e.g., their CV.

This aspect makes our method not applicable
to downstream tasks that use gender-biased data.
For instance, in the task of predicting a profession
based on a person’s biography (De-Arteaga et al.,
2019), there are different proportions of men and
women among holders of specific professions. A

24



classifier trained on de-biased but not de-gendered
embeddings would learn to rely on gender property
in its predictions.

Admittedly, in our results, we see that the pro-
posed method based on orthogonal probes does
not fully remove gender bias from the representa-
tions section 3.3. Even though our method typically
identifies multiple dimensions encoding bias and
factual gender information, there is no guarantee
that all such dimensions will be filtered. Noticeably,
the de-biased BERT base still underperform off-
the-shelf BERT large in terms of MSEGN . The
reason behind this particular method was its ability
to disentangle the representation of two language
signals, in our case: gender bias and factual gender
information.

Lastly, the probe can only recreate linear trans-
formation, while in a non-linear system such
as Transformer, the signal can be encoded non-
linearly. Therefore, even when we remove the
whole bias subspace, the information can be re-
covered in the next layer of the model (Ravfogel
et al., 2020). It is also the reason why we decided
to focus on the top layers of models.

6 Conclusions

We propose a new insight into gender informa-
tion in contextual language representations. In de-
biasing, we focus on the trade-off between remov-
ing stereotypical bias while preserving the semantic
and grammatical information about the gender of
a word from its context. Our evaluation of gender
bias showed that three analyzed masked language
models (BERT large, BERT based, and ELEC-
TRA) are biased and skewed toward predicting
male gender for profession names. To mitigate this
issue, we disentangle stereotypical bias from fac-
tual gender information. Our filtering method can
remove the former to some extent and preserve the
latter. As a result, we decrease the bias in predic-
tions of language models without significant dete-
rioration of their performance in masked language
modeling task.
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A Technical Details

We use batches of size 10. Optimization is con-
ducted with Adam (Kingma and Ba, 2015) with
initial learning rate 0.02 and meta parameters:
β1 = 0.9, β2 = 0.999, and ϵ = 10−8. We use
learning rate decay and an early-stopping mecha-
nism with a decay factor 10. The training is stopped
after three consecutive epochs not resulting in the
improvement of the validation loss learning rate.
We clip each gradient’s norm at c = 1.0. The
orthogonal penalty was set to λO = 0.1.

We implemented the network in TensorFlow 2
(Abadi et al., 2015). The code will be available on
GitHub.

A.1 Computing Infrastructure
We optimized probes on a GPU core GeForce GTX
1080 Ti. Training a probe on top of one layer of
BERT large takes about 5 minutes.

A.2 Number of Parameters in the Probe
The number of the parameters in the probe depends
on the model’s embedding size demb. The orthog-
onal transformation matrix consist of d2emb; both
intercept and scalling vector have demb parame-
ters. Altogether, the size of the probe equals to
d2emb + 4 · demb.

B Details about Datasets

WinoMT is distributed under MIT license; EWT
UD under Creative Commons 4.0 license; GAP
under Apache 2.0 license.

C Results for Different Filtering
Thresholds

In table 6 we show how the choice of filtering
threshold ϵ affects the results of our method for

Epsilon MSE MSE MEAN V AR
gendered gender-neutral

10−2 0.762 0.083 0.233 0.029
10−4 0.756 0.081 0.230 0.028
10−6 0.764 0.074 0.213 0.029
10−8 0.738 0.078 0.225 0.027
10−10 0.721 0.082 0.234 0.027
10−12 0.701 0.051 0.166 0.024
10−14 0.709 0.043 0.138 0.023
10−16 0.770 0.023 0.013 0.022

Table 6: Tuning of filtering threshold ϵ. Results for
filtering bias in the last layer of BERT large.

NOUN Relative Gender Preference
BERT base BERT large ELECTRA Avg.

Female Gendered

councilwoman -4.262 -2.050 -0.832 -2.381
policewoman -4.428 -1.710 -0.928 -2.355
princess -3.486 -1.598 -1.734 -2.273
actress -3.315 -1.094 -2.319 -2.242
chairwoman -4.020 -1.818 -0.629 -2.156
waitress -2.806 -1.167 -2.475 -2.150
busimesswoman -3.202 -1.696 -1.096 -1.998
queen -2.752 -0.910 -2.246 -1.969
spokeswoman -2.543 -2.126 -1.017 -1.895
stewardess -3.484 -2.215 0.089 -1.870
maid -3.092 -0.822 -1.452 -1.788
witch -2.068 -0.706 -1.476 -1.416
nun -2.472 -0.974 -0.613 -1.353

Male Gendered

wizard 0.972 0.314 0.237 0.508
manservant 0.974 0.493 0.115 0.527
steward 0.737 0.495 0.675 0.636
spokesman 0.846 0.591 0.515 0.651
waiter 1.003 0.473 0.639 0.705
priest 0.988 0.442 0.928 0.786
actor 1.366 0.392 0.632 0.797
prince 1.401 0.776 0.418 0.865
policeman 1.068 0.514 1.202 0.928
king 1.399 0.658 0.772 0.943
chairman 1.140 0.677 1.069 0.962
councilman 1.609 1.040 0.419 1.023
businessman 1.829 0.549 0.985 1.121

Table 7: List of gendered nouns with evaluated bias in
three analyzed models (RGP ).

BERT large. We decided to pick the threshold
equal to 10−12, as lowering it brought only minor
improvement in MSEGN .

D Evaluation of Bias in Language Models

We present the list of 26 gendered words and their
empirical bias in table 7. Following tables tables 8
and 9 show the evaluation results for 104 gender-
neutral words.
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NOUN Relative Gender Preference Bias Class
BERT base BERT large ELECTRA Avg. BERT base BERT large ELECTRA Annotated

housekeeper -2.813 -0.573 -2.642 -2.009 female female female female
nurse -2.850 -0.568 -2.103 -1.840 female female female female
receptionist -1.728 -0.776 -2.302 -1.602 female female female female
hairdresser -0.400 -0.228 -0.785 -0.471 female female female female
librarian 0.019 -0.088 -0.768 -0.279 neutral female female female
assistant -0.477 0.020 -0.117 -0.192 female neutral neutral female
secretary -0.564 0.024 -0.027 -0.189 female neutral neutral female
victim -0.075 0.091 -0.323 -0.102 female neutral female neutral
teacher 0.129 0.175 -0.595 -0.097 neutral neutral female female
therapist 0.002 0.016 -0.233 -0.072 neutral neutral female neutral
child -0.100 0.073 -0.154 -0.060 female neutral female neutral
salesperson -0.680 -0.206 0.719 -0.056 female female male male
practitioner 0.150 0.361 -0.621 -0.037 neutral neutral female neutral
client -0.157 0.250 -0.165 -0.024 female neutral female neutral
dietitian 0.175 0.003 -0.143 0.012 neutral neutral female neutral
cook -0.150 0.141 0.048 0.013 female neutral neutral male
educator 0.278 0.144 -0.375 0.015 neutral neutral female neutral
cashier 0.009 0.041 0.017 0.023 neutral neutral neutral female
customer -0.401 0.328 0.142 0.023 female neutral neutral neutral
attendant -0.157 0.226 0.010 0.027 female neutral neutral female
designer 0.200 0.173 -0.232 0.047 neutral neutral female female
cleaner 0.151 0.099 -0.089 0.053 neutral neutral neutral female
teenager 0.343 0.088 -0.210 0.074 neutral neutral female neutral
passenger 0.015 0.151 0.100 0.089 neutral neutral neutral neutral
guest 0.162 0.258 -0.150 0.090 neutral neutral female neutral
someone 0.026 0.275 0.082 0.128 neutral neutral neutral neutral
student 0.307 0.281 -0.195 0.131 neutral neutral female neutral
clerk 0.107 0.216 0.105 0.143 neutral neutral neutral female
visitor 0.471 0.273 -0.280 0.155 neutral neutral female neutral
counselor 0.304 0.165 0.009 0.159 neutral neutral neutral female
editor 0.244 0.161 0.081 0.162 neutral neutral neutral female
resident 0.528 0.300 -0.304 0.174 neutral neutral female neutral
patient 0.009 0.305 0.217 0.177 neutral neutral neutral neutral
homeowner 0.422 0.158 -0.002 0.192 neutral neutral neutral neutral
advisee 0.175 0.252 0.168 0.199 neutral neutral neutral neutral
psychologist 0.259 0.232 0.124 0.205 neutral neutral neutral neutral
nutritionist 0.474 0.134 0.020 0.210 neutral neutral neutral neutral
dispatcher 0.250 0.118 0.284 0.217 neutral neutral neutral neutral
tailor 0.572 0.382 -0.250 0.235 neutral male female female
employee 0.124 0.228 0.371 0.241 neutral neutral neutral neutral
owner 0.044 0.213 0.493 0.250 neutral neutral neutral neutral
advisor 0.339 0.271 0.148 0.253 neutral neutral neutral neutral
witness 0.287 0.319 0.187 0.264 neutral neutral neutral neutral
writer 0.497 0.237 0.060 0.265 neutral neutral neutral female
undergraduate 0.575 0.148 0.075 0.266 neutral neutral neutral neutral
veterinarian 0.616 0.007 0.209 0.278 neutral neutral neutral neutral
pedestrian 0.446 0.226 0.170 0.281 neutral neutral neutral neutral
investigator 0.518 0.228 0.120 0.289 neutral neutral neutral neutral
hygienist 0.665 0.274 -0.040 0.300 neutral neutral neutral neutral
buyer 0.529 0.190 0.183 0.300 neutral neutral neutral neutral
supervisor 0.257 0.228 0.426 0.304 neutral neutral neutral male
worker 0.151 0.267 0.511 0.310 neutral neutral neutral neutral
bystander 0.786 0.117 0.072 0.325 male neutral neutral neutral

Table 8: List of gender-neutral nouns with their evaluated bias RGP . Female and male bias classes are assigned for
20 lowest negative and 20 highest positive RGP values. Annotated bias from Zhao et al. (2018a). Part 1 of 2.
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NOUN Relative Gender Preference Bias Class
BERT base BERT large ELECTRA Avg. BERT base BERT large ELECTRA Annotated

chemist 0.579 0.311 0.107 0.332 neutral neutral neutral neutral
administrator 0.428 0.236 0.350 0.338 neutral neutral neutral neutral
examiner 0.445 0.281 0.296 0.341 neutral neutral neutral neutral
broker 0.376 0.358 0.295 0.343 neutral neutral neutral neutral
instructor 0.413 0.196 0.436 0.348 neutral neutral neutral neutral
developer 0.536 0.338 0.172 0.349 neutral neutral neutral male
technician 0.312 0.362 0.400 0.358 neutral neutral neutral neutral
baker 0.622 0.287 0.178 0.362 neutral neutral neutral female
planner 0.611 0.341 0.147 0.366 neutral neutral neutral neutral
bartender 0.628 0.282 0.293 0.401 neutral neutral neutral neutral
paramedic 0.787 0.094 0.333 0.405 male neutral neutral neutral
protester 0.722 0.498 0.019 0.413 neutral male neutral neutral
specialist 0.501 0.363 0.392 0.419 neutral male neutral neutral
electrician 0.935 0.283 0.076 0.431 male neutral neutral neutral
physician 0.438 0.359 0.502 0.433 neutral neutral neutral male
pathologist 0.817 0.307 0.181 0.435 male neutral neutral neutral
analyst 0.645 0.315 0.361 0.440 neutral neutral neutral male
appraiser 0.729 0.305 0.302 0.445 neutral neutral neutral neutral
onlooker 0.978 0.093 0.274 0.448 male neutral neutral neutral
janitor 0.702 0.493 0.174 0.456 neutral male neutral male
mover 0.717 0.407 0.253 0.459 neutral male neutral male
chef 0.682 0.348 0.352 0.460 neutral neutral neutral neutral
lawyer 0.696 0.271 0.421 0.462 neutral neutral neutral male
paralegal 0.829 0.247 0.313 0.463 male neutral neutral neutral
doctor 0.723 0.355 0.322 0.467 neutral neutral neutral neutral
auditor 0.654 0.329 0.504 0.496 neutral neutral neutral female
officer 0.465 0.463 0.584 0.504 neutral male male neutral
surgeon 0.368 0.417 0.733 0.506 neutral male male neutral
programmer 0.543 0.304 0.684 0.510 neutral neutral male neutral
scientist 0.568 0.427 0.548 0.514 neutral male neutral neutral
painter 0.721 0.298 0.555 0.525 neutral neutral male neutral
pharmacist 0.862 0.244 0.495 0.534 male neutral neutral neutral
laborer 0.996 0.557 0.058 0.537 male male neutral male
machinist 0.821 0.449 0.361 0.544 male male neutral neutral
architect 0.790 0.243 0.609 0.547 male neutral male neutral
taxpayer 0.785 0.525 0.339 0.550 male male neutral neutral
chief 0.595 0.472 0.628 0.565 neutral male male male
inspector 0.631 0.344 0.726 0.567 neutral neutral male neutral
plumber 1.186 0.468 0.205 0.620 male male neutral neutral
construction worker 0.770 0.326 0.769 0.622 male neutral male male
driver 0.847 0.415 0.603 0.622 male male male male
manager 0.456 0.346 1.084 0.628 neutral neutral male male
engineer 0.562 0.385 0.987 0.645 neutral male male neutral
sheriff 0.850 0.396 0.708 0.651 male male male male
CEO 0.701 0.353 0.989 0.681 neutral neutral male male
mechanic 0.752 0.307 1.098 0.719 male neutral male male
guard 0.907 0.586 0.720 0.738 male male male male
accountant 0.610 0.291 1.350 0.750 neutral neutral male female
farmer 1.044 0.477 0.736 0.753 male male male male
firefighter 1.294 0.438 0.604 0.779 male male male neutral
carpenter 0.934 0.415 1.263 0.870 male male male male

Table 9: List of gender-neutral nouns with their evaluated bias RGP . Female and male bias classes are assigned for
20 lowest negative and 20 highest positive RGP values. Annotated bias from Zhao et al. (2018a). Part 2 of 2.
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Abstract

Mitigating harms from gender biased language
in Natural Language Processing (NLP) systems
remains a challenge, and the situated nature of
language means bias is inescapable in NLP data.
Though efforts to mitigate gender bias in NLP
are numerous, they often vaguely define gender
and bias, only consider two genders, and do
not incorporate uncertainty into models. To ad-
dress these limitations, in this paper we present
a taxonomy of gender biased language and ap-
ply it to create annotated datasets. We created
the taxonomy and annotated data with the aim
of making gender bias in language transparent.
If biases are communicated clearly, varieties
of biased language can be better identified and
measured. Our taxonomy contains eleven types
of gender biases inclusive of people whose gen-
der expressions do not fit into the binary con-
ceptions of woman and man, and whose gender
differs from that they were assigned at birth,
while also allowing annotators to document un-
known gender information. The taxonomy and
annotated data will, in future work, underpin
analysis and more equitable language model
development.

1 Background and Introduction

The need to mitigate bias in data has become ur-
gent as evidence of harms from such data grows
(Birhane and Prabhu, 2021; O’Neill et al., 2021;
Perez, 2019; Noble, 2018; Vainapel et al., 2015;
Sweeney, 2013). Due to the complexities of bias
often overlooked in Machine Learning (ML) bias
research, including Natural Language Processing
(NLP) (Devinney et al., 2022; Stańczak and Au-
genstein, 2021), Blodgett et al. (2020), Leavy
(2018), and Crawford (2017) call for greater in-
terdisciplinary engagement and stakeholder collab-
oration. The Gallery, Library, Archive, and Mu-
seum (GLAM) sector has made similar calls for

interdisciplinary engagement, looking to applica-
tions of data science and ML to better understand
and mitigate bias in GLAM collections (Padilla,
2017, 2019; Geraci, 2019). Supporting the NLP
and GLAM communities’ shared aim of mitigating
the minoritization1 of certain people that biased
language causes, we provide a taxonomy of gender
biased language and demonstrate its application in
a case study with GLAM documentation.

We use GLAM documentation to refer to the de-
scriptions of heritage items written in GLAM cata-
logs. Adapting our previously published definition,
we use gender biased language to refer to “lan-
guage that creates or reinforces inequitable power
relations among people, harming certain people
through simplified, dehumanizing, or judgmental
words or phrases that restrict their [gender] iden-
tity; and privileging other people through words or
phrases that favor their [gender] identity” (Havens
et al., 2020, 108). We focus on gender bias due to
the contextual nature of gender and bias (they vary
across time, location, culture, and people), as well
as the existing efforts of our partner institution, the
Archives of the Centre for Research Collections
at the University of Edinburgh, to mitigate gender
bias in its documentation.

GLAM documentation provides a unique ben-
efit compared to many text sources: it contains
historical and contemporary language. GLAM con-
tinually acquire and describe heritage items to en-
able the items’ discoverability. In archives, heritage
items include photographs, handwritten documents,
instruments, and tweets, among other materials.
Heritage items and the language that describes
them influence society’s understanding of the past,

1This paper uses minoritization in the sense D’Ignazio and
Klein (2020) use the term: as a descriptor to emphasize a
group of people’s experience of oppression, rather than using
the noun minority, which defines people as oppressed.
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the present, and the direction society is moving
into the future (Benjamin, 2019; Welsh, 2016; Yale,
2015; Cook, 2011; Smith, 2006). Through research
with GLAM documentation, variations in biased
language could be better understood. Should di-
achronic patterns emerge, the NLP community
could train models to identify newly-emerging, pre-
viously unseen types of bias.

This paper presents an annotation taxonomy
(§5) to label gender biased language inclusive of
trans and gender diverse identities,2 as well as a
dataset of historical and contemporary language
from British English archival documentation an-
notated according to the taxonomy. Linguistics,
gender studies, information sciences, and NLP lit-
erature inform the taxonomy’s categorization of
gender biased language. As a result, the taxonomy
holds relevance beyond the GLAM sector in which
we situate our work. The taxonomy may be applied
when creating NLP datasets or models, or when
measuring varieties of gender bias in language, be-
cause the taxonomy’s definitions of types of gender
biases are rooted in the language of text, rather than
an abstracted representation of text. Uniquely, our
taxonomy includes labels that record uncertainty
about a person’s gender.

As we situate our work in the GLAM sector,
this paper provides a case study (§6) demonstrating
how the annotation taxonomy was applied to cre-
ate an annotated dataset of archival documentation.
For future NLP work, the resulting dataset of his-
torical and contemporary language annotated for
gender biases provides a corpus to analyze gender
biased language for diachronic patterns, to analyze
correlations between types of gender biases, and
to develop gender bias classification models. Spe-
cific to the GLAM sector, gender bias classification
models could enhance reparative description prac-
tices. A model’s ability to automatically identify
descriptions of heritage items that contain gender
biases would enable efficient prioritization of the
additions and revisions needed on outdated, harm-
ful descriptions in GLAM documentation.

2 Bias Statement

This paper adopts our previously published def-
inition of biased language (Havens et al., 2020),

2This paper uses gender diverse in the sense the Trans
Metadata Collective (2022) uses the term: to include gender
expressions that do not fit within binary conceptualizations of
gender, that differ from one’s gender assigned at birth, and that
cannot be described with the culturally-specific term trans.

narrowing the focus to gender bias as written in
§1. Gender biased language may cause representa-
tional or allocative harms to a person of any gender
(Blodgett et al., 2020; Crawford, 2017). The tax-
onomy created in this paper considers a person’s
gender to be self-described and changeable, rather
than being limited to the binary and static concep-
tualization of gender as either a man or woman
since birth (Keyes, 2018; Scheuerman et al., 2020).
Recognizing that a person’s gender may be impos-
sible to determine from the information available
about them, the taxonomy also allows annotators to
record uncertainty (Shopland, 2020). Furthermore,
the paper acknowledges that characteristics other
than gender, such as racialized ethnicity and eco-
nomic class, influence experiences of power and
oppression (Crenshaw, 1991). Drawing on archival
science and feminist theories, the paper considers
knowledge derived from language as situated in a
particular perspective and, as a result, incomplete
(Tanselle, 2002; Harding, 1995; Haraway, 1988).

To communicate this paper’s perspective, we as
authors report our identification as three women
and one man; and our nationalities, as American,
German, and Scots. Annotators identify as women
(one specifying queer woman and two, cis women);
they are of American, British, Hungarian, and Scots
nationalities. Though annotators do not represent
great gender diversity,3 the annotation process still
contributes to the advancement of gender equity.

As women, the annotators identify as a minori-
tized gender. The evolution of British English
demonstrates the historical dominance of the per-
spective of the heteronormative man, and the pejo-
ration of terms for women (Spencer, 2000; Schulz,
2000; Lakoff, 1989).4 Creating a women-produced
dataset challenges the dominant gender perspective
by explicitly labeling where minoritized genders’
perspectives are missing (D’Ignazio and Klein,
2020; Smith, 2006; Fairclough, 2003).

3 Related Work

Evidence of bias in ML data and models abound
regarding gender (Kurita et al., 2019; Zhao et al.,
2019), disability (Hutchinson et al., 2020), racial-

3The availability of people who responded to the annotator
application and the annotation timeline limited the gender
diversity that could be achieved among annotators.

4In the 16th century, grammarians instructed writers to
write “men” or “man” before “women” or “woman.” In the
18th century, “man” and “he” began to be employed as uni-
versal terms, rather than “human” and “they” (Spencer, 2000).
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ized ethnicities (Sap et al., 2019), politics and eco-
nomics (Elejalde et al., 2017), and, for an inter-
sectional approach (Crenshaw, 1991), a combina-
tion of characteristics (Jiang and Fellbaum, 2020;
Sweeney and Najafian, 2019; Tan and Celis, 2019).
Harms from such biases are also well documented
(Birhane and Prabhu, 2021; Costanza-Chock and
Philip, 2018; Noble, 2018; Vainapel et al., 2015;
Sweeney, 2013). Despite numerous bias mitigation
approaches put forth (Cao and Daumé III, 2020; Di-
nan et al., 2020a; Hube and Fetahu, 2019; Webster
et al., 2018; Zhao et al., 2018), many have lim-
ited efficacy, failing to address the complexity of
biased language (Stańczak and Augenstein, 2021;
Blodgett et al., 2021; Gonen and Goldberg, 2019).

Methods of removing bias tend to be mathe-
matically focused, such as Basta et al. (2020) and
Borkan et al. (2019). As McCradden et al. (2020)
state, typical ML bias mitigation approaches as-
sume biases’ harms can be mathematically rep-
resented, though no evidence of the relevance of
proposed bias metrics to the real world exists. On
the contrary, Goldfarb-Tarrant et al. (2021) found
no correlation between a commonly used intrin-
sic bias metric, Word Embedding Association Test,
and extrinsic metrics in the downstream tasks of
coreference resolution and hate speech detection.
Due to the misalignment between abstract repre-
sentations of bias and the presence and impact of
bias, this paper presents a taxonomy to measure
biased language at its foundation: words.

Limitations to bias mitigation efforts also re-
sult from overly simplistic conceptualizations of
bias (Devinney et al., 2022; Stańczak and Augen-
stein, 2021; Blodgett et al., 2020). NLP gender
bias work, for example, often uses a binary gen-
der framework either in its conceptualization (such
as Webster et al. (2018)) or application (such as
Dinan et al. (2020b)), and tends to focus on one
variety of gender bias, stereotypes (Stańczak and
Augenstein, 2021; Doughman et al., 2021; Boluk-
basi et al., 2016). NLP bias work more generally
often asserts a single ground truth (Davani et al.,
2022; Sang and Stanton, 2022; Basile et al., 2021).
Despite evidence that bias varies across domains
(Basta et al., 2020), approaches to mitigating bias
have yet to address the contextual nature of biased
language, such as how it varies across time, loca-
tion, and culture (Bjorkman, 2017; Bucholtz, 1999;
Corbett, 1990). This paper adopts a data feminist
(D’Ignazio and Klein, 2020) and perspectivist ap-

proach (Basile, 2022) to situate identification and
measurement of bias in a particular context.

Data feminism views data as situated and partial,
drawing on feminist theories’ view of knowledge
as particular to a time, place, and people (Harding,
1995; Crenshaw, 1991; Haraway, 1988). Similarly,
the Perspectivist Data Manifesto encourages disag-
gregated publication of annotated data, recogniz-
ing that conflicting annotations may all be valid
(Basile, 2022). Indigenous epistemologies, such as
the Lakota’s concept of waȟkàN, further the notion
of the impossibility of a universal truth. Translated
as “that which cannot be understood,” waȟkàN com-
municates that knowledge may come from a place
beyond what we can imagine (Lewis et al., 2018).
Our taxonomy thus permits annotations to overlap
and record uncertainty, and our aggregated dataset
incorporates all annotators’ perspectives.

Encouraging greater transparency in dataset cre-
ation, Bender et al. (2021) and Jo and Gebru (2020)
caution against creating datasets too large to be
adequately interrogated. Hutchinson et al. (2021),
Mitchell et al. (2019), and Bender and Friedman
(2018) propose new documentation methods to fa-
cilitate critical interrogation of data and the models
trained on them. Our appendices include a data
statement documenting the creation of the anno-
tated data presented in this paper (§B). To maxi-
mize the transparency of our data documentation,
we will publish the data only after further inter-
rogation of its gender bias annotations, including
collaborative analysis with the Centre for Research
Collections.

4 Methodology

To practically apply theories and approaches from
NLP, data feminism, and indigenous epistemolo-
gies, we apply the case study method, common to
social science and design research. Case studies
use a combination of data and information gather-
ing approaches to study particular phenomena in
context (Martin and Hanington, 2012), suitable for
annotating gender biased language because gender
and bias vary across time, location, and culture.
Furthermore, case studies report and reflect upon
outliers discovered in the research process (ibid.),
supporting our effort to create space for the per-
spectives of people minoritized due to their gender
identity. After first developing the annotation taxon-
omy through an interdisciplinary literature review
and participatory action research with archivists
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(§5), we applied the taxonomy in a case study to
create datasets annotated for gender bias (§6).

Adopting our previously published bias-aware
methodology (Havens et al., 2020), we employed
participatory action research (Swantz, 2008; Reid
and Frisby, 2008), collaborating with the institu-
tion that manages our data source: the Centre for
Research Collections. Due to validity (Welty et al.,
2019) and ethical concerns (Gleibs, 2017) with
crowdsourcing, we hired annotators with expertise
in archives (the domain area of the case study’s
data) and gender studies (the focus area of this pa-
per’s bias mitigation) to apply the taxonomy in a
case study. Hiring a small number of annotators
will enable us to publish disaggregated versions
of the annotated data, implementing data perspec-
tivism (Basile, 2022; Basile et al., 2021).

Following the approach of Smith (2006) to her-
itage, we consider heritage to be a process of engag-
ing with the past, present, and future. Annotators
in this paper’s case study visited, interpreted, and
negotiated with heritage (Smith, 2006) in the form
of archival documentation. Annotating archival
documentation with labels that mark specific text
spans as gender biased transforms the documen-
tation, challenging the “authorized heritage dis-
course” (ibid., 29) of the heteronormative man. We
aim such explicit labeling to recontextualize the
archival documentation, transforming its language
by placing it in a new social context (Fairclough,
2003): the 21st century United Kingdom, with gen-
der conceptualized as a self-defined, changeable
identity characteristic. We aim this negotiation-
through-annotation to guide the NLP models we
will create with the data in the future towards more
equitable representations of gender.

5 Annotation Taxonomy

Our annotation taxonomy organizes labels (let-
tered) into three categories (numbered). Category
and label names are bolded. Each label’s listing in-
cludes a definition and example. Examples are ital-
icized; labeled text in each example is underlined.
For every label, annotators could label a single
word or multiple words. Examples come from the
archival documentation summarized in §6 except
for 1(a), Non-binary, and 3(d), Empowering, be-
cause annotators did not find text relevant to their
definitions (the “Fonds ID,” or collection identi-
fier, indicates where in the documentation example
descriptions may be found). §7 further explains

the rationale for the taxonomy’s labels, and how
they facilitate analysis and measurement of gender
biased language.

1. Person Name: the name of a person, in-
cluding any pre-nominal titles (i.e., Profes-
sor, Mrs., Sir, Queen), when the person is the
primary entity being described (rather than a
location named after a person, for example)

(a) Non-binary: the pronouns, titles, or
roles of the named person are non-binary
Example 1(a): Francis McDonald went
to the University of Edinburgh where
they studied law.

(b) Feminine: the pronouns, titles, or roles
of the named person are feminine
Example 1(b): “Jewel took an active in-
terest in her husband’s work...” (Fonds
ID: Coll-1036)

(c) Masculine: the pronouns, titles, or roles
of the named person are masculine
Example 1(c): “Martin Luther, the man
and his work.” (Fonds ID: BAI)

(d) Unknown: any pronouns, titles, or roles
of the named person are gender neutral,
or none are provided
Example 1(d): “Testimonials and addi-
tional testimonials in favour of Niecks,
candidacy for the Chair of Music, 1891.”
(Fonds ID: Coll-1086)

2. Linguistic: gender marked in the way a word
or words reference a person or people, assign-
ing them a specific gender that cannot be de-
termined with certainty from the word(s)

(a) Generalization: use of a gender-specific
term (i.e., roles, titles) to refer to a group
of people that could identify as more than
the specified gender
Example 2(a): “His classes included
Anatomy, Practical Anatomy...Midwifery
and Diseases of Women, Therapeutics,
Neurology...Public Health, and Diseases
of the Skin.” (Fonds ID: Coll-1118)

(b) Gendered Role: use of a word denoting
a person’s role that marks either a non-
binary, feminine, or masculine gender
Example 2(b): “New map of Scotland for
Ladies Needlework, 1797” (Fonds ID:
Coll-1111)
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(c) Gendered Pronoun: marking a person
or people’s gender with gendered pro-
nouns (i.e., she, he, ey, xe, or they as a
singular pronoun)
Example 2(c): “He obtained surgical
qualifications from Edinburgh University
in 1873” (Fonds ID: Coll-1096)

3. Contextual: expectations about a gender or
genders that comes from knowledge about
the time and place in which language is used,
rather than from linguistic patterns alone (i.e.,
sentence structure or word choice)

(a) Stereotype: a word or words that com-
municate an expectation of a person or
people’s behaviors or preferences that
does not reflect the extent of their pos-
sible behaviors or preferences; or that
focus on a single aspect of a person that
doesn’t represent that person holistically
Example 3(a): “The engraving depicts
a walking figure (female) set against
sunlight, and holding/releasing a bird.”
(Fonds ID: Coll-1116)

(b) Omission: focusing on the presence, re-
sponsibility, or contribution of one gen-
der in a situation where more than one
gender has a presence, responsibility or
contribution; or defining a person in
terms of their relation to another person
Example 3(b): “This group portrait of
Laurencin, Apollinaire, and Picasso and
his mistress became the theme of a larger
version in 1909 entitledApollinaire [sic]
and his friends.” (Fonds ID: Coll-1090).

(c) Occupation: a word or words that refer
to a person or people’s job title for which
the person or people received payment,
excluding occupations in pre-nominal ti-
tles (for example, “Colonel Sir Thomas”
should not have an occupation label)
Example 3(c): “He became a surgeon
with the Indian Medical Service.” (Fonds
ID: Coll-1096).

(d) Empowering: reclaiming derogatory
words as positive
Example 3(d): a person describing them-
self as queer in a self-affirming manner

We chose to build on the gender bias taxonomy of
Hitti et al. (2019) because the authors grounded
their definitions of types of gender bias in gender

studies and linguistics, and focused on identifying
gender bias at the word level, aligning with our
approach. Though Dinan et al. (2020b) also pro-
vide a framework for defining types of gender bias,
their framework focuses on relationships between
people in a conversation, identifying “bias when
speaking ABOUT someone, bias when speaking
TO someone, and bias from speaking AS someone”
(316). The nature of our corpus makes these gen-
der bias dimensions irrelevant to our work: GLAM
documentation contains descriptions that only con-
tain text written about a person or people (or other
topics); it does not contain text that provides gen-
der information about who is speaking or who is
being spoken to. Additionally, despite writing of
four gender values (unknown, neutral, feminine,
and masculine), the dataset and classifiers of Di-
nan et al. (2020b) are limited to “masculine and
feminine classes” (317). The authors also do not
explain how they define “bias,” limiting our ability
to draw on their research.

Doughman et al. (2021) provide another gen-
der bias taxonomy that builds on that of Hitti
et al. (2019), resulting in overlaps between our
taxonomies. However, Doughman et al. (2020)
focus on gender stereotypes, while our taxonomy
considers other types of gender biases. Though
less explicit in the names of our taxonomy’s labels,
we also looked to the descriptions of gender and
gender bias from Cao and Daumé III (2021), who
point out the limited gender information available
in language. The aim of our dataset creation differs
from Cao and Daumé III (2021), though. They
created data that represents trans and gender di-
verse identities in order to evaluate models’ gender
biases, specifically looking at where coreference
resolution fails on trans and non-binary referents.
By contrast, we aim to create a dataset that docu-
ments biased representations of gender, with the
future aim of creating models that are able to iden-
tify types of gender bias in language.

6 Case Study

To demonstrate the application of the taxonomy, we
present a case study situated in the United Kingdom
in the 21st century, annotating archival documen-
tation written in British English from the Centre
for Research Collections at the University of Edin-
burgh (CRC Archives). This paper thus takes the
first step in building a collection of case studies
that situate NLP bias research in a specific context.

34



Title Biographical/Historical Scope & Contents Processing Information Total

Count 4,834 576 6198 280 11,888
Words 51,904 75,032 269,892 3,129 399,957

Sentences 5,932 3,829 14,412 301 24,474

Table 1: Total counts, words and sentences for descriptive metadata fields in the aggregated dataset. Calculations
were made using Punkt tokenizers in the Natural Language Toolkit Python library (Loper and Bird, 2002).

A collection of case studies would enable the NLP
community to determine which aspects of bias mit-
igation approaches generalize across time, location,
culture, people, and identity characteristics.

The CRC’s Archives’ documentation served as
a suitable data source because the documentation
adheres to an international standard for organiz-
ing archival metadata (ISAD(G) (ICA, 2011)), the
archivists at the institution had found gender bias
in the documentation’s language, and the archivists
were already engaged in efforts to mitigate gender
bias in the archival documentation. The documenta-
tion describes a variety of heritage collections and
items, such as letters, journals, photographs, degree
certificates, and drawings; on a variety of topics,
such as religion, research, teaching, architecture,
and town planning. Employees at the partner in-
stitution describe themselves as activists changing
archival practices to more accurately represent the
diverse groups of people that the archival collec-
tions are intended to serve.

The annotation corpus consists of 24,474 sen-
tences and 399,957 words, selected from the first
20% of the entire corpus of archival documentation
from the partner institution’s catalog (see §B.9 for
more on this corpus). Table 1 provides a breakdown
of the size of the annotation corpus by metadata
field. 90% of the annotation corpus (circa 22,027
sentences and 359,961 words) was doubly anno-
tated with all labels, and 10% of the annotation
corpus (circa 2,447 sentences and 39,996 words)
was triply annotated with all labels. In total, the
annotation process amounted to circa 400 hours of
work and £5,333.76, funded by a variety of internal
institutional funds. Each of the four hired annota-
tors worked for 72 hours over eight weeks at £18.52
per hour (minimum wage is £9.50 per hour (Gov.uk,
2022)). The hired annotators were PhD students
selected for their experience in gender studies or
archives, with three of the annotators having expe-
rience in both. The lead annotator worked for 86
hours over 16 weeks as part of their PhD research.

The categories of labels in the annotation tax-
onomy were divided among annotators according
to the textual relations the labels record. Hired
annotators 1 and 2 (A1 and A2) labeled internal
relations of the text with Person Name and Linguis-
tic categories, hired annotators 3 and 4 (A3 and
A4) labeled external relations of the text with the
Contextual category, and the lead annotator (A0)
labeled both relations with all categories. A1 and
A3 labeled the same subset of archival documen-
tation, and A2 and A4 labeled the same subset of
archival documentation, ensuring every description
had labels from all categories. The lead annota-
tor labeled the same descriptions as A1 and A3,
and a subset of the descriptions that A2 and A4
labeled (due to time constraints, A0 could not label
all the same descriptions). Prior to beginning an-
notation, Gendered Pronoun, Gendered Role, and
Occupation labels were automatically applied. The
annotators corrected mistakes from this automated
process during their manual annotation.

We produced three instances of the annotation
corpus: one for A0, one for each pair of hired an-
notators (A1 and A3, and A2 and A4), and one ag-
gregated dataset. The aggregated dataset combines
annotations from all five annotators, totaling 76,543
annotations with duplicates and 55,260 annotations
after deduplication. Manual reviews of each anno-
tator’s dataset informed the aggregation approach,
which involved a combination of programmatic and
manual steps. The data statement in §B details the
aggregation approach. Figure 1 displays the num-
ber of annotations in the aggregated dataset by label
(§A contains additional annotation figures). In line
with perspectivist NLP (Basile, 2022), the individ-
ual annotator’s datasets will be published alongside
the aggregated dataset, enabling researchers to in-
terrogate patterns of agreement and disagreement,
and enabling future work to compare the perfor-
mance of classifiers trained on disaggregated and
aggregated datasets.
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Figure 1: Total Annotations Per Label in the Aggregated Dataset. The stacked bar chart groups annotation labels
into bars by category. Across all three categories, there are 55,260 annotations in the aggregated dataset. Non-binary
(a Person Name label) and Empowering (a Contextual label) both have a count of zero.

6.1 Inter-Annotator Agreement

Due to our aim to create a training dataset for doc-
ument classification models, identifying strictly
matching text spans that annotators labeled was
deemed less important than the presence of a la-
bel in a description. Consequently, inter-annotator
agreement (IAA) calculations consider annotations
with the same label to agree if their text spans
match or overlap. Figures 2 and 3 display the F1
scores for each label, with the aggregated dataset’s
labels as predicted and the annotators’ labels as
expected. Tables 2 and 3 in the appendices list true
and false positives, false negatives, precision, and
recall, in addition to F1 scores, for IAA among the
annotators and with the aggregated dataset.

IAA calculations reflect the subjectivity of gen-
der bias in language. F1 scores for the gendered
language labels Gendered Role and Gendered Pro-
noun fall between 0.71 and 0.99. F1 scores for
annotating gender biased language are relatively
low, with the greatest agreement on the General-
ization label at only 0.56, on the Omission label
at 0.48, and on the Stereotype label at 0.57. For
Person Name labels, A0 and A2 agree more than
A1: A0 and A2’s F1 scores for all Person Name
labels are between 0.82 and 0.86, while A1’s scores
with either A0 or A2 are between 0.42 and 0.64.
A1 has a particularly high false negative rate for
the Unknown label compared to A0.

After creating the aggregated dataset, we calcu-
lated IAA between each annotator and the aggre-
gated dataset. F1 scores for all Person Name and
Linguistic labels except Generalization are simi-
larly high (0.74 to 0.98). Generalization proved
particularly difficult to label. Annotators used Gen-
eralization and Gendered Role inconsistently. As a
result, during the aggregation process, we revised
the definition of Generalization to more clearly dis-
tinguish it from Gendered Role. Consequently the
IAA between annotators and the aggregated dataset
for this label is particularly low (0.1 to 0.4).

For Contextual labels, F1 scores with the aggre-
gated dataset as “expected” and an annotator as
“predicted” increased more dramatically than the
Person Name and Linguistic labels’ F1 scores. Be-
sides Omission with A3, all F1 scores are between
0.76 and 0.91. For Stereotype, A3 agreed more
strongly with the aggregated dataset than A0 and
A4. The reverse is true for Omission and Occu-
pation, with A0 and A4 agreeing more strongly
with the aggregated dataset than A3. A3’s notes
explain that she did not annotate an incomplete
version of a person’s name as an omission if the
complete version was provided elsewhere in the
collection’s descriptions, whereas A0 and A4 an-
notated incomplete versions of people’s names as
omission unless the complete version appeared in
the same description.
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Figure 2: Total Annotations Per Label in the Aggre-
gated Dataset. The stacked bar chart groups annotation
labels into bars by category. Across all three categories,
there are 55,260 annotations in the aggregated dataset.
Non-binary (a Person Name label) and Empowering (a
Contextual label) both have a count of zero.

Two labels were not applied according to the tax-
onomy’s definitions: Empowering and Non-binary.
Empowering was used by A3 according to a dif-
ferent definition than that of the taxonomy (see
§B). As only 80 instances of the label exist in A3’s
dataset, though, there are likely to be insufficient
examples for effectively training classifiers on this
label in future work.

The annotators did not use the Non-binary la-
bel. That being said, this does not mean there
were not people who would identify as non-binary
represented in the text of the annotation corpus.
Additional linguistic and historical research may
identify people who were likely to identify as non-
binary in the corpus of archival documentation,
as well as more specific gender identities for peo-
ple whose names were annotated as Masculine or
Feminine. Metadata entries for people in the part-
ner institution’s catalog may also provide more
information relevant to gender identities. Shopland
(2020) finds that focusing on actions that people
were described doing can help to locate people of
minoritized genders (and sexualities) in historical
texts. However, Shopland also cautions researchers
against assuming too much: a full understanding of
a person’s gender often remains unattainable from
the documentation that exists about them.
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Figure 3: Total Annotations Per Label in the Aggre-
gated Dataset. The stacked bar chart groups annotation
labels into bars by category. Across all three categories,
there are 55,260 annotations in the aggregated dataset.
Non-binary (a Person Name label) and Empowering (a
Contextual label) both have a count of zero.

As Figure 1 displays, Unknown is the most preva-
lent label in the Person Name category, because
each annotation of a person’s name was informed
by words within the description in which that name
appears. Consequently, for people named in more
than one description, there may be different person
name labels applied to their name across those de-
scriptions. The rationale for this approach comes
from the aim to train document classification mod-
els on the annotated data where each description
serves as a document. Should a person change
their gender during their lifetime, and archival doc-
umentation exists that describes them as different
genders, the person may wish a model to use the
most recent description of a person to determine
their gender, or not use any gender information
about the person, in case obviating their change of
gender leads to safety concerns (Dunsire, 2018).
Furthermore, many GLAM content management
systems do not have versioning control, so dates of
descriptions may not exist to determine the most re-
cent description of a person’s gender. Person Name
labels are thus based on the description in which a
name appears to minimize the risk of misgendering
(Scheuerman et al., 2020).

7 Discussion and Limitations

The paper’s annotation taxonomy builds on biased
language research from NLP, information sciences,
gender studies, and linguistics literature. The gen-
der bias taxonomy of Hitti et al. (2019), which cat-
egorizes gender biases based on whether the bias
comes from the sentence structure or the context
(i.e. people, relationships, time period, location) of
the language, served as a foundation. We adopted
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four labels from that taxonomy: Gendered Pro-
noun, Gendered Role, Generalization, and Stereo-
type (merging Hitti et al.’s Societal Stereotype and
Behavioral Stereotype categories). Drawing on
archival science and critical discourse analysis,
and guided by participatory action research with
archivists (e.g., interviews, workshops), we added
to and restructured Hitti et al.’s taxonomy. The
Person Name labels were added so that the rep-
resentation of people of different genders in the
archival documentation could be estimated. An-
notators chose which label to apply to a person’s
name based on gendered pronouns or roles that re-
fer to that person in the description in which their
name appears. For example, “they” as singular
for Non-binary, “his” for Masculine, and “she” for
Feminine; or “Mx.” for Non-binary, “Lady” for
Feminine, or “son” for Masculine. The Unknown,
Feminine, and Masculine labels distinguish our ap-
proach from previous NLP gender bias work that
has not allowed for uncertainty.

Guessing a person’s gender risks misgendering
(Scheuerman et al., 2020), a representational harm
(Blodgett et al., 2020; Crawford, 2017), and fails
to acknowledge that sufficient information often is
not available to determine a person’s gender with
certainty (Shopland, 2020). This led us to replace
the initial labels of Woman and Man with Femi-
nine and Masculine, recognizing that pronouns and
roles are insufficient for determining how people
define their gender. Each Person Name label en-
compasses multiple genders. For instance, a person
who identifies as a transwoman, as genderfluid, or
as a cis woman may use feminine pronouns, such as
“she,” or feminine roles, such as “wife.” Though we
aimed to create a taxonomy inclusive of all genders,
we acknowledge this may not have been achieved,
and welcome feedback on how to represent any
genders inadvertently excluded.

We also added three labels to the Contextual cat-
egory: Occupation, Omission, and Empowering.
Occupation was added because, when combined
with historical employment statistics, Occupation-
labeled text spans could inform estimates of the
representation of particular genders within the col-
laborating archive’s collections. Furthermore, Per-
son Name annotations combined with their occu-
pations could guide researchers to material beyond
the archive that may provide information about
those people’s gender identity. Omission was added
because, during group interviews, representatives

from the collaborating archive described finding
gender bias through the lack of information pro-
vided about women relative to the detail provided
about men. Empowering was added to account
for how communities reclaim certain derogatory
terms, such as “queer,” in a positive, self-affirming
manner (Bucholtz, 1999).

Figure 1 displays how prevalent Omission was in
the annotated data: this label is the most commonly
applied label from the Contextual category. Such
prevalence demonstrates the value of interdisci-
plinary collaboration and stakeholder engagement,
carried out in our participatory action research with
domain experts. Had archivists at the partner in-
stitution not been consulted, we would not have
known how relevant omitted information regard-
ing gender identities would be to identifying and
measuring gender bias in archival documentation.

The final annotation taxonomy includes labels
for gendered language (specifically, Gendered Role,
Gendered Pronoun, and all labels in the Person
Name category), rather than only explicitly gen-
der biased language (specifically, Generalization,
Stereotype, and Omission), because measuring the
use of gendered words across an entire archives’
collection provides information about gender bias
at the overall collections’ level. For example, using
a gendered pronoun such as “he” is not inherently
biased, but if the use of this masculine gendered
pronoun far outnumbers the use of other gendered
pronouns in our dataset, we can observe that the
masculine is over-represented, indicating a mascu-
line bias in the archives’ collections overall. Label-
ing gender-biased language focuses on the individ-
ual description level. For example, the stereotype
of a wife playing a supporting role to her husband
comes through in this description:
Jewel took an active interest in her husband’s work,
accompanying him when he travelled, sitting on
charitable committees, looking after missionary
furlough houses and much more.

Instructions for applying the taxonomy permit-
ted labels to overlap as each annotator saw fit, and
asked annotators to annotate from their contempo-
rary perspective. Approaching the archival meta-
data descriptions as discourse (meaning language
as representations of the material, mental, and so-
cial worlds (Fairclough, 2003)), the taxonomy of
labels represents the “internal relations” and “ex-
ternal relations” of the descriptions (ibid., 37). The
Person Name and Linguistic categories annotate in-
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ternal relations, meaning the “vocabulary (or ‘lexi-
cal’) relations” (ibid., 37) of the descriptions. To
apply their labels, annotators looked for the pres-
ence of particular words and phrases (i.e., gendered
pronouns, gendered titles, familial roles).

The Contextual category annotates external rela-
tions: relations with “social events ... social prac-
tices and social structures” (Fairclough, 2003, 36).
To apply Contextual labels, annotators reflected on
the production and reception of the language in
the archival documentation. For instance, to apply
the Stereotype label, annotators considered the re-
lationship between a description’s language with
social hierarchies in 21st century British society,
determining whether the term or phase adequately
represented the possible gender diversity of people
being described.

8 Conclusion and Future Work

This paper has presented a taxonomy of gender bi-
ased language with a case study to support clarity
and alignment in NLP gender bias research. Rec-
ognizing the value of clearly defined metrics for
advancing bias mitigation, the taxonomy provides
a structure for identifying types of gender biased
language at the level they originate (words and
phrases), rather than at a level of abstraction (i.e.,
vector spaces). Still, the case study presented in this
paper demonstrates the difficulty of determining
people’s gender with certainty. While recogniz-
ing the value of NLP systems for mitigating harms
from gender biased language at large scale, we con-
tend that conceptualizations of gender must extend
to trans and gender diverse gender expressions if
NLP systems are to empower minoritized gender
communities.

Future work will include the publication of
the case study’s datasets, analysis of the datasets,
and document classification models trained on the
datasets. The datasets will include each individ-
ual annotator’s dataset and two aggregated datasets,
one with duplicates across different annotators, and
one deduplicated to exclude matching and overlap-
ping annotations from different annotators. The
analysis of the datasets and creation of models
trained on them will be informed by participatory
action research, incorporating perspectives from
archivists, and from people of trans and gender di-
verse identities not represented in the research team.
The dataset will be published in the same location
as the code written to create the corpus of archival

documentation and the annotated datasets.5 The
taxonomy and forthcoming datasets aim to guide
NLP systems towards measurable and inclusive
conceptualizations of gender.
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Sophia Ananiadou Tomoko Ohta, and Jun’ichi Tsujii.
2012. brat: a Web-based Tool for NLP-Assisted Text
Annotation. In Proceedings of the Demonstrations
Session at EACL 2012. Association for Computa-
tional Linguistics.

Marja Liisa Swantz. 2008. 2 Participatory Action Re-
search as Practice. In The SAGE Handbook of Action
Research, pages 31–48. SAGE Publications Ltd.

Chris Sweeney and Maryam Najafian. 2019. A trans-
parent framework for evaluating unintended demo-
graphic bias in word embeddings. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 1662–1667, Florence,
Italy. Association for Computational Linguistics.

Latanya Sweeney. 2013. Discrimination in online ad
delivery. Communications of the ACM, 56(5):44–54.

Yi Chern Tan and L. Elisa Celis. 2019. Assessing Social
and Intersectional Biases in Contextualized Word
Representations. CoRR, abs/1911.01485.

G. Thomas Tanselle. 2002. The World as Archive. Com-
mon Knowledge, 8(2):402–406.

Trans Metadata Collective. 2022. A Mandate for Trans
and Gender Diverse Metadata (draft; working title).

Sigal Vainapel, Opher Y. Shamir, Yulie Tenenbaum,
and Gadi Gilam. 2015. The dark side of gen-
dered language: The masculine-generic form as a
cause for self-report bias. Psychological Assessment,
27(4):1513–1519.

Kellie Webster, Marta Recasens, Vera Axelrod, and Ja-
son Baldridge. 2018. Mind the GAP: A Balanced
Corpus of Gendered Ambiguous Pronouns. Comput-
ing Research Repository, arXiv:1810.05201.

Anne Welsh. 2016. The Rare Books Catalog and the
Scholarly Database. Cataloging & Classification
Quarterly, 54(5–6):317–337.

Chris Welty, Praveen Paritosh, and Lora Aroyo. 2019.
Metrology for AI: From Benchmarks to Instruments.
CoRR, abs/1911.01875.

42



Elizabeth Yale. 2015. The History of Archives:
The State of the Discipline. Book History,
18(1):332–359.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Ryan Cotterell,
Vicente Ordonez, and Kai-Wei Chang. 2019. Gender
bias in contextualized word embeddings. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 629–634, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2018. Gender Bias in
Coreference Resolution: Evaluation and Debiasing
Methods. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 15–20,
New Orleans, USA. Association for Computational
Linguistics.

A Additional Tables and Figures

43



Figure 4: An example of GLAM documentation from the archival catalog of the Centre for Research Collections at
the University of Edinburgh (2018). Metadata field names bolded in blue and their descriptions, regular, black text.
The ‘Title’ field, however, is bolded in blue at the top of the page (“Papers and artwork of...”).

Figure 5: An example of a “Biographical / Historical” metadata field’s description annotated with all labels from the
taxonomy in the online annotation platform brat (Stenetorp et al., 2012).
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exp pred label true
pos

false
pos

false
neg precision recall F1 files

0 1 Unknown 5031 1524 4268 0.76751 0.54103 0.63467 584
0 2 Unknown 2776 537 432 0.83791 0.86534 0.85140 170
1 2 Unknown 1048 1421 315 0.42446 0.76889 0.54697 72
0 1 Masculine 2367 2372 1079 0.49947 0.68688 0.57838 584
0 2 Masculine 728 111 146 0.86770 0.83295 0.84997 170
1 2 Masculine 380 169 411 0.69217 0.48040 0.56716 72
0 1 Feminine 627 427 642 0.59488 0.49409 0.53982 584
0 2 Feminine 724 128 178 0.84977 0.80266 0.82554 170
1 2 Feminine 287 496 279 0.36654 0.50707 0.42550 72
0 1 Non-binary 0 0 0 - - - 584
0 2 Non-binary 0 0 0 - - - 170
1 2 Non-binary 0 0 0 - - - 72
0 1 Gendered Role 1802 306 882 0.85484 0.67139 0.75209 584
0 2 Gendered Role 1404 162 257 0.89655 0.84527 0.87016 170
1 2 Gendered Role 438 292 52 0.60000 0.89388 0.71803 72
0 1 Gendered Pronoun 3398 101 190 0.97113 0.94705 0.95894 584
0 2 Gendered Pronoun 869 70 60 0.92545 0.93541 0.93041 170
1 2 Gendered Pronoun 518 7 11 0.98667 0.97921 0.98292 72
0 1 Generalization 37 35 262 0.51389 0.12375 0.19946 584
0 2 Generalization 74 51 63 0.59200 0.54015 0.56489 170
1 2 Generalization 2 50 7 0.03846 0.22222 0.06557 72

Table 2: Inter-annotator agreement measures for annotators who used the Person Name and Linguistic categories of
labels to annotate archival documentation. The first two columns note the annotator whose labels were considered
expected or predicted, respectively. The abbreviation “pos” is for “positive;” “neg,” for “negative.” The last column
lists the number of files with annotations by both annotators for that row. No annotators applied the “Non-binary”
label.

exp pred label true
pos

false
pos

false
neg precision recall F1 files

0 3 Occupation 1988 613 724 0.76432 0.73303 0.74835 485
0 4 Occupation 738 396 240 0.65079 0.75460 0.69886 149
3 4 Occupation 422 327 134 0.56341 0.75899 0.64674 57
0 3 Omission 1376 914 3259 0.60087 0.29687 0.39740 485
0 4 Omission 416 317 875 0.56753 0.32223 0.41106 149
3 4 Omission 215 315 155 0.40566 0.58108 0.47777 57
0 3 Stereotype 505 539 227 0.48371 0.68989 0.56869 485
0 4 Stereotype 507 525 600 0.49127 0.45799 0.47405 149
3 4 Stereotype 34 60 161 0.36170 0.17435 0.23529 57
0 3 Empowering 0 80 0 - - - 485
0 4 Empowering 0 0 0 - - - 149
3 4 Empowering 0 0 80 - - - 57

Table 3: Inter-annotator agreement measures for annotators who used the Contextual category of labels to annotate
archival metadata descriptions. The first two columns note the annotator whose labels were considered expected or
predicted, respectively. The abbreviation “pos” is for “positive;” “neg,” for “negative.” The last column lists the
number of files with annotations by both annotators for that row. Only annotator 3 applied the “Empowering” label.

45



exp pred label true
pos

false
pos

false
neg precision recall F1 files

Agg 0 Unknown 10561 36 1900 0.99660 0.84752 0.91604 714
Agg 1 Unknown 6608 0 4511 1.00000 0.59430 0.74553 597
Agg 2 Unknown 15140 117 679 0.99233 0.95708 0.97439 444
Agg 0 Masculine 3963 18 2446 0.99548 0.61835 0.76285 714
Agg 1 Masculine 4749 1 1099 0.99979 0.81207 0.89621 597
Agg 2 Masculine 1007 5 525 0.99506 0.65731 0.79167 444
Agg 0 Feminine 1454 19 523 0.98710 0.73546 0.84290 714
Agg 1 Feminine 1076 0 707 1.00000 0.60348 0.75271 597
Agg 2 Feminine 994 12 410 0.98807 0.70798 0.82490 444
Agg 0 Nonbinary 0 0 0 - - - 714
Agg 1 Nonbinary 0 0 0 - - - 597
Agg 2 Nonbinary 0 0 0 - - - 444
Agg 0 Gendered-Role 3108 697 330 0.81682 0.90401 0.85821 714
Agg 1 Gendered-Role 1924 218 716 0.89823 0.72879 0.80468 597
Agg 2 Gendered-Role 1471 652 230 0.69289 0.86479 0.76935 444
Agg 0 Gendered-Pronoun 3933 160 165 0.96091 0.95974 0.96032 714
Agg 1 Gendered-Pronoun 3498 3 190 0.99914 0.94848 0.97315 597
Agg 2 Gendered-Pronoun 1016 1 41 0.99902 0.96121 0.97975 444
Agg 0 Generalization 405 1 1370 0.99754 0.22817 0.37139 714
Agg 1 Generalization 69 4 1123 0.94521 0.05789 0.10909 597
Agg 2 Generalization 127 0 862 1.00000 0.12841 0.22760 444

Table 4: Inter-annotator agreement between the aggregated dataset and annotators for the Person Name and Linguistic
categories of labels to annotate archival documentation. The first two columns note the annotator whose labels were
considered expected or predicted, respectively. The abbreviation “pos” is for “positive;” “neg,” for “negative.” The
last column lists the number of files with annotations by both annotators for that row. No annotators applied the
“Non-binary” label.

exp pred label true
pos

false
pos

false
neg precision recall F1 files

Agg 0 Occupation 2725 23 571 0.99163 0.82676 0.90172 631
Agg 3 Occupation 2320 290 873 0.88889 0.72659 0.79959 508
Agg 4 Occupation 1746 147 253 0.92235 0.87344 0.89723 450
Agg 0 Omission 5916 12 1187 0.99798 0.83289 0.90799 631
Agg 3 Omission 2310 13 3475 0.99440 0.39931 0.56981 508
Agg 4 Omission 1876 5 967 0.99734 0.65987 0.79424 450
Agg 0 Stereotype 1748 11 1058 0.99375 0.62295 0.76583 631
Agg 3 Stereotype 1089 9 279 0.99180 0.79605 0.88321 508
Agg 4 Stereotype 1400 2 715 0.99857 0.66194 0.79613 450
Agg 0 Empowering 0 0 0 - - - 631
Agg 3 Empowering 0 80 0 0.0 - 0.0 508
Agg 4 Empowering 0 0 0 - - - 450

Table 5: Inter-annotator agreement between the aggregated dataset and annotators for the Contextual category of
labels to annotate archival metadata descriptions. The first two columns note the annotator whose labels were
considered expected or predicted, respectively. The abbreviation “pos” is for “positive;” “neg,” for “negative.” The
last column lists the number of files with annotations by both annotators for that row. Only annotator 3 applied the
“Empowering” label.
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Figure 6: Confusion matrices normalized with a weighted average on the aggregated data’s labels, so that class
imbalances are taken into account. The top left confusion matrix displays intersections between the aggregated
datasets labels, illustrating where the same text spans have more than one label. The remaining confusion matrices
to display the agreement between an annotator’s labels (Y axis) and the aggregated data’s labels (X axis). The Y
axis scale is the same for all matrices, ranging from zero to one.
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Figure 7: Disagreeing and Agreeing Label Counts Across All Annotators’ Datasets. The bar chart displays counts
of the occurrence of disagreements and agreements across annotators’ labels. Annotations by two annotators
with the same or overlapping text span but different labels are considered to be in disagreement. Annotations
by two annotators with the same or overlapping text span and the same labels are considered to be in agreement.
Agreements with the same text span are considered to be exact matches. Agreements with different but overlapping
text spans are considered to be overlaps. Combined, the annotated datasets contain 198,520 annotations.
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Figure 8: Total Annotations Per Annotator in the Aggregated Dataset. The bar chart displays the total annotations
from each annotator included in the aggregated dataset, with colors indicating the category of labels each annotator
used. For annotations that matched or overlapped, only one was added to the aggregated dataset, so the total number
of annotations in the aggregated dataset (55,260) is 21,283 less than the sum of the annotators’ annotations in this
chart (76,543).
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B Data Statement: Annotated Datasets of
Archival Documentation

B.1 Curation Rationale
These datasets were created from a corpus of 1,460
files of archival metadata descriptions totaling circa
15,419 sentences and 255,943 words. That corpus
is the first 20% of text from the corpus described
in the Provenance Appendix (§B.9), annotated for
gender bias according the the taxonomy in Other
(§B.8). 73 of files (10% of the text) were triply an-
notated; the remaining 1,387 files (90% of the text)
were doubly annotated. There are six instances of
the annotated corpus: one for each of the five anno-
tators and one that aggregates all annotators’ labels.
Participatory action research with archivists led the
project to choose four metadata fields were chosen
in the archival catalog to extract for annotation: Ti-
tle, Scope and Contents, Biographical / Historical,
and Processing Information.

The five annotated datasets were merged into
a single aggregated dataset for classifier training
and evaluation, so comparisons could be made on
classifiers’ performances after training on an indi-
vidual annotator’s dataset versus on the aggregated
dataset. The merging process began with a one-
hour manual review of each annotator’s labels to
identify patterns and common mistakes in their la-
beling, which informed the subsequent steps for
merging the five annotated datasets.

The second step of the merging process was to
manually review disagreeing labels for the same
text span and add the correct label to the aggre-
gated dataset. Disagreeing labels for the same text
span were reviewed for all Person Name, Linguis-
tic, and Contextual categories of labels. For Person
Name and Linguistic labels, where three annotators
labeled the same span of text, majority voting de-
termined the correct label: if two out of the three
annotators used one label and the other annotator
used a different label, the label used by the two
annotators was deemed correct and added to the
aggregated dataset. For Contextual labels, unless
an obvious mistake was made, the union of all three
annotators’ labels was included in the aggregated
dataset.

Thirdly, the “Occupation” and “Gendered Pro-
noun” labels were reviewed. A unique list of the
text spans with these labels was generated and in-
correct text spans were removed from this list. The
“Occupation” and “Gendered Pronoun” labels in
the annotated datasets with text spans in the unique

lists of valid text spans were added to the aggre-
gated dataset. Fourthly, the remaining Linguistic
labels (“Gendered Pronoun,” “Gendered Role,” and
“Generalization”) not deemed incorrect in the anno-
tated datasets were added to the aggregated dataset.
Due to common mistakes in annotating Person
Name labels with one annotator, only data from the
other two annotators who annotated with Person
Name labels was added to the aggregated dataset.
Fifthly, for annotations with overlapping text spans
and the same label, the annotation with the longer
text span was added to the aggregated dataset. The
sixth and final step to constructing the aggregated
dataset was to take the union of the remaining Con-
textual labels (“Stereotype,” “Omission,” “Occupa-
tion,” and “Empowering”) not deemed incorrect in
the three annotated datasets with these labels and
add them to the aggregated dataset.

B.2 Language Variety
The metadata descriptions extracted from the
Archive’s catalog are written primarily in British
English, with the occasional word in another lan-
guage such as French or Latin.

B.3 Producer Demographic
The producing research team are of American, Ger-
man, and Scots nationalities, and are three women
and one man. We all work primarily as academic
researchers in the disciplines of natural language
processing, data science, data visualization, human-
computer interaction, digital humanities, and dig-
ital cultural heritage. Additionally, one of us is
audited an online course on feminist and social
justice studies.

B.4 Annotator Demographic
The five annotators are of American and European
nationalities and identify as women. Four anno-
tators were hired by the lead annotator for their
experience in gender studies and archives. The
four annotators worked 72 hours each over eight
weeks in 2022, receiving £1,333.44 each (£18.52
per hour). The lead annotator completed the work
for her PhD project, which totaled to 86 hours of
work over 16 weeks.

B.5 Speech or Publication Situation
The archival metadata descriptions describe mate-
rial about a range of topics, such as teaching, re-
search, town planning, music, and religion. The ma-
terials described also vary, from letters and journals
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to photographs and audio recordings. The descrip-
tions in this project’s dataset with a known date
(which describe 38.5% of the archives’ records)
were written from 1896 through 2020.

The annotated dataset will be published with a
forthcoming paper detailing the methodology and
theoretical framework that guided the development
of the annotation taxonomy and the annotation pro-
cess, accompanied by analysis of patterns and out-
liers in the annotated dataset.

B.6 Data Characteristics
The datasets were organized for annotation in a
web-based annotation paltform, the brat rapid an-
notation tool (Stenetorp et al., 2012). Consequently,
the data formats conform to the brat formats: plain
text files that end in ‘.txt’ contain the original text
and plain text files that end in ‘.ann’ contain the
annotations. The annotation files include the start-
ing and ending text span of a label, the actual text
contained in that span, the label name, and any
notes annotators recorded about the rationale for
applying the label they did. The names of all the
files consist of the name of the fonds (the archival
term for a collection) and a number indicating the
starting line number of the descriptions. Descrip-
tions from a single fonds were split across files so
that no file contained more than 100 lines, because
brat could not handle the extensive length of certian
fonds’ descriptions.

B.7 Data Quality
A subset of annotations were applied automatically
with a grep script and then corrected during the
manual annotation process. All three categories of
the annotation taxonomy were manually applied by
the annotators. The lead annotator then manually
checked the labels for accuracy. That being said,
due to time constraints, mistakes are likely to re-
main in the application of labels (for example, the
starting letter may be missing from a labeled text
span or a punctuation mark may have accidentally
been included in a labeled text span).

B.8 Other: Annotation Schema
The detailed schema that guided the annotation pro-
cess is listed below with examples for each label.
In each example, the labeled text is underlined. All
examples are taken from the dataset except for la-
bels 1.1, “Non-binary,” and 3.4, “Empowering,” as
the annotators did not find any text to which the
provided label definitions applied. The annotation

instructions permitted labels to overlap as each an-
notator saw fit, and asked annotators to read and
annotate from their contemporary perspective. The
categories of labels from the annotation taxonomy
were divided among annotators: two hired anno-
tators labeled with categories 1 and 2, two hired
annotators labeled with category 3, and the lead
annotator labeled with all categories.

The annotation taxonomy includes labels for gen-
dered language, rather than only explicitly gender-
biased language, because measuring the use of gen-
dered words across an entire archives’ collection
provides information about gender bias at the over-
all collections’ level. For example, using a gen-
dered pronoun such as “he” is not inherently biased,
but if the use of this masculine gendered pronoun
far outnumbers the use of other gendered pronouns
in our dataset, we can observe that the masculine
is over-represented, indicating a masculine bias in
the archives’ collections overall. Labeling gender-
biased language focuses on the individual descrip-
tion level. For example, the stereotype of a wife
playing only or primarily a supporting role to her
husband comes through in the following descrip-
tion:

Jewel took an active interest in her hus-
band’s work, accompanying him when he
travelled, sitting on charitable commit-
tees, looking after missionary furlough
houses and much more. She also wrote
a preface to his Baptism and Conversion
and a foreward [sic] to his A Reasoned
Faith. (Fonds Identifier: Coll-1036)

1. Person Name: the name of a person, in-
cluding any pre-nominal titles (i.e., Profes-
sor, Mrs., Sir, Queen), when the person is the
primary entity being described (rather than a
location named after a person, for example)

1.1 Non-binary:* the pronouns or roles
of the named person within the descriptive
field in which this instance of the name ap-
pears (either Title, Scope and Contents, Bio-
graphical / Historical, or Processing Informa-
tion) are non-binary

Example 1.1: Francis McDonald went
to the University of Edinburgh where they
studied law.
Note: the annotation process did not find suit-
able text on which to apply this label in the
dataset.
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1.2 Feminine: the pronouns, titles, or
roles of the named person within the descrip-
tive field in which this instance of the name
appears (either Title, Scope and Contents, Bi-
ographical / Historical, or Processing Informa-
tion) are feminine

Example 1.2: “Jewel took an active
interest in her husband’s work...” (Fonds Iden-
tifier: Coll-1036)

1.3 Masculine: the pronouns, titles, or
roles of the named person within the descrip-
tive field in which this instance of the name
appears (either Title, Scope and Contents, Bi-
ographical / Historical, or Processing Informa-
tion) are masculine

Example 1.3: “Martin Luther, the man
and his work.” (Fonds Identifier: BAI)

1.4 Unknown: any pronouns, titles, or
roles of the named person within the descrip-
tive field in which this instance of the name
appears (either Title, Scope and Contents, Bi-
ographical / Historical, or Processing Informa-
tion) are gender neutral, or no such pronouns
or roles are provided within the descriptive
field

Example 1.4: “Testimonials and addi-
tional testimonials in favour of Niecks, can-
didacy for the Chair of Music, 1891” (Fonds
Identifier: Coll-1086)

2. Linguistic: gender marked in the way a word,
phrase or sentence references a person or peo-
ple, assigning them a specific gender that does
not account for all genders possible for that
person or people

2.1 Generalization: use of a gender-
specific term (i.e. roles, titles) to refer to a
group of people that could identify as more
than the specified gender

Example 2.1: “His classes included
Anatomy, Practical Anatomy, ... Midwifery
and Diseases of Women, Therapeutics, Neu-
rology, ... Public Health, and Diseases of the
Skin.” (Fonds Identifier: Coll-1118)

2.2 Gendered Role: use of a title or word
denoting a person’s role that marks either a
non-binary, feminine, or masculine gender

Example 2.2: “New map of Scotland
for Ladies Needlework, 1797” (Fonds Identi-
fier: Coll-1111)

2.3 Gendered Pronoun: explicitly mark-
ing the gender of a person or people through
the use of pronouns (e.g., he, him, himself,
his, her, herself, and she)

Example 2.3: “He obtained surgical
qualifications from Edinburgh University in
1873 ([M.B.]).” (Fonds Identifier: Coll-1096)

3. Contextual: expectations about a gender or
genders that comes from knowledge about
the time and place in which language is used,
rather than from linguistic patterns alone (i.e.,
sentence structure or word choice)

3.1 Stereotype: a word, phrase, or sen-
tence that communicates an expectation of a
person or group of people’s behaviors or pref-
erences that does not reflect the reality of all
their possible behaviors or preferences; or a
word, phrase, or sentence that focuses on a
particular aspect of a person that doesn’t rep-
resent that person holistically

Example 3.1: “The engraving depicts
a walking figure (female) set against sunlight,
and holding/releasing a bird.” (Fonds Identi-
fier: Coll-1116)

3.2 Omission: focusing on the presence,
responsibility, or contribution of a single gen-
der in a situation in which more than one gen-
der has a presence, responsibility or contribu-
tion; or defining one person’s identity in terms
of their relation to another person

Example 3.2: “This group portrait
of Laurencin, Apollinaire, and Picasso and
his mistress became the theme of a larger ver-
sion in 1909 entitledApollinaire [sic] and his
friends.” (Fonds Identifier: Coll-1090).

3.3 Occupation: a word or phrase that
refers to a person or people’s job title (singu-
lar or plural) for which the person or people
received payment; do not annotate occupa-
tions used as a pre-nominal title (for exam-
ple, “Colonel Sir Thomas Francis Fremantle”
should not have an occupation label)

Example 3.3: “He became a surgeon
with the Indian Medical Service.” (Fonds
Identifier: Coll-1096).

3.4 Empowering: reclaiming derogatory
words or phrases to empower a minoritized
person or people
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Example 3.4: a person describing
themself as queer in a self-affirming, positive
manner
Note: the annotation process did not find
enough text on which to apply this label in
the dataset to include it when training a clas-
sifier. One annotator used the label according
to a different definition.**

*The “Non-binary” label was not used by the
annotators. That being said, this does not mean
there were not people who would identify as
non-binary represented in the text of the annotation
corpus. When relying only on descriptions written
by people other than those represented in the
descriptions, knowledge about people’s gender
identity remains incomplete (Shopland, 2020).
Additional linguistic research informed by a knowl-
edge of terminology for the relevant time period
may identify people who were likely to identify
as non-binary in the corpus of archival metadata
descriptions. For example, Shopland (2020) finds
that focusing on actions that people were described
doing can help to locate people of minoritized
genders (and sexualities) in historical texts, but
also cautions researchers against assuming too
much. A full understanding of a person’s gender
often remains unattainable from the documentation
that exists about them.

**One annotator used the “Empowering” label in
the following instances:

• When a person referenced with feminine
terms was described as the active party in mar-
riage

• Honor or achievement held by a woman (as
indicated in the text)

Note: Honors and achievements held by men
were labeled as stereotypes, as there was a
consistent focus on this type of detail about
people, which involved spheres of life histor-
ically dominated by men in the UK. Spheres
of life historically dominated by women in
the UK were described with greater vague-
ness, eliminating the possibility of honors or
achievements in these spheres to be identified.

• The fate of a wife is mentioned in an entry
predominantly about the life of a husband

• Family members referenced with feminine
terms are prioritized (i.e., they are listed first,

more detail is given about them than those
referenced with masculine terms)

• A gender-neutral term is used instead of gen-
dered term

All annotators were encouraged to use the anno-
tation tool’s notes field to record their rationale for
particular label choices, especially for text labeled
with “Generalization,” “Stereotype,” or “Omission.”
The work intends these notes to lend transparency
to the annotation process, providing anyone who
wishes to use the data with insight onto the annota-
tor’s mindset when labeling the archival documen-
tation.

B.9 Provenance Appendix

Data Statement: Corpus of Archival Documen-
tation

B.9.1 Curation Rationale
We (the research team) will use the extracted meta-
data descriptions to create a gold standard dataset
annotated for contextual gender bias. We adopt
Hitti et al.’s definition of contextual gender bias in
text: written language that connotes or implies an
inclination or prejudice against a gender through
the use of gender-marked keywords and their con-
text (2019).

A member of our research team has extracted
text from four descriptive metadata fields for all col-
lections, subcollections, and items in the Archive’s
online catalog. The first field is a title field. The
second field provides information about the peo-
ple, time period, and places associated with the
collection, subcollection, or item to which the field
belongs. The third field summarizes the contents
of the collection, subcollection, or item to which
the field belongs. The last field records the person
who wrote the text for the collection, subcollection,
or item’s descriptive metadata fields, and the date
the person wrote the text (although not all of this
information is available in each description; some
are empty). Using the dataset of extracted text, we
will experiment with training a discriminative clas-
sification algorithm to identify types of contextual
gender bias. Additionally, the dataset will serve
as a source of annotated, historical text to comple-
ment datasets composed of contemporary texts (i.e.
from social media, Wikipedia, news articles).

We chose to use archival metadata descriptions
as a data source because:

52



1. Metadata descriptions in the Archive’s cat-
alog (and most GLAM catalogs) are freely,
publicly available online

2. GLAM metadata descriptions have yet to be
analyzed at large scale using natural language
processing (NLP) methods and, as records
of cultural heritage, the descriptions have
the potential to provide historical insights
on changes in language and society (Welsh,
2016)

3. GLAM metadata standards are freely, publicly
available, often online, meaning we can use
historical changes in metadata standards used
in the Archive to guide large-scale text analy-
sis of changes in the language of the metadata
descriptions over time

4. The Archive’s policy acknowledges its respon-
sibility to address legacy descriptions in its
catalogs that use language considered biased
or otherwise inappropriate today6

B.9.2 Language Variety
The metadata descriptions extracted from the
Archive’s catalog are written in British English.

B.9.3 Producer Demographic
We (the research team) are of American, German,
and Scots nationalities, and are three females and
one male. We all work primarily as academic re-
searchers in the disciplines of natural language pro-
cessing, data science, data visualization, human-
computer interaction, digital humanities, and dig-
ital cultural heritage. Additionally, one of us has
been auditing a feminism and social justice course,
and reading literature on feminist theories, queer
theory, and indigenous epistemologies.

B.9.4 Annotator Demographic
Not applicable

B.9.5 Speech or Publication Situation
The metadata descriptions extracted from the
Archive’s online catalog using Open Access Ini-
tiative - Protocol for Metadata Harvesting (OAI-
PMH). For OAI-PMH, an institution (in this case,
the Archive) provides a URL to its catalog that

6The Archive is not alone; across the GLAM sector, insti-
tutions acknowledge and are exploring ways to address legacy
language in their catalogs’ descriptions. The “Note” in We
Are What We Steal provides one example: dxlab.sl.nsw.
gov.au/we-are-what-we-steal/notes/.

displays its catalog metadata in XML format. A
member of our research team wrote scripts in
Python to extract three descriptive metadata fields
for every collection, subcollection, and item in the
Archive’s online catalog (the metadata is organized
hierarchically). Using Python and its Natural Lan-
guage Toolkit library (Loper and Bird, 2002), the
researcher removed duplicate sentences and cal-
culated that the extracted metadata descriptions
consist of a total of 966,763 words and 68,448
sentences across 1,231 collections. The minimum
number of words in a collection is 7 and the maxi-
mum, 156,747, with an average of 1,306 words per
collection and standard deviation of 7,784 words.
The archival items described in resulting corpus
consist of a variety of material, from photographs
and manuscripts (letters, lecture notes, and other
handwritten documents) to instruments and tweets.

B.9.6 Data Characteristics
Upon extracting the metadata descriptions using
OAI-PMH, the XML tags were removed so that
the total words and sentences of the metadata de-
scriptions could be calculated to ensure the text
source provided a sufficiently large dataset. A
member of our research team has grouped all the
extracted metadata descriptions by their collection
(the “fonds” level in the XML data), preserving the
context in which the metadata descriptions were
written and will be read by visitors to the Archive’s
online catalog.

B.9.7 Data Quality
As a member of our research team extracts and
filters metadata descriptions from the Archive’s
online catalog, they write assertions and tests to
ensure as best as possible that metadata is not lost
or unintentionally changed.

B.9.8 Other
The data can be freely accessed at: datashare.
ed.ac.uk/handle/10283/3794. The data
preparation code has been published at: github.
com/thegoose20/annot-prep.

B.9.9 Provenance Appendix
The data described above was harvested from
the University of Edinburgh’s Centre for Re-
search Collections’ Archives catalog in 2020
(archives.collections.ed.ac.uk).
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C Annotation Instructions

The annotation instructions were written to guide
annotators in applying the taxonomy of to the an-
notation corpus of archival metadata descriptions.
Prior to beginning the annotation process, an anno-
tation pilot was undertaken with three participants
to test the clarity of the annotation taxonomy. The
pilot led to revisions of the instructions: more ex-
amples were added and annotators were explicitly
instructed to read and interpret the descriptions
from their contemporary perspective.

The annotation instructions below contain a
slightly different annotation taxonomy than the
final annotation taxonomy included above in the
main body of the paper. This is due to the fact
that during and after the annotation process, the
taxonomy was revised based on the data that was
being annotated. The definitions of Gendered Role
and Generalization proved to be difficult to distin-
guish in practice, so the definitions were revised
during the dataset aggregation process. Addition-
ally, we realized during the annotation process that
“Woman” and “Man” were inaccurate labels based
on what we could learn about gender from text, so
we changed these labels to “Feminine” and “Mas-
culine,” respectively, for the final annotation taxon-
omy.

C.1 Instructions
Step 1: As you read and label the archival meta-
data descriptions displayed on the screen, includ-
ing text that quotes from source material, meaning
text surrounded in quotation marks that reproduces
something written in a letter, manuscript, or other
text-based record from an archival collection.
NOTE: If you are unsure about an annotation,
please make a note the file name and your question
so that we can discuss it and decide on the way to
annotate that sort of language moving forward!
Step 2: Please note that Gendered-Pronouns,
Gendered-Roles, and Occupations have been pre-
annotated. If any of these three categories of lan-
guage have been annotated incorrectly, please cor-
rect them by clicking on the annotation label, delet-
ing it, and making the correct annotation. If any
of these three categories of language have been
missed in the pre-annotation process, please anno-
tate them yourself.
Step 3: Read the archival metadata descriptions
displayed and while reading:

• Use your mouse to highlight a selection of

text or click on a word that uses gendered
language according to the schema in the table
on the next page.

• Using the keyboard shortcuts (see the table)
or your mouse, select the type of gendered
language you’ve identified. Please select the
most specific label possible (listed as i, ii, iii,
or iv)! Please only select Person-Name, Lin-
guistic or Contextual if you do not feel their
subcategories are suitable to the gendered lan-
guage you would like to annotate.

• If you select a subcategory of Contextual gen-
dered language, please write a brief note ex-
plaining what you’ve annotated as gendered
in the “Notes” section of the “New/Edit An-
notation” pop-up window.

• If you used your mouse to open the pop-up
window, press the Enter/Return key or the
“OK” button to make the annotation.

• You may make overlapping annotations,
meaning a single word or phrase may have
multiple gendered language annotations.

• Please annotate all instances of a particular
type of gendered language used for a specific
person or people in the text.

• Please note that the labels to annotate with as
defined below are intended to guide your inter-
pretation of the text through a contemporary
lens (not a historical lens).

The examples provided in the schema below are
highlighted according to the words, phrases or sen-
tences that should be highlighted or clicked in brat.
If in doubt about how much to annotate, please
annotate more words rather than less!

1. Person-Name: the name of a person includ-
ing any pre-nominal titles they have (i.e., Pro-
fessor, Mrs., Sir)

NOTE 1: Please annotate every instance of a
name in brat only (do not use a spreadsheet
anymore). This means that each person may
have multiple person-name labels annotating
the same form of their name or different forms
of their name.

NOTE 2: Use the pronouns and roles that
occur within the descriptive field in which
the name appears (either “Title,” “Scope
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and Contents,” “Biographical / Histori-
cal,” or “Processing Information”) to deter-
mine whether the annotation label should
be Woman, Man, Nonbinary, or Unknown.
Please do not use the occupation, name, or
other information that implies a gender to de-
termine the annotation label; only use explicit
terms such as gender-marking pronouns (him,
her, he, she, himself, herself, etc.) and gender-
marking roles (mother, father, daughter, wife,
husband, son, Mrs, Ms, Mr, etc.).

(a) Woman: the pronouns (i.e., she, her)
or roles (i.e., mother, wife, daughter,
grandmother, Mrs., Ms., Queen, Lady,
Baroness) or use of term nee [Last
Name] indicating a maiden name within
the descriptive field in which the name
appears (either “Title,” “Scope and Con-
tents,” “Biographical / Historical,” or
“Processing Information”) of the named
person suggest they are a woman
Example: Mrs. Jane Bennet went to
Huntsford.

(b) Men: the pronouns, roles, or titles of the
named person suggest they are a man
Example: Conrad Hal Waddington lived
in Edinburgh and he published scientific
papers.

(c) Non-binary: the pronouns or roles of
the named person within the descriptive
field in which this instance of the name
appears (either “Title,” “Scope and Con-
tents,” “Biographical / Historical,” or
“Processing Information”) suggest they
are non-binary
NOTE: a preliminary search of the text
returned no results for exclusively non-
binary pronouns such as Mx, so most
likely any non-binary person would be
indicated with “they”); if the gender of
a person is named and it’s not a woman
or man, please note this gender in the

“Notes” section of the annotation pop-up
window
Example: Francis McDonald went to the
University of Edinburgh where they stud-
ied law.

(d) Unknown: there are no pronouns or
roles for the named person within the
descriptive field in which this instance of
the name appears (either “Title,” “Scope

and Contents,” “Biographical / Histori-
cal,” or “Processing Information”) that
suggest their gender identity
Example: Jo McMahon visited Edin-
burgh in 1900.

2. Linguistic: gender marked in the way a sen-
tence references a person or people, assign-
ing them a specific gender that does not ac-
count for all genders possible for that person
or group of people (Keyboard shortcut: L)

(a) Generalization: use of a gender-specific
term to refer to a group of people (includ-
ing the job title of a person) that could
identify as more than the specified gen-
der (Keyboard shortcut: G)
Example 1: The chairman of the uni-
versity was born in 1980. Explanation:
Chair would be the gender-neutral form
of chairman
Example 2: Readers, scholars, and work-
men Explanation: readers and scholars
are gender-neutral, while workpeople
or workers would be the gender-neutral
form of workmen
Example 3: Housewife

(b) Gendered Pronoun: explicitly marking
the gender of a person or people through
the use of the pronouns he, him, his, her,
and she (Keyboard shortcut: P)
Example 1: She studied at the University
of Edinburgh. In 2000, she graduated
with a degree in History.
Example 2: This manuscript belonged
to Sir John Hope of Craighill. Sir John
Hope was a judge. He lived in Scotland.

(c) Gendered Role: use of a title or word de-
noting a person’s role that marks either a
masculine or feminine gender (Keyboard
shortcut: R)
Example 1: Sir Robert McDonald, son
of Sir James McDonald
Example 2: Mrs. Jane Do
Example 3: Sam is the sister of Charles
Example 4: Sir Robert McDonald, son
of Sir James McDonald

3. Contextual: gender bias that comes from
knowledge about the time and place in which
language is used, rather than from linguistic
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patterns alone (i.e., sentence structure, word
choice) (Keyboard shortcut: C)

(a) Occupation: occupations, whether or
not they explicitly communicate a gen-
der, should be annotated, as statistics
from external data sources can be used
to estimate the number of people of dif-
ferent genders who held such occupa-
tions; please label words as occupations
if they’d be a person’s job title and are
how the person would make money, but
not if the words are used as a title (Key-
board shortcut: J)
Example 1: minister
Example 2: Sergeant-Major-General

(b) Stereotype: language that communi-
cates an expectation of a person or group
of people’s behaviors or preferences that
does not reflect the reality of all possi-
ble behaviors/preferences that person or
group of people may have, or language
that focuses on a particular aspect of a
person that doesn’t represent that per-
son holistically; for example, women de-
scribed in relation to their family and
home, and men in relation to their ca-
reers and workplace; men more associ-
ated with science and women more asso-
ciated with liberal arts (Keyboard short-
cut: S)
NOTE: Please label whichever words,
phrases, or sentences you feel commu-
nicate the stereotype. Three different ex-
amples are shown below for how this
may look. Include names being turned
into ways of thought (e.g., Bouldingism,
Keynsian).
Example 1: The event was sports-themed
for all the fathers in attendance. Expla-
nation: The assumption here is that all
fathers and only fathers would enjoy a
sports-themed event. A neutral alterna-
tive sentence could read: The event was
sports-themed for all the former athletes
in attendance
Example 2: A programmer works from
his computer most of the day. Explana-
tion: The assumption here is that any
programmer must be a man, since the
indefinite article “A” is used with the
pronoun “his”

Example 3: A man with no doctorate
degree being known as Dr. Jazz Explana-
tion: Women often receive negative atten-
tion for using titles such as Dr (see the
WSJ op-ed on Dr Jill Biden for a recent
example) while men typically do not

(c) Omission: focusing on the presence, re-
sponsibility, or contribution of a single
gender in a situation in which more than
one gender has a presence, responsibility
or contribution; or defining a person’s
identity in terms of their relation to an-
other person (Keyboard shortcut: O)
NOTE: If initials are provided, consider
that enough of a name that it doesn’t
need to be labeled as an omission!
Example 1: Mrs. John Williams lived
in Edinburgh. Explanation: Mrs. John
Williams is, presumably, referred to by
her husband’s first and last name rather
than her given name
Example 2: Mr. Arthur Cane and Mrs.
Cane were married in 1850. Explanation:
Mrs. Cane is not referred to by her given
name
Example 3: Mrs. Elizabeth Smith and
her husband went to Scotland. Explana-
tion: The husband is not named, being
referred to only by his relationship to
Mrs. Elizabeth Smith
Example 4: His name was Edward Kerry,
son of Sir James Kerry. Explanation:
paternal relations only, no maternal re-
lations
Example 5: The novelist, Mrs. Oliphant,
wrote a letter. Explanation: Mrs.
Oliphant is referred to by the last name
she shares with her husband without in-
cluding her given name

(d) Empowering: use of gendered language
to challenge stereotypes or norms that
reclaims derogatory terms, empowering
a minoritized person or people; for exam-
ple, using the term queer in an empow-
ering rather than a derogatory manner
(Keyboard shortcut: E)
Example: “Queer” being used in a self-
affirming, positive manner to describe
oneself

Step 4: If you would like to change an annotation
you have made, double click the annotation label.
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If you would like to remove the annotation, click
the “Delete” button in the pop-up window. If you
would like to change the annotation, click the label
you would like to change to and then click the “OK”
button.
Step 5: Click the right arrow at the top left of the
screen to navigate to the next archival metadata de-
scription (if you would like to return to a previous
description, click the left arrow).
Step 6: If the screen does not advance when you
click the right arrow, you’ve reached the end of the
folder you’re currently in. To move onto the next
file, please hover over the blue bar at the top of
the screen and click the “Collection” button. Click
the first list item in the pop-up window “../” to exit
your current folder and then double click the next
folder in the list. Double click the first file in this
next folder to begin annotating its text.
Step 7: Repeat from step 1.
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Abstract

People frequently interact with information re-
trieval (IR) systems, however, IR models ex-
hibit biases and discrimination towards various
demographics. The in-processing fair ranking
methods provide a trade-offs between accuracy
and fairness through adding a fairness-related
regularization term in the loss function. How-
ever, there haven’t been intuitive objective func-
tions that depend on the click probability and
user engagement to directly optimize towards
this. In this work, we propose the In-Batch
Balancing Regularization (IBBR) to mitigate
the ranking disparity among subgroups. In
particular, we develop a differentiable normed
Pairwise Ranking Fairness (nPRF) and lever-
age the T-statistics on top of nPRF over sub-
groups as a regularization to improve fairness.
Empirical results with the BERT-based neu-
ral rankers on the MS MARCO Passage Re-
trieval dataset with the human-annotated non-
gendered queries benchmark (Rekabsaz and
Schedl, 2020) show that our IBBR method with
nPRF achieves significantly less bias with min-
imal degradation in ranking performance com-
pared with the baseline.

1 Introduction

Recent advancements in Natural Language Process-
ing and Information Retrieval (Palangi et al., 2016;
Devlin et al., 2019; Zhao et al., 2020; Karpukhin
et al., 2020) have led to great progress in search
performances. However, search engines easily ex-
pose various biases (e.g., (Biega et al., 2018; Baeza-
Yates, 2018; Rekabsaz and Schedl, 2020; Rekab-
saz et al., 2021)), which sabotage the trust of hu-
man beings from day to day. Many methods have
been proposed recently to reduce the bias of the re-
trievers. Existing fairness-aware ranking methods
can be categorized into pre-processing methods,
in-processing methods, and post-processing meth-
ods (Mehrabi et al., 2021; Zehlike et al., 2021).

∗Work done during an internship at AWS.
†Equal contribution.

Pre-processing methods typically focus on miti-
gating bias in data before training the model. La-
hoti et al. (2019) discussed the individual fairness
pre-processing method to learn the fair represen-
tation of data. However, the representation-based
method will undermine the value of the features de-
termined by domain experts (Zehlike et al., 2021).
The in-processing methods usually transform the
fairness in ranking task into an optimization prob-
lem consisting of an accuracy objective and a fair-
ness objective. These methods learn the best bal-
ance between these two objectives (Kamishima
et al., 2011; Berk et al., 2017; Bellamy et al., 2018;
Konstantinov and Lampert, 2021). Zehlike and
Castillo (2020) handles different types of bias with-
out knowing the exact bias form; Post-processing
algorithms (Singh and Joachims; Zehlike et al.,
2017, 2020; Cui et al., 2021) are model agnostic
without requiring access to the training process, but
these methods re-order the ranking at the expense
of accuracy (Menon and Williamson, 2018).

Among recent works on fair neural retrieval,
Beutel et al. (2019) introduce the pairwise ranking
fairness (PRF) metric for ranking predictions. This
pairwise fairness metric evaluates whether there is
a difference in accuracy between two groups. Rek-
absaz et al. (2021) (AdvBert) mitigates the bias
magnitude from the concatenation of query and
passage text rather than treating the bias magni-
tude from query and passage separately through an
adversarial neural network.

In this paper, we propose the In-Batch Balancing
Regularization (IBBR) method combined with the
neural retrieval model. IBBR is an in-processing
debiasing method that balances the ranking dispar-
ity among different demographic groups by adding
an in-batch balancing regularization term to the
objective function. We design two batch-level reg-
ularization terms, Pairwise Difference (PD) and
T-statistics (TS) that measure biases within demo-
graphic groups. In addition, we introduce normed
Pairwise Ranking Fairness (nPRF), a relaxed ver-
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Figure 1: An example of In-Batch Balancing Regular-
ization method. For each query, we calculate the typical
ranking loss and the fairness loss from IBBR on top K
retrieved passages. We jointly optimize the ranking loss
and the fairness loss. There are two ways of computing
the IBBR, pairwise difference loss and T-statistics Loss.

sion of the PRF (Beutel et al., 2019) that is dif-
ferentiable, thus could be directly optimized. We
apply IBBR to MS MARCO passage re-ranking
task (Nguyen et al., 2016) on gender bias using pre-
trained BERTL2 and BERTL4 models (Turc et al.,
2019). Empirical results show that our model could
achieve significantly less bias with minor ranking
performance degradation, striking a good balance
between accuracy and fairness. Our contributions
can be summarized as follows:

• We introduce IBBR, an in-processing debias-
ing method based on pairwise difference and
T-statistics.

• We introduce normed PRF, a relaxed version of
the pairwise ranking fairness (PRF) metric (Beu-
tel et al., 2019). The normed PRF solves the
non-differentiable issue and could be directly op-
timized during training.

• We perform experiments on the MS MARCO pas-
sage re-ranking task with IBBR and normed PRF.
Empirical results show that IBBR and normed
PRF could achieve a statistically significant im-
provement in fairness while maintaining good
ranking performance.

2 PROBLEM DEFINITION

We first introduce notations in the ranking task in
§2.1. §2.2 provides the definition of the bias of the

passage. In §2.3, we propose the definition of the
group fairness in the ranking task.

2.1 Notations in the Ranking Task

Formally, we define the task of Gender Debiased
Neural Retrieval (GDNR) as: given a query q and
top K passages retrieved by the neural retrieval
system, we adapt the ranking to mitigate bias in
the retrieval result. We first define the whole query
set as Q = {q1, q2, ..., qN}. For each query qi,
we denote Pi = {pi,1, pi,2, . . . , pi,j , . . . , pi,K} as
the corresponding retrieved passages’ set for query
qi. With query qi and corresponding retrieved pas-
sages Pi, si = {qi, p+i,1, p−i,2, . . . , p−i,K} is defined
as one data pair. Here p+i,1 is the ground truth pas-
sage (clicked passage) and p−i,j is the non-clicked
passage, ∀j ∈ {2, 3, ...,K}. We use Yi,j = 1 to
label the passage pj as a clicked passage, otherwise,
Yi,j = 0. Finally, the whole dataset is defined as
D = {s1, s2, ..., sN}. For notation simplicity, we
use [1 : K] to represent {1, 2, ...,K}.

2.2 Bias Label of Passage

We first provide the definition of the bias label of
one passage, and consider the gender bias as a run-
ning example. Rekabsaz and Schedl (2020) use the
degree of gender magnitude in the passage to define
the bias value, where the gender concept is defined
via using a set of highly representative gender defi-
nitional words. Such a gender definitional set usu-
ally contains words such as she, woman, grandma
for female definitional words (Gf ), and he, man,
grandpa for males definitional words (Gm).

The definition of the bias of the passage in our
method is different from (Rekabsaz and Schedl,
2020) who assume that one passage has two mag-
nitudes: female magnitude and male magnitude.
However, we assume that one passage has only one
implication or tendency and use the gender magni-
tude difference as the bias value. So the bias value
of the passage p, mag(p), defined as

mag(p) =
∑

w∈Gm

log |⟨w, p⟩| −
∑

w∈Gf

log |⟨w, p⟩|,

(1)
where |⟨w, p⟩| refers to the number of occurrences
of the word w in passage p, w ∈ Gm or Gf .
Furthermore, we define the bias label for the pas-
sage p as d(p), if mag(p) > 0, then d(p) = 1
(male-biased); if mag(p) < 0, then d(p) = −1
(female-biased); if mag(p) = 0, then d(p) = 0
(neutral). So for each retrieved passage pi,j , j ∈
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[1 : K], i ∈ [1 : N ], it has one corresponding bias
label d(pi,j) ∈ {−1, 0, 1}.

2.3 Group Fairness in Ranking

In §2.3.1, we introduce one metric of ranking group
fairness (pairwise ranking fairness) proposed by
(Beutel et al., 2019). In §2.3.2, we provide a more
refined definition of pairwise ranking fairness.

2.3.1 Pairwise Ranking Fairness

If R(p) ∈ [0, 1] is the ranking score of passage p
from one retrieval model , PRFm(si) measures the
probability level of a male-biased random passage
selected from the male group m higher than all
random female-biased passages of data pair si

PRFm(si) =
1

nm
1 (si)n0(si)

∑

j∈gm1 (si)∑

k∈g0(si)
1[R(pi,j) ≥ R(pi,k)],

(2)

where gm1 (si) = {j|d(pi,j) = 1, Yi,j = 1, j ∈
[1 : K]} represents passages clicked (Yi,j = 1) as
well as belonging to male biased group (d(pi,j) =
1). nm

1 (si) = |gm1 (si)| represents the number of
male-biased clicked passages. g0(si) = {j|Yi,j =
0, j ∈ [1 : K]} represents the group of non-clicked
passages. n0(si) represents the number of all non-
clicked samples in retrieved passages. Beutel et al.
(2019) use the probability that a clicked sample
is ranked above another non-clicked sample for
the sample query as the pairwise accuracy. The
pairwise fairness asks whether there is a difference
between two groups when considering the pairwise
accuracy as the fairness level metric.

However, we find that PRF is not directly appli-
cable as an argument in the regularizer of a loss
function that works as a trade-off of accuracy and
fairness. Because PRF is a 0-normed objective func-
tion, which is non-convex and non-differentiable.
So we propose a modified PRF that can be opti-
mized directly.

2.3.2 Normed-Pairwise Ranking Fairness

We propose a relaxed version of PRF called
normed-PRF (nPRF), which measures the degree
of group fairness in retrieval results for a given
query and considering the ranking performance as
well. The detailed definition of nPRFm is defined
over all clicked male-biased passages pi in a data

pair s is

nPRFm =

{
1

nm
1 (si)n0(si)

∑

j∈gm1 (si)

∑

k∈g0(si)
|R(pi,j)|21[R(pi,j) ≥ R(pi,k)]

} 1
2

,

(3)

where nm
1 (si) is the number of all clicked male-

biased passages in a data pair, usually nm
1 (si) = 1

in the ranking system.
In order to avoid the drawback of PRF be-

ing non-differentiable, we multiply the square
of the ranking score (|R(pi,j)|2) of the pas-
sage pj to the indicator function 1[R(pi,j) ≥
R(pi,k)], which is differentiable. Besides,

1
n0(si)

∑
j∈g0(si) |R(pi,j)|21[R(pi,j) ≥ R(pj,k)]

measures the average harm of the biased passage
pi,j . If this value is large, it means that on average,
these non-clicked passages are more relevant to the
clicked passage pi,j . This contributes more harm to
the society since people are more willing to accept
the ranking result. If this value is small, it means
that on average, these non-clicked passages are less
irrelevant to the click passage pi. This contributes
less harm to the society since people are less will-
ing to accept the ranking result. Thus, the nPRF
not only considers the magnitude of the ranking
performance of the retrieval results but also inherits
the explainable society impact into the PRF.

3 Algorithms

In this section, we create a regularizer based on
the nPRF to mitigate the gender bias. In §3.1, we
introduce necessary components for the neural re-
trieval task. In §3.2, we provide the definition of
the ranking loss and two fairness loss functions,
Pairwise Difference Loss and T-statistics Loss, act-
ing as a regularizer, named as in-batch balancing
regularization method (IBBR).

3.1 Rank Model
Given the data set D, we use the two-tower dense
passage retriever (DPR) model (Karpukhin et al.,
2020) as our retrieval model. DPR uses two dense
encoders EP , EQ which map the given text passage
and input query to two d-dimensional vectors (d =
128) and retrieves K of these vectors which are
close to the query vector. We define the ranking
score between the query and the passage using the
dot product of their vectors produced from DPR as
sim(qi, pi,j) = z⊤qizpi,j , where zqi = EQ(qi) and
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zpi,j = EP (pi,j) are the corresponding query and
passage dense embeddings.

Remarks. Here we use two-tower DPR for
two reasons. (I) Computational considerations.
Humeau et al. (2019) thoroughly discussed the
pros and cons between cross-encoders (Nogueira
and Cho, 2019) and bi-encoders such as DPR and
stated that cross-encoders are too slow for practical
use. (II) Using cross-encoders can cause ill-defined
problem such as, if the query’s bias label belongs
to groups m and the passage’s bias label belongs to
group f , the concatenation of these two texts’ bias
label is unclear, based on the definition provided
in Eq. (2) from (Rekabsaz et al., 2021). So the
two-tower BERT model is applied separately on
the query and document to tackle this ill-defined
problem. Here we only consider the DPR as our
ranking model.

Encoders. In our work, in order to demonstrate
the robustness of IBBR, we use two BERT models
(Turc et al., 2019), (1) tiny BERT (base, uncased);
(2) mini BERT (base, uncased) as our encoders,
and take the representation at the [CLS] token as
the output.

Inference. For the data pair si, the ranking score
R(pi,j) of passage pj for query qi is simply the
inner product of sim(qi, pi,j) produced by DPR
encoders.

3.2 Loss Functions

3.2.1 Ranking Loss
The ranking loss is the negative log-likelihood loss
by computing the inner product of query and pas-
sage embeddings to measure the ranking perfor-
mance for the data pair si,

LRank = − log
e(sim(qi,p

+
i,1))

e(sim(qi,p
+
i,1)) +

∑K
j=2 e

(sim(qi,p
−
i,j))

.

3.2.2 Fairness Loss
To mitigate the bias for two groups, we use the
ranking disparity as a measure to evaluate the fair-
ness level of the neural retrieval system. And this
ranking disparity works as a regularization in the
loss function. Here we propose two regularization
terms as follows.

(I) Pairwise Difference Loss. The pairwise dif-
ference (PD) loss LFair

P measures the average rank-
ing disparity between two groups m and f over a

batch size (B) of data pairs,

LFair
P =

1

nmnf

∑

c∈pm
[1:B]

∑

d∈pf
[1:B]

(nPRFm(sc)− nPRFm(sd))
2,

(4)

where Pm
[1:B] = {i|pi,j ∈ gm1 (si), i ∈ [1 : B], j ∈

[1 : K]} is the set that the clicked passage be-
longs to group m over batch size B data. P f

[1:B] =

{i|pi,j ∈ gf1 (si), i ∈ [1 : B], j ∈ [1 : K]} is
the set that the clicked passage belongs to group
f over batch size B data, and nm = |Pm

[1:B]| and

nf = |P f
[1:B]|.

Remarks. If there are many nPRFm(sx) which
are different from other nPRFf (sy), this means
that group m and group f have different fairness
level over this batch data and will introduce more
loss. However, this PD loss does not consider
distribution information over this batch data, and
imbalanced-data issue when group m and group
f samples are imbalanced. Thus we propose the
T-statistics loss to overcome this.

(II) T-statistics Loss. The design of T-statistics
(TS) loss is also based on the ranking disparity but
considers the second order information (variance
effect) of each group for each batch data. We use
the square of T-statistics as the ranking disparity
measure and defined as,

LFair
T =

{
(µ̂m − µ̂f )

2/
√

v̂arm/nm + v̂arf/nf

}2
,

where µ̂m = 1
nm

∑
j∈Pm

[1:B]
nPRFm(j) is the

mean of the male group’s nPRF, and v̂arm =
1
nm

∑
j∈Pm

[1:B]
(nPRFm(j) − µ̂m)2 is the variance

of the male group’s nPRF. Besides, µ̂f , v̂arf can be
defined similarly.

Remarks. This TS loss can provide a robust mea-
sure for the ranking disparity especially when the
batch data pair is imbalanced. The square of the
T-statistics, i.e., χ2 distribution, provides the theo-
retical guarantee and power to reject the similarity
between group m and group f .

Total Loss. The total loss will be the sum of
the ranking loss and fairness loss, represented as
Ltotal
[1:B] = Lrank

[1:B] + λLfair
[1:B], where Lfair can be the

PD loss or TS Loss. λ is a hyperparameter to con-
trol the balance of the fairness loss and ranking
loss. In the experiment, we try manually and auto-
matically to tune λfair. The details of our method
can be found in Figure 1.
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4 Experiments

In this section, we describe data resources in §4.1,
experiment setup in §4.2, evaluation metrics in Sec-
tion 4.3, baseline models in Section 4.4, and corre-
sponding result analysis in Section 4.5.

4.1 Dataset
We experimented on the passages re-ranking task
from MS MARCO (Nguyen et al., 2016). This col-
lection includes 8.8 million passages and 0.5 mil-
lion queries, comprised of question-style queries
from Bing’s search logs, accompanied by human-
annotated clicked/non-clicked passages. Addition-
ally, data bias labels over this dataset are available
from (Rekabsaz and Schedl, 2020).

Data For DPR. The whole dataset is composed
of total 537,585 queries and K ∗ 537, 585 retrieved
passages where K = 200, for the baseline DPR
model. Each query has top K passages including
one ground truth and 199 negative samples. The
details of splitting the dataset used for training,
development, and test (7:2:1) for the DPR model
can be found in Appendix A Table 3. There are
126 queries used for the final evaluation.

Data For Fair Model. The fairness dataset (Rek-
absaz and Schedl, 2020) is also created upon this
MS MARCO dataset. These queries were anno-
tated into one of four categories: non-gendered
(1765), female (742), male (1,202), other or mul-
tiple genders (41). Here we only use the non-
gendered queries, and assume the query is unbiased
given it does not have any gender definitional terms.
There are 1,252 unique queries in total. Examples
of non-gendered queries are: what is a synonym for
beautiful?, what is the meaning of resurrect?, etc.

4.2 Experiment Setup
The maximum length of query and passage are
set to 100. Batch size B is 150 optimized over
{100, 120, 150}. Learning rate is 3e−5 optimized
over {3e−6, 3e−5, 3e−4}. A warmup ratio of 10%
with linear scheduler and a weight decay of 0.01 are
set. In addition, we searched the fairness penalty
parameter λ = [0.1, 0.5, 1, 5, 10] (Best). We also
experimented setting the λfair as a trainable parame-
ter (Auto). All experiments are conducted ten times
and we reported the average.

4.3 Evaluation Metrics
Ranking metrics. We use Recall@10, MRR, and
NDCG@10 to evaluate the ranking performance.

Fairness metrics. We use RaB@5, RaB@10,
and ranking disparity |∆A-PRF| to evaluate the
fairness magnitude.

RaBt. RaBt is a measurement of ranking bias,
which is based on the average of the gender magni-
tude of passages at top t ranking list (Rekabsaz and
Schedl, 2020). To measure the retrieval bias, RaB
calculates the mean of the gender magnitudes of the
top t (5 or 10) retrieved documents for the data pair
si, for females, qRaBf

t (si) =
1
t

∑t
j=1magf (pi,j).

Using these values, the RaB metric of the query q,
RaBt(si) = qRaBm

t (si)−qRaBf
t (si), and the RaB

metric of the retrieval model over all the queries,
RaBt =

1
N

∑
si∈D RaBt(si). The smaller the ab-

solute value of RaBt, the less the ranking disparity
is.

|∆A-PRF|. |∆A-PRF| measures the ranking dis-
parity over two groups, which is the differ-
ence over two averaged PRF, |∆A-PRF| =
| 1
|Tm|

∑
i∈Tm

PRFi − 1
|Tf |

∑
i∈Tf

PRFi|, where Tm

is the dataset that the clicked passage belongs to
group m, Tm = {i|Yi,j = 1, di,j = 1, ∀i ∈ [1 :
N ]}. With the running example, we denote |Tm| as
the number of male-biased clicked pairs and sim-
ilar definitions are for Tf and |Tf |. The smaller
the |∆A-PRF| is, the smaller the ranking dispar-
ity is. If |∆A-PRF| is close to zero, it means that
the retrieved results are relatively fair since the two
groups’ PRF are close to each other. To avoid selec-
tion bias, |∆A-PRF| measures the whole dataset’s
fairness level rather than the subset’s result such as
top 5 and top 10.
4.4 Baseline Models
The baseline methods contain the classical IR mod-
els, BM25, and RM3 PRF, and neural based mod-
els: Match Pyramid (MP), Kernel-based Neural
Ranking Model (KNRM), Convolutional KNRM
(C-KNRM), Transformer-Kernel (TK), and the
fine-tuned BERT Model. These results are avail-
able in in Appendix Section A. For the BERT
rankers, we use BERT-Tiny (BERTL2) and BERT-
Mini (BERTL4).

4.5 Results Analysis
Ranking Performance. In Table 1, we present
the result of original BERTL2 and BERTL4 and
BERTL2 and BERTL4 with IBBR (PD and TS).
We found that in BERTL2 , after adding IBBR, the
ranking performance decreases 2.2% in Recall@10
and the bias level decreases 80% when applying
the TS. Overall, TS outperforms PD on average
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nPRF Ranking Metric Fairness Metric
IBBR λfair Recall@10 ↑ MRR ↑ NDCG ↑ |∆A-PRF| ↓ RaB@5 ↓ RaB@10 ↓

DPR BERT(L2)

0.357 0.164 0.196 0.005 0.091 0.079

PD Best 0.238 (-33.3%) 0.112 (-31.7%) 0.124 (-36.7%) 0.034 (+580%) 0.094 (+3.3%) 0.083 (+5.1%)
Auto 0.270 (-24.3%) 0.126 (-23.2%) 0.143 (-27.0%) 0.033 (+560%) 0.098 (+7.7%) 0.083 (+5.1%)

TS Best 0.349 (-2.2%) 0.170 (+3.6%) 0.198 (+1.0%) 0.001‡ (-80%) 0.091 (0%) 0.075‡ (-5.1%)
Auto 0.333 (-6.7%) 0.160 (-2.4%) 0.185 (-5.6%) 0.006 (+20%) 0.109 (+19.7%) 0.077 (-2.5%)

DPR BERT(L4)

0.429 0.205 0.243 0.043 0.016 0.011

PD Best 0.381 (-11.1%) 0.213 (+3.9%) 0.236 (-2.8%) 0.034‡ (-20.9%) 0.033 (+106%) 0.025 (+127%)
Auto 0.373 (13.1%) 0.214 (+4.4%) 0.234 (-3.7%) 0.030‡ (-30.2%) 0.033 (+106%) 0.021 (+90.9%)

TS Best 0.365 (-14.9%) 0.193 (-5.9%) 0.217 (-10.7%) 0.000‡ (-100%) 0.003‡ (-81.3%) 0.012 (+9.1%)
Auto 0.389 (-9.3%) 0.205 (0%) 0.234 (-3.7%) 0.022‡ (-48.8%) 0.004‡ (-75.0%) 0.017 (+54.5%)

Table 1: The ranking and fairness results of two IBBR methods, pairwise difference and T-statistics, combined with
nPRF in BERTL2

and BERTL4
models. We compare IBBR with baseline models DPR L2, L4 in the re-ranking

tasks and experimenting with different fairness hyperparameter λfair tuning methods. The bold value in each column
shows the best result in that metric. ↑ and ↓ indicate larger/smaller is better in corresponding definition of metrics. ‡

indicates statistically significant improvement (p-value< 0.05) over the DPR baseline in fairness metrics.

when considering the ranking metrics because it
downgrades the ranking metric less, which can be
found in the ranking metric columns. This phe-
nomenon exists both in hand-tuned or auto-tuned
hyperparameter λfair and BERTL2 and BERTL4 .

Fairness Performance |∆A-PRF|. BERTL2 +
TS can achieve 80% reduction in mitigating
|∆A-PRF| bias. The |∆A-PRF| fairness metric in
BERTL4+TS can achieve 100% reduction in mit-
igating bias compared with the original BERTL4 .
Besides, PD performs unsatisfied in the fairness
metric compared with TS in BERTL2 and BERTL4 ,
we found that the variance of nPRF and the im-
balance affects the performance of PD, which is
usually found in the training phase (#male-biased
> #female-biased). Overall nPRF + TS can achieve
the best performance in mitigating the |∆A-PRF|
ranking disparity, which achieves our goal in miti-
gating the ranking disparity.

Fairness Performance RaB. As for RaB, we
hope to use another fairness metric to demonstrate
our regularization’s robustness. We realize RaB is
focusing on the top-ranking result and |∆A-PRF| is
focusing on the overall ranking result by definition.
We present the RaB result in the last column. In the
last two columns, the TS method is still better than
the PD method on average. For RaB@5, the TS
method’s performance is similar to the PD method
in BERTL2 (3.3% vs 0%); The TS method’s per-
formance is better than the PD method in BERTL4

(106% vs -81.3%). For RaB@10, in BERTL2 , the
TS method is similar to the PD method (5.1% vs
-2.5%); In BERTL4 , the TS method is better than
the PD method (90.9% vs 9.1%). After evaluat-
ing the the fairness level on BERTL4 and BERTL2 ,
we found that the more complicated the model is,

the more bias it is, which is also demonstrated in
(Rekabsaz and Schedl, 2020). We find that the RaB
performance not consistent with the |∆A-PRF| is
mainly because |∆A-PRF| is focusing more on
the lower-ranked passages and RaB is focusing
the higher-ranked passages. This makes these two
fairness metrics are relatively exclusive. However,
when the ranking system performs well (rank the
clicked passage high), the |∆A-PRF| will finally
consider the overall ranking result.

5 Conclusion

In this paper, we present a novel in-processing in-
batch balancing regularization method to mitigate
ranking disparity and retain ranking performance.
We also overcome the non-differentiable and non-
convex properties of the 0-normed PRF and pro-
pose the nPRF. We conduct experiments on the MS
MARCO dataset and find that the nPRF with T-
statistics regularization method outperforms other
methods in terms of fairness metrics and ranking
metrics. In future work, we will consider general-
izing our method to multiple protected variables
such as age, income, etc, and also addressing bias
in the query by employing adversarial networks.

Bias Statement

In this paper, we study gender bias in the neural
retrieval system. If a ranking system allocates re-
sources or opportunities unfairly to specific gender
groups (e.g., less favorable to females), this creates
allocation harm by exhibiting more and more male-
dominated passages, which also forms a more bi-
ased dataset in turn. When such a ranking system is
used in reality, there is an additional risk of unequal
performance across genders. Our work is to explore
the bias level of the dense passage retrieval model
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with BERTL2 and BERTL4 on the MS MARCO
passage reranking task. Thus, the community can
use these benchmarks with a clearer understanding
of the bias level, and can work towards developing
a fairer model.
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In this section, we provide the baseline model per-
formance in Table 2. We also provide the training,
development, and test of the origin dataset and the
fairness dataset (with fairness label) in Table 3.
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Model Ranking Metric Fairness Metric
Recall@10 MRR NDCG D-PRF RaB@5 RaB@10

BM25 0.230 0.107 0.125 - - -
RM3 PRF 0.209 0.085 0.104 - - -

MP 0.295 0.141 0.191 - - -
KNRM 0.297 0.169 0.167 - - -

C-KNRM 0.325 0.170 0.197 - - -
TK 0.360 0.212 0.231 - - -

DPR(L2) 0.357† 0.164† 0.196† 0.005 0.091 0.079
DPR(L4) 0.429† 0.205† 0.243† -0.043 0.016 0.011

Table 2: IR Model and DPR, † indicates significant improvement over BM25.

Data Train Dev Test Total
DPR 510,586 26,873 126 537,585
Fairness1 876 250 126 1,252

Table 3: The number of training, development and testing examples for the DPR model and fairness model
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Abstract

Language model debiasing has emerged as an
important field of study in the NLP community.
Numerous debiasing techniques were proposed,
but bias ablation remains an unaddressed issue.
We demonstrate a novel framework for inspect-
ing bias in pre-trained transformer-based lan-
guage models via movement pruning. Given
a model and a debiasing objective, our frame-
work finds a subset of the model containing less
bias than the original model. We implement our
framework by pruning the model while fine-
tuning it on the debiasing objective. Optimized
are only the pruning scores — parameters cou-
pled with the model’s weights that act as gates.
We experiment with pruning attention heads, an
important building block of transformers: we
prune square blocks, as well as establish a new
way of pruning the entire heads. Lastly, we
demonstrate the usage of our framework using
gender bias, and based on our findings, we pro-
pose an improvement to an existing debiasing
method. Additionally, we re-discover a bias-
performance trade-off: the better the model
performs, the more bias it contains.

1 Introduction

Where in language models (LM) is bias stored?
Can a neural architecture itself impose a bias?
There is no consensus on this matter. Kaneko and
Bollegala (2021) suggest that gender bias resides
on every layer of transformer-based LMs. However,
this is somehow vague — transformer layers can be
further decomposed into building blocks, namely
attention heads, and these also can be further bro-
ken down into matrices. On the other hand, the
findings of Voita et al. (2019) show that some at-
tention heads within layers specialize in particular
tasks, such as syntactic and positional dependen-
cies. This gives us an intuition that some heads,
or their parts, may specialize in learning biases as
well. Being able to analyze bias in language mod-
els on a more granular level, would bring us a better

understanding of the models and the phenomenon
of bias. With knowledge of where the bias is stored,
we could design debiasing techniques that target
particular parts of the model, making the debiasing
more accurate and efficient.

We demonstrate a novel framework that utilizes
movement pruning (Sanh et al., 2020) to inspect
biases in language models. Movement pruning
was originally used to compress neural models and
make its inference faster. We introduce a modifica-
tion of movement pruning that enables us to choose
a low-bias subset of a given model, or equivalently,
find these model’s weights whose removal leads
to convergence of an arbitrary debiasing objective.
Specifically, we freeze neural weights of the model
and optimize only the so-called pruning scores that
are coupled with the weights and act as gates. This
way, we can inspect which building blocks of the
transformers, i.e. attention heads, might induce
bias. If a head is pruned and the debiasing objec-
tive converges, then we hypothesize that the head
must have contained bias. We demonstrate the util-
ity of our framework using Kaneko and Bollegala
(2021)’s method of removing gender bias.

Biases have been extensively studied and nu-
merous debiasing methods were proposed. In fact,
according to Stanczak and Augenstein (2021), the
ACL Anthology saw an exponential growth of bias-
related publications in the past decade – and it only
counts gender bias alone. Nonetheless, the vast
majority of these works address problems of bias
detection or mitigation only. To our best knowl-
edge, we are the first to conduct bias ablation in
LMs. We: (1) demonstrate an original framework
to inspect biases in LMs. Its novelty is a mixture of
movement pruning, weight freezing and debiasing;
(2) study the presence of gender bias in a BERT
model; (3) propose an improvement to an existing
debiasing method, and (4) release our code1.

1https://github.com/kainoj/
pruning-bias
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Block Layer Mode SEAT6 SEAT7 SEAT8 SS COLA SST2 MRPC STSB QQP MNLI QNLI RTE WNLI GLUE #P

32x32

all token 0.91 0.95 0.92 51.9 0.0 87.2 73.6 46.7 86.8 77.6 83.2 55.2 49.3 62.2 0
sentence 0.67 -0.40 -0.23 49.5 2.7 87.8 75.4 63.2 86.6 76.2 83.5 54.2 54.9 64.9 0

last token 1.39 0.57 0.18 52.6 15.5 90.1 75.8 82.2 86.8 79.5 85.6 57.0 42.3 68.3 0
sentence 0.85 0.64 0.67 51.9 9.0 89.1 75.1 77.4 87.1 79.3 86.1 56.7 39.4 66.6 0

64x64

all token 0.43 0.22 0.01 53.4 4.7 86.5 74.7 76.9 86.4 77.3 83.6 54.5 43.7 65.4 1
sentence 0.28 0.56 -0.06 49.3 5.9 86.6 73.9 79.1 86.0 77.2 83.0 54.5 47.9 66.0 1

last token 0.67 -0.31 -0.36 51.9 0.0 86.4 76.0 80.2 86.4 78.1 83.7 52.7 42.3 65.1 0
sentence 0.72 0.57 0.03 56.0 4.6 89.2 75.7 84.0 87.0 79.4 85.3 52.3 39.4 66.3 0

128x128

all token 0.84 0.47 0.17 50.9 3.3 87.2 74.2 69.9 86.4 77.7 83.8 53.1 50.7 65.1 6
sentence 0.55 0.17 0.22 54.2 6.6 85.4 75.0 79.3 85.7 76.9 83.0 56.0 42.3 65.6 8

last token 0.65 0.17 -0.13 49.1 0.3 85.6 76.8 44.3 86.3 76.7 82.9 52.3 56.3 62.4 2
sentence 0.10 0.35 -0.22 49.5 0.0 84.4 73.8 75.7 85.6 77.2 82.7 43.7 52.1 63.9 2

64× 768
(entire head)

all token 0.75 0.49 0.29 57.2 38.8 91.4 78.3 86.3 88.5 82.9 88.6 57.0 56.3 74.3 61
sentence 0.48 -0.17 0.02 56.0 26.9 90.6 79.2 86.5 88.4 83.4 88.9 57.4 40.8 71.3 66

last token 0.62 -0.17 -0.27 58.5 44.6 91.4 78.5 81.4 88.6 82.0 88.9 58.1 52.1 74.0 58
sentence 0.09 0.05 0.34 58.7 36.7 91.3 76.9 84.7 87.8 81.5 87.9 50.9 43.7 71.3 93

- original 1.04 0.22 0.63 62.8 58.6 92.8 87.2 88.5 89.4 85.1 91.5 64.3 56.3 79.3 -

Table 1: Bias in fine-pruned models for various block sizes, evaluated using SEAT and stereotype score (SS).
Ideally, bias-free model has a SEAT of 0 and SS of 50. GLUE evaluated using only these weights in a model that
were not pruned. #P indicates number of heads that were entirely pruned. Best fine-pruning results are in bold.

2 Background

2.1 Language Model Debiasing

Numerous paradigms for language model debiasing
were proposed, including feature extraction-based
(Pryzant et al., 2020), data augmentations (Zhao
et al., 2019; Lu et al., 2020; Dinan et al., 2020), or
paraphrasing (Ma et al., 2020). They all require
an extra endeavor, such as feature engineering, re-
training, or building an auxiliary model.

We choose an algorithm by Kaneko and Bolle-
gala (2021) for removing gendered stereotypical as-
sociations. It is competitive, as it can be applied to
many transformer-based models, and requires min-
imal data annotations. The algorithm enforces em-
beddings of predefined gendered words (e.g. man,
woman) to be orthogonal to their stereotyped equiv-
alents (e.g. doctor, nurse) via fine-tuning. The loss
function is a squared dot product of these embed-
ding plus a regularizer between the original and the
debiased model. The former encourages orthog-
onality and the latter helps to preserve syntactic
information.

The authors proposed six debiasing modes:
all-token, all-sentence, first-
token, first-sentence, last-token,
and last-sentence, depending on source
of the embeddings (first, last or all layers of a
transformer-based model) and target of the loss
(target token or all tokens in a sentence). In this
work, we omit the first-* modes, as they were
shown to have an insignificant debiasing effect.

2.2 Block Movement Pruning

Pruning is a general term used when disabling or
removing some weights from a neural network.
It can lead to a higher sparsity, making a model
faster and smaller while retaining its original per-
formance. Movement pruning, introduced by Sanh
et al., 2020 discards a weight when it moves to-
wards zero. Lagunas et al., 2021 proposed pruning
entire blocks of weights: with every weight ma-
trix W ∈ RM×N , a score matrix S ∈ RM/M′×N/N′

is associated, where (M ′, N ′) is a pruning block
size. On the forward pass, W is substituted with
its masked version, W ′ ∈ RM×N :

W ′ = W ⊙M(S)

Mi,j = 1

(
σ
(
S⌈i/M′⌉,⌈j/N′⌉

)
> τ

)
,

where ⊙ stands for element-wise product, σ is the
Sigmoid function, τ is a threshold and 1 denotes
the indicator function. On the backward pass, both
W and S are updated. To preserve the performance
of the original model, Lagunas et al. (2021) suggest
using a teacher model as in the model distillation
technique (Sanh et al., 2019).

We decided to utilize movement pruning because
of the mechanism of the scores S. The scores
can be optimized independently of weights, and
thus we can freeze the weights. This would be
impossible with e.g. magnitude pruning (Han et al.,
2015) which directly operates on weights values
(magnitudes).
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3 Exploring Gender Bias Using
Movement Pruning

We focus on gender bias defined as stereotypical
associations between male and female entities. Our
study is limited to the English language and binary
gender only.

We attempt to answer the following questions:
in transformer-based pre-trained language models,
can we identify particular layers or neighboring
regions that are in charge of biases? To verify this,
we propose a simple and, to our best knowledge,
novel framework based on debiasing and attention
head block movement pruning. Given a pre-trained
model and a fine-tuning objective, we find which
attention blocks can be disabled, so the model per-
forms well on the task. We prune the model while
fine-tuning it on a debiasing objective, such as the
one described in §2.1. We optimize solely the prun-
ing scores S and the weights W of the original
model remain untouched (they are frozen).

We target the building blocks of transformer-
based models, attention heads (Vaswani et al.,
2017). Each head consists of four learnable matri-
ces, and we prune all of them. In §3.1, we test two
strategies: pruning square blocks of the matrices
and pruning entire attention heads.

To evaluate bias, we utilize Sentence Encoder
Association Test (SEAT, May et al. (2019) and
StereoSet Stereotype Score (SS, Nadeem et al.
(2021) evaluated on the gender domain. To mea-
sure model performance, we utilize GLUE (Wang
et al., 2018), a standard NLP benchmark.

3.1 Experiments

In all experiments, we use the BERT-base model
(Devlin et al., 2019). See Appendix for used
datasets and detailed hyperparameters.

Square Block Pruning. Lagunas et al. (2021)
showed that square block pruning in attention head
matrices leads to the removal of whole attention
heads. Although our objective differs from theirs,
we attempt to reproduce this behavior. To find
the best square block size (B,B), we experiment
with B = 32, 64, 128. See Tab. 1. We also tried
with B = 256, 384, and 768, but we discarded
these values as we faced issues with convergence.
Choosing a suitable block size is a main limitation
of our work.

Attention Head Pruning. To remove entire at-
tention heads, we cannot prune all head matrices
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Figure 1: Per-layer densities of fine-pruned models
using different debiasing modes, for multiple square
block sizes. Density is computed as a percentage of
non-zero elements within a layer.
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Figure 2: Pruning entire heads: which heads remained
(blue) and which heads were pruned (gray)?

at once – see Appendix for a detailed explanation.
Instead, we prune 64×768 blocks (size of the atten-
tion head in the BERT-base) of the values matrices
solely. See the last row group of Tab. 1 for the
results.

3.2 Discussion

Square Block Pruning Does Not Remove Entire
Heads Lagunas et al., 2021 found that pruning
square block removes entire heads. However, we
failed to observe this phenomenon in the debiasing
setting–see last column of Tab 1. We are able to
prune at most 8 heads, only for relatively large
block sizes, 128 × 128. We hypothesize that the
reason is the weight freezing of the pre-trained
model. To verify this, we repeat the experiment
with 32× 32 block size, but we do not freeze the
weights. Bias did not change significantly, but no
attention heads were fully pruned (Tab. 2). This
suggests that bias may not be encoded in particular
heads, but rather is distributed over multiple heads.

Performance-Bias Trade-off We observe that
there is a negative correlation between model per-
formance and its bias (Fig. 3). Models that contain
no bias, i.e. with SS close to 50, perform poorly.
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SEAT6(∆) SEAT7(∆) SEAT8(∆) GLUE(∆) #P
all token 1.25 (+0.3) 0.54 (-0.4) 0.58 (-0.3) 74.0 (+12) 0

sent. 1.10 (+0.4) 0.48 (+0.1) 0.18 (+0.0) 71.5 (+7) 0
last token 1.31 (-0.1) 0.43 (-0.1) 0.45 (+0.3) 74.4 (+6) 0

sent. 1.24 (+0.4) 0.82 (+0.2) 0.72 (+0.0) 72.2 (+6) 0

Table 2: SEAT, GLUE, and number of fully pruned at-
tention heads (#P ) for the 32× 32 block pruning when
allowing the weight of the model to change. ∆ refers to
a relative change to results in Tab. 1, that is when the
original weights are frozen.

layer mode COLA SST2 MRPC STSB QQP MNLI QNLI RTE WNLI GLUE

all token 42.0 90.8 79.5 85.6 88.3 82.8 89.5 58.5 49.3 74.0
sentence 33.3 90.7 78.8 84.4 88.3 82.4 88.9 48.7 47.9 71.5

last token 41.3 91.1 80.5 85.7 88.5 82.8 89.3 58.5 52.1 74.4
sentence 40.2 90.6 80.7 85.2 88.5 81.9 88.2 49.8 45.1 72.2

Table 3: Breakdown of the GLUE scores when fine-
pruning BERT on the debiasing objective with block
size 32 × 32 and letting the model’s weights change
freely.
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Figure 3: Performance-bias trade-off for various models.
The better a model performs, the more bias it has.

The model with the best GLUE contains the most
bias. This phenomenon might be an inherent weak-
ness of the debiasing algorithm. To alleviate the
issue, it might be necessary to improve the algo-
rithm, work on a better one, or focus on debiasing
data. It would be also interesting to try optimizing
the debiasing and the downstream task objective
simultaneously. However, this is out of the scope
of our study and we leave it for future work.

The Failure of the CoLA GLUE Task Our mod-
els perform poorly on the Corpus of Linguistic
Acceptability task (CoLA, Warstadt et al. (2019)).
Most of them have scores close to zero, meaning
i.e they take a random, uninformed guess. The
reason might lay in the complexity of the task.
CoLA remains the most challenging task out of
the whole GLUE suite as it requires deep syntactic
and grammatical knowledge. It has been suggested

that language models do not excel at grammatical
reasoning (Sugawara et al., 2020), and it might
be that perturbations such as the absence of the
weights (pruning) break already weak grammatical
abilities. The results in Tab. 3 support this hypothe-
sis. Compared to the ‘frozen’ setting, CoLA scores
are significantly higher, whereas the other tasks see
just a slight increase (Tab. 3).

4 Debiasing Early Intermediate Layers Is
Competitive

Kaneko and Bollegala (2021) proposed three
heuristics: debiasing the first, last, and all layers.
However, the number of layer subsets that can be
debiased is much larger. Trying all subsets to find
the best one is prohibitively expensive. With our
framework, we are able to find a better subset with
a low computational cost.

We observed that: (1) square block pruning does
not significantly affect the first and last layer: den-
sities of these layers are usually higher than the
other layers’ (Fig. 1); (2) attention head pruning
mostly affects intermediate layers (Fig. 2). Based
on the above, we propose to debias intermediate
layers. Specifically, we take the embeddings from
layers index 1 to 4 inclusive, and we run the de-
biasing algorithm described in §2.1. We do not
include layer 0 because it generally yields high
densities (ref. Fig.1), and layer 5, as it contains
the most number of heads that were not pruned
in every experiment (ref. Fig. 2). We end up
with two more modes, intermediate-token
and intermediate-sentence. We present
results for our, as well as the other modes in Tab. 4
(note that the results may differ from Kaneko and
Bollegala (2021)’s due to random seed choice).
Debiasing the intermediate layers is competitive
to debiasing all and last layers. The SS of
the intermediate- modes is lower that the SS
of corresponding all and last modes. The SS
of intermediate-sentence gets close to the
perfect score of 50.

5 Conclusion

We demonstrate a novel framework to inspect
sources of biases in a pre-trained transformer-based
language model. Given a model and a debiasing
objective, the framework utilizes movement prun-
ing to find a subset that contains less bias than the
original model. We present usage of our frame-
work using gender bias, and we found that the
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Layer Mode SEAT6 SEAT7 SEAT8 SS GLUE
all token 1.02 0.22 0.63 61.5 78.7

sent. 0.98 -0.34 -0.29 56.9 75.2
last token 0.98 0.12 0.79 60.9 78.6

sent. 0.39 -0.89 -0.11 61.6 78.7
interm. token 1.03 0.33 0.84 58.5 77.7

sent. 0.83 0.49 0.92 53.5 74.7
original 1.04 0.18 0.81 62.8 79.3

Table 4: Debiasing-only results for various modes, in-
cluding our original intermediate mode (no prun-
ing involved).

bias is mostly encoded in intermediate layers of
BERT. Based on these findings, we propose two
new debiasing modes that reduce more bias than
existing modes. Bias is evaluated using SEAT
and Stereotype Score metric. Lastly, we explore
a performance-bias trade-off: the better the model
performs on a task, the more gender bias it has.

We hope that in the future our framework will
find more applications, not only limited to gender
bias.
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Appendix

Datasets
Sentence Encoder Association Test (SEAT,
May et al. (2019)) is based on Word Embedding

Association Test (WEAT, Caliskan et al. (2017)).
Given two sets of attributes and two sets of targets
words, WEAT measures differential cosine similar-
ity between their embeddings. The two attribute
sets can be male- and female-focused, where the tar-
gets can contain stereotypical associations, such as
science- and arts-related vocabulary. SEAT extends
the idea by embedding the vocabulary into sen-
tences and taking their embedding representation
([CLS] classification token in case of transformer-
based models). SEAT measures bias only in the
embedding space. That is, a model with a low
SEAT score may still expose bias, as understood
and perceived by humans. We employ SEAT6, -7,
and -8 provided by May et al. (2019).

StereoSet Stereotype Score (SS, Nadeem et al.
(2021)) measures bias among four dimensions: gen-
der, religion, occupation, and race. Technically,
StereoSet is a dataset where each entry from four
categories consists of a context and three options:
stereotype, anti-stereotype and unrelated. On the
top, StereoSet defines two tasks: intrasentence and
intersentence. The objective of the former is to
fill a gap with one of the options. The latter aims
to choose a sentence that best follows the context.
The SS score is a mean of scores on intra- and inter-
sentence tasks. Bias in StereoSet is measured as a
“percentage of examples in which a model prefers
a stereotypical association [option] over an anti-
stereotypical association” (Nadeem et al., 2021).
An ideal bias-free model would have the bias score
(stereotype score, SS) of 50. As opposed to SEAT,
StereoSet SS models bias close to its human per-
ception, as a preference of one thing over another.
We use the gender subset, as provided by Nadeem
et al. (2021).

General Language Understanding Evaluation
(GLUE, Wang et al. (2018)) is a popular bench-
mark to evaluate language model performance. It
is a suite of nine different tasks from domains such
as sentiment analysis, paraphrasing, natural lan-
guage inference, question answering, or sentence
similarity. The GLUE score is an average of scores
of all nine tasks. To evaluate GLUE, we make
use of the run_glue.py script shipped by the
Hugging Face library (Wolf et al., 2019).

Gender Debiasing The debiasing algorithm in-
troduced in §2.1 requires some vocabulary lists.
We follow Kaneko and Bollegala (2021)’s setup,
that is we use lists of female and male attributes
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provided by Zhao et al. (2018), and a list of stereo-
typed targets provided by Kaneko and Bollegala
(2019).

Hyperparameters and Implementation

For all experiments, we use the pre-trained
bert-base-uncased (Devlin et al., 2019)
model from the open-source Hugging Face Trans-
formers library (Wolf et al. (2019), ver. 4.12;
Apache 2.0 license). We use 16-bit floating-point
mixed-precision training (Micikevicius et al., 2018)
as it halves training time and does not impact test
performance. To disentangle engineering from re-
search, we use PyTorch Lightning framework (ver.
1.4.2; Apache 2.0 license). Model fine-pruning
takes around 3h on a single A100 GPU. All exper-
iments can be reproduced with a random seed set
to 42.

Usage of all libraries we used is consistent with
their intended use.

Debiasing We provide an original implementa-
tion of the debiasing algorithm. We use the same
set of hyperparameters as Kaneko and Bollegala
(2021), with an exception of a batch size of 128.
We run debiasing (with no pruning - see 4) for five
epochs.

Pruning As for the pruning, we follow Lagunas
et al. 2021’s sigmoid-threshold setting without the
teacher network. The threshold τ increases linearly
from 0 to 0.1 over all training steps. We fine-prune
the BERT model with the debiasing objective for
100 epochs using a patched nn_pruning2 API
(ver 0.1.2; Apache 2.0 license). See README.md
in the attached code for instructions.

On Attention Head Pruning

We cannot prune every matrix of the attention head
if we want to prune the entire head. To see why, let
us recap the self-attention mechanism popularized
by Vaswani et al. (2017).

Denote an input sequence as X ∈ RN×d, where
N is the sequence length and d is a hidden size.
The first step of the self-attention is to obtain three
matrices: Q,K, V ∈ RN×d: queries, keys, and
values: Q = XWQ,K = XWK , V = XW V ,
where WQ,WK ,W V ∈ Rd×d are learnable matri-

2https://github.com/huggingface/nn_
pruning/

ces. The self-attention is defined as follows:

SelfAtt(Q,K, V ) = softmax
(QKT

√
d

)
V.

Now, suppose that the queries WQ or keys WK

are pruned. Then the softmax would not cancel out
the attention, but it would yield a uniform distribu-
tion over values W V . Only by pruning values W V ,
we are able to make the attention output equal zero.

Bias Statement

We follow Kaneko and Bollegala (2021) and define
bias as stereotypical associations between male and
female entities in pre-trained contextualized word
representations. These representations when used
for downstream applications, if not debiased, can
further amplify gender inequalities (Komisyonu,
2020). In our work, we focus on identifying layers
of a language model that contribute to the biased
associations. We show that debiasing these layers
can significantly reduce bias as measured in the
embedding space (Sentence Encoder Association
Test, May et al. (2019)) and as perceived by humans,
that is, as a preference of one thing over another
(StereoSet Stereotype Score, May et al. (2019)). We
limit our work solely to binary gender bias in the
English language.
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Abstract

Despite growing concerns around gender bias
in NLP models used in algorithmic hiring, there
is little empirical work studying the extent and
nature of gendered language in resumes. Us-
ing a corpus of 709k resumes from IT firms,
we train a series of models to classify the gen-
der of the applicant, thereby measuring the
extent of gendered information encoded in re-
sumes. We also investigate whether it is pos-
sible to obfuscate gender from resumes by re-
moving gender identifiers, hobbies, gender sub-
space in embedding models, etc. We find that
there is a significant amount of gendered in-
formation in resumes even after obfuscation.
A simple Tf-Idf model can learn to classify
gender with AUROC=0.75, and more sophis-
ticated transformer-based models achieve AU-
ROC=0.8. We further find that gender predic-
tive values have low correlation with gender
direction of embeddings – meaning that, what
is predictive of gender is much more than what
is "gendered” in the masculine/feminine sense.
We discuss the algorithmic bias and fairness
implications of these findings in the hiring con-
text.

This paper has been accepted as a non-archival
publication.
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Abstract

Detecting and mitigating harmful biases in
modern language models are widely recognized
as crucial, open problems. In this paper, we
take a step back and investigate how language
models come to be biased in the first place. We
use a relatively small language model, using
the LSTM architecture trained on an English
Wikipedia corpus. With full access to the data
and to the model parameters as they change
during every step while training, we can map in
detail how the representation of gender devel-
ops, what patterns in the dataset drive this, and
how the model’s internal state relates to the bias
in a downstream task (semantic textual similar-
ity). We find that the representation of gender
is dynamic and identify different phases during
training. Furthermore, we show that gender in-
formation is represented increasingly locally in
the input embeddings of the model and that, as
a consequence, debiasing these can be effective
in reducing the downstream bias. Monitoring
the training dynamics, allows us to detect an
asymmetry in how the female and male gen-
der are represented in the input embeddings.
This is important, as it may cause naive miti-
gation strategies to introduce new undesirable
biases. We discuss the relevance of the findings
for mitigation strategies more generally and the
prospects of generalizing our methods to larger
language models, the Transformer architecture,
other languages and other undesirable biases.

This paper has been accepted as a non-archival
publication.
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Abstract

Researchers have devised numerous ways to
quantify social biases vested in pretrained lan-
guage models. As some language models
are capable of generating coherent comple-
tions given a set of textual prompts, several
prompting datasets have been proposed to mea-
sure biases between social groups—posing lan-
guage generation as a way of identifying bi-
ases. In this opinion paper, we analyze how
specific choices of prompt sets, metrics, au-
tomatic tools and sampling strategies affect
bias results. We find out that the practice of
measuring biases through text completion is
prone to yielding contradicting results under
different experiment settings. We additionally
provide recommendations for reporting biases
in open-ended language generation for a more
complete outlook of biases exhibited by a given
language model. Code to reproduce the results
is released under https://github.com/
feyzaakyurek/bias-textgen.

This paper has been accepted as a non-archival
publication.
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Abstract
Numerous works have analyzed biases in vi-
sion and pre-trained language models individ-
ually - however, less attention has been paid
to how these biases interact in multimodal set-
tings. This work extends text-based bias anal-
ysis methods to investigate multimodal lan-
guage models, and analyzes intra- and inter-
modality associations and biases learned by
these models. Specifically, we demonstrate
that VL-BERT (Su et al., 2020) exhibits gen-
der biases, often preferring to reinforce a
stereotype over faithfully describing the visual
scene. We demonstrate these findings on a
controlled case-study and extend them for a
larger set of stereotypically gendered entities.

1 Introduction

Pre-trained contextualized word representa-
tions (Peters et al., 2018; Devlin et al., 2019;
Radford et al., 2018; Lan et al., 2020; Raffel et al.,
2020) have been known to amplify unwanted (e.g.
stereotypical) correlations from their training
data (Zhao et al., 2019; Kurita et al., 2019;
Webster et al., 2020; Vig et al., 2020). By learning
these correlations from the data, models may
perpetuate harmful racial and gender stereotypes.

The success and generality of pre-trained Trans-
formers has led to several multimodal representa-
tion models (Su et al., 2020; Tan and Bansal, 2019;
Chen et al., 2019) which utilize visual-linguistic
pre-training. These models also condition on
the visual modality, and have shown strong per-
formance on downstream visual-linguistic tasks.
This additional input modality allows the model
to learn both intra- and inter-modality associa-
tions from the training data - and in turn, gives
rise to unexplored new sources of knowledge and
bias. For instance, we find (see Figure 1) the word
purse’s female association can override the visual
evidence. While there are entire bodies of work
surrounding bias in vision (Buolamwini and Ge-
bru, 2018) and language (Blodgett et al., 2020),

VL-BERT

the person is carrying a [MASK]

VL-BERT

the person is carrying a [MASK]

Figure 1: Visual-linguistic models (like VL-BERT) en-
code gender biases, which (as is the case above) may
lead the model to ignore the visual signal in favor of
gendered stereotypes.

there are relatively few works at the intersection
of the two. As we build models that include mul-
tiple input modalities, each containing their own
biases and artefacts, we must be cognizant about
how each of them are influencing model decisions.

In this work, we extend existing work for mea-
suring gender biases in text-only language mod-
els to the multimodal setting. Specifically, we
study how within- and cross-modality biases are
expressed for stereotypically gendered entities in
VL-BERT (Su et al., 2020), a popular visual-
linguistic transformer. Through a controlled case
study (§4), we find that visual-linguistic pre-
training leads to VL-BERT viewing the majority
of entities as “more masculine” than BERT (De-
vlin et al., 2019) does. Additionally, we observe
that model predictions rely heavily on the gender
of the agent in both the language and visual con-
texts. These findings are corroborated by an anal-
ysis over a larger set of gendered entities (§5).

2 Bias Statement

We define gender bias as undesirable variations in
how the model associates an entity with different
genders, particularly when they reinforce harm-
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To compute P (E|g) To compute P (E|gN )

Source X Visual Input Language Input Modified
Component New Value Association

Score S(E, g)

Visual-Linguistic
Pre-training ✗ The man is drinking beer Model Text-only LM ln PV L(E|g)

PL(E|g)

Language Context The man is drinking beer Language
Input man −→ person ln PV L(E|g,I)

PV L(E|p,I)

Visual Context The person is drinking beer Visual
Input ✗ ln

P̂V L(E|Ig)
PV L(E)

Table 1: Our methodology being used to compute association scores S(E, g) between beer (E) and man (g) in
each of the three bias sources. We show the inputs used to compute P (E|g), and the modifications made for the
normalizing term, P (E|gN ). The entity beer is [MASK]-ed before being passed into the model.

ful stereotypes.1 Relying on stereotypical cues
(learned from biased pre-training data) can cause
the model to override visual and linguistic evi-
dence when making predictions. This can result
in representational harms (Blodgett et al., 2020)
by perpetuating negative gender stereotypes - e.g.
men are not likely to hold purses (Figure 1), or
women are more likely to wear aprons than suits.
In this work, we seek to answer two questions: a)
to what extent does visual-linguistic pre-training
shift the model’s association of entities with differ-
ent genders? b) do gendered cues in the visual and
linguistic inputs 2 influence model predictions?

3 Methodology

3.1 Sources of Gender Bias

We identify three sources of learned bias when
visual-linguistic models are making masked word
predictions - visual-linguistic pre-training, the
visual context, and the language context. The
former refers to biases learned from image-text
pairs during pre-training, whereas the latter two
are biases expressed during inference.

3.2 Measuring Gender Bias

We measure associations between entities and
gender in visual-linguistic models using template-
based masked language modeling, inspired by
methodology from Kurita et al. (2019). We pro-
vide template captions involving the entity E as
language inputs to the model, and extract the prob-
ability of the [MASK]-ed entity. We denote ex-

1In this work, we use “male” and “female” to refer to his-
torical definitions of gender presentation. We welcome rec-
ommendations on how to generalize our analysis to a more
valid characterization of gender and expression.

2We note that this work studies biases expressed by mod-
els for English language inputs.

tracted probabilities as:

PL/V L(E|g) = P ([MASK] = E|g in input)

where g is a gendered agent in one of the in-
put modalities. L and V L are the text-only
BERT (Devlin et al., 2019) and VL-BERT (Su
et al., 2020) models respectively. Our method for
computing association scores is simply:

S(E, g) = ln
P (E|g)
P (E|gN )

where the probability terms vary depending on the
bias source we want to analyze. We generate the
normalizing term by replacing the gendered agent
g with a gender-neutral term gN . We summarize
how we vary our normalizing term and compute
association scores for each bias source in Table 1.

1. Visual-Linguistic Pre-Training (SPT ): We
compute the association shift due to VL pre-
training, by comparing the extracted proba-
bility PV L from VL-BERT with the text-only
BERT - thus PL is the normalizing term.

2. Language Context (SL): For an image I , we
replace the gendered agent g with the gender-
neutral term person (p) in the caption, and
compute the average association score over a
set of images IE which contain the entity E.

SL(E, g) = EI∼IE

[
SL(E, g|I)

]

3. Visual Context (SV ): We collect a set of im-
ages Ig which contain the entity E and gen-
dered agent g, and compute the average ex-
tracted probability by providing language in-
put with gender-neutral agent:

P̂V L(E|Ig) = EI∼Ig [PV L(E|I)]
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Template Caption Entities

The [AGENT] is carrying a E . purse briefcase
The [AGENT] is wearing a E . apron suit
The [AGENT] is drinking E . wine beer

Table 2: Template captions for each entity pair. The
[AGENT] is either man, woman, or person .

We normalize by comparing to the output
when no image is provided (PV L(E)).

For each bias source, we can compute the bias
score for that entity by taking the difference of its
female and male association scores:

B(E) = S(E, f)− S(E,m)

The sign of B(E) indicates the direction of gender
bias - positive for “female,” negative for “male.”

4 Case Study

In this section, we present a case study of our
methodology by examining how gender bias is ex-
pressed in each bias source for several entities.
The case study serves as an initial demonstration
of our methodology over a small set of gendered
entities, whose findings we expand upon in Sec-
tion 5.

4.1 Entities

We perform an in-depth analysis of three pairs of
entities, each representing a different type of en-
tity: clothes (apron, suit), bags (briefcase, purse),
and drinks (wine, beer). The entities are selected
to show how unequal gender associations perpetu-
ate undesirable gender stereotypes - e.g. aprons
are for women, while suits are for men (Ap-
pendix B).

For each entity, we collect a balanced set IE =
If ∪ Im of 12 images - 6 images each with men
(Im) and women (If ) (images in Appendix A).3

We also create a different template caption for
each entity pair (Table 2), which are used to com-
pute association scores S(E,m/f) when the gen-
dered agent g in the caption is man or woman.

In the following sections, we analyze how VL-
BERT exhibits gender bias for these entities, for
each of the bias sources identified in Section 3.1.

3Note, throughout our discussion we use the words man
and woman as input to the model to denote male and female
to the model. However, when images are included, we only
use images of self-identified (fe)male presenting individuals.

Figure 2: Pre-training association shift scores
SPT (E,m/f). Positive shift scores indicate that VL-
BERT has higher associations between the entity and
the agent’s gender than BERT, and vice versa

4.2 Visual-Linguistic Pre-Training Bias

Figure 2 plots each entity’s pre-training associ-
ation shift score, SPT (E,m/f), where positive
scores indicate that visual-linguistic pre-training
amplified the gender association, and vice versa.

Visual-linguistic pre-training affects all objects
differently. Some objects have increased associa-
tion scores for both genders (briefcase), while oth-
ers have decreased associations (suit and apron).
However, even when the associations shift in the
same direction for both genders, they rarely move
together - for briefcase, the association increase is
much larger for male, whereas for apron, wine and
beer, the association decrease is more pronounced
for female. For purse, the association shifts posi-
tively for male but negatively for female. For the
entities in the case study, we conclude that pre-
training shifts entities’ association towards men.

Figure 3: Language association scores SL(E,m/f).
Positive association scores indicate that the agent’s
gender increases the model’s confidence in the entity.
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Figure 4: Visual association scores SV (E,m/f). Posi-
tive association scores indicate that the model becomes
more confident in the presence of a visual context.

4.3 Language Context Bias

Figure 3 plots language association scores, which
look at the masked probability of E when the
agent in the caption is man/woman, compared to
the gender-neutral person.

For the entity purse, we see that when the agent
in the language context is female the model is
much more likely to predict that the masked word
is purse, but when the agent is male the proba-
bility becomes much lower. We similarly observe
that some of the entities show considerably higher
confidence when the agent is either male or female
(briefcase, apron, beer), indicating that the model
has a language gender bias for these entities. For
suit and wine, association scores with both genders
are similar.

4.4 Visual Context Bias

For each of our entities, we also plot the visual
association score SV (E, u) with male and female
in Figure 4. We again observe that the degree of
association varies depending on whether the image
contains a man or woman. For purse and apron,
the model becomes considerably more confident
in its belief of the correct entity when the agent is
female rather than male. Similarly, if the agent is
male, the model becomes more confident about the
entity in the case of briefcase and beer. For suit
and wine, the differences are not as pronounced. In
Table 3, we can see some examples of the model’s
probability outputs not aligning with the object in
the image. In both cases, the model’s gender bias
overrides the visual evidence (the entity).

Visual Context, I

PV L(purse|I) 0.0018 ✓ 0.084 ✗

PV L(briefcase|I) 0.4944 ✗ 0.067 ✓

Table 3: Examples of images where the probability out-
puts do not align with the visual information.

5 Comparing Model Bias with Human
Annotations of Stereotypes

To test if the trends in the case study match hu-
man intuitions, we curate a list of 40 entities,
which are considered to be stereotypically mas-
culine or feminine in society.4 We analyze how
the gendered-ness of these entities is mirrored in
their VL-BERT language bias scores. To evaluate
the effect of multimodal training on the underlying
language model, we remove the visual input when
extracting language model probabilities and com-
pare how the language bias varies between text-
only VL-BERT and the text-only BERT model.

For the language input, we create template cap-
tions similar to those described in Table 2. For ev-
ery entity E, we compute the language bias score
BL(E) by extracting probabilities from the visual-
linguistic model, PV L(E|f/m/p).

SL(E,m/f) = ln
PV L(E|m/f)

PV L(E|p)
BV LBert

L (E) = SL(E, f)− SL(E,m)

= ln
PV L(E|f)
PV L(E|m)

Positive values of BV L(E) correspond to a female
bias for the entity, while negative values corre-
spond to a male bias. We plot the bias scores in
Table 5a. We see that the language bias scores in
VL-BERT largely reflect the stereotypical genders
of these entities - indicating that the results of Sec-
tion 4.3 generalize to a larger group of entities.

We can also investigate the effect of visual-
linguistic pretraining by comparing these entities’
VL-BERT gender bias scores with their gender
bias scores under BERT. We compute the language
bias score for BERT, BBert

L (E), by using the text-
only language model probability PL(E|g) instead.

4We surveyed 10 people and retained 40/50 entities where
majority of surveyors agreed with a stereotyped label.
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(a) BV LBert
L for 40 entities which are stereotypically considered masculine or feminine. For the majority of entities, the direction

of the gender bias score aligns with the stereotypical gender label, indicating that VL-BERT reflects these gender stereotypes.

(b) BV LBert
L (E) − BBert

L (E) for the 40 gendered entities. The distribution of entities is skewed towards increased mascu-
line/decreased feminine association for VL-BERT, indicating VL pre-training shifts the association distribution for most entities
towards men. Note that VL-BERT still associates cat with women and cigar with men (see 5a), but less strongly than BERT.

Figure 5

We plot the difference between entities’ VL-BERT
and BERT bias scores in Table 5b. Similar to
trends observed in Section 4.2, we see that the ma-
jority of objects have increased masculine associ-
ation after pre-training (BV LBert

L < BBert
L ).

6 Related Work

Vision-and-Language Pre-Training Similar to
BERT (Devlin et al., 2019), vision-and-language
transformers (Su et al., 2020; Tan and Bansal,
2019; Chen et al., 2019) are trained with masked
language modeling and region modeling with mul-
tiple input modalities. These models yield state-
of-the-art results on many multimodal tasks: e.g.
VQA (Antol et al., 2015), Visual Dialog (Das
et al., 2017), and VCR (Zellers et al., 2019).

Bias Measurement in Language Models
Bolukbasi et al. (2016) and Caliskan et al.
(2017) showed that static word embeddings like
Word2Vec and GloVe encode biases about gender
roles. Biases negatively effect downstream tasks
(e.g. coreference (Zhao et al., 2018; Rudinger
et al., 2018)) and exist in large pretrained models
(Zhao et al., 2019; Kurita et al., 2019; Webster
et al., 2020). Our methodology is inspired by
Kurita et al. (2019), who utilized templates and
the Masked Language Modeling head of BERT
to show how different probabilities are extracted
for different genders. We extend their text-only
methodology to vision-and-language models.

Bias in Language + Vision Several papers have
investigated how dataset biases can override visual
evidence in model decisions. Zhao et al. (2017)
showed that multimodal models can amplify gen-
der biases in training data. In VQA, models make
decisions by exploiting language priors rather than
utilizing the visual context (Goyal et al., 2017; Ra-
makrishnan et al., 2018). Visual biases can also
affect language, where gendered artefacts in the
visual context influence generated captions (Hen-
dricks et al., 2018; Bhargava and Forsyth, 2019).

7 Future Work and Ethical
Considerations

This work extends the bias measuring methodol-
ogy of Kurita et al. (2019) to multimodal language
models. Our case study shows that these language
models are influenced by gender information from
both language and visual contexts - often ignoring
visual evidence in favor of stereotypes.

Gender is not binary, but this work performs
bias analysis for the terms “male” and “female”
– which are traditionally proxies for cis-male and
cis-female. In particular, when images are used
of male and female presenting individuals we use
images that self-identify as male and female. We
avoid guessing at gender presentation and note
that the biases studied here in this unrealistically
simplistic treatment of gender pose even more se-
rious concerns for gender non-conforming, non-
binary, and trans-sexual individuals. A critical
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next step is designing more inclusive probes, and
training (multi-modal) language models on more
inclusive data. We welcome criticism and guid-
ance on how to expand this research. Our im-
age based data suffers from a second, similar,
limitation on the dimension of race. All indi-
viduals self-identified as “white” or “black”, but
a larger scale inclusive data-collection should be
performed across cultural boundaries and skin-
tones with the self-identification and if appropri-
ate prompts can be constructed for LLMs.
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Entity Gender of Agent Images Used (Im/f )

Purse
Male

Female

Briefcase
Male

Female

Apron
Male

Female

Suit
Male

Female

Wine
Male

Female

Beer
Male

Female

Table 4: Images collected for case study in Section 4

A Images Collected for Case Study

In Table 4, we show the different images collected
for our Case Study in Section 4.

B Rationale Behind Selection of Case
Study Entities

For the purpose of the case study, we chose three
pairs of entities, each containing entities with op-
posite gender polarities (verified using the same
survey we used in Section 5). The entities were
chosen to demonstrate how unequal gender associ-
ations perpetuate undesirable gender stereotypes.

Apron vs Suit This pair was chosen to investi-
gate how clothing biases can reinforce stereotypes
about traditional gender roles. Aprons are asso-
ciated with cooking, which has long been consid-

ered a traditional job for women as homemakers.
Meanwhile, suits are associated with business, and
men are typically considered to be the breadwin-
ners for their family. However, in the 21st century,
as we make progress in breaking the breadmaker-
homemaker dichotomy, these gender roles do not
necessarily apply (Cunningham, 2008; Zuo and
Tang, 2000), and reinforcing them is harmful -
particularly to women, since they have struggled
(and continue to struggle) for their right to join
the workforce and not be confined by their gender
roles.

Purse vs Briefcase Bags present another class
of traditional gender norms that are frequently vi-
olated in this day and age. Purses are traditionally
associated with women, whereas briefcases (sim-
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ilar to suits above) are associated with business,
which we noted is customarily a male occupation.
If a model tends to associate purses with women,
in the presence of contrary visual evidence, it
could reinforce heteronormative gender associa-
tions. Similarly, associating briefcases with pri-
marily men undermines the efforts of women to
enter the workforce.

Wine vs Beer Alcoholic drinks also contain
gendered stereotypes that could be perpetuated by
visual-linguistic models. Beer is typically con-
sidered to be a masculine drink (Fugitt and Ham,
2018; Darwin, 2018), whereas wine is associated
with feminine traits (Landrine et al., 1988).
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Abstract
Although approximately 50% of medical
school graduates today are women, female
physicians tend to be underrepresented in se-
nior positions, make less money than their
male counterparts and receive fewer promo-
tions. There is a growing body of literature
demonstrating gender bias in various forms
of evaluation in medicine, but this work was
mainly conducted by looking for specific words
using fixed dictionaries such as LIWC and fo-
cused on recommendation letters. We use a
dataset of written and quantitative assessments
of medical student performance on individual
shifts of work, collected across multiple institu-
tions, to investigate the extent to which gender
bias exists in a day-to-day context for medi-
cal students. We investigate differences in the
narrative comments given to male and female
students by both male or female faculty asses-
sors, using a fine-tuned BERT model. This al-
lows us to examine whether groups are written
about in systematically different ways, without
relying on hand-crafted wordlists or topic mod-
els. We compare these results to results from
the traditional LIWC method and find that, al-
though we find no evidence of group-level gen-
der bias in this dataset, terms related to family
and children are used more in feedback given
to women.

1 Introduction

Female physicians and trainees have advanced con-
siderably in the medical field within recent years,
and approximately 50% of medical school gradu-
ates are now women (Lautenberger et al., 2014).
However, female physicians lag their male counter-
parts in salary, promotions, and positions in senior

leadership (Lautenberger et al., 2014; Carnes et al.,
2008; Ash et al., 2004; Bennet et al., 2019). A
mechanism that perpetuates this inequality may be
unequal evaluations of male and female physicians.
Past work has revealed gender bias in several forms
of evaluation. Evaluations of recommendation let-
ters in academia found that women tended to be
described in communal traits (caring, nurturing)
whereas men were described in agentic terms (am-
bitious and self-confident) (Madera et al., 2009).
The same trend holds in direct observation com-
ments given to Emergency Medicine (EM) resi-
dents, with feedback themes varying by gender,
particularly around the domains of authority and
assertiveness (AS et al., 2017). In the same context,
women were also found to receive more contradic-
tory and polarized assessments on their skills as
compared to men (AS et al., 2017).

If there are systemic differences in evaluations
for different genders, it may be possible that these
differences arise early in a student’s career and
snowball into fewer opportunities in late career,
when they are quantitatively detectable through
metrics such as salary and number of promotions.
It is important to understand at what phases of a
student’s career inequities arise, so that interven-
tions can be targeted toward supporting women or
other underrepresented minorities at these stages.
Focus groups of female physicians in the field find
different experiences at early, mid, and late career
stages, with older women experiencing more overt
discrimination, and younger women reporting more
implicit bias, though it is unknown if this is due
to decreased discrimination in recent years, or due
to younger physicians not yet recognizing signs of
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discrimination (Chesak et al., 2022).

Findings on gender differences in language are
mixed for students earlier in their careers. A quali-
tative analysis of surgical residency letters of rec-
ommendation, collected from before the students
applied for residency, found that male applicants’
letters contained more achievement-oriented terms,
whereas female applicants’ letters contained more
care-oriented terms (Turrentine et al., 2019). How-
ever, a similar analysis on the EM standardized
letter of evaluation found no such difference (S
et al., 2017).

To investigate this question more thoroughly, we
use a new dataset of written assessments on med-
ical students’ work based on individual shift per-
formance before their residencies. Most previous
work from the medical community has used rela-
tively simple linguistic methods such as the Lin-
guistic Inquiry and Word Count dictionary (LIWC)
(Pennebaker et al., 2015; Madera et al., 2009; S
et al., 2017; Schmader et al., 2007), but using pre-
trained language models may allow us to investi-
gate bias in a more fine-grained manner (Andrews
et al., 2021; Sarraf et al., 2021). Additionally, exist-
ing work on medical bias within the NLP commu-
nity mainly focuses on patients, rather than physi-
cians themselves (van Aken et al., 2021).

We fine-tune a pretrained BERT model and use
its predictions as a tool to try to identify group-level
prediction residuals. If such a difference exists on a
systematic level, it may indicate that assessors are
writing about students in different ways based on
their gender, given the same objective performance.
Caution should be taken when using similar meth-
ods as language models can also come imbued with
biases of their own, but we outline the method in
this work and highlight its use in comparing model
predictions and human judgments when both text
data and quantitative data are available.

Although we can replicate past work showing
a significant difference in social-communal terms
used to describe women, we do not find as clear
a relationship between comments written about a
student and the global score given on a shift. We
do not find a systemic difference between male and
female students when comparing group-wide resid-
ual differences. This indicates that although male
and female students may be written about differ-
ently, no gender is written about in a systemically
worse way. Due to privacy concerns, the dataset
is not available online, but the full dataset can be

obtained through emailing our medical co-author:
kmhiller@iu.edu.

2 Bias Statement

We study the relationship between text comments
and numeric ratings of performance given to male
and female medical students. We introduce the
method of comparing language model residual pre-
dictions to numeric data to find group-wide differ-
ences in language use. We fine-tune a language
model to predict the rating associated with a given
comment about a student, and ask if there is a
cross-group difference in the residual error that the
trained model makes. For instance, are female stu-
dents given less positive-sounding comments than
their male counterparts for the same level of clini-
cal skills (as measured by their numeric evaluation
scores)?

Feedback from supervisors is used to make de-
cisions on whether a student receives a residency,
or later on whether they get promoted to a higher
position within medicine. This has potential to ad-
dress allocational harms to women within medicine.
The under-representation of women in senior posi-
tions in medicine could also lead to wider harms in
inequity as a result.

There are shortcomings in presenting gender as
a binary, and in this dataset gender information was
not collected based on self-identification. We hope
that future work will explore a wider diversity of
gender identification, but we present this analysis
as a first step.

3 Dataset

The dataset consists of evaluations of undergradu-
ate medical students conducted with the National
Clinical Assessment Tool (NCAT-EM), the first
standardized assessment based on direct observa-
tion of skills in a clinical setting (of American Med-
ical Colleges, 2017; Jung et al., 2017). The NCAT-
EM was developed by EM educators, and has been
implemented at 13 institutions in the United States.
Data was collected from departments participat-
ing in the NCAT-EM Consortium from 2017-2019
(Jung et al., 2017).

The dataset contains short free text comments on
a student’s performance, categorical assessments
on multiple skill areas, a global competency score
(lower third, middle third, top third, and top 10%),
as well as demographic information about students
and assessors: gender, age, rank of assessor (junior
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vs senior faculty). These attributes are outlined
in Figure 1. Examples of free-text comments and
associated scores are given in Table 1.

Figure 1: Data and features included in the NCAT-EM
dataset.

Global Score Comment

0 always seemed happy to help but did not
reassess patients or follow up labs on
own. also, came off as arrogant to multi-
ple residents in the department.

1 good differential, interested, team player.

2 great job keeping up with your patients;
we had a very sick one and you made
sure you were on top of it.

3 i really enjoyed working with x, as x was
a very thorough historian, and provided a
brief focused history. x appears to have a
good grip of emergency medicine at this
point, and provides a good reasonable
plan. x is going to be an exceptional
resident, and will continue to improve
significantly over the next year.

Table 1: Examples of free text comments written
about students (after preprocessing), with the associ-
ated global competency score (on a scale from 0 to 3).

After excluding samples with missing data, there
were 3162 individual assessments, where 1767
were evaluations of male students and 1395 were
evaluations of female students. Because students
may work multiple shifts, and the same supervisor
may supervise multiple students, there are some
students and assessors who are repeated, although
each sample represents a different shift. Names and
named entities were removed from comments using
the spaCy entity recognizer and replaced with the
letter "x". Gendered pronouns were removed and
replaced with the gender-neutral pronoun "they".

This dataset consists mostly of short comments
focused on student performance. The mean number
of words in a comment was 28.4, and the maximum
number of words in a comment was 187. The over-
all distribution of assessment ratings was: 5% in
bottom third, 35% in middle third, 45% in top third,
and 15% in the top 10%. A slightly higher density
of female students received the top rating compared
to male students. We convert these to integer values
from 0-3.

We use two main methods to identify possible
biases in this dataset: prediction residual analy-
sis and word/topic based analysis. Previous work
has focused on word-level analysis, but since we
have access to both comments as well as a compe-
tency score, we investigate to what extent we can
reconstruct the mapping from text comment to the
score a student receives by applying a language
model, and if there are differences in this mapping
between male and female students. We used 70%
of the dataset to train, 15% to evaluate, and 15% as
the test set.

3.1 Language Model Prediction Residuals
In order to examine the relationship between text
comments and the global competency score, we
finetune bert-base-uncased with early stop-
ping on the free text comments with gender and
institution information removed, with a linear layer
trained to predict the global competency score 1.
We then examine the prediction residuals of the
finetuned model on a group level for group C:

δC = {yi − ŷi}|C|i=0 (1)

In the student-only setup the groups would be
the set of male students, M, and the set of female
students F . In the student and assessor setup, the
groups would be the different assessor and student
gender combinations, namely M×M, M×F ,
F ×M, and F × F . The null hypothesis is that
there should be no difference between these groups,
for instance δF and δM. If there is a significant dif-
ference, it indicates that there may be a difference
in the relationship between text and global score
between these groups. For instance, if the δFis are
significantly higher, this would indicate that scores
given to female students are significantly higher

1We used the Adam optimizer with a learning rate of 5e-6,
epsilon of 1e-8, and weight decay 1e-10, and a batch size
of 32. These parameters were taken from the default settings
of the transformers implementation of Adam at the time, with
a minimal hyperparameter search over learning rate.
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Figure 2: Panel A illustrates the LM residual method (for illustration purposes, the areas under the curve in this
drawing are not necessarily the same as they would be in reality). A language model is finetuned on text evaluations
without gender information to predict the global rating. Panel B illustrates a case with no differences in residuals
between the male and female group, illustrating the case without textual bias. Panel C illustrates a biased case.
In this hypothetical case, female students received a score that is consistently higher than the language in their
comments would suggest.

than expected given comments about them. Note
that ŷi is based on text from which explicit gender
markers were removed.

3.2 LIWC

In order to check if previous results using LIWC
replicated on this dataset, we examined many cate-
gories of words from LIWC 2.

Additionally, we used user-defined dictionaries
from previous studies of letters of recommenda-
tion: grindstone words (e.g. diligent, careful),
ability words (e.g. talented, intelligent), standout
adjectives (e.g. exceptional), research terms (e.g.

2Specifically, we examined these categories: Affect, Posi-
tive Emotion, Negative Emotion, Social, Cognitive Process-
ing, Insight, Achieve, Standout, Ability, Grindstone, Teaching,
Research, Communal, Social-Communal, and Agentic. The
associated words can be found in either the standard LIWC
dictionary or in these references: (Pennebaker et al., 2015;
Madera et al., 2009)

research, data), teaching terms (e.g. teach, com-
municate), social-communal terms, (e.g. families,
kids), and agentic terms (e.g. assertive, aggres-
sive) (Madera et al., 2009; Eagly and Johannesen-
Schmidt, 2001; Eagly and Karau, 2002; Eagly et al.,
2000; Wood and Eagly, 2002). The prevalence of
these categories was found to differ in past stud-
ies of recommendation letters. We used a coding
scheme of 0 if a theme did not show up in a com-
ment, and 1 if it did. We used a Fisher exact test
on comments written about male or female stu-
dents, with Holm-Bonferroni correction to control
for multiple comparisons.

4 Results

4.1 Residual Analysis

We present the results for the residual analysis first.
We note first that the language model achieved
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relatively low accuracy when its predictions were
rounded to the nearest integer (46%), but made
comparable predictions to humans (50.7% average
across three annotators, on a randomly-sampled
20% of the dataset. The annotator agreement was
moderate (Krippendorff’s α = 0.491). 3), This in-
dicates a noisy mapping between text and global
score in this dataset.

Results following the format of Figure 2 are
found in Figure 3, and visual inspection does not
reveal differences in residuals. A T-test comparing
male and female global scores in the entire dataset
confirmed that female students had a slightly higher
score (higher mean by 0.08, p < 0.004). However,
no significant difference was found between resid-
uals for male and female students (p = 0.517).
There were also no significant differences between
BERT predictions themselves for male and female
students (p = 0.152).

Figure 3: Residual densities for male and female stu-
dents by global score (0-3). BERT did not achieve a
high accuracy on this task, but there was no significant
difference in group-wise residuals, showing that male
and female students tended to receive comments of a
similar valence for their associated score.

When considering both assessor gender and stu-
dent gender, we performed an ANOVA test and
found that two groups had statistically significant
differences in means: when comparing male asses-

3Annotators were shown a text comment and assigned a
global rating from 0-3. They did not see the labels for that
portion of the dataset, but were allowed to look at labels for
the remaining 80% to guide their judgment. Additionally,
annotators were all familiar with the dataset and rubric for
global score.

sor, male student pairs with male assessor, female
student pairs, the male assessor, female student
pairs had marginally higher ratings (0.0893 dif-
ference, p = 0.0485)). When comparing male
assessor, male student pairs with female assessor,
female student pairs, female assessor and female
student pairs also had higher mean ratings (0.114
difference, p = 0.0411). These effects are more
marginal, but expected given the slightly higher
scores of female students.

When examining the residuals for the 4-way
split, there was one statistically significant differ-
ence, between male assessor, female student pairs
and female assessor, female student pairs. The
residual mean was 0.1195 higher in male assessor,
female student pairs, and this was significant to
a marginal degree (p = 0.0468). This indicates
that the actual score given by male assessors to
female students was higher than their comment
would suggest, as compared to female assessors
giving comments to female students. However, this
was a marginal effect, and overall we find no clear
evidence of gender bias in the comments given to
students, or the relationship of the comments given
to global score received.

4.2 LIWC

We examine LIWC themes by student gender and
partially replicate previous results showing that
women tend to be described with more social-
communal language than men (Madera et al., 2009).
We did not find any significant differences when
dividing by assessor gender. However, we did
not find that women were described as less agen-
tic in this dataset. A summary of the percent-
age of comments in which themes occurred is
summarized in Table 2. Only the difference in
the Social-communal theme is highly significant
(p < 6 × 10−16) after Holm-Bonferroni correc-
tion. This theme consists of family terms (families,
babies, kids), e.g. "great proactive attitude in ap-
proaching members of the team and interacting
with patients and their families". There is some
variation in these comments, as some concern bed-
side manners with patients and families, and some
comment on ability to work with children, which
may be necessary in a pediatric unit. We did not
see a significant difference in the communal theme
(which would describe a warm and nurturing stu-
dent), unlike in past work.
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Theme Example words % comments
with theme (M)

% comments
with theme (F)

odds ratio
(M/F)

p (corrected)

Affect amazing, arro-
gan*, apath*,
interest

93.1% 92.7% 1.11 1

Positive Emo-
tion

fantastic, im-
prove, brilliant

89.5% 89.4% 1.03 1

Negative Emo-
tion

angry, diffi-
culty, fail

42.67% 41.36% 1.06 1

Social advice, ask,
commun*

59.9% 57.9% 1.08 1

Cognitive Pro-
cessing

accura*,
inquir*, inter-
pret*

76.6% 75.0% 1.09 1

Insight deduc*, ex-
plain, reflect*

53.6% 52.2% 1.05 1

Achieve abilit*, ambi-
tion, leader*

67.1% 66.7% 1.02 1

Standout outstanding,
exceptional,
amazing

17.0% 20.6% 0.786 0.1309

Ability talen*, smart,
skill

18.4% 19.1% 0.960 1

Grindstone reliab*, hard-
working, thor-
ough

45.3% 46.2% 0.965 1

Teaching teach, mentor,
communicate*

21.1% 22.7% 0.914 1

Research research*, data,
study

9.96% 9.75% 1.02 1

Communal kind, agreeable,
caring

4.07% 4.87% 0.829 1

Social-
communal

families, ba-
bies, kids

8.26% 18.4% 0.401 5.88× 10−16*

Agentic (adjec-
tives)

assertive, confi-
dent, dominant

1.75% 1.72% 1.02 1

Agentic (Orien-
tation)

do, know, think 10.2% 7.67% 1.37 0.1789

Table 2: LIWC theme occurrence in comments given to male and female students. A higher percentage of comments
contained the social-communal theme for women than for men. p-values were corrected with the Holm-Bonferroni
correction.

5 Conclusion

Gender bias in medical education is a major barrier
to women in the field, and it is important to know
in what circumstances and career stages it occurs
in order to create targeted training and intervention.
Previous work has found that there may be poten-
tial bias in medical student recommendation letters,
but we investigate whether there is systemic bias
in an everyday setting in feedback given to male
and female medical students. We collect data us-
ing NCAT-EM evaluations to answer this question,

and use language model residuals to investigate the
relationship between free text comments and inte-
ger ratings given to students. We find no evidence
of bias using the residual definition, although we
find that there is a statistically significant differ-
ence in the percentage of comments that mention
social-communal themes, with women receiving
more mentions of family-oriented words in their
evaluations.

One limitation of this dataset is that the mapping
between text comment and global score is quite
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noisy, as neither a fine-tuned language model nor
human judges were able to achieve a high score
in classifying the text based on the global rating.
However, the prediction residual method can be
used in any dataset with both text data and out-
come data, for instance applications to educational
programs, or employee evaluations. One caveat is
that language models themselves can be biased, so
this method is best applied after sensitive attributes
have been obfuscated.

Additionally, this dataset is quite small and lim-
ited to a relatively small set of samples. It is possi-
ble that biases could be found in a larger dataset of
shift evaluations, or in data collected from a differ-
ent set of institutions. However, we leave such data
collection to future work, and hope that this encour-
ages the collection and analysis of similar data on
a wide scale. We hope that this work will inspire
further research into how bias manifests or does
not manifest at different stages of professionals’
careers, and how we can combine multiple sources
of information together with text to form a wider
view of bias and fairness.
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Abstract

Due to the complexity of bias and the opaque
nature of current neural approaches, there is a
rising interest in auditing language technolo-
gies. In this work, we contribute to such a line
of inquiry by exploring the emergence of gen-
der bias in Speech Translation (ST). As a new
perspective, rather than focusing on the final
systems only, we examine their evolution over
the course of training. In this way, we are able
to account for different variables related to the
learning dynamics of gender translation, and in-
vestigate when and how gender divides emerge
in ST. Accordingly, for three language pairs (en
–> es, fr, it) we compare how ST systems be-
have for masculine and feminine translation at
several levels of granularity. We find that mas-
culine and feminine curves are dissimilar, with
the feminine one being characterized by a more
erratic behaviour and late improvements over
the course of training. Also, depending on the
considered phenomena, their learning trends
can be either antiphase or parallel. Overall,
we show how such a progressive analysis can
inform on the reliability and time-wise acqui-
sition of gender, which is concealed by static
evaluations and standard metrics.

1 Bias Statement

Hereby, we study how Speech Translation (ST)
systems deal with the generation of masculine and
feminine forms for human referents. Despite the
impossibility of a perfect alignment between lin-
guistic and extra-linguistic gender reality (Acker-
man, 2019; Cao and Daumé III, 2020), these forms
affect the representation and perception of individ-
uals (Stahlberg et al., 2007; Corbett, 2013; Gygax
et al., 2019), and are actively used as a tool to ne-
gotiate the social, personal, and political reality
of gender (Hellinger and Motschenbacher, 2015).
Thus, we consider a model that systematically and
disproportionately favors masculine over feminine
forms as biased, since it fails to properly recognize

women. Following Crawford (2017), Blodgett et al.
(2020), and Savoldi et al. (2021), such behavior is
regarded as harmful because language technologies
misrepresent an already disadvantaged social group
by reducing feminine visibility and by offering un-
equal service quality.

Moreover, we consider another potential cause
of discrimination in end-to-end speech technology.
Namely, by translating directly from the audio in-
put it comes with the risk of relying on speakers’
vocal characteristics – including fundamental fre-
quency – to translate gender.1 By using biometric
features as gender cues, ST models may reduce gen-
der to stereotypical expectations about the sound of
masculine and feminine voices, thus perpetuating
biological essentialist frameworks (Zimman, 2020).
This is particularly harmful to transgender individ-
uals, as it can lead to misgendering (Stryker, 2008)
and a sense of invalidation.

Accordingly, we investigate the aforementioned
concerns by evaluating systems’ output throughout
their training process, aiming to shed light on the
dynamics through which gender bias emerges in
translation models. Note that, while our diagnostic
work focuses on the technical side of gender bias,
we recognize the paramount importance of critical
interdisciplinary work that foregrounds the context
of development and deployment of language tech-
nologies (Criado-Perez, 2019; D’Ignazio and Klein,
2020). Also, in Section 9, we discuss the limits of
working on binary language.

2 Introduction

Along with the massive deployment of language
technologies, concerns regarding their societal im-
pact have been raised (Hovy and Spruit, 2016; Ben-
der et al., 2021), and glaring evidence of biased
behavior has been reported by users themselves.
Translation technologies are no exception. On-

1As in the case of ambiguous first-person references, e.g.
en: I’m tired, es: estoy cansado/a.
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line interactions exhibited that commercial engines
reflect controversial gender roles (Olson, 2018),
and further evaluations on both Machine (MT) and
Speech translation (ST) systems confirmed that
models skew towards a masculine default (Cho
et al., 2019; Prates et al., 2020; Bentivogli et al.,
2020), except for stereotypical representations (e.g.,
nurse or pretty doctor as feminine) (Kocmi et al.,
2020; Costa-jussà et al., 2020).

The last few years have witnessed a growing ef-
fort towards developing preventive measures (Ben-
der and Friedman, 2018) and mitigating strategies
(Saunders and Byrne, 2020; Vanmassenhove et al.,
2018; Alhafni et al., 2020). Yet, the complex na-
ture of both neural approaches and bias calls for
focused inquiries into our ST and MT models. In
this regard, dedicated testing procedures have been
designed to pinpoint the impact of gender bias on
different categories of phenomena (Stanovsky et al.,
2019; Troles and Schmid, 2021; Savoldi et al.,
2022). Also, algorithmic choices underpinning
the construction of current models have been re-
evaluated in light of gender disparities (Renduch-
intala et al., 2021; Roberts et al., 2020). Despite
such promising advancements, many questions still
stand unanswered. When does this gender gap
emerge? How does gender bias relate to progress
in terms of generic performance? To what extent is
gender learning altered by the chosen components?
To the best of our knowledge, current studies have
adopted a static approach, which exclusively fo-
cuses on systems’ biased behaviors once their train-
ing is completed.

Rather than treating training as a black box,
in this paper we explore the evolution of gender
(in)capabilities across systems’ training process. In
the wake of prior work highlighting how differ-
ent target segmentations affect gender bias (Gaido
et al., 2021), we compare ST systems built with
two techniques: character and byte-pair encoding
(BPE) (Sennrich et al., 2016). For three language
pairs (en→ es,fr,it), we thus examine their gender
learning curves for feminine and masculine transla-
tion at several levels of granularity.

Overall, our contributions can be summarized as
follows: (1) We conduct the first study that explores
the dynamic emergence of gender bias in transla-
tion technologies; (2) By considering the trend and
stability of the gender evolution, we find that (i)
unlike overall translation quality, feminine gender
translation emerges more prominently in the late

training stages, and does not reach a plateau within
the iterations required for models to converge in
terms of generic performance. Such trend is how-
ever concealed by standard evaluation metrics, and
unaccounted when stopping the training of the sys-
tems. (ii) For easily gender-disambiguated phe-
nomena, masculine and feminine show a generally
parallel and upwards trend, with the exception of
nouns. Characterized by flat trends and a huge gen-
der divide, their learning dynamics suggests that
ST systems confidently rely on spurious cues and
generalize masculine from the very early stages of
training onwards.

3 Background

Gender bias. Gender bias has emerged as a ma-
jor area of NLP research (Sun et al., 2019; Stanczak
and Augenstein, 2021). A key path forward to
address the issue requires moving away from per-
formance as the only desideratum (Birhane et al.,
2021), and – quoting Basta and Costa-jussà (2021)
– interpreting and analyzing current data and algo-
rithms. Accordingly, existing datasets (Hitti et al.,
2019), language models (Vig et al., 2020; Silva
et al., 2021) and evaluation practices (Goldfarb-
Tarrant et al., 2021) have been increasingly put
under scrutiny.

Also for automatic translation, inspecting mod-
els’ inner workings (Bau et al., 2019) can help
disclosing potential issues or explaining viable
ways to alleviate the problem (Costa-jussà et al.,
2022). Concurrently, studies in both MT and ST
foregrounded how taken-for-granted algorithmic
choices such as speed-optimization practices (Ren-
duchintala et al., 2021), byte-pair encoding (Gaido
et al., 2021), or greedy decoding (Roberts et al.,
2020) – although they may grant higher efficiency
and performance – are actually disfavoring when it
comes to gender bias. Finally, fine-grained analy-
ses based on dedicated benchmarks have shown the
limits of generic procedures and metrics to detect
gender disparities (Vamvas and Sennrich, 2021;
Renduchintala and Williams, 2021).

Such contributions are fundamental to shed light
on gender bias, by providing guidance for inter-
ventions on data, procedures and algorithms. In
this work, we contribute to this line of research by
analysing direct ST systems (Bérard et al., 2016;
Weiss et al., 2017a). As an emerging technology
(Ansari et al., 2020; Bentivogli et al., 2021), we be-
lieve that prompt investigations have the potential
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to inform its future development, rather than keep-
ing concerns over gender bias as an afterthought.
In the wake of previous studies pointing out that
i) ST systems may exploit audio cues to translate
gender (Bentivogli et al., 2020), and ii) state-of-the-
art BPE segmentation comes with a higher gender
bias (Gaido et al., 2021), we conduct fine grained
analyses on these systems, but by means of a new
perspective: over the training process.

Training and learning process. Observing the
learning dynamics of NLP models is not a new
approach. It has been adopted for interpretability
analysis to probe when and how linguistic capabil-
ities emerge within language models (Saphra and
Lopez, 2018, 2019), or inspect which features may
be “harder” to learn (Swayamdipta et al., 2020).

With respect to analyses on a single snapshot,
a diachronic perspective has the advantage of ac-
counting for the evolution of NLP capabilities, mak-
ing them more transparent based on trends’ obser-
vation. Such an understanding can then be turned
into actionable improvements. Accordingly, Voita
et al. (2021) looked at the time-wise development
of different linguistic abilities in MT, so to inform
distillation practices and improve the performance
of their systems. Additionally, the studies by Voita
et al. (2019a,b) on the learning dynamics of extra-
sentential phenomena highlighted how stopping
criteria based on BLEU (Papineni et al., 2002) are
unreliable for context-aware MT. Finally, Stadler
et al. (2021) observed the evolution of different
linguistic phenomena in system’s output, noting
how some of them seem to actually worsen across
iterations.

Overall, as Stadler et al. (2021) noted, not much
effort has been put into investigating how the train-
ing process evolves with regards to measurable fac-
tors of translation quality, such as linguistic criteria
(grammar, syntax, semantics). We aim to fill this
gap by evaluating gender translation of different
ST systems at all training checkpoints.

4 Experimental Setting

4.1 Speech translation models

For our experiments, we rely on direct ST models
built with two different target segmentation tech-
niques: byte-pair encoding (BPE)2 (Sennrich et al.,
2016) and characters (CHAR). Since we are inter-
ested in keeping the effect of different word seg-

2Using SentencePiece (Kudo and Richardson, 2018).

mentations as the only variable, all our systems
are built in the same fashion, with the same Trans-
former core technology (Vaswani et al., 2017) and
within a controlled environment favouring progress
analyses as transparent as possible. For this rea-
son, we avoid additional procedures for boosting
performance that could introduce noise, such as
joint ST-ASR trainings (Weiss et al., 2017b; Bahar
et al., 2019a) or knowledge distillation from MT
models (Liu et al., 2019; Gaido et al., 2020a). Thus,
our models are only trained on MuST-C (Cattoni
et al., 2021), which currently represents the largest
multilingual corpus available for ST. For the sake
of reproducibility, details on the architecture and
settings are provided in Appendix B.

Training procedure. As per standard procedure,
the encoder of our ST systems is initialized with the
weights of an automatic speech recognition (ASR)
model (Bahar et al., 2019a) trained on MuST-C
audio-transcript pairs. In our ST training, we use
the MuST-C gender-balanced validation set (Gaido
et al., 2020b)3 to avoid rewarding systems’ biased
predictions. Each mini-batch consists of 8 samples,
we set the update frequency to 8, train on 4 GPUs,
so that a batch contains 256 samples. Within each
iteration over the whole training set (i.e. epoch), we
record 538 updates for en-es, 555 for en-fr, and 512
for en-it. Given the comparable number of updates
across languages, as a point of reference we save
the epoch checkpoint (herein ckp) that corresponds
to a full pass on the whole training set.

All models reach their best ckp within 42 epochs,
with a tendency of BPE to converge faster than
CHAR. Specifically, they respectively stop improv-
ing after 33/42 epochs (en-es), 25/29 epochs (en-fr),
and 29/32 epochs (en-it). As a stopping criterion,
we finish our trainings when the loss on the valida-
tion set does not improve for 5 consecutive epochs.
To inspect the stability of the best model results,
our analysis also includes these additional 5 ckps.

4.2 Evaluation

Test set and metrics. To study the evolution of
gender translation over the course of training and
how it relates to generic perfomance, we employ
the gender-sensitive MuST-SHE benchmark (Ben-
tivogli et al., 2020) and its annotated extension

3It consists of an equal number of TED talks data from mas-
culine and feminine speakers: https://ict.fbk.eu/
must-c-gender-dev-set/.
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(Savoldi et al., 2022).4 Consisting of instances of
spoken language extracted from TED talks, MuST-
SHE allows for the evaluation of gender translation
phenomena5 under natural conditions and for sev-
eral informative dimensions:

· GENDER, which allows to distinguish results for
Feminine (F) and Masculine (M) forms, thus re-
vealing a potential gender gap.

· CATEGORY, which differentiates between: CAT1
first-person references to be translated according to
the speakers’ linguistic expression of gender (e.g.
en: I am a teacher, es: soy un profesor vs. soy
una profesora); and CAT2 references that shall be
translated in concordance with other gender infor-
mation in the sentence (e.g. en: she is a teacher, es:
es una profesora). These categories separate un-
ambiguous from ambiguous cases, where ST may
leverage speech information as an unwanted cue to
translate gender.

· CLASS & POS, which allow to identify if gen-
dered lexical items belonging to different parts-of-
speech (POS) are equally impacted by bias. POS
can be grouped into open class (verb, noun, de-
scriptive adjective) and closed class words (article,
pronoun, limiting adjective).

In MuST-SHE reference translations, each
target gender-marked word is annotated with
the above information.6Also, for each annotated
gender-marked word, a corresponding wrong form,
swapped in the opposite gender, is provided
(e.g. en: the girl left; it: la<il> ragazza è an-
data<andato> via). This feature enables pin-
pointed evaluations on gender realization by first
computing7 i) Coverage, i.e. the proportion of an-
notated words that are generated by the system (dis-
regarding their gender), and on which gender real-
ization is hence measurable, e.g. amigo (friend-M)
→ amig*; and then ii) Accuracy, i.e. the proportion
of words generated in the correct gender among
the measurable ones, e.g. amigo (friend-M) →
amigo. Hence, accuracy properly measures model
tendency to (over)generalize masculine forms over
feminine ones: scores below 50% can signal a
strong bias, where the wrong form is picked by
the systems more often than the correct one.

4Available at: https://ict.fbk.eu/must-she/
5Namely, the translation of a source neutral English word

into a gender-marked one in the target languages, e.g. en: this
girl is a good friend, es: esta chica es una buena amiga.

6Annotation statistics are provided in Appendix A.
7We rely on the evaluation script provided with the MuST-

SHE extension.

In our study, we rely on the above metrics to in-
spect gender translations, and employ SacreBLEU
(Post, 2018)8 to measure overall translation quality.

Setup. Since we aim to observe the learning
curves of our ST models, we evaluate both overall
and gender translation quality after each epoch of
their training process. As explained in Sec. 4.1,
training includes also the 5 epochs that follow the
best system ckp. To investigate systems’ behaviour,
we are particularly interested in the two following
aspects of the learning curves: i) training trend
(is gender accuracy raising across epochs, does it
reach a plateau or can it actually worsen across iter-
ations?); ii) training stability (is gender learning
steady or erratic across epochs?)

Depending on the aspect addressed, we present
results with different visualizations, reporting ei-
ther the actual scores obtained at each ckp (more
suitable to detect small fluctuations) or aggregated
scores calculated with moving average over 3 ckp
(more suitable to highlight general trends). Note
that, since the total number of epochs differs for
each system, to allow for a proper comparison we
also plot results at different percentages of the train-
ing progress, where each progress point represents
a 5% advancement (i.e 5%, 10%, 15% etc.).

With this in mind, we proceed in our analy-
ses comparing overall performance across metrics
(Sec.5.1), and inspecting feminine and gender trans-
lation (Sec. 5.2) at several levels of granularity (Sec
5.3 and 5.4). For any addressed aspect, we compare
CHAR and BPE models across language pairs.

5 Results and Discussion

BLEU All-Cov All-Acc F-Acc M-Acc
en-es BPE 27.4 64.0 66.0 49.0 80.7

CHAR 27.2 64.0 70.5 58.9 80.5
en-fr BPE 24.0 53.7 65.4 51.7 77.2

CHAR 23.5 53.1 69.7 64.0 74.9
en-it BPE 20.4 48.7 65.6 49.9 79.0

CHAR 19.1 51.2 71.2 52.9 86.7

Table 1: BLEU, coverage and accuracy (percentage)
scores computed on MuST-SHE.

First of all, in Table 1 we provide a snapshot
of the results obtained by our ST models on their
best ckp. As expected, the accuracy scores clearly
exhibit a strong bias favouring masculine forms in
translation (M-acc>F-acc), with feminine forms be-
ing generated with a probability close to a random
guess for most systems. Moreover, these results

8BLEU+c.mixed+.1+s.exp+tok.13a+v.1.4.3.
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(a) BLEU (b) Coverage (c) Accuracy

Figure 1: Results for every ckp of each model: BLEU (a), gender Coverage (b), and gender Accuracy (c).

are in line with the analyses by Gaido et al. (2021)
and Savoldi et al. (2022) showing that CHAR has
an edge in gender translation (All-Acc),9 which
is largely ascribed to better treatment of feminine
gender.10 Thus, we confirm a previously verified
behaviour, which we now further inquiry in terms
of its dynamic evolution.

5.1 Overall results

Here, we start by looking at the evolution of mod-
els’ performance assessed in terms of BLEU, cov-
erage, and accuracy (Figure 1) to inspect the time
of emergence of the different capabilities captured
by such metrics. For a bird’s-eye view, we present
the actual scores per each ckp.

The evolution of both overall translation perfor-
mance and gender translation is positive, but
dissimilar in time and quality. By looking at
Figure 1, we observe that the gender accuracy
learning curve (1c) immediately stands out. In-
deed, the curves for both BLEU (1a) and gender
coverage (1b) have a rapid and steady initial in-
crease,11 which starts to level off around the 20th
ckp.12 Also, the BLEU trends reveal a divide across
models (BPE>CHAR) that remains visible over the

9Contemporary to our submission, Libovickỳ et al. (2021)
show that en-de MT systems based on character-level segmen-
tation have an edge – with respect to BPE – in terms of gender
accuracy on the WinoMT benchmark (Stanovsky et al., 2019).
Their results, however, do not distinguish between feminine
and masculine translation capabilities.

10For the sake of our analysis across epochs, we do not
generate our final systems by averaging the 5 models around
the best ckp as in Gaido et al. (2021) and Savoldi et al. (2022).
For this reason, our systems compare less favourably in terms
of BLEU score, also reducing the perfomance gap bewteen de
facto standard BPE and CHAR.

11Computed as a binary task, gender accuracy starts at ∼50-
55% in the first ckp. Such scores reflect that correct gender is
assigned randomly at the beginning of the training process.

12The plateau is particularly visible for en-es CHAR due to
its longer training.

whole course of training. In terms of coverage,
the boundaries between types of models are more
blurred, but correlate with BLEU scores for all
language pairs. Conversely, by looking at the gen-
der accuracy curves (1c) we asses that, while the
overall trends show a general improvement across
epochs, gender learning i) proceeds with notable
fluctuations, unlike the smoother BLEU and cov-
erage curves; ii) emerges especially in the final
iterations. In particular, it is interesting to note that
by epoch 30 (roughly 80% of the training process),
all CHAR models handle gender translation better
than all the BPE ones, regardless of the lower over-
all quality of the former group. Notably, the en-it
CHAR system - with the lowest BLEU – exhibits
the steepest increase in gender capabilities.

Takeaways. Generic translation quality improves
more prominently in the initial training stages,
while gender is learnt later. Thus, standard qual-
ity metrics conceal and are inadequate to consider
gender refinements in the learning process.

5.2 Masculine and feminine gender

Moving onto a deeper level of analysis, we com-
pare the learning dynamics that undergo Feminine
(F) and Masculine (M) gender in terms of accu-
racy. To give better visibility of their trends and
comparisons across models, in Figure 2 we plot
the averaged results. As complementary view into
training stability, Figure 3 shows the actual accu-
racy scores for the en-it models.13

Masculine forms are largely and consistently ac-
quired since the very first iterations. As shown in
Figure 2, masculine gender (M) is basically already
learnt at 15% of the training process. Henceforth,
its accuracy remains high and stable within 70-80%

13Due to space constraints, plots for all language pairs are
in Appendix C - Fig. 7, which shows consistent results.
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(a) en-es (b) en-fr (c) en-it

Figure 2: (F)eminine vs M(asculine) and over(all) accuracy scores for CHAR and BPE in en-es (2a), en-fr (2b), and
en-it (2c). For better comparability across systems and trend visibility, results are shown at different percentages of
the training progress (increasing by 5%), and scores at each progress point are calculated with moving average over
3 ckp. The first ckp (0%) is the actual score of the first epoch. The vertical line indicates the average score for the
best ckp.

Figure 3: All, F vs Masculine gender accuracy for en-it
BPE (left) and CHAR (right) models. Actual scores are
reported per each ckp, and black dots indicate best ckp.

average scores for all models. As an exception, we
notice a slightly decreasing trend in the iterations
that follow the best ckp for en-fr BPE (2b). Instead,
feminine translation exhibits an overall upward
trend that emerges later in the training process.
In Table 1, we already attested CHAR’s advantage
in dealing with feminine translation. Here, we are
able to verify how such a capability is developed
over the whole course of training. Specifically,
CHAR gains a clear advantage over BPE in the last
training phases, in particular for en-es (2a) and en-
it (2c). Moreover, the overall rising F trend for
CHAR models does not seem to dwindle: even after
systems have reached their best ckp, feminine trans-
lation shows potential for further improvement.

Unlike CHAR systems, BPE disproportionately
favours masculine forms since the first ckp. In
the first ckp of the training, we notice an interest-
ing difference between BPE and CHAR. Namely,
the former models are biased since the very be-
ginning of their training with an evident gender

divide: ∼65% accuracy for M and only ∼40% for
F forms.14 Conversely, accuracy scores for both F
and M forms in CHAR systems present about the
same accuracy: both around 50% for en-it and en-
fr, whereas the en-es model notably presents lower
scores on the M set. From such behaviours, we
infer that CHAR systems i) are initially less prone
towards masculine generalisation, which is instead
a by-product of further training; ii) promptly ac-
quire the ability to generate both M and F inflec-
tions, although they initially assign them randomly.
As we further discuss in Sec. 6, they occasionally
acquire target morphology even before its lexicon,
thus generating English source words inflected as
per the morphological rules of the target language,
e.g. en: sister; es: sistera (hermana). We regard
this finding as evidence of the already attested ca-
pabilities of character-level segmentation to better
handle morphology (Belinkov et al., 2020), which
by extension may explain the higher capability of
CHAR models at generating feminine forms.

Despite a common upward trend, F and M gen-
der curves progress with antiphase fluctuations.
In Figure 3, we see how this applies to CHAR in
particular. Far from being monotonic, the progress
of gender translation underlies a great level of in-
stability with notable spikes and dips in antiphase
for F and M - although eventually resulting in gains
for F. Interestingly, it thus seems that systems be-
come better at enhancing F translation by partially
suppressing the representation of the other gender

14As outlined in Sec. 4.2, 40% accuracy for F means that in
the remaining 60% of the cases systems generate a masculine
inflection instead of the expected feminine one.
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form.

Takeaways. The insights are more fine-grained:
i) F is the actual gender form that is learnt late in
the training process; ii) the progress of gender trans-
lation involves unstable antiphase fluctuations for
F and M; iii) there is still room for improvements
for F gender, especially for CHAR models. Overall,
these findings make us question the suitability of
standard metrics for diagnosing gender bias (see
Sec. 5.1), and of the loss function as a stopping
criterion. Along this line, previous work has fore-
grounded that even when a model has converged in
terms of BLEU, it continues to improve for context-
aware phenomena (Voita et al., 2019a). Hereby,
although we find a good (inverse) correlation be-
tween loss and BLEU, we attest that they seem
to be unable to properly account for gender bias
and the evolution of feminine capabilities. Look-
ing at both Figures 2 and 3, we question whether a
longer training would have facilitated an improve-
ment in gender translation and, in light of F and M
antiphase relation, if it would lead to a suppression
of M by favouring F. If that were the case, such
type of diversity could be leveraged to create more
representative models. Since more ckps would be
needed to investigate this point, we leave it for
future work.

5.3 Gender category

We now examine the learning curves for the trans-
lation of i) ambiguous references to the speaker,
and ii) references disambiguated by a contextual
cue (CAT1 and CAT2 introduced in Sec. 4.2). For
each category, Figure 4 shows the comparison of
feminine (1F, 2F) and masculine (1M, 2M) forms.

Compared to the extremely unstable learning of
CAT1, feminine and masculine curves from the
unambiguous CAT2 exhibit a smooth upward
parallel trend. In Figure 4, the differences across
categories fully emerge, and are consistent across
languages and models. On the one hand, F and
M curves from CAT2 show a steady trend which,
despite a ∼10-20% accuracy gap across genders,
suggests an increasing ability to model gender cues
and translate accordingly. On the other hand, CAT1
proves to be largely responsible for the extreme
instability and antiphase behaviour discussed for
Figure 2, which is so strong to be evident even over
the presented averaged scores.15 Overall, we recog-

15E.g., the actual scores for 1F accuracy for en-it CHAR
plummets as low as 11% at ckp9, and rockets at 60% at ckp36.

(a) en-es

(b) en-fr

(c) en-it

Figure 4: F vs M accuracy for CAT1 and CAT2. Scores
are averaged over 3 ckps, and reported for each training
phase. Dots indicate averaged scores for best ckp.

nize a moderately increasing trend of 1F curves for
all the CHAR models and the en-fr BPE. However, it
barely raises above a random prediction, i.e. ∼50-
57% accuracy meaning that a wrong masculine
form is generated in ∼50-43% of the instances.

In light of the above, we are brought to reflect
upon the hypothesis that direct ST models may use
audio information to translate gender.16 One possi-
ble explanation for systems’ behaviour on CAT1 is
that – although highly undesirable – ST does lever-
age speaker’s voice as a gender cue, but finds the
association “hard to learn”. Another option is that
ST does not leverage audio information and deals
with CAT1 as gender ambiguous input. As a result,
more biased BPE models more frequently opt for a
masculine output in this scenario. CHAR models,

16This hypothesis was formulated in both (Bentivogli et al.,
2020) and (Gaido et al., 2021).
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instead, being characterized by a more favourable
generation of feminine forms, progressively tend
to converge towards a random gender prediction
over the 1F set.

Towards the trustworthy development of ST tech-
nology, we call for future investigations on this
point.

(a) en-es

(b) en-fr

(c) en-it

Figure 5: Open (left) vs Closed (right) classes accuracy
scores per F and M gender. Scores are averaged over 3
ckps and reported for training phase.

5.4 Class and POS
In Figure 5, we compare the gender curves for open
and closed class words, which differ substantially
in terms of frequency of use, variability and seman-
tic content.
Both F and M curves of the closed class change
very little over the course of training. In Figure
5, the closed class exhibits a stable trend with mini-
mal increases, and a small F vs. M gap compared to

the open class. We hypothesise this may be due to
simple source constructions involving articles next
to a gendered word, which are learnt since the very
beginning (e.g., the mum; fr: la mère). Open class
words instead, show an unstable upward trend
for F, opposed to the steady and early-learned
M translation. Consistently, the M curve starts
off with unprecedented high scores (i.e., ∼80% ac-
curacy within the first 20% of the training process)
which further increases to 90% accuracy scores for
CHAR. The F curve is progressively improving and
– once again – with more significant gains late in
training. This also implies that the M/F gap is re-
duced over the epochs. In light of the evident bias
and distinct behaviour of F and M learning progress
for the open class, we now turn to examine how
each POS in this group evolves over training.

Nouns are outliers, being the only POS that ex-
hibits low variability in its learning curves, with
little to almost no room for improving F trans-
lation. Consistently across languages and mod-
els,17 this claim can be verified in Figure 6 for
en-fr. M nouns are basically fluctuation-free and
reach almost perfect accuracy since the early ckps.
Conversely, the F curve presents extremely low
scores throughout the training process, signalling
the strongest bias attested so far (i.e., the accuracy
for F-nouns is 40% for both CHAR and BPE). Oddly
enough, unlike adjectives and verbs, nouns learning
dynamics do not even reflect the different trends as-
sessed for CAT1 and the “easier” CAT2 (Sec. 5.3).
Namely, despite the presence of a gender cue, the
translation of feminine nouns from CAT2 (2F) does
not benefit from such a disambiguation informa-
tion. In fact, the accuracy for 2F nouns is basically
on par (or even worse) with the performance of F
nouns of CAT1 (1F), whereas for any other POS
– and even M-nouns – the subset of CAT2 always
exhibits a more positive learning trend.

Takeaways. Overall, our remarks are in line with
the findings formulated by Savoldi et al. (2022):
nouns emerge as the lexical category that is most
impacted by gender bias, arguably because sys-
tems tend to rely more on stereotypical, spurious
cues for the translation of professional nouns (e.g.,
scientist, professor). By examining their training
progress however, we additionally unveil that i) bi-
ased associations influence noun translation more
than unambiguous and relevant information, which

17Due to space constraints, we refer to Appendix C.2.1 for
en-es and en-it.
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(a) CHAR en-fr

(b) BPE en-fr

Figure 6: Accuracy per each open class POS for the en-fr CHAR and BPE models. The graph shows F vs M scores,
also at the level of CAT1/2. Scores are provided for training phases, and calculated as the average over 3 ckps.

is available for CAT2; ii) ST models rely on such
patterns so confidently that they never really adjust
their trend over the epochs.

6 Qualitative Insights

We conclude our analysis with a manual inspection
of the outputs of our ST systems at two i) initial,
ii) middle, and ii) final ckps of their training pro-
cess. To this aim, we opt for the en-es language
pair – for which we observed the highest BLEU
and gender coverage scores (Table 1) – to mini-
mize the amount of low-quality translations that
could be hard to analyze. Table 2 presents an exam-
ple sentence from CAT2, translated by both CHAR

and BPE, which backs up some of the quantitative
observations formulated in Sec. 5. The source
sentence contains neutral words (older, a, a mas-
ter) occurring together with gender-marked words
that disambiguate the correct gender (sister, she,
mother). Given the presence of these gender cues,
the neutral words should be fairly easy to translate.

In the first two ckps of both models, the output
has very low quality.18 It is characterized by ex-
tensive repetitions of frequent words, like mother
(madre in A) or young (joven, jóvenes in B-G). Also,

18Still, we believe that it is to a certain degree intelligible
thanks to the ASR initialization, see Sec. 4.1.

whereas functional words19 are already appropri-
ately employed and inflected with the correct gen-
der (e.g. a mother → una madre, A,G), the noun
master is not learnt yet and remains out of cover-
age; notably, BPE generates the word hombre (i.e.
man) instead. Interestingly, if we also look at the
gender cue noun sister, it maps to another kinship
term daughter for BPE (G), whereas CHAR gener-
alizes target morphology over English lexicon at
these stages (sistería in A, sistera in B).

Such lexical issues are all refined by the mid-
dle ckps, where the systems have acquired both
sister/hermana (with the feminine inflected adjec-
tive antigua20 in C) and master/maestr*, which in
this case undergoes an interesting gender evolution
across systems. For CHAR, we assist to an adjust-
ment from masculine inflection (B), to a feminine
one (C onwards) that remains stable until the end
of training, even after the best ckp. Instead, BPE

has a reversed trend. In H, the output una maestra
reveals that this system can and has learnt to gen-
erate feminine forms. However, as the training
progresses it switches to M inflections and never
rebounds to the F ones. Rather, in the last epochs
K-L it produces alternative synonyms, but always

19I.e. closed class.
20The most fluent choice would be the neutral mayor. Here,

however, we just focus on gender realizations.
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2F SRC My older sister Claire, she became a young mother, and a master at getting things done

CHAREs (A) INI Mi madre la sistería sistencia , encontró una madre joven una madre, y una madre, y una masa, y una cosa que estaba cosas.
(B) INI Mi madre sistera de clara se convirtió en un joven jóvenes jóvenes jóvenes, y un maestro de cosas que hicieron.
(C) MID Mi hermana más antigua clara, se convirtió en una madre joven y una maestra que hacía cosas.
(D) MID Mi antigua hermana Clare, se convirtió en una madre joven y una maestra que hice las cosas.
(E) FIN Mi hermana mayor Clare, se convirtió en una madre joven, y una maestra de hacer las cosas.
(F) FIN Mi hermana mayor, Clare, se convirtió en una joven madre, y una maestra por hacer las cosas.

BPEEs (G) INI Mi hija de la Tierra se convirtió en un joven joven, ella me convertí en una madre, y un hombre que hizo cosas.
(H) INI Mi hermana mayor claridad se convirtió en una madre joven, y una maestra, lo hice.
(I) MID Mi hermana mayor se volvió a ser una joven madre, y una maestría que hice.
(J) MID Mi hermana mayor declaró, se convirtió en una madre joven, y un maestro que se está haciendo.
(K) FIN Mi hermana mayor declaró que se convirtió en una madre joven, y un amo logrando hacer las cosas.
(L) FIN Mi hermana mayor Clare se convirtió en una madre joven, y un dueño de hacer que las cosas se hicieran.

Table 2: En-es outputs at initial, middle, and final epochs. The source sentence contains neutral words to be
translated according to the available gender cues. In the outputs, we indicate correct feminine gender translation vs
masculine. We also signal repetitions and copied source lemma+target morphology combinations.

with the wrong gender (amo, dueño).21 Overall,
this case exemplifies how, in spite of i) having F
morphological capabilities, and ii) the presence of
a close cue disambiguating gender, the BPE sys-
tem confidently relies on spurious and irrelevant
patterns for gender translation.

7 Limitations and Future Work

In this work, we rendered the ST training process
less opaque by analyzing the learning process of
gender. To do so, we looked into ST outputs. How-
ever, a complementary perspective would be to
rely on explainability and probing approaches on
system’s inner mechanisms (Belinkov and Glass,
2019) and verify their compatibility with our find-
ings. Also, a contrastive comparison of the learning
curves for gender and other linguistic phenomena
implying a one-to-many mapping (e.g. politeness
you → es: tu/usted) could pinpoint learning trends
which are specific to gender bias. A limit of our
analyses is that they include only 5 epochs after
their best validation loss. In light of our a posteriori
finding that F gender – especially for CHAR – does
not reach a plateau in the last epochs, future work
is needed to confirm whether and to what extent F
learning keeps improving. This could inform stud-
ies on i) how to leverage diversified output to alle-
viate gender bias in our models, ii) gender-sensitive
stopping criteria. Finally, we point out that for the
most fine-grained level of analyses (Sec. 5.4), our
evaluation is based on very specific subsets (e.g.
nouns broke down into 1F, 2F, 1M, 2M).22 This
comes with an inherent reduction of the amount of

21Although inappropriate in this context, both amo and
dueño are valid mapping to the word master).

22In the Appendix, we provide MuST-SHE statistics (Table
4) and gender coverage for open-closed class words (Fig. 8).

measurable gender-marked words, which could in
turn imply noise and additional instability in the
visualized results. However, we reduce this risk by
presenting them averaged over 3 ckps and, as the
noun curves show (Fig. 6), believe in their validity
for comparisons within the same dimension and
level of granularity.

Note that our study lies on the specificity of three
comparable grammatical gender languages. We are
thus cautious about generalizing our findings. Ex-
periments on other training sets and language pairs
are currently hindered by the lack of an available
natural, gender-sensitive ST benchmark that covers
alternative gender directions. While bearing this in
mind, we however underscore that the conditions
of gender translation significantly change depend-
ing on the features of the accounted languages and
direction (e.g. translating from grammatical gender
languages to English and not vice versa). Thus,
gender phenomena on typologically different gen-
dered languages would not be directly comparable
and compatible with the presented analyses. Rather
than a specific limitation of our setting, we regard
this as an intrinsic condition.

8 Conclusion

Despite the mounting evidence of biased behaviour
in language technologies, its understanding is hin-
dered by the complex and opaque nature of current
neural approaches. In this work, we shed light on
the emergence of gender bias in ST systems by fo-
cusing on their learning dynamics over training. In
this way, we adopt a new perspective that accounts
for the time-wise appearance of gender capabilities,
and examine their stability, reliability and course
of development. For three language pairs (en → es,
fr, it) we inspect the learning curves of feminine
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and masculine gender translation i) at several levels
of granularity; ii) with respect to progress in terms
of overall translation quality; iii) on the output of
ST systems trained on target data segmented as ei-
ther character or sub-words units (BPE). In our di-
achronic analysis, we unveil that i) feminine gender
is learnt late over the course of training, ii) it never
reaches a plateau within the number of iterations
required for model convergence at training time,
and iii) its refinements are concealed by standard
evaluation metrics. Also, by looking at the stability
vs. fluctuations of the explored trends, we iden-
tify under which circumstances ST models seem to
actually progressively acquire feminine and mas-
culine translation, and when instead their erratic,
antiphase behavior reflects unreliable choices made
by the systems. In this way, we find that nouns –
the lexical category most impacted by gender bias
– present a firm and huge gender divide over the
whole training, where ST systems do not rely on
relevant information to support feminine transla-
tion and never really adjust its generation.

9 Impact Statement23

In compliance with ACL norms of ethics,24 we
hereby clarify i) the characteristics of the dataset
used in our experiments, and ii) our use of gender
as a variable (Larson, 2017).

As already discussed, in our experiments we rely
on the training data from the TED-based MuST-
C corpus25 (Sec. 4.1), and its derived evaluation
benchmark, MuST-SHE v1.226 (Sec. 4.2). For
both resources, detailed information on the rep-
resentativeness of TED data is available in their
data statements (Bender and Friedman, 2018). As
regards gender, it is largely discussed how it is in-
tended and annotated. Thus, we know that MuST-C
training data are manually annotated with speak-
ers’ gender information27 based on the personal
pronouns found in their publicly available personal
TED profile.28 Overall, MuST-C exhibits a gender
imbalance, with 70% vs. 30% of the speakers re-
ferred by means of he/she pronoun, respectively.29

23Extra page granted as per https://
aclrollingreview.org/cfp.

24https://www.aclweb.org/portal/
content/acl-code-ethics

25https://ict.fbk.eu/must-c/
26https://ict.fbk.eu/must-she/.
27https://ict.fbk.eu/must-speakers/
28https://www.ted.com/speakers.
29Only one They speaker is represented in the corpus.

As reported in its release page,30 the same anno-
tation process applies to MuST-SHE as well, with
the additional check that the indicated (English)
linguistic gender forms are rendered in the gold
standard translations. Hence, information about
speakers’ preferred linguistic expressions of gender
are transparently validated and disclosed. Accord-
ingly, when working on the evaluation of speaker-
related gender translation for MuST-SHE,31 we
solely focus on the rendering of their reported lin-
guistic gender expressions. No assumptions about
speakers’ self determined identity (GLAAD, 2007)
– which cannot be directly mapped from pronoun
usage (Cao and Daumé III, 2020; Ackerman, 2019)
– has been made.

Finally, in our diagnosis of gender bias we
only account for feminine and masculine linguistic
forms, which are those traditionally in use and the
only represented in the used data. However, we
stress that – by working on binary forms – we do
not imply or impose a binary vision on the extra-
linguistic reality of gender, which is rather a spec-
trum (D’Ignazio and Klein, 2020). Also, we ac-
knowledge the challenges faced for grammatical
gender languages like Spanish, French and Ital-
ian in fully implementing neutral language, and
support rise of neutral language and non-binary
neomorphology (Shroy, 2016; Gabriel et al., 2018;
Conrod, 2020).
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A MuST-SHE statistics

Table 4 shows the word-level annotation statistics
of MuST-SHE v1.2 (Bentivogli et al., 2020) and
ist annotated extension (Savoldi et al., 2022). The
amount of gender-marked words is balanced across
i) languages, ii) Feminine and Masculine gender
forms, iii) Categories. The Open/Closed Class and
POS distribution vary in light of the gender mark-
ing features of the accounted languages.

B Model Settings

To create the models used in our experi-
ments, we exploited the open source code pub-
licly available at: https://github.com/
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en-es en-fr en-it
BPE 8,120 8,048 8,064
Char 464 304 256

Table 3: Sizes of model dictionaries.

mgaido91/FBK-fairseq-ST. In accordance
with (Potapczyk and Przybysz, 2020), our models
have 2 3x3 convolutional layers with 64 filters that
reduce the input sequence length by a factor of 4,
followed by 11 Transformer encoder layers and 4
Transformer decoder layers. We add a logarithmic
distance penalty (Di Gangi et al., 2019) to the en-
coder self-attention layers. As loss function we
adopt the label smoothed cross-entropy (Szegedy
et al., 2016) with 0.1 as smoothing factor. Our op-
timizer is Adam using β1=0.9, β2=0.98, and the
learning rate decays with the inverse square root
policy, after increasing for the initial 4.000 updates
up to 5 × 10−3. The dropout is set to 0.2, and
to further regularize the training we use as data
augmentation technique SpecAugment (Park et al.,
2019; Bahar et al., 2019b) with probability 0.5, two
bands on the frequency dimension, two on the time
dimension, 13 as maximum mask length, and 20 as
maximum mask length.

We extract 40 features with 25ms windows and
10ms slides using XNMT32 (Neubig et al., 2018),
after filtering utterances longer than 20s to avoid
excessive memory requirements at training time.
The resulting features are normalized per-speaker.

We rely on the MuST-C corpus (Cattoni et al.,
2021) for training: it contains 504 hours of speech
for en-es, 492 for en-fr, and and 465 for en-it, thus
offering a comparable amount of data for our three
language pairs of interest.

The target text is tokenized with Moses33 and
then segmented. When using BPE, we set the num-
ber of merge rules to 8,000, which – following
Di Gangi et al. (2020) – results in the most favour-
ing ST performance. The size of the resulting dic-
tionaries is reported in Table 3.

C Additional visualizations

In this section, we provide additional plots that –
due to space constrains – were not inserted in the
discussion of the results in Section 5.

32https://github.com/neulab/xnmt
33https://github.com/moses-smt/

mosesdecoder

(a) En-Es

(b) en-fr

(c) en-it

Figure 7: overAll, Feminine vs Masculine actual accu-
racy scores per each ckp of BPE and CHAR: en-es (7a),
en-fr (7a), en-it (7c). Black dots indicate the best ckp.

C.1 Feminine and Masculine forms

In Figure 7, we show Feminine vs Masculine gen-
der accuracy actual scores for en-es (7a), en-fr (7b),
en-it (7c) for each ckp. As the plots show, gender
accuracy scores exhibit a more positive and steeper
trend for CHAR, which is however characterized by
higher levels of instability. For all models, we can
see – to different degrees – the antiphase relation
between F and M curves.

C.2 Open and Closed Class

Figure 8 shows coverage scores over the training
progress for words from the open (O) and closed
(C) class. As expected, the coverage of functional
words is extremely high, firmly maintained over
the whole course of training. For the more variable
words from the O class, instead, we attest upwards
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En-Es En-Fr En-It
1977 1823 1942

F M F M F M
950 1027 898 925 898 1044

1F 2F 1M 2M 1F 2F 1M 2M 1F 2F 1M 2M
392 558 419 608 424 474 410 515 401 497 415 629

Open noun 121 106 151 185 58 62 75 112 48 62 71 138
adj-des 191 190 139 141 177 153 129 107 118 119 92 110

verb 19 36 12 37 156 90 141 105 178 133 176 129
Closed article 35 147 75 193 29 89 61 119 41 105 59 177

pronoun 5 33 26 23 1 28 3 25 3 20 6 17
adj-det 21 46 16 29 3 52 1 47 13 58 11 58

Table 4: Word-level statistics for all MuST-SHE dimensions on each language pairs: i) Feminine and Masculine
gender forms, ii) Categories 1 and 2, iii) Open/Closed Class and POS.

Figure 8: Coverage actual scores for Closed and Open
class POS of CHAR and BPE models for all language
pairs over percentages of training progress.

trend, which start to reach a plateau in the second
half of the training progress. However, it never
exceeds ∼58% coverage scores.

C.2.1 Open Class POS
Figure 9 shows Feminine and Masculine learning
curves for en-es and en-it for each of the POS
within the Open class: i) nouns, ii) verbs, and iii)
descriptive adjectives. Also, we visualized their
trend within the subset of CAT1 and CAT2 of each
POS. Overall, also for these language pairs we see
how nouns are outliers: their feminine learning
curve exhibits little to no real improvement. The
CHAR model for en-es represents a partial excep-
tion given that F learning curves shows a steeper
upward trend: still, it remains close to only 50%
accuracy. Also, the evolution of F nouns from the
ambiguous CAT1 and CAT2 (non ambiguous) is
basically on par, thus confirming that models do not
rely on relevant gender information to adjust the
feminine generation of nouns over their training.

110



(a) CHAR en-es

(b) BPE en-es

(c) CHAR en-it

(d) BPE en-it

Figure 9: Accuracy per each open class POS for en-es (9a. 9b) and en-it (9c, 9d) CHAR and BPE models. The graph
shows F vs M scores, also at the level of CAT1/2. Scpres are provided for training phases, and calculated as the
average over 3 ckps.
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Abstract

The size of pretrained models is increasing,
and so is their performance on a variety of NLP
tasks. However, as their memorization capacity
grows, they might pick up more social biases.
In this work, we examine the connection be-
tween model size and its gender bias (specifi-
cally, occupational gender bias). We measure
bias in three masked language model families
(RoBERTa, DeBERTa, and T5) in two setups:
directly using prompt based method, and using
a downstream task (Winogender). We find on
the one hand that larger models receive higher
bias scores on the former task, but when eval-
uated on the latter, they make fewer gender
errors. To examine these potentially conflicting
results, we carefully investigate the behavior of
the different models on Winogender. We find
that while larger models outperform smaller
ones, the probability that their mistakes are
caused by gender bias is higher. Moreover,
we find that the proportion of stereotypical er-
rors compared to anti-stereotypical ones grows
with the model size. Our findings highlight the
potential risks that can arise from increasing
model size. 1

1 Introduction

The growing size of pretrained language models
has led to large improvements on a variety of NLP
tasks (Raffel et al., 2020; He et al., 2021; Brown
et al., 2020). However, the success of these mod-
els comes with a price—they are trained on vast
amounts of mostly web-based data, which often
contains social stereotypes and biases that the mod-
els might pick up (Bender et al., 2021; Dodge et al.,
2021; De-Arteaga et al., 2019). Combined with
recent evidence that the memorization capacity of
training data grows with model size (Magar and
Schwartz, 2022; Carlini et al., 2022), the risk of

1Our code is available at https://github.com/
schwartz-lab-NLP/model_size_and_gender_
bias

Figure 1: We study the effect of model size on occupa-
tional gender bias in two setups: using prompt based
method (A), and using Winogender as a downstream
task (B). We find that while larger models receive higher
bias scores on the former task, they make less gender
errors on the latter. We further analyse the models’ be-
haviour on Winogender and show that larger models
express more biased behavior in those two setups.

language models containing these biases is even
higher. This can have negative consequences, as
models can abuse these biases in downstream tasks
or applications. For example, machine translation
models have been shown to generate outputs based
on gender stereotypes regardless of the context of
the sentence (Stanovsky et al., 2019), and models
rated male resumes higher than female ones (Para-
surama and Sedoc, 2021).

There is an increasing amount of research ded-
icated to evaluating this problem. For exam-
ple, several works studied the bias in models us-
ing downstream tasks such as coreference reso-
lution (Rudinger et al., 2018; Zhao et al., 2018),
natural language inference (NLI) (Poliak et al.,
2018; Sharma et al., 2021) and machine translation
(Stanovsky et al., 2019). Other works measured
bias in language models directly using masked lan-
guage modeling (MLM) (Nadeem et al., 2021; Nan-
gia et al., 2020; de Vassimon Manela et al., 2021).

In this paper, we examine how model size af-
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fects gender bias (Fig. 1). We focus on occupation-
specific bias which corresponds to the real-world
employment statistics (BLS).2 We measure the bias
in three model families (RoBERTa; Liu et al., 2019,
DeBERTa; He et al., 2021 and T5; Raffel et al.,
2020) in two different ways: using MLM prompts
and using the Winogender benchmark (Rudinger
et al., 2018).

We start by observing a potentially conflicting
trend: although larger models exhibit more gender
bias than smaller models in MLM,3 their Winogen-
der parity score, which measures gender consis-
tency, is higher, indicating a lower level of gender
errors. To bridge this gap, we further analyze the
models’ Winogender errors, and present an alterna-
tive approach to investigate gender bias in down-
stream tasks. First, we estimate the probability that
an error is caused due to gender bias, and find that
within all three families, this probability is higher
for the larger models. Then, we distinguish be-
tween two types of gender errors—stereotypical
and anti-stereotypical—and compare their distribu-
tion. We find that stereotypical errors, which are
caused by following the stereotype, are more preva-
lent than anti-stereotypical ones, and that the ratio
between them increases with model size. Our re-
sults demonstrate a potential risk inherent in model
growth—it makes models more socially biased.

2 Are Larger Models More Biased?

The connection between model size and gender
bias is not fully understood; are larger models more
sensitive to gender bias, potentially due to their
higher capacity that allows them to capture more
subtle biases? or perhaps they are less biased, due
to their superior language capabilities?

In this section we study this question in a con-
trolled manner, and observe a somewhat surprising
trend: depending on the setup for measuring gen-
der bias, conflicting results are observed; on the
one hand, in MLM setup larger models are more
sensitive to gender bias than smaller models. On
the other, larger models obtain higher parity score
on a downstream task (Winogender), which hints
that they might be less sensitive to bias in this task.
We describe our findings below.

We measure the occupational gender bias in
three models’ families, using two methods—

2https://www.bls.gov/cps/cpsaat11.htm
3This is consistent with previous findings (Nadeem et al.,

2021; Vig et al., 2020).

Figure 2: agreement and bias score measures
for RoBERTa and T5 using the following prompt:

“[MASK] worked as a/an [OCCUPATION].” As the num-
ber of parameters in the model increases the model gets
a higher average bias score as well as higher or equal
agreement score.

prompt based method (Kurita et al., 2019) and
Winogender schema (Rudinger et al., 2018). To
maintain consistency, we use the same list of occu-
pations in all our experiments. The gender stereo-
typicality of an occupation is determined by the
U.S. Bureau of Labor Statistics (BLS).4

Pretrained Models Unless stated otherwise, we
experiment with three families of pretrained lan-
guage models: RoBERTa-{base,large} (Liu et al.,
2019), DeBERTa-{base,large,xlarge} (He et al.,
2021) and T5-{base,large,3B} (Raffel et al., 2020).
We provide implementation details in App. B.

2.1 Sensitivity to Gender Bias in MLM
Increases with Model Size

To examine the model’s sensitivity to gender bias
we directly query the model using a simple prompt:

“[MASK] worked as a/an [OCCUPATION].”5 This
prompt intentionally does not provide much con-
text, in order to purely measure occupational bi-
ases. As a measure of bias, we adopt Kurita et al.
(2019)’s log probability bias score. We compare
the normalized predictions 6 that the model assigns
to “he” and “she”, given the above prompt: for
male occupations (according to BLS) we compute

4Based on the resources we use, we assume a binary gen-
der, which we recognize is a simplifying assumption.

5Results on two other prompts show very similar trends
(see App. A).

6The probabilities are normalized by the prior proba-
bility of the model to predict “she” or “he” in the same
prompt with masked occupation (i.e., “[MASK] worked as
a/an [MASK].”).
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the difference with respect to “he”, and for female
occupations we compute the difference with re-
spect to “she”. Positive scores indicate the model
assigns higher normalized predictions to the pro-
noun that matches the occupation’s stereotypical
gender. We experiment with RoBERTa and T5,7

evaluating gender bias using two measures:

1. agreement: the percentage of occupations
with positive bias score.

2. average bias score: the average bias score of
the occupations.

agreement enables us to evaluate the general prefer-
ence towards one gender, while average bias score
measures the magnitude of the preference.

Results Fig. 2 presents our results. For both
model families, the average bias score increases
along with the model size. Further, the agreement
measure increases with model size for T5 models,
and is the same for both RoBERTa models. These
findings indicate that models are becoming more
biased as they grow in size. This is consistent with
prior work (Nadeem et al., 2021; Vig et al., 2020).

2.2 Larger Models Exhibit Less Bias in
Winogender

We have so far observed that larger models ex-
press higher sensitivity to gender bias in an MLM
setup. We now examine gender bias using a down-
stream task—Winogender—an evaluation dataset
designed to measure occupational gender bias in
coreference resolution.

sentence type

The engineer informed the client that
she would need more time to complete
the project.

gotcha

The engineer informed the client that
he would need more time to complete
the project.

not
gotcha

Table 1: Examples of “gotcha” and “not gotcha” sen-
tences from Winogender. In both sentences the pronoun
refers to the engineer.

Each example in the dataset contains an occu-
pation (one of the occupations on the BLS list), a

7At the time of running the experiments, there were prob-
lems with running MLM with DeBERTa, which prevented us
from experimenting with it (see https://github.com/
microsoft/DeBERTa/issues/74).

Figure 3: Accuracy and parity scores on Winogender.
Per model family, larger models achieve both higher ac-
curacies (Y axis) and parity scores (X axis) than smaller
models.

secondary (neutral) participant and a pronoun that
refers to either of them. See Tab. 1 for examples.

Winogender consists of “gotcha” and “not
gotcha” sentences. Roughly speaking, “gotcha”
sentences are the ones in which the stereotype of
the occupation might confuse the model into mak-
ing the wrong prediction. Consider the “gotcha”
sentence in Tab. 1. The pronoun “she” refers to the
“engineer” which is a more frequent occupation for
men than for women. This tendency could cause
the model to misinterpret “she” as “the client”. In
contrast, in “not gotcha” sentences, the correct an-
swer is not in conflict with the occupation distribu-
tion (a male engineer in Tab. 1).

The Winogender instances are arranged in mini-
mal pairs—the only difference between two paired
instances is the gender of the pronoun in the
premise (Tab. 1). Importantly, the label for both
instances is the same.

We use the casting of Winogender as an NLI
task (Poliak et al., 2018), which is part of the Su-
perGLUE benchmark (Wang et al., 2019). Per-
formance on Winogender is measured with both
NLI accuracy and gender parity score: the per-
centage of minimal pairs for which the predictions
are the same. Low parity score indicates high
level of gender errors (errors which occur when
a model assigns different predictions to paired in-
stances). These errors demonstrate the presence of
gender bias in the model. We use all three fami-
lies (RoBERTa, DeBERTa, T5), all fine-tuned on
MNLI (Williams et al., 2018) and then fine-tuned
again with RTE (Dagan et al., 2013).
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Results Our results are shown in Fig. 3. We first
notice, unsurprisingly, that larger models outper-
form smaller ones on the NLI task. Further, when
considering parity scores, we also find that the
scores increase with model size.

Combined with our results in Sec. 2.1, we ob-
serve a potential conflict: while our findings in the
MLM experiment show that the larger the model
the more sensitive it is to gender bias, when consid-
ering our Winogender results, we find that larger
models make less gender errors. We next turn to
look differently at the Winogender results, in an
attempt to bridge this gap.

3 Winogender Errors Analysis Unravels
Biased Behavior

We have so far shown that larger models make
fewer gender errors compared to smaller models
(Sec. 2.2), but that they also hold more occupa-
tional gender bias compared to their smaller coun-
terparts (Sec. 2.1). In this section we argue that
parity score and accuracy do not show the whole
picture. Through an analysis of the models’ gen-
der errors, we offer an additional viewpoint on the
Winogender results, which might partially bridge
this gap.

The probability that an error is gendered in-
creases with model size Our first observation is
that while larger models make fewer errors, and
fewer gender errors in particular, the proportion
of the latter in the former is higher compared to
smaller models.

We evaluate the probability that an error is
caused by the gender of the pronoun (i.e., that an
error is gendered). We estimate this probability by
the proportion of gender errors in total errors:

p(error is gendered) ≈ |gender errors|
|errors|

We find for both DeBERTa and RoBERTa that
this probability increases with model size (Tab. 2,
gender column). In the extreme case (DeBERTa-
xlarge), 41% of the errors are gendered. Our results
indicate that for larger models, the rate in which
the total amount of errors drop is higher than the
rate of gender errors drop.

Larger models make more stereotypical errors
We next distinguish between two types of gender
errors: stereotypical and anti-stereotypical. As de-
scribed in Sec. 2, the Winogender pairs are divided

model size gender stereotypical anti-stereotypical

DeBERTa
base 0.20 0.17 0.03
large 0.32 0.29 0.03
xlarge 0.41 0.41 0.00

RoBERTa
base 0.17 0.11 0.06
large 0.22 0.21 0.01

T5
base 0.16 0.09 0.07
large 0.20 0.15 0.05
3B 0.17 0.16 0.01

Table 2: The probability that an error is gendered (gen-
der column) increases with model size. When break-
ing down gender errors into stereotypical and anti-
stereotypical errors, we find that the increase in proba-
bility originates from more stereotypical errors.

to “gotcha” and “not gotcha” instances. The key
characterization of a “gotcha” sentence is that the
occupation’s stereotype can make it hard for the
model to understand the coreference in the sen-
tence. Thus, we will refer to the gender errors on
“gotcha” sentences as stereotypical errors.8

Accordingly, we will refer to gender errors on
“not gotcha” sentences as anti-stereotypical errors.
Note that the number of gender errors is equal to the
sum of stereotypical and anti-stereotypical errors.

We present in Tab. 2 both probabilities that an
error is stereotypical and anti-stereotypical. Within
all three model families, the probability that an
error is stereotyped rises with model size, while
the probability that an error is anti-stereotyped de-
creases with model size. This observation indi-
cates that the increase in proportion of gendered
errors is more attributed to stereotypical errors in
larger models compared to smaller ones. Indeed,
when considering the distribution of gender errors
(Fig. 4), we find that the larger models obtain a
higher stereotypical to anti-stereotypical error ra-
tio; in some cases, the larger models are making
up to 20 times more stereotypical errors than anti-
stereotypical. This indicates that even though they
make fewer gender errors, when they do make
them, their mistakes tend to be more stereotypi-
cal.

Our results provide a deeper understanding of the
models’ behavior on Winogender compared to only
considering accuracy and parity score. Combined
with our MLM results (Sec. 2.1), we conclude that
larger models express more biased behavior than
smaller models.

8Equivalently, a stereotypical error is an error made on
a “gotcha” instance, when the prediction on the “not gotcha”
instance pair is correct.
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Figure 4: Distribution of gender errors (stereotypical
and anti-stereotypical) of different models on Winogen-
der. Within all model families, larger models exhibit
a higher stereotypical to anti-stereotypical errors ratio
compared to smaller models.

4 Related work

Measuring bias in pretrained language mod-
els Earlier works presented evaluation datasets
such as WEAT/SEAT, which measure bias in static
word embedding using cosine similarity of spe-
cific target words (Caliskan et al., 2017; May et al.,
2019). Another line of work explored evaluation
directly in pretrained masked language models.
Kurita et al. (2019) presented an association rel-
ative metric for measure gender bias. This metric
incorporates the probability of predicting an at-
tribute (e.g “programmer”) given the target for
bias (e.g “she”), in a generic template such as
“<target> is [MASK]”. They measure how much
more the model prefers the male gender association
with an attribute. Nadeem et al. (2021) presented
StereoSet, a large-scale natural dataset to measure
four domains of stereotypical biases in models us-
ing likelihood-based scoring with respect to their
language modeling ability. Nangia et al. (2020)
introduced CrowS-Pairs, a challenge set of mini-
mal pairs that examines stereotypical bias in nine
domains via minimal pairs. They adopted psuedo-
likelihood based scoring (Wang and Cho, 2019;
Salazar et al., 2020) that does not penalize less fre-
quent attribute term. In our work, we build upon
Kurita et al. (2019)’s measure in order to examine
stereotypical bias to the specifics occupations we
use, in different sizes of models.

Another method to evaluate bias in pretrained
models is through downstream tasks, such as coref-
erence resolution (Rudinger et al., 2018; Zhao et al.,

2018) and sentiment analysis (Kiritchenko and Mo-
hammad, 2018). Using this method, the bias is
determined by the performance of the model in the
task. This allows for investigation of how much the
bias of the model affects its performance.

Bias sensitivity of larger pretrained models
Most related to this work, Nadeem et al. (2021)
measured bias using the StereoSet dataset, and com-
pared models of the same architecture of different
sizes. They found that as the model size increases,
its stereotypical score increases. For autocomplete
generation, Vig et al. (2020) analyzed GPT-2 (Rad-
ford et al., 2019) variants through a causal media-
tion analysis and found that larger models contain
more gender bias. In this work we found a simi-
lar trend with respect to gender occupational bias
measured via MLM prompts, and a somewhat dif-
ferent trend when considering Winogender parity
scores. Our error analysis on Winogender was able
to partially bridge the gap between these potential
conflicting findings.

5 Conclusion

We investigated how a model’s size affects its gen-
der bias. We presented somewhat conflicting re-
sults: the model bias increases with model size
when measured using a prompt based method, but
the amount of gender errors decreases with size
when considering the parity score in the Winogen-
der benchmark. To bridge this gap, we employed
an alternative approach to investigate bias in Wino-
gender. Our results revealed that while larger mod-
els make fewer gender errors, the proportion of
these errors among all errors is higher. In addi-
tion, as model size increases, the proportion of
stereotypical errors increases in comparison to anti-
stereotypical ones. Our work highlights a potential
risk of increasing gender bias which is associated
with increasing model sizes. We hope to encour-
age future research to further evaluate and reduce
biases in large language models.

Bias Statement

In this paper, we examine how model size affects
gender bias. We focus on occupations with a gender
stereotype, and examine stereotypical associations
between male and female gender and professional
occupations. We measure bias in two setups: MLM
(Kurita et al., 2019; Nadeem et al., 2021) and Wino-
gender (Rudinger et al., 2018), and build on the
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enclosed works’ definition of gender bias.9 We
show how these different setups yield conflicting
results regarding gender bias. We aim to bridge
this gap by working under a unified framework
of stereotypical and anti-stereotypical associations.
We find that the models’ biases lead them to make
errors, and specifically more stereotypical then anti-
stereotypical errors.

Systems that identify certain occupations with
a specific gender perpetuate inappropriate stereo-
types about what men and women are capable of.
Furthermore, if a model makes wrong predictions
because it associates an occupation with a specific
gender, this can cause significant harms such as in-
equality of employment between men and women.
In this work, we highlight that those potential risks
become even greater as the models’ size increase.
Finally, we acknowledge that our binary gender
labels, which are based on the resources we use,
do not reflect the wide range of gender identities.
In the future, we hope to extend our work to non-
binary genders as well.
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Agnew, Gabriel Ilharco, Dirk Groeneveld, Margaret
Mitchell, and Matt Gardner. 2021. Documenting
large webtext corpora: A case study on the colos-
sal clean crawled corpus. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 1286–1305, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: decoding-enhanced
bert with disentangled attention. In 9th International
Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net.

Svetlana Kiritchenko and Saif Mohammad. 2018. Ex-
amining gender and race bias in two hundred senti-
ment analysis systems. In Proceedings of the Sev-
enth Joint Conference on Lexical and Computational
Semantics, pages 43–53, New Orleans, Louisiana.
Association for Computational Linguistics.

Keita Kurita, Nidhi Vyas, Ayush Pareek, Alan W Black,
and Yulia Tsvetkov. 2019. Measuring bias in con-
textualized word representations. In Proceedings of
the First Workshop on Gender Bias in Natural Lan-
guage Processing, pages 166–172, Florence, Italy.
Association for Computational Linguistics.

117



Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Inbal Magar and Roy Schwartz. 2022. Data contamina-
tion: From memorization to exploitation. In Associa-
tion for Computational Linguistics.

Chandler May, Alex Wang, Shikha Bordia, Samuel R.
Bowman, and Rachel Rudinger. 2019. On measuring
social biases in sentence encoders. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 622–628, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2021.
StereoSet: Measuring stereotypical bias in pretrained
language models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5356–5371, Online. Association for
Computational Linguistics.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and
Samuel R. Bowman. 2020. CrowS-pairs: A chal-
lenge dataset for measuring social biases in masked
language models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1953–1967, Online. As-
sociation for Computational Linguistics.

Prasanna Parasurama and João Sedoc. 2021. Gendered
language in resumes and its implications for algorith-
mic bias in hiring.

Adam Poliak, Aparajita Haldar, Rachel Rudinger, J. Ed-
ward Hu, Ellie Pavlick, Aaron Steven White, and
Benjamin Van Durme. 2018. Collecting diverse nat-
ural language inference problems for sentence rep-
resentation evaluation. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 67–81, Brussels, Belgium.
Association for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Rachel Rudinger, Jason Naradowsky, Brian Leonard,
and Benjamin Van Durme. 2018. Gender bias in
coreference resolution. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 8–14, New Orleans, Louisiana. Association for
Computational Linguistics.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Ka-
trin Kirchhoff. 2020. Masked language model scor-
ing. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
2699–2712, Online. Association for Computational
Linguistics.

Shanya Sharma, Manan Dey, and Koustuv Sinha. 2021.
Evaluating gender bias in natural language inference.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmäs-
san, Stockholm, Sweden, July 10-15, 2018, volume 80
of Proceedings of Machine Learning Research, pages
4603–4611. PMLR.

Gabriel Stanovsky, Noah A. Smith, and Luke Zettle-
moyer. 2019. Evaluating gender bias in machine
translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1679–1684, Florence, Italy. Association for
Computational Linguistics.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stu-
art M. Shieber. 2020. Investigating gender bias in
language models using causal mediation analysis.
In Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual.

Alex Wang and Kyunghyun Cho. 2019. BERT has a
mouth, and it must speak: BERT as a Markov ran-
dom field language model. In Proceedings of the
Workshop on Methods for Optimizing and Evaluat-
ing Neural Language Generation, pages 30–36, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neu-
ral Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 3261–3275.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American

118
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A Additional Prompts for MLM Setup

As pretrained models sensitive to prompts, we ex-
periment with two other prompts: “[MASK] is a/an
[OCCUPATION]” (Fig. 5) and “Complete the sen-
tence: [MASK] is a/an [OCCUPATION].” (Fig. 6).

10The top predictions of T5-base were irrelevant to the
given prompt. In particular, “she” and “he” were not among
the top ten predictions of the model for any of the occupations.
Therefore it is not presented.

Figure 6: agreement and bias score measures
for RoBERTa and T5 using the following prompt:

“[MASK] is a/an [OCCUPATION].” An increasing trend
is observed for both families in almost all cases (except
agreement score for T5-3B).

The last prompt is inspired by the task prefix that
was used during T5’s pretraining. In all the prompts
we use, the models predicted “she” and “he” in the
top ten predictions, for at least 75% of the occupa-
tions.

The results show in almost all cases (except
agreement score for T5-3B in “[MASK] is a/an
[OCCUPATION]”) an increasing trend for both
families.

B Implementation Details For Sec. 2.2

We implemented the experiments with the hug-
gingface package (Wolf et al., 2020), using
both run_glue (for RoBERTa and Deberta) and
run_summarization (for T5) scrips for masked lan-
guage models. We used the official MNLI check-
points for RoBERTa and Deberta and then fine-
tuned again with RTE with the following standard
procedure and hyperparameters. We fine-tuned
RoBERTa and DeBERTa on RTE for 6 epochs
with batch size 32. We use AdamW optimizer
(Loshchilov and Hutter, 2019) with learning rate of
2e-5 (for RoBERTa-{base,large}) and DeBERTa-
{base}) and 1e-5 (for DeBERTa-{large,xlarge} and
default parameters: β1 = 0.9, β2 = 0.999, ϵ = 1e-6,
with weight decay of 0.1.

For T5 we used the T5 1.0 checkpoint, which
is trained on both unsupervised and downstream
task data. We fine-tuned T5 11 on RTE for 6 epochs

11We followed the huggingface recommendation for T5
fine-tuning settings https://discuss.huggingface.
co/t/t5-finetuning-tips/684/3
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with batch size 8. We use AdaFactor (Shazeer and
Stern, 2018) optimizer with learning rate of 1e-4
and default parameters: β1 = 0.0, ϵ = 1e-3, without
weight decay. We selected the highest performing
models on the validation set among five random
trials. All our experiments were conducted using
the following GPUs: nvidia RTX 5000, Quadro
RTX 6000, A10 and A5000.
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Abstract

Word embeddings learned from massive text
collections have demonstrated significant levels
of discriminative biases. However, debiasing
on the Chinese language, one of the most spo-
ken languages, has been less explored. Mean-
while, existing literature relies on manually cre-
ated supplementary data, which is time- and
energy-consuming. In this work, we propose
the first Chinese Gender-neutral word Embed-
ding model (CGE) based on Word2vec, which
learns gender-neutral word embeddings with-
out any labeled data. Concretely, CGE utilizes
and emphasizes the rich feminine and mascu-
line information contained in radicals, i.e., a
kind of component in Chinese characters, dur-
ing the training procedure. This consequently
alleviates discriminative gender biases. Ex-
perimental results show that our unsupervised
method outperforms the state-of-the-art super-
vised debiased word embedding models with-
out sacrificing the functionality of the embed-
ding model.

1 Introduction

Investigations into the representation learning re-
vealed that word embeddings are often prone to
exhibit discriminative gender stereotype biases
(Caliskan et al., 2017). Consequently, these biased
word embeddings have effects on downstream ap-
plications (Dinan et al., 2020; Blodgett et al., 2020).
Mitigating gender stereotypes in word embedding
are becoming a research hotspot due to its peni-
tential application, and a number of the existing
debias works are dedicated to the English language
(Zhao et al., 2018a; Kaneko and Bollegala, 2019).
However, debiasing on Chinese, one of the most
spoken languages, has drawn less attention these
days.

In the Chinese language, “radical” is a graphi-
cal component of Chinese characters, which serves

∗ Equal Contribution
† Corresponding authors

as an indexing component in the Chinese dictio-
nary. Radical can suggest part of the meaning of
the character due to the phono-semantic attribute of
the Chinese language. For example, “氵(water)” is
the radical of “河 (river),湖 (lake)”. Consequently,
a series of works have shown that radicals can en-
hance the word embedding quality (Chen et al.,
2015; Yin et al., 2016; Chen and Hu, 2018). As part
of the radical system, the gender-related radicals,
i.e., “女(female)” and “亻(man)”, contains gender
information of the corresponding character. Specif-
ically, the radical “女(female)” can denote female
and “亻(man)” can denote people, which includes
male gender information. For example, charac-
ters “姐(sister),妇(wife),妈(mother),姥(grandma)”
all have the radical of “女(female)”, demonstrating
that these are feminine words. Hence, we assume
that radical is a natural information source to cap-
ture feminine and masculine information, and such
information can help the model learn gender defini-
tion. Once the model learns what is the definition
of gender, it can identify the gender bias that is not
actually relevant to gender.

To this end, we propose our Chinese Gender-
neutral word Embedding model (CGE) that is based
on the classic Word2vec model, where the basic
idea is to predict the target word given its context
words. CGE has two variations, i.e., Radical-added
CGE and Radical-enhanced CGE. Radical-added
CGE emphasizes the gender definition informa-
tion by directly adding the radical embedding to
the word embedding. We next propose a Radical-
enhanced CGE, where radical embeddings are em-
ployed to predict the target word instead of adding
to the word embedding. This is a more flexible
approach, where the gradients of the embeddings
of words and radicals can be different in the train-
ing process. Note that the radical can be extracted
from the character itself, hence, our model can also
learn gender-neutral word embedding in an unsu-
pervised fashion. Experimental results show that
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our methods outperform the supervised models.

2 Related Work

Chinese Word Embedding. Different from the
English language where words are usually taken as
basic semantic units, Chinese words have compli-
cated composition structures revealing their seman-
tic meanings (Li et al., 2020, 2021). More specifi-
cally, a Chinese word is often composed of several
characters, and most of the characters themselves
can be further divided into components such as rad-
icals. Chen et al. (2015) first presented a character-
enhanced word embedding model (CWE). Follow-
ing this work, Yin et al. (2016) proposed multi-
granularity embedding (MGE), which enriches
word embeddings by incorporating finer-grained
semantics from characters and radicals. Another
work (Yu et al., 2017) proposed to jointly embed
Chinese words as well as their characters and fine-
grained sub-character components. Chen and Hu
(2018) used radical escaping mechanisms to extract
the intrinsic information in the Chinese corpus. All
the above works do not deal with the gender bias
phenomena in Chinese word embeddings.
Gender Biased Tasks. Gender biases have been
identified in downstream NLP tasks (Hendricks
et al., 2018; Holstein et al., 2019). Zhao et al.
(2018a) demonstrated that coreference resolution
systems carry the risk of relying on societal stereo-
types present in training data and introduced a new
benchmark, WinoBias, for coreference resolution
focused on gender bias. Gender bias also exists in
machine translation (Prates et al., 2018), e.g., trans-
lating nurses as females and programmers as males,
regardless of context. Stanovsky et al. (2019) pre-
sented the first challenge set and evaluation proto-
col for the analysis of gender bias in machine trans-
lation. Notable examples also include visual SRL
(cooking is stereotypically done by women, con-
struction workers are stereotypically men, (Zhao
et al., 2017)), lexical semantics (“man is to com-
puter programmer as woman is to homemaker”,
(Bolukbasi et al., 2016)) and so on.
Gender-neutral Word Embedding. Previous
works demonstrated that word embeddings can
encode sexist stereotypes (Caliskan et al., 2017).
To reduce the gender stereotypes embedded inside
word representations, Bolukbasi et al. (2016) pro-
jected gender-neutral words to a subspace, which is
orthogonal to the gender dimension defined by a list
of gender-definitional words. Concretely, they pro-

posed a hard-debiasing method where the gender
direction is computed as the vector difference be-
tween the embeddings of the corresponding gender-
definitional words, and a soft-debiasing method,
which balances the objective of preserving the inner
products between the original word embeddings.
Zhao et al. (2018a) aimed to preserve gender in-
formation in certain dimensions of word vectors
while compelling other dimensions to be free of
gender influence. Kaneko and Bollegala (2019)
debiased pre-trained word embeddings consider-
ing four types of information: feminine, masculine,
gender-neutral, and stereotypical. Following this
work, Kaneko and Bollegala (2021) applied the
debiasing technique to pre-trained contextualized
embedding model.

Compared with previous works, our work is fo-
cused on the Chinese language, and utilizes radi-
cals, a special component of Chinese character.

3 Methodology

We will take CBOW for example and demonstrate
our frameworks based on CBOW.

3.1 CBOW

As shown in Figure 1(a), CBOW predicts the tar-
get word, given context words in a sliding win-
dow. Concretely, given the word sequence D =
(x1, x2, ..., xT ), the ultimate goal is to maximize
the average log probablity:

1
T

∑T−c
t=c logP (xt|xt−c, ..., xt+c), (1)

where c is the size of the training context. The
prediction probability of xt based on its context
word is defined using softmax function:

P (xt|xt−c, ..., xt+c) =
exp

(
x⊤
o · xt

)
∑

xt′∈W exp (x⊤
o · xt′)

,

where W is the words in the vocabulary. xt is the
embedding of word xt, and xo is the average of all
context word vectors:

xo =
1
2c

∑
−c≤j≤c,j ̸=0 xt+j , (2)

Since this formulation is impractical because of
the training cost, hierarchical softmax and negative
sampling are used when training CBOW (Mikolov
et al., 2013b).
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+
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(a) CBOW (b) Radical-added CGE (c) Radical-enhanced CGE

Figure 1: Illustrations of baseline model and two proposed models. Radical-added CGE directly adds radical
embedding to word embedding; Radical-enhanced CGE incorporates radical information to predict the target word.

3.2 Radial-added CGE
Since radical contains rich semantic and gender in-
formation, our model considers radical information
to improve gender-neutral word embeddings. In
Radical-added CGE, we directly add the radical
vector representation with word vector, as shown
in Figure 1(b).

The pivotal idea of Radical-added CGE is to
replace the stored vectors xt in CBOW with real-
time compositions of wt and rt, but share the same
objective in Equation 1. Formally, a context word
embedding xt is represented as:

xt =
1
2

(
wt +

1
Nt

∑Nt
k=1 r

k
t

)
, (3)

where Nt is the number of radicals in word xt,
wt is the word vector of xt, and rkt is the radical
vector of k-th radical in xt. Take Figure 1(b) for
example, when predicting the word “是(is)”, we
add the radical vector of “女” to word embedding
of “她(she)”, and add the average radical vector of
“彳,巾” to word embedding of “律师(lawyer)”.

3.3 Radical-enhanced CGE
In Radical-added CGE, the context word embed-
ding is the sum of the word vector and radical vec-
tor, which ensures that the context word embedding
contains the radical information. In this subsection,
we propose a more flexible gender-neutral model,
i.e., Radical-enhanced CGE, where the radical em-
bedding and the word embedding are separated,
where the former is utilized to enhance the latter.
The overview of Radical-enhanced CGE is shown
in Figure 1(c).

Concretely, the context word embedding xt now
equals wt, which means that it does not contain
radical embedding. Instead, we use context word
vectors as well as context radical vectors to predict
target words. Following setting in CBOW, we use
xo to denote the average of context word vectors,

and ro to denote the average of context radical
vectors:

xo =
1

2c

∑

−c≤j≤c,j ̸=0

xt+j , (4)

ro =
1

2c

∑

−c≤j≤c,j ̸=0

1

Nt+j

Nt+j∑

k=1

rkt+j , (5)

where c is the size of context window.
Next, xo is used to calculate the predicted prob-

ability P (xt|xt−c, ..., xt+c). Similarly, ro is also
used to obtain the context radical prediction proba-
bility, which is represented as P (xt|rt−c, ..., rt+c):

P (xt|xt−c, ..., xt+c) =
exp

(
x⊤
o · xt

)
∑

xt′∈W exp (x⊤
o · xt′)

,

(6)

P (xt|rt−c, ..., rt+c) =
exp

(
r⊤o · xt

)
∑

xt′∈W exp (r⊤o · xt′)
.

(7)

Finally, the optimization target is to maximize:

1
T

∑T−c
t=c ( logP (xt|xt−c, ..., xt+c)+

logP (xt|rt−c, ..., rt+c)). (8)

The intuition behind this model is that the con-
textual radical embedding rt interacts and predicts
the target word embedding xt so that the gender-
related information in radicals is implicitly intro-
duced in the word embeddings. During the back-
propagation, the gradients of the embeddings of
words and radical components can be different,
while they are the same in Radical-enhanced CGE.
Thus, the representations of words and radical com-
ponents are decoupled and can be better trained.
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Chinese word pair English word pair Category
神父-修女 Father: Nun Definition

:::::::::
弟弟：妹妹

:::::::::::::::::::
Headmaster:Headmistress Definition

狗：猫 Dog: cat None
书：杂志 Book: Magazine None
沙发：躺椅 Sofa: Lounge chair None
杯子：盖子 Cup: Lid None
医生：护士 Doctor: Nurse Stereotype
经理：秘书 Manager: Secretary Stereotype
门卫：收银员 Guard: Cashier Stereotype
领导：助理 Leader: Assistant Stereotype

Table 1: Representative cases in CSemBias dataset.
English words with wavy lines are untranslatable and
we replace them with new Chinese words belonging to
the same category.

4 Experimental Setup

4.1 Dataset
We adopt the 1GB Chinese Wikipedia Dump1 as
our training corpus. We follow Yu et al. (2017)
when pre-processing the dataset, removing pure
digits and non-Chinese characters. JIEBA2 is used
for Chinese word segmentation and POS tagging.
We add all words in CSemBias in the tokenize
vocab dictionary to ensure that the gender-related
words are successfully recognized. Along with
each character is its radical, and we crawled the rad-
ical information of each character from HTTPCN3.
We obtained 20,879 characters and 218 radicals, of
which 214 characters are equal to their radicals.

4.2 Comparisons
We compare our method against several baselines:
GloVe: a global log-bilinear regression model pro-
posed in (Pennington et al., 2014).
Word2vec: introduced by Mikolov et al. (2013a),
which either predicts the current word based on
the context or predicts surrounding words given
the current word. We chose the CBOW model
following Chen et al. (2015); Yu et al. (2017).

The above two models denote non-debiased ver-
sions of the word embeddings.
Hard-GloVe: we use the implementation of hard-
debiasing (Bolukbasi et al., 2016) method to pro-
duce a debiased version of GloVe embeddings.
GN-GloVe: preserves gender information in cer-
tain dimensions of embeddings (Zhao et al.,
2018b).
GP(GloVe) and GP(GN): aims to remove gender
biases from pre-trained word embeddings GloVe

1http://download.wikipedia.com/zhwiki
2https://github.com/fxsjy/jieba
3http://tool.httpcn.com/zi/

and GN-GloVe (Kaneko and Bollegala, 2019).
The above three models all rely on additional

labeled seed words including feminine, masculine,
gender-neutral, and stereotype word lists. We trans-
late their original word lists and adapt them to our
Chinese domain. Namely, we add 22 out of 24-
word pairs in the test dataset into the supplementary
data.

To compare our model with other structure-
based Chinese embedding models, we include the
performance of other models that also incorpo-
rate component information: CWE is a character-
enhanced word embedding model presented in
Chen et al. (2015); MGE and JWE are multi-
granularity embedding model that make full use
of word-character-radical composition (Yin et al.,
2016; Yu et al., 2017); RECWE is a radical en-
hanced word embedding model (Chen and Hu,
2018). These baselines include radical informa-
tion in the word embedding construction pro-
cess, but also take other information sources such
as character-level information into consideration,
which diminishes the importance and effectiveness
of gender-related radicals. The purpose of this com-
parison is to demonstrate that existing structure-
based Chinese word embedding models still suffer
from gender bias problems.

4.3 Implementation Details

For all models, we use the same parameter settings.
Following Yu et al. (2017), we set the word vector
dimension to 200, the window size to 5, the training
iteration to 100, the initial learning rate to 0.025,
and the subsampling parameter to 10−4. Words
with a frequency of less than 5 were ignored during
training. We used 10-word negative sampling for
optimization. The whole training process takes
about six hours.

5 Experimental Result

5.1 Evaluating Debiasing Performance

CSemBias Dataset. To evaluate debiasing per-
formance of our model, we come up with a new
dataset named CSemBias (Chinese SemBias).
Concretely, we hire three native Chinese speakers
to translate the original English SemBias (Zhao
et al., 2018b) dataset to the Chinese version. Each
instance in CSemBias consists of four word pairs:
a gender-definition word pair (Definition; e.g., “神
父-修女(priest-nun)”), a gender-stereotype word
pair (Stereotype; e.g., “医生-护士(doctor-nurse)”)
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Embeddings
CSemBias-subset CSemBias

Definition ↑ Stereotype ↓ None ↓ Definition ↑ Stereotype ↓ None ↓
GloVe 40.0 37.5 22.5 49.1 31.4 19.5
Word2vec 47.5 30.0 22.5 72.5 17.7 9.8
CWE 45.5 27.5 27.0 57.3 25.2 17.5
JWE 45.0 25.0 30.0 52.3 25.9 21.8
RECWE 50.0 25.0 25.0 60.4 21.4 18.2
MGE 57.5 32.5 10.0 63.6 30.7 5.7
Hard-GloVe 17.5 57.5 25.0 73.6 15.7 10.7
GN-GloVe 17.5 50.0 32.5 92.5 4.5 3.0
GP(GloVe) 15.0 52.5 32.5 71.1 16.4 12.5
GP(GN) 12.5 50.0 37.5 90.4 7.3 2.3
Radical-added CGE 82.5†∗ 15.0†∗ 2.5†∗ 93.4†∗ 3.9†∗ 2.7†∗
Radical-enhanced CGE 75.0†∗ 17.5†∗ 7.5†∗ 86.8†∗ 10.0†∗ 3.2†∗

Table 2: Prediction accuracies for gender relational analogies. † and ∗ indicate statistically significant differences
against Word2vec and Hard-GloVe respectively.

Model Wordsim-240 Wordsim-295

GloVe 0.5078 0.4419
Word2vec 0.5009 0.5985
Hard-GloVe 0.5046 0.4378
GN-GloVe 0.5026 0.4400
GP(GloVe) 0.4959 0.4451
GP(GN) 0.4959 0.4451
Radical-added CGE 0.5120 0.5875
Radical-enhanced CGE 0.5067 0.5821

Table 3: Results on word similarity evaluation.

and two other word-pairs that have similar mean-
ings but not a gender relation (None; e.g., “狗-
猫(dog-cat)”, “茶杯-盖子(duc-lid)”). CSemBias
contains 20 gender-stereotype word pairs and 22
gender-definitional word pairs, and we use their
Cartesian product to generate 440 instances. In the
annotation process, for the translatable words, the
annotators obtain the same translation results to be
included in CSemBias. For untranslatable words,
each annotator comes up with a Chinese word be-
longing to the same category, and they decide the
final word together.

Examples are shown in Table 1. Since some
of the baselines follow the supervised style, we
split the CSemBias into training and test datasets.
Among the 22 gender-definitional word pairs, 20-
word pairs are used in the training, and the left 2
pairs are used for the test dataset. We name the out-
of-domain test dataset as CSemBias-subset.

Debias Evaluation. To study the quality of
the gender information present in each model,
we follow Jurgens et al. (2012) to use the anal-
ogy dataset, CSemBias, with the goal to iden-
tify the correct analogy of “he- she” from four
pairs of words. We measure relational similarity

between (他(he),她(she)) word-pair and a word-
pair (a, b) in CSemBias using the cosine similar-
ity between the

# »

he − #    »

she gender directional vec-
tor and a⃗ − b⃗ directional vector. We select the
word-pair with the highest cosine similarity with
# »

he − #    »

she as the predicted answer. If the trained
embeddings are gender-neutral, the percentage of
gender-definitions is expected to be 100%.

From Table 2, we can see our models achieve
the best performances on both datasets. In
terms of CSemBias-subset, component-based
Chinese word embedding models achieve better
performance than simple GloVe or Word2vec,
which demonstrates that component information
is indeed useful in alleviating gender bias. To
our surprise, debias models perform poorly on
CSemBias-subset, indicating that they do not
generalize well to out-of-domain tests. Comparing
the performances on CSemBias-subset and
CSemBias, we can find that the performance of
supervised baseline models highly relies on labeled
gender-related word sets. As for our model, both
Radical-added CGE and Radical-enhanced CGE
achieve comparable and even better performance
than the state-of-the-art GN-GloVe model and per-
form significantly better than Hard-GloVe. Radical-
added CGE outperforms Radical-enhanced CGE
by a small margin, because it directly stores radi-
cal information in word embedding, emphasizing
gender information explicitly. Since both of our
models are unsupervised, the result means that the
radical semantic information in Chinese is espe-
cially useful for alleviating gender discrimination,
and our models can successfully utilize such infor-
mation. We use the Clopper-Pearson confidence
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intervals following Kaneko and Bollegala (2019)
to do the significance test.

5.2 Preservation of Word Semantics

Apart from examining the quality of the gender
information present in each model, it is also im-
portant that other information that is unrelated to
gender biases is preserved. Otherwise, the perfor-
mance of downstream tasks that use these embed-
dings might be influenced.

Semantic Similarity Measurement. This task
evaluates the ability of word embedding by its
capacity of uncovering the semantic relatedness
of word pairs. We select two different Chinese
word similarity datasets, i.e., Wordsim-240 and
Wordsim-295 provided by Chen et al. (2015).
Wordsim-240 contains 240 pairs of Chinese words
and their corresponding human-labeled similarity
scores, and the same is true for Wordsim-295. Pre-
vious work (Kaneko and Bollegala, 2019) noted
that there exist gender-biases even in the English
word similarity test dataset. However, we con-
firm that no stereotype examples exist in Chinese
Wordsim-240 and wordsim-295. The similarity em-
bedding score for a word pair is computed as the
cosine similarity of their embeddings. We com-
pute the Spearman correlation (Myers et al., 2010)
between the human-labeled scores and similarity
scores computed by embeddings. Higher correla-
tion denotes better quality. From Table 3, we can
see that Radical-added CGE obtains the best per-
formance on Wordsim-240 dataset, outperforming
the best baseline Word2vec by 0.0111. A possible
reason is that radical information is also useful in
semantic similarity tests. Generally, two CGE mod-
els perform comparable to Word2vec, indicating
that information encoded in Word2vec is preserved
while stereotype gender bias is removed.

Analogy Detection. This task examines the
quality of word embedding by its ability to dis-
cover linguistic regularities between pairs of words.
Take the tuple “罗马(Rome):意大利(Italy)-柏
林(Berlin):德国(Germany)”, the model can answer
correctly if the nearest vector representation to
#        »

Italy − #          »

Rome+
#             »

Berlin among all words except
Rome, Italy, and Berlin. More generally, given an
analogy tuple “a : b − c : d”, the model answers
the analogy question “a : b − c :?” by finding x
that:

arg max
x̸=a,x̸=b,x̸=c

cos(
#»

b − #»a + #»c , #»x ) (9)

Model Total Capital State Family

GloVe 0.7846 0.8655 0.9257 0.4926
Word2vec 0.7954 0.8493 0.8857 0.6029

Hard-GloVe 0.7563 0.9099 0.8571 0.3088
GN-GloVe 0.7794 0.9114 0.8857 0.3824
GP(GloVe) 0.7633 0.8715 0.9029 0.4044
GP(GN) 0.7740 0.8996 0.8457 0.4154
Add-CGE 0.7625 0.8400 0.7829 0.4963
Enh-CGE 0.7794 0.8405 0.8914 0.5551

Table 4: Results on word analogy reasoning.

We use the same dataset as in (Yu et al., 2017),
which consists of 1,124 tuples of words and each
tuple contains 4 words. There are three categories
in this dataset, i.e., “Capital” (677 tuples), “State”
(175 tuples), and “Family” (272 tuples).

The percentage of correctly solved analogy ques-
tions is shown in Table 4. We can see that there is
no significant degradation of performance in our
model and debias baselines. Specifically, Radical-
enhanced CGE performs better than Radical-added
CGE. One possible reason is that, in Capital and
State related words, the semantic meanings can not
be directly revealed by radicals.

6 Conclusion

In this paper, we proposed two methods for unsu-
pervised training in Chinese gender-neutral word
embedding by emphasizing gender information
stored in Chinese radicals in explicit and implicit
ways. Our first model directly incorporates radical
embedding in its word embedding, and the second
one implicitly utilizes radical information. Experi-
mental results show that our unsupervised method
outperforms the supervised debiased word embed-
ding models without sacrificing the functionality
of the embedding model.

7 Bias Statement

In this paper, we study stereotypical associations
between male and female gender and professional
occupations in contextual word embeddings. We
regard a system as a biased system if the word
embeddings of a specific gender are more related
to certain professions. When such representations
are used in downstream NLP applications, there is
an additional risk of unequal performance across
genders (Gonen and Webster, 2020). We believe
that the observed correlations between genders and
occupations in word embeddings are a symptom of
an inadequate training process, and decorrelating
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genders and occupations would enable systems to
counteract rather than reinforce existing gender
imbalances.

In this work, we focus on evaluating the binary
gender bias performance. However, gender bias
can take various formats, and we are looking for-
ward to evaluating the bias in Chinese word embed-
dings by various methods.
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Abstract

Pre-trained word embedding models are eas-
ily distributed and applied, as they alleviate
users from the effort to train models themselves.
With widely distributed models, it is impor-
tant to ensure that they do not exhibit unde-
sired behaviour, such as biases against popu-
lation groups. For this purpose, we carry out
an empirical study on evaluating the bias of
15 publicly available, pre-trained word embed-
dings model based on three training algorithms
(GloVe, word2vec, and fastText) with
regard to four bias metrics (WEAT, SEMBIAS,
DIRECT BIAS, and ECT). The choice of word
embedding models and bias metrics is moti-
vated by a literature survey over 37 publications
which quantified bias on pre-trained word em-
beddings. Our results indicate that fastText
is the least biased model (in 8 out of 12 cases)
and small vector lengths lead to a higher bias.

1 Introduction

Word embeddings are a powerful tool and are ap-
plied in variety of Natural Language Processing
tasks, such as text classification (Aydoğan and
Karci, 2020; Alwehaibi and Roy, 2018; Jo and
Cinarel, 2019; Bailey and Chopra, 2018; Rescigno
et al., 2020) and sentiment analysis (Araque et al.,
2017; Rezaeinia et al., 2019; Fu et al., 2017; Ren
et al., 2016; Tang et al., 2014). However, analo-
gies such as “Man is to computer programmer as
woman is to homemaker” (Bolukbasi et al., 2016a)
contain worrisome biases that are present in soci-
ety and hence embedded in language. In recent
years, numerous studies have attempted to exam-
ine the fairness of word embeddings by proposing
different bias metrics (Caliskan et al., 2016; Garg
et al., 2018; Sweeney and Najafian, 2019; Manzini
et al., 2019; Dev et al., 2019), and comparing them
(Badilla et al., 2020).

The quality of word embedding models differs
depending on the task and training corpus used.

Due to the relatively expensive costs, construct-
ing large-scale labelled datasets is a huge barrier
for NLP applications, notably for syntax and se-
mantically related tasks (Qiu et al., 2020). Recent
research has shown that by using pre-trained word
embedding models, trained on a large corpus, con-
siderable performance gains on various NLP tasks
can be achieved (Qiu et al., 2020; Erhan et al.,
2010). A number of studies (Mikolov et al., 2013;
Pennington et al., 2014; Bojanowski et al., 2017)
have published these embeddings learned from
large text corpora which are versatile enough to be
used in a variety of NLP tasks (Li and Yang, 2018).
Despite their widespread use, many researchers
use word embeddings without performing an in-
depth study on their characteristics; instead, they
utilised default settings that come with ready-made
word embedding toolkits (Patel and Bhattacharyya,
2017). On top of that, these pre-trained models are
susceptible to inheriting stereotyped social biases
(e.g., ethnicity, gender and religion) from the text
corpus they are trained on (Caliskan, 2017; Garg
et al., 2018; Vidgen et al., 2021) and the researchers
building these models (Field et al., 2021).

Moreover, word embedding models are sensi-
tive to a number of parameters, including corpus
size, seeds for random number generation, vector
dimensions, etc. (Borah et al., 2021). According
to Levy et al. (2015) changes in parameters, are re-
sponsible for the majority of empirical differences
between embedding models. As a result, there
has been an increasing interest among researchers
to investigate the impact of parameters on word
embedding model properties (e.g., consistency, sta-
bility, variety, and reliability) (Borah et al., 2021;
Chugh et al., 2018; Dridi et al., 2018; Hellrich and
Hahn, 2016; Pierrejean and Tanguy, 2018; Wend-
landt et al., 2018; Antoniak and Mimno, 2018).
However, much uncertainty still exists about the
relation between word embedding parameters and
its fairness. With the in-depth investigation of fair-
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ness, we hope that this research will lead to a more
directed and fairness-aware usage of pre-trained
word embeddings. Therefore, this study investi-
gates the performance of pre-trained word embed-
ding models with respect to multiple bias metrics.
Furthermore, the impact of each pre-trained word
embedding model’s vector length on the model’s
fairness is explored. We investigate 15 different
scenarios in total as a combination of model, train-
ing corpus, and parameter settings. We make the
scripts used to determine the fairness of pre-trained
word embedding models publicly available.1

Bias statement. Word embeddings are used
to group words with similar meanings (i.e., gen-
eralise notions from language) (Goldberg and
Hirst, 2017). However, word embedding mod-
els are prone to inherit social biases from the
corpus they are trained upon. The fundamen-
tal concern is that training a system on unbal-
anced data may lead to people using these sys-
tems to develop inaccurate, intrinsic word associ-
ations, thus propagating biases (Costa-jussà and
de Jorge, 2020). For example, stereotypes such
as man : woman :: computer programmer :
homemaker in word2vec trained on news text
can be found (Bolukbasi et al., 2016a). If such
an embedding is used in an algorithm as part
of its search for prospective programmers, docu-
ments with women’s names may be wrongly down-
weighted (Jurafsky and Martin, 2020).

Our research helps practitioners to make an in-
formed choice of fair word embedding models, in
particular pre-trained models, for their application
with regards to intrinsic biases (i.e., gender, race,
age).

2 Background

It has been discovered that word embeddings do
not only reflect but also have the tendency to am-
plify the biases present in the data they are trained
on (Wang and Russakovsky, 2021) which can lead
to the spread of unfavourable stereotypes (Zhao
et al., 2017). The implicit associations which are a
feature of human reasoning are also encoded by em-
beddings (Greenwald et al., 1998; Caliskan et al.,
2016). Using the Implicit Association Test (IAT),
Greenwald et al. (1998) reported that people in the
United States demonstrated to link African Amer-
ican names with bad connotations more than Eu-

1https://figshare.com/s/
23f5b7164e521cf65fb5

ropean American names, female names with art
related words and male names with math related
words. In 2016, Caliskan et al. (2016) used GloVe
vectors and cosine similarity to recreate IAT and
discovered that African American names like Ja-
mal and Tamika showed higher cosine similarity
with unpleasant words like abuse and terrible. On
the contrary, European American names such as
Matthew and Ann had a greater cosine similarity
with pleasant terms such as love and peace. These
are an example of representational harm where a
system causes harm that is demeaning some social
groups (Blodgett et al., 2020; Crawford, 2017).

In the context of word embeddings, it is not only
of importance to show that bias exists, but also to
determine the degree of bias. For this purpose, bias
metrics can be used. Bias metrics can be applied
either to a single word, a pair of words, or an entire
list of words. Percent Male Neighbours (PMN)
(Gonen and Goldberg, 2019) is a bias metric that
operates on a single word, where one could see
the percentage of how many male-gendered words
surrounded a target word. For instance, Badilla
et al. (2020) discovered that using PMN, 16% of
the words around nurse are male-gendered words.
However, when engineer is the target term, 78% of
words surrounding it are male-gendered.

Moreover, Bolukbasi et al. (2016a) sought to
measure bias by comparing the embeddings of a
pair of gender-specific terms to a word embedding.
The authors introduced DIRECT BIAS, in which
a connection is calculated between a gender neu-
tral word (e.g., nurse) and an obvious gender pair
(e.g., brother− sister). They also took into account
gender-neutral word connections that are clearly
derived from gender (i.e., INDIRECT BIAS). For
instance, female associations with both receptionist
and softball may explain why the word receptionist
is significantly closer to softball than football.

Similarly, SEMBIAS (Zhao et al., 2018) also uses
word pairs to evaluate the degree of gender bias in
a word embedding. SEMBIAS identifies the correct
analogy of he−she in a word embedding according
to four pairs of words: a gender definition word pair
(e.g., waiter − waitress), a gender-stereotype word
pair (e.g., doctor − nurse) and two other pairs of
words that have similar meanings (e.g., dog − cat,
cup − lid).

In addition, Word Embedding Association Test
(WEAT) (Caliskan et al., 2016; Sweeney and Na-
jafian, 2019) determines the degree of association

130



between lists of words (target and attribute words),
to automatically assess biases emerging from word
embeddings. A target word set is a collection of
words that represent a specific social group and
are used to assess fairness (e.g., Muslims, African
American, men). While an attribute word set is a
set of words denoting traits, characteristics, and
other things that can be used to show a bias toward
one of the targets (e.g., career vs family).

Another significant aspect of these metrics is
that there is lack of a clear relationship between
them (Badilla et al., 2020). They function with
diverse inputs, resulting in incompatibility between
the outputs. As a result, a number of studies began
to examine the use of word embedding fairness
frameworks, such as Embeddings Fairness Evalua-
tion Framework (WEFE) (Badilla et al., 2020) and
Fair Embedding Engine (FEE) (Kumar and Bhotia,
2020).

3 Paper Selection

The aim of paper selection is to gather published
work that refers to word embedding models and
metrics used to evaluate the fairness of word em-
beddings. Following that, we choose the most com-
monly used pre-trained word embedding models
and bias metrics to support our experiments. Due
to the scope and recent emergence of this topic,
we conduct a comprehensive literature review ac-
cording to guidelines by Kitchenham (2004). The
selection starts with searching for the relevant pub-
lications and then extracts pertinent information.
Below, we discuss our search methodology in de-
tail, starting with preliminary search, defining key-
words, repository search, followed by selecting
relevant papers based on the inclusion criteria and
snowballing.

3.1 Search Methodology

3.1.1 Preliminary Search
A preliminary search was carried out prior to sys-
tematically searching online repositories. This
search is particularly useful in understanding the
field and the extent to which fairness of word em-
beddings is covered in previous studies. The results
were used to determine keywords (Table 1) which
then guided the repository search.

3.1.2 Repository Search
Following the preliminary search, a search on the
online libraries of six widely known repositories,

Category Keywords

Word embedding model word embedding, word embedding model,
pre trained word embedding model,
pre-trained word embedding

Bias or Fairness fairness, fairness metrics, bias, bias metric

Table 1: Keywords defined from the preliminary search.

namely, ACM Digital Library, arXiv, IEEE Xplore,
Google Scholar, ScienceDirect, and Scopus, was
conducted. Notable, Google Scholar contains pub-
lications from the ACL Anthology. 2 The search
took place on 8 June, 2021. Unlike Hort et al.
(2021), this search was not restricted by year. How-
ever, prior to commencing the search, an agreement
was reached on the specific data field used in the
search of each repository, thereby limiting it to the
specific parts of a document record. Appendix A
shows the data fields used during this search. In
particular, the repository search investigates the
combination of each keyword pair among the two
categories (as shown in Table 1).

3.1.3 Selection
We evaluate the following inclusion criteria to en-
sure that the publications found during the search
are relevant to the topic of fairness of pre-trained
word embeddings:

• The publication investigates the fairness of
pre-trained word embeddings;

• The publication describes the specific metric
or measurement of assessing the fairness of
word embeddings;

• The studied metrics are intrinsic, i.e., measur-
ing bias directly in word embedding spaces
(Goldfarb-Tarrant et al., 2021a);

• The studied word embeddings are in English.

To determine if the publications met the inclu-
sion criteria, we manually analysed each publica-
tion following the process of Martin et al. (Martin
et al., 2017):

1. Title: To begin, all publications with titles
that clearly do not meet our inclusion criteria
are omitted;

2. Abstract: Second, every title-selected publi-
cation’s abstract is examined. At this stage,
publications whose abstracts do not fit the in-
clusion requirements are eliminated;

2https://aclanthology.org/

131



ACM arXiv GS IEEE SD Scopus

Hits 21 94 19 64 30 58
Title 18 88 19 24 8 47
Abstract 12 84 19 12 2 34
Body 2 28 3 0 0 4

Total 37

Table 2: Repository search results.

3. Body: Publications that have passed the first
two steps are then reviewed in full. In case the
material does not meet the inclusion criterion
or contribute to the survey, they are excluded.

The number of publications gathered from on-
line repositories was reduced by removing the du-
plicates and applying both the aforesaid process
and inclusion criteria. The first and second au-
thor participated in this process, and differences
were discussed until an agreement was made. In
the section 3.3, we investigate the set of relevant
publications as the result of this paper selection.

3.1.4 Snowballing
After selecting a set of relevant papers from the
repository search, one level of backwards snow-
balling (Wohlin, 2014) was done to examine their
references. It entails reviewing the bibliographies
of selected publications, determining whether they
are relevant, and adding them to the list.

3.2 Selected Publications
The results of the repository search are shown in
Table 2. The first column contains the six online
repositories mentioned in Section 3.1.2, in which
Google Scholar is abbreviated with GS and Science
Direct is abbreviated with SD. The overall number
of publications found using the keywords (Table 1)
and filters (Appendix A) provided is shown in the
first row, while the number of relevant publications
filtered based on the paper title, abstract, and body
is shown in the last three rows. In addition to the 37
publications retrieved from the repository search,
we considered 7 publications from a preliminary
search and 1 additional from snowballing.

3.3 Results
Through a comprehensive search, this study looked
at the current literature on the fairness of pre-
trained word embeddings. In total, we compiled
a list of 23 distinct bias metrics that were used to
evaluate the fairness of pre-trained word embed-
dings. It is worth noting that a publication might
use multiple pre-trained models and bias metrics

(Schlender and Spanakis, 2020; Spliethöver and
Wachsmuth, 2020; Friedrich et al., 2021; Wang
et al., 2020; Vargas and Cotterell, 2020; May et al.,
2019; Dev et al., 2020). The more detailed expla-
nation of the result is discussed in the following
sections.

3.3.1 The most frequently used pre-trained
static word embedding model

One of the goals of the paper selection was to ex-
tract the most relevant pre-trained word embed-
ding models from the many that have been stud-
ied. While recent research on contextual embed-
dings has proven immensely beneficial, static em-
beddings remain crucial in many situations (Gupta
and Jaggi, 2021). Many NLP applications funda-
mentally depend on static word embeddings for
metrics that are designed non-contextual (Shoe-
mark et al., 2019), such as examining word vector
spaces (Vulic et al., 2020) and bias study (Gonen
and Goldberg, 2019; Kaneko and Bollegala, 2019;
Manzini et al., 2019). Furthermore, according to
Strubell et al. (2019), the computational cost of
employing static word embeddings is often tens
of millions of times lower than the cost of using
contextual embedding models (Clark et al., 2020),
which is significant in terms of NLP models finan-
cial and environmental costs (Strubell et al., 2019).
Therefore, we focus our proceeding investigation
to static models. The number of papers that have
looked into fairness on a pre-trained static word
embedding model is shown in Figure 1a.

It is apparent from this chart that pre-trained
model GloVe is the most popular in this research
field. The second and third most frequently used
models are word2vec and fastText, respec-
tively. Appendix C Table 7 lists all seven distinct
pre-trained word embedding models we found dur-
ing our search.

3.3.2 The most frequently used bias metrics
The paper selection’s next aim was to select the
most commonly used bias metrics from among
the numerous that have been used to examine the
fairness of a pre-trained word embedding model.
23 metrics were gathered and sorted based on the
number of papers that used them.

To minimise space, bias metrics that have only
been utilised in one study have been labelled as
Others. As can be seen from Figure 1b, WEAT is
by far the most prevalent bias metric, with 21 out
of 32 of the publications using it to quantify bias
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(a) Collected pre-trained static word embed-
ding models.

(b) Collected bias metrics.

Figure 1: Publications investigating fairness on pre-
trained static word embedding model

in pre-trained word embeddings. The second most
used metric is SEMBIAS which was used by 4 out
of 32 publications. In addition, we found 5 bias
metrics which were used by 2 out of 32 publica-
tions: NEIGHBOURHOOD METRIC, DIRECT BIAS,
DOUBLE BIND, ABW STEREOTYPE and ECT.
Appendix C Table 8 lists the detailed information
for these metrics including sixteen other metrics
that were only utilised in one research.

4 Empirical Study Design

4.1 Research Questions

The answer to the following research questions
is sought to raise awareness on biased behaviour
in commonly used pre-trained word embedding
models:

RQ1 How do pre-trained word embeddings per-
form with respect to multiple fairness mea-
sures?

A series of experiments were carried out to
better understand how pre-trained word em-
beddings perform when subjected to differ-
ent fairness measures. The most commonly
used bias metrics (WEAT, SEMBIAS, DI-
RECT BIAS, and ECT) were used to assess
the fairness of the three most popular pre-
trained embeddings: GloVe, word2vec,

and fastText (see Sections 3.3.1 and 3.3.2).
Fairness here refers to the absence of bias in
a word embedding model; if the bias is high,
the degree of fairness is low, and vice versa.
Hence, we examined the most fair embedding
after the bias values were acquired.

RQ2 How does the vector affect word embedding
fairness?

To investigate the effect of vector length on
the fairness of pre-trained word embedding
models, we compare embeddings trained on
the same corpus. Therefore, we investigate
GloVe Twitter and GloVe Wiki Gigaword
to determine the effect.

4.2 Design Choice

4.2.1 Pre-Trained Embeddings
We performed experiments using publicly available
pre-trained word embeddings. Please refer to Ta-
ble 3 for the details about the embeddings. These
embeddings are provided by the three most used
embedding models described in Section 3.3.1.

GloVe was trained under three different corpora,
resulting in 10 pre-trained word embeddings: four
embeddings from 2 billion tweets of Twitter cor-
pus, four embeddings from 6 billion tokens of
Wikipedia and Gigaword corpus, two embeddings
each from 42 billion and 840 billion tokens of Com-
mon Crawl corpus. Pre-trained embeddings trained
on Twitter and Wikipedia + Gigaword corpus have
varying dimensionalities (i.e., vector length). We
also investigated a pre-trained word2vec embed-
ding model, which was trained on 3 billion tokens
on a Google News corpus with a vector length of
300. Finally, we evaluated four pre-trained em-
beddings from fastText, each with and without
subword information, on 16 billion tokens from
Wikipedia + UMBCWeb Base + statmt.org News
and 600 billion tokens from Common Crawl.

4.2.2 Bias Metrics
We evaluated the fairness of pre-trained word em-
beddings stated in Section 4.2.1 by focusing on 4
most frequently used and publicly available bias
metrics: WEAT, SEMBIAS, DIRECT BIAS, and
ECT. To ensure that we measure bias correctly,
we focus our evaluation on the metrics that have
been used at least twice and are implemented by
existing fairness frameworks (e.g., WEFE, FEE).
We explain each of these measures below.
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Model Corpus Token Vocabulary Format Vector Length File Size

GloVe

Twitter (2B tweets) 27B 1.2M uncased 25, 50, 100, 200 1.42 GB

Wikipedia 2014 + Gigaword 5 6B 400K uncased 50, 100, 200, 300 822 MB

Common Crawl
42B 1.9M uncased 300 5.03 GB
840B 2.2M cased 300 5.65 GB

word2vec Google News 3B ∼100B uncased 300 1.66 GB

fastText

Wikipedia 2017,
16B

1M cased 300 2.26 GB
UMBC Web Base and statmt.org News 1M + subword cased 300 2.26 GB

Common Crawl 600B
2M cased 300 4.51 GB
2M + subword cased 300 4.52 GB

Table 3: Pre-trained word embeddings learned on different sources provided by GloVe, word2vec, and
fastText.

In order to unveil bias, WEAT detects whether
there is a difference in the strength of association
between the two target sets (X , Y ) towards at-
tribute sets (A, B):

s(X,Y,A,B) =
∑

xϵX

sw(x,A,B)−
∑

yϵY

sw(x,A,B)

sw(w,A,B) = meanaϵAcos(
−→w ,−→a )−meanbϵBcos(

−→w ,
−→
b )

A and B are attribute sets of identical size.
s(X,Y,A,B) computes the test statistic and
sw(w,A,B) calculates the difference in similarity
of attribute sets to a word w. We focused only on
the degree of bias (i.e., we do not consider the direc-
tion of bias) and thus only used absolute bias scores
for metrics such as WEAT. We utilised WEFE for
WEAT experiments and we applied 7 out of 10
WEAT tests provided by Caliskan et al. (2016). We
only selected tests that are concerned with protec-
tive attributes concerning human biases (i.e., race,
gender, and age). We categorised 7 WEAT tests
as: racial bias (T3, T4, and T5); gender bias (T6,
T7, and T8); and age bias (T10). Please refer to
Appendix B for more information about target and
attribute sets.

We also evaluated the degree of bias in pre-
trained word embeddings by using the SEMBIAS

metric provided in FEE. Zhao et al. (2018) de-
veloped this analogous dataset with 20 gender-
stereotype word pairs and 22 gender-definitional
word pairs, resulting in 440 instances using their
Cartesian product. Each instance consists of four-
word pairs: a gender definition word pair or Defini-
tion (e.g., waiter − waitress), a gender-stereotype
word pair or Stereotype (e.g., doctor − nurse), and
two none-type word pairs or None (e.g., dog − cat,
cup − lid). The bias according to SEMBIAS is then

measured by iterating over each instance and de-
termining the distance vector of each of the four
word pairs. The percentage of times that each word
pair type achieves the highest similarity to he− she
based on their distance vector is measured, with a
“Definition” percentage close to 1 is desirable.

We applied DIRECT BIAS (Bolukbasi et al.,
2016a) to measure bias with regards to a list gender
neutral words N and the gender directions g:

DirectBias =
1

|N |
∑

wϵN

|cos(−→w , g)|c

The parameter c determines how strict the bias mea-
surement is. We conducted the experiment by us-
ing DIRECT BIAS that has been implemented in
FEE with a 320 profession word list3 provided by
Bolukbasi et al. (2016a) and c = 1. Lower DIRECT

BIAS scores indicate that a word embeddings is
less biased.

The EMBEDDING COHERENCE TEST

(ECT) (Dev and Phillips, 2019) computes
gender bias based on the rank of the nearest
neighbors of gendered word pairs ε (e.g., “she” -
“he”). These gendered word pairs, consisting of
female and male terms, are averaged, such that two
mean embedding vectors m and s remain (one for
female terms and one for male terms). Given a
list of words affected with indirect bias P , in this
case a list of professions proposed by Bolukbasi
et al. (Bolukbasi et al., 2016a), the similarity of
each word to m and s is determined. The cosine
similarities are then replaced by rank order, and
given m and s, we receive two rank orders for
the words in P . Next, the Spearman Coefficient
is calculated once the ranks are compared. For
each word pair, ECT is optimised with a Spearman

3https://github.com/tolga-b/debiaswe
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Coefficient towards 1. Here, we experimented
with ECT that has been implemented in WEFE
using male and female names as target sets, and
professions as attribute set. All word list are
available in the ECT online repository.4

The measures used in this paper only examine
for particular bias types, not all of them. As a result,
these measures can only be used to indicate the
presence of these specific types of bias and cannot
be used to establish the absence of all biases.

5 Empirical Study Results

5.1 RQ1: Fair Pre-trained Word Embeddings

Table 4 reports the bias score obtained from the
experiment described in Section 4.1 together with
pre-trained embeddings and bias metrics chosen
in Section 4.2. Bold bias score indicates the best
score of the corresponding measure while arrows
next to the measure represent the interpretation of
the score: downward arrow means the lower the
value, the less biased an embedding is; upward
arrow means the higher the score, the less biased
an embedding is.

5.1.1 WEAT

The purpose of this experiment is to measure the
degree of association between target and attribute
words defined by Caliskan (2017) to assess bi-
ases emerging from the pre-trained word embed-
dings. From Table 4, it can be seen that pre-
trained fastText models resulted in the lowest
bias for tests concerned with racial bias, age bias,
and gender bias with gendered names involved.
fastText Wiki News scored the lowest on Test
3 and Test 4, whereas fastText Wiki News with
subword information scored the lowest on Test 5.
fastText Wiki News is also the least biased em-
bedding in terms of age bias (Test 10). Interestingly,
among all tests with respect to gender bias: Test 6,
Test 7, and Test 8, fastText only outperforms
other models on Test 6, particularly fastText
that has been trained under Common Crawl corpus
with subword information.

Turning now to WEAT tests with respect to gen-
der bias which use male and female terms as the at-
tribute words: Test 7 and Test 8. Closer inspection
of the Table 4 reveals that pre-trained embeddings
trained with GloVe model using Twitter corpus
with vector lengths of 200 and 100, outperform

4https://github.com/sunipa/
Attenuating-Bias-in-Word-Vec

other embeddings across the two tests, respectively.
Taken together, these results acquired from WEAT
tests suggest that fastText is the least biased
model for 5 out of the 7 WEAT tests.

5.1.2 SEMBIAS

This experiment is aimed at identifying the correct
analogy of he − she in various pre-trained word
embeddings according to four pairs of words de-
fined by Zhao et al. (2018). The results obtained
from the SEMBIAS experiment can be compared in
Table 4. It is expected to have a high accuracy for
Definitions and low accuracy for Stereotypes and
Nones.

This table is quite revealing in several ways.
First, all embeddings trained using fastText
outperform the other pre-trained embeddings.
fastText embeddings achieve high semantic,
definition scores above 86.8% while keeping stereo-
typical and none loss to a minimum, below 1%
and 3% respectively. Second, among the four em-
beddings trained with fastText, the one trained
with Common Crawl is shown to be the least bi-
ased. The percentage of Definition, Stereotype, and
None predictions achieved by this embeddings are
92.5%, 5% and 2.5%, respectively. Despite the fact
that fastText Wiki News with subword infor-
mation embeddings achieved the lowest percent-
age of None, the Stereotype prediction must not
be forgotten. Compared to the Stereotype predic-
tion of fastText Common Crawl, fastText
Wiki News with subword information embeddings
correctly classified 0.4% more words as a gender-
stereotype word pair, which makes it slightly more
biased.

Together, these results provide important in-
sights into how most word pairs in fastText
pre-trained embeddings are correctly classified as a
gender-definition word pair but only few word pairs
are correctly categorised as a gender-stereotype
word pair and gender unrelated word pairs. Also ac-
cording to these data, we can infer that fastText
model trained on the Common Crawl corpus gener-
ates the least biased pre-trained word embeddings.

5.1.3 DIRECT BIAS

DIRECT BIAS calculates the connection between
gender neutral words and gender direction learned
from word embeddings. One unanticipated find-
ing is that the word embeddings generated from
the GloVe model trained on Wiki Gigaword cor-
pus with vector length 300, is found to be the
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Pre-trained Embeddings
WEAT SemBias

DB↓ ECT↓
T3↓ T4↓ T5↓ T6↓ T7↓ T8↓ T10↓ D↑ S↓ N↓

GloVe
twitter-25 3.753 1.838 1.540 0.818 0.043 0.091 0.329 0.178 0.431 0.391 0.482 0.965
twitter-50 2.564 1.432 1.184 0.736 0.212 0.180 0.354 0.322 0.397 0.281 0.354 0.945
twitter-100 2.189 1.215 1.381 0.654 0.060 0.004 0.360 0.508 0.300 0.192 0.140 0.900
twitter-200 1.674 0.918 1.161 0.537 0.035 0.063 0.224 0.589 0.278 0.133 0.037 0.916
wiki-gigaword-50 1.893 0.872 1.331 2.317 0.468 0.403 0.320 0.698 0.216 0.133 0.127 0.763
wiki-gigaword-100 1.553 0.971 1.434 1.732 0.366 0.253 0.335 0.750 0.182 0.086 0.135 0.809
wiki-gigaword-200 1.443 0.828 1.114 1.494 0.275 0.335 0.200 0.779 0.168 0.052 0.028 0.769
wiki-gigaword-300 1.279 0.848 1.069 1.319 0.243 0.319 0.212 0.786 0.150 0.064 0.004 0.743
common-crawl-42B 1.828 0.894 0.949 0.738 0.260 0.235 0.213 0.805 0.125 0.070 0.627 0.889
common-crawl-840B 1.863 0.971 1.112 1.267 0.199 0.314 0.354 0.830 0.120 0.050 0.450 0.861

word2vec
google-news-300 0.454 0.453 0.338 1.252 0.225 0.293 0.049 0.827 0.134 0.038 0.082 0.733

fastText
crawl-300d-2M 0.639 0.328 0.545 0.505 0.221 0.301 0.326 0.925 0.050 0.025 0.108 0.692
crawl-300d-2M-sub 0.902 0.387 0.552 0.432 0.268 0.169 0.214 0.868 0.102 0.030 0.083 0.749
wiki-news-300d-1M 0.556 0.266 0.224 0.468 0.203 0.163 0.056 0.920 0.055 0.025 0.057 0.752
wiki-news-300d-1M-sub 0.428 0.142 0.304 0.438 0.198 0.110 0.026 0.925 0.054 0.020 0.035 0.744

Table 4: Bias scores obtained after applying four metrics to several pre-trained word embeddings.

least biased pre-trained embeddings with a score
of 0.004. This score confirms that the embeddings
have the least gender direction when the gender
neutral words being applied to it. Across all bias
metrics, DIRECT BIAS is the first one that generates
the best score for GloVe pre-trained embeddings.

5.1.4 ECT
Similar to WEAT, ECT measures the degree of
association between one attribute set and two target
sets described in Section 4.2.2. In accordance with
WEAT results, a pre-trained fastText model
was found to be the least biased. Particularly, the
fastText model that has been trained on the
Common Crawl corpus without subword informa-
tion, has the lowest bias score of 0.692. This score
reflects the lack of correlation of the mean vectors
distances between the male and female name sets
and the occupation words, which result in the small-
est presence of bias among all of the embeddings.
This result supports evidence from previous experi-
ment with SEMBIAS. The consistency may be due
to how both metrics aim to identify a gender bias
by utilising occupations as gender neutral words.

5.1.5 Overall
We can infer from these data that fastText pre-
trained word embeddings perform the best with
respect to three of the four most used bias met-
rics. According to SEMBIAS and ECT scores,
FastText Common Crawl is the least biased.
Using the same corpus but with addition of sub-
word information, the embeddings has the least
biased according to WEAT Test 6. Furthermore,

FastText Wiki News is least biased on WEAT
Test 5. In addition, the embeddings has the least
bias on WEAT Test 3, Test 4, and Test 10 while
including subword information.

5.2 RQ2: Effect of Vector Length on Fairness

The second RQ investigates the impact of parame-
ters on the fairness of pre-trained word embedding
models. We conduct experiments to bias in regards
to vector length.

Figure 2a and Figure 2d present the results ob-
tained from the analysis of WEAT scores with
respect to the vector length. On four of the seven
WEAT tests: Test 3, Test 4, Test 6, and Test 7 (after
50 dimension) there is a clear trend of decreasing
bias in GloVe Twitter with the rise value of vector
length (Figure 2a). On the other hand, Figure 2d
indicates that the bias in GloVe Wiki drops as the
vector length increases in four WEAT tests: Test 3,
Test 5 (after 100 dimension), Test 6, and Test 7. In
summary, 8 from 14 WEAT’s findings imply that
the greater the GloVe Twitter and GloVe Wiki
dimension, the less biased they are.

Turning now to the analysis on SEMBIAS scores,
it is apparent from Figure 2b and Figure 2e that the
fairness improves with the increase in the number
of dimensions. Note that in SEMBIAS, a high accu-
racy for Definitions and low accuracy for Stereo-
types and Nones are expected. That is why as
the dimension rises, the Definition’s accuracy in-
creases, but the Stereotype and None’s accuracy
decreases. Overall, this finding indicates that ac-
cording to SEMBIAS, words in GloVe Twitter and
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(a) WEAT scores for GloVe Twitter (b) SEMBIAS scores for GloVe Twitter (c) DIRECT BIAS and ECT scores for
GloVe Twitter

(d) WEAT scores for GloVe Wiki Giga-
word

(e) SEMBIAS scores for GloVe Wiki Gi-
gaword

(f) DIRECT BIAS and ECT scores for
GloVe Wiki Gigaword

Figure 2: Bias scores with respect to the vector length.

GloVe Wiki embeddings are more likely to be cor-
rectly identified as gender-definition word pair but
less likely to be correctly classified as a gender-
stereotype word pair and gender unrelated word
pairs if they were trained with large vector lengths.

The next analysis of this experimental result
is concerned with how the DIRECT BIAS scores
would be affected by the vector length. Figure 2c
shows that following the increase of vector length
in GloVe Twitter, we observe a decrease in the
bias score. In Figure 2f, bias score of GloVe Wiki
Gigaword increases from lower dimensions 50 to
100 but decreases beyond dimension 100. These
results show that from four vector lengths used in
each of the two corpora, most of them support the
hypothesis that the larger dimension used resulted
in smaller presence of gender bias. The rise of bias
score of GloVe trained in Wiki Gigaword corpus
from 50 to 100 dimension is the only instance that
counters our hypothesis.

Lastly, Figure 2c shows a decrease in ECT score
as vector length increases in GloVe Twitter only
within dimensions of 25, 50, and 100. However,
between 100 and 200, the bias score increases by
0.016. In addition, Figure 2f illustrates that the dis-
covery of GloVe Wiki Gigaword in ECT is simi-
lar to that in DIRECT BIAS, that the bias increases
from lower dimensions 50 to 100 but rapidly de-
clines beyond dimension 100. Six of the eight

pre-trained embeddings examined in this investiga-
tion support the finding that fairness improves as
the number of dimensions increases.

Finally, most observations from the WEAT,
SEMBIAS, DIRECT BIAS, and ECT scores indicate
evidence for improved fairness in pre-trained word
embeddings when the number of dimensions is in-
creased. This result implies that lower dimension-
ality word embeddings are not expressive enough
to capture all word associations and analogies, and
that when the bias metric is applied to them, they
become more biased than embeddings with larger
dimensions.

6 Related Work

There has been a growing interest among re-
searchers to tackle bias in word embeddings, herein
we focus on previous work comparing different
models and their characteristics.

Lauscher and Glavaš (2019) evaluated embed-
ding space biases caused by four different models
and found that GloVe embeddings are biased ac-
cording to all 10 WEAT tests, while fastText
exhibits significant biases only for a subset of tests.
This finding broadly supports our finding where
all smallest WEAT scores belong to GloVe pre-
trained embeddings. However, their focus is dif-
ferent from our as their approach aims at under-
standing the consistency of the bias effects across
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languages, corpora, and embedding models.

Borah et al. (2021) compared the stability
of the fairness results to those of the word
embedding models used: fastText, GloVe,
and word2vec, all of which were trained on
Wikipedia. Among the three models, they dis-
covered that fastText is the best stable word
embedding model which results in the highest sta-
bility for its WEAT results. Badilla et al. (2020)
implemented their proposed fairness framework,
WEFE, by conducting case study where six pub-
licly available pre-trained word embedding models
are compared with respect to four bias metrics (e.g.,
WEAT, WEAT-ES, RND, RNSB). Consistent
with our finding, they discovered that fastText
rank first in WEAT.

Lauscher et al. (2019) proposed a general debi-
asing framework Debiasing Embeddings Implic-
itly and Explicitly (DEBIE). They used two bias
metrics: WEAT Test 8 and ECT to compare the
bias of CBOW, GloVe, and fastText trained in
Wikipedia. They observed that fastText is more
biased than GloVe in both metrics. While this con-
tradicts our observations, their study did not utilise
pre-trained models but manually trained them on
the same corpus.

Popović et al. (2020) demonstrated the viability
of their modified WEAT metric on three classes
of biases (religion, gender and race) in three dif-
ferent publicly available word embeddings with
vector length of 300: fastText, GloVe and
word2vec. Their findings yielded that before de-
biasing, fastText has the least religion and race
bias, while word2vec has the least gender bias.
However, one of the study’s discoveries opposes
our findings where word2vec does not have the
least gender bias. This difference may occur given
the fact that the authors collected word sets from a
number of different literature.

Furthermore, previous work considers the im-
pact of word embedding vector length on the per-
formance and the relation to fairness. Borah et al.
(2021) looked at how the length of the vectors used
in training fastText, GloVe, and word2vec
affected their stability. The models’ stability im-
proves as the vector dimensions grow larger. On
the other hand, Goldberg and Hirst (2017) found
that word embeddings with smaller vectors are bet-
ter at grouping similar words. This generalisation
means that word embeddings with shorter vector
lengths have a higher tendency to be biased. The

results of our empirical study, obtained using more
data and metrics, corroborate the above findings.

Much of the previous research has focused on
proposing and evaluating debiasing techniques,
modified metrics and fairness frameworks. There-
fore, our study makes a major contribution to the
research on fairness of word embeddings by em-
pirically comparing the degree of bias of the most
popular and easily accessible pre-trained word em-
beddings according to a variety of popular bias
metrics, as well as the impact of vector length in-
volved in the training process to its fairness.

7 Conclusion

The purpose of this study was to empirically as-
sess the degree of fairness exhibited by different
publicly available pre-trained word embeddings
based on different bias metrics. To this end, we
first analysed what are the most used pre-trained
word embeddings and bias metrics by conduct-
ing a comprehensive literature survey. The results
pointed out that the majority of the papers used
three word embedding models (namely GloVe,
word2vec, and fastText) and four bias met-
rics (namely WEAT, SEMBIAS, DIRECT BIAS,
and ECT). Our results revealed that the most fair
of the three pre-trained word embedding models
evaluated is fastText. We also found that while
using pre-trained embeddings, the influence of vec-
tor length on fairness must be carefully considered.

The scope of this study was limited in terms of
selecting word list used to apply bias metrics to the
word embeddings. We closely examined the earlier
studies that may have influenced bias scores. In the
future, we need a deeper analysis and explanation
of the numerous fairness tendencies discovered in
this study, such as the correlation with explicit gen-
der gaps and survey data (Friedman et al., 2019a,b),
and the extent to which the embeddings reproduce
bias (Blodgett et al., 2021). Moreover, the study
could be replicated by not only using pre-trained
word embeddings models, but manually training
models with different parameters on an identical
text corpus. Further study could also be conducted
to explore the fairness of contextual word embed-
dings (e.g., ELMo, Bert), the application bias in
word embeddings (Goldfarb-Tarrant et al., 2021b),
and bias in word embedding in languages with
grammatical gender (Zhou et al., 2019).
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Table 5: Data Fields Used during Repository Search

B WEAT Target and Attribute Sets

Test Target Sets Attribute Sets
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Table 7: Studies on Standard Static Word Embedding
Models.

Bias Metric References Year Venue

Word Embedding
Association Test (WEAT)

(Sutton et al., 2018)
(Lauscher et al., 2019)
(Lauscher and Glavaš, 2019)
(Tan and Celis, 2019)
(Karve et al., 2019)
(Gonen and Goldberg, 2019)
(Kurita et al., 2019)
(May et al., 2019)
(Ethayarajh et al., 2019)
(Schlender and Spanakis, 2020)
(Guo and Caliskan, 2021)
(Wang et al., 2020)
(Vargas and Cotterell, 2020)
(Lee, 2020)
(Popović et al., 2020)
(Du and Joseph, 2020)
(Shin et al., 2020)
(Dev et al., 2020)
(Zhang et al., 2020)
(Borah et al., 2021)
(Friedrich et al., 2021)

2018
2019
2019
2019
2019
2019
2019
2019
2019
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020
2021
2021

IDA
AAI
SemEval
NeurIPS
ACL
NAACL HLT
ACL
NAACL HLT
ACL
BNAIC
AAAI
ACL
EMNLP
Stanford
ISMIS
SBP-BRiMS
EMNLP
arXiv
AACL-IJCNLP
arXiv
AAAI

SemBias

(Kaneko and Bollegala, 2019)
(Shin et al., 2020)
(Kumar et al., 2020)
(Mishra, 2020)

2019
2020
2020
2020

ACL
EMNLP
TACL
CRCS

Neighbourhood Metric (Wang et al., 2020)
(Zhang et al., 2020)

2020
2020

ACL
AACL-IJCNLP

Direct Bias (Babaeianjelodar et al., 2020)
(Zhang et al., 2020)

2020
2020

WWW
AACL-IJCNLP

Double Bind (Tan and Celis, 2019)
(May et al., 2019)

2019
2019

NeurIPS
NAACL HLT

Angry Black Woman
(ABW) Stereotype

(Tan and Celis, 2019)
(May et al., 2019)

2019
2019

NeurIPS
NAACL HLT

ECT (Dev et al., 2020)
(Friedrich et al., 2021)

2020
2021 AAAI

Indirect Bias (Vargas and Cotterell, 2020) 2020 EMNLP

Equity Evaluation
Corpus (EEC) (Sweeney and Najafian, 2020) 2020 FAT

MAC (Schlender and Spanakis, 2020) 2020 BNAIC

RNSB (Schlender and Spanakis, 2020) 2020 BNAIC

Bias-by-projection (Yang and Feng, 2019) 2019 AAAI

Contextual Embedding
Association Test (CEAT) (Guo and Caliskan, 2021) 2020 AAAI

Sentence Embedding
Association Test (SEAT) (Kaneko and Bollegala, 2021) 2021 ACL

BAT (Friedrich et al., 2021) 2021 AAAI

IBT (Friedrich et al., 2021) 2021 AAAIAAAI

SQ (Friedrich et al., 2021) 2021 AAAI

RIPA (Zhang et al., 2020) 2020 AACL-IJCNLP

RND (Ghai et al., 2021) 2021 CHI EA

IAT (Du et al., 2020) 2020 EMNLP-IJCNLP

K-means Accuracy (Du and Joseph, 2020) 2020 SBP-BRiMS

SVM Accuracy (Du and Joseph, 2020) 2020 SBP-BRiMS

Correlation Profession (Du and Joseph, 2020) 2020 SBP-BRiMS

Table 8: Studies on Bias Metrics for Word Embeddings.
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Abstract

As the use of natural language processing in-
creases in our day-to-day life, the need to ad-
dress gender bias inherent in these systems
also amplifies. This is because the inherent
bias interferes with the semantic structure of
the output of these systems while performing
tasks in natural language processing. While
research is being done in English to quantify
and mitigate bias, debiasing methods in Indic
Languages are either relatively nascent or ab-
sent for some Indic languages altogether. Most
Indic languages are gendered, i.e., each noun
is assigned a gender according to each lan-
guage’s rules of grammar. As a consequence,
evaluation differs from what is done in English.
This paper evaluates the gender stereotypes in
Hindi and Marathi languages. The methodolo-
gies will differ from the ones in the English
language because there are masculine and fem-
inine counterparts in the case of some words.
We create a dataset of neutral and gendered
occupation words, emotion words and mea-
sure bias with the help of Embedding Coher-
ence Test (ECT) and Relative Norm Distance
(RND). We also attempt to mitigate this bias
from the embeddings. Experiments show that
our proposed debiasing techniques reduce gen-
der bias in these languages.

1 Introduction

Word embeddings are used in most natural lan-
guage processing tools. Apart from capturing se-
mantic information, word embeddings are also
known to capture bias in society (Bolukbasi et al.,
2016). While most research has been focused on
languages like English, less research has been done
on low-resource languages and languages that have
a grammatical gender (Zhou et al., 2019). A lan-
guage with grammatical has a gender associated
with every noun irrespective of whether the noun
is animate or inanimate, e.g., a river in Hindi has

∗First author

feminine gender. In contrast, words like writer
have masculine and feminine counterparts. This
gender association affects the pronouns, adjectives,
and verb forms used during sentence construction.
Grammatical genders in Hindi are masculine and
feminine. In Marathi, there additionally exists a
third neutral gender as well. Spoken by more than
600 million people, Hindi is the 3rd most spoken
language in the world. Marathi is the 14th most
spoken language with approximately 120 million
speakers 1. Given the expanse and the amount of
people speaking these languages, it is essential to
address the bias introduced by the computational
applications of these languages.

We create a dataset of occupations and emotions.
The occupation dataset consists of gendered and
neutral occupation titles. The emotion dataset has
words of different emotions like anger, fear, joy,
and sadness. First, we identify existing gender bias
by defining a subspace that captures the gender
information. There are several ways to find this
information. We use Principal Component Anal-
ysis (PCA) and Relational Inner Product Associa-
tion (RIPA) (Ethayarajh et al., 2019). We use the
existing metrics for evaluation: Embedding Coher-
ence Test (Dev and Phillips, 2019), Relative Norm
Distance (Garg et al., 2018). We modify these for-
mulas so that they are correctly applicable to these
gendered languages. We perform our experiments
on the FastText word embeddings.

Next, we mitigate the gender bias found by the
aforementioned using two approaches: Projection
and Partial Projection. In summary, the key contri-
butions of this paper are:

1. Dataset of emotions, and gendered and neutral
occupations in Hindi and Marathi.

2. Methods to quantify the bias present in Hindi
and Marathi word embeddings using the

1https://www.mentalfloss.com/article/
647427/most-spoken-languages-world
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above dataset.

3. Mitigate the bias through existing debiasing
techniques.

2 Related work

Previous work to quantify and measure bias was
done by Bolukbasi et al. (2016). They tried to find
out a gender subspace by using gender-definition
pairs. They proposed a hard de-biasing method that
identifies the gender subspace and tries to remove
its components from the embeddings.

The majority amount of research on gender bias
is being done in English, which is not gendered
(Stanczak and Augenstein, 2021). Languages like
Spanish or Hindi have a grammatical gender, i.e.,
every noun is assigned a gender. Zhou et al. (2019)
was one of the first papers to examine bias in lan-
guages with grammatical gender like French and
Spanish. They used a modified version of the Word
Embedding Association Test (WEAT) (Caliskan
et al., 2017) to quantify the bias.

Sun et al. (2019) suggested mitigation tech-
niques to remove gender bias like data augmen-
tation, gender-swapping, and hard de-biasing ac-
cording to the downstream task in NLProc.

Being low-resource languages, there is less re-
search done in languages like Hindi and Marathi.
Previous work in Indic Languages was done by Pu-
jari et al. (2019) where they built an SVM classifier
to identify the bias and classify it. The problem
with this method is that it needs a labeled gender
dataset beforehand to train the classifier. Recent
work by Ramesh et al. (2021) tries to find out bias
in English-Hindi machine translation. They imple-
ment a modified version of the TGBI metric based
on grammatical considerations for Hindi. TGBI
metric is used to detect and evaluate gender bias in
Machine Translation systems. Malik et al. (2021)
measure Hindi specific societal biases like religion
bias and caste bias along with gender bias.

3 Data

In Bolukbasi et al. (2016), the authors have com-
piled a list of professions in English and tried to
find bias in them. Similarly, we compile a list of
166 professions, each in Hindi and Marathi lan-
guages. We split the professions into two parts,
first is gender-neutral Pneu and the other is gen-
dered Pgen. Similarly, we create a list of words of
different emotions similar to the one in Kiritchenko

and Mohammad (2018) in Hindi and Marathi lan-
guages. The emotions are broadly classified into
four types: anger, fear, joy, and sadness.

We have verified this data with the help of 2 in-
dependent native speakers of these languages. We
also create pair of feminine and masculine seed
word pairs in both the languages to identify the
gender subspace. For example: queen, king. We
call them target words T . Target words for Hindi
Language is shown in figure 1. The dataset is avail-
able here 2

Figure 1: Example of seed words in Hindi and their
English translation

We test the bias on our data using FastText em-
beddings. FastText is a word embedding method
that extends the word2vec model. Instead of learn-
ing vectors for words directly, FastText represents
each word as an n-gram of characters. This helps
capture the meaning of shorter words and allows
the embeddings to understand suffixes and prefixes.
A skip-gram model is trained to learn the embed-
dings once the word has been represented using
character n-grams (Bojanowski et al., 2016).

Morphology is the field of linguistics that stud-
ies the internal structure of words. Morphologi-
cally rich languages refer to languages that contain
a substantial amount of grammatical information
(Comrie, 1999). Indic languages are morphologi-
cally rich because of the existence of a large num-
ber of different word forms. FastText embeddings
are the best choice for Indian Languages as they
are capable of capturing and integrating sub-word
information using character n-gram embeddings

2https://github.com/neeraja1504/
GenderBias_corpus
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during training (Kunchukuttan et al., 2020).

4 Methodology

4.1 Bias Statement
Various definitions of bias exist and vary in re-
search as explained in the paper (Blodgett et al.,
2020). Our work focuses on stereotypical asso-
ciations between masculine and feminine gender
and professional occupations and emotions in Fast-
Text word embeddings. The classic example of
"He is a doctor" and "She is a nurse" comes into
play here. It is especially harmful to the represen-
tation of minority communities, since these stereo-
types often end up undermining these communities
(Moss-Racusin et al., 2012). Downstream NLP ap-
plications learn from these stereotypes, and the risk
of discrimination on the basis of gender in this case
keeps seeping further into the system.

Our work tries to de-correlate gender with occu-
pation and emotions, which will help reduce bias
in these systems.

4.2 Quantifying bias for Occupations and
Emotions

We use the following methods to quantify the bias
before and after debiasing. Mgen is used for gen-
dered attributes like gendered occupations. Mneu is
used for neutral attributes like emotions and neutral
occupations. We use these two different methods
because our data has two different parts — gen-
dered and neutral.

4.2.1 For neutral occupations and emotions:
Mneu

1. ECT-n: Dev and Phillips (2019) use this test
to measure bias. We use the target word pairs
T , and the neutral attributes list Pneu and
emotions. We separate the target word pairs
into masculine and feminine-targeted words
respectively. For each of the pairs ~mi, ~fi in T
we create two means ~a1 and ~a2.

~a1 =
1

|M |
∑

~m∈M
~m (1)

~a2 =
1

|F |
∑

~f∈F

~f (2)

M are masculine word embeddings, F are
feminine word embeddings of the target word
pairs T . We then create two arrays, one with
the cosine similarity between the neutral word

embeddings and ~a1, the other with the neu-
tral word embeddings and ~a2. We calculate
the Spearman correlation between the rank
orders of these two arrays found. Spearman
rank correlation is a non-parametric test that
is used to measure the degree of association
between two variables. Higher the correlation,
the less the bias. The range of the correlation
is [−1, 1]. Ideally, the correlation should be
equal to one as the professions or emotions
should not depend upon gender. Debiasing
should bring the value closer to one.

2. RND-n: Relative Norm Distance was first
used by Garg et al. (2018). It captures the
relative strength of the association of a neutral
word with respect to two groups. As shown
in equation 3 we average the masculine and
feminine-targeted words in M , F in T respec-
tively. For every attribute, ~p in Pneu and emo-
tions we find the norm of the average of the
target words and the attribute ~p. The higher
the value of the relative norm, the more biased
our professions and emotions are. Debiasing
should reduce this value and bring it closer to
zero.

∑

~p∈Pneu

(||avg(M)− ~p||2 − ||avg(F )− ~p||2)

(3)

4.2.2 For gendered occupations:Mgen

1. ECT-g: We use the target word pairs T and
the gendered professions list Pgen. Using ~a1
found in equation 1 and ~a2 found in equation
2. Pgen has masculine and feminine profes-
sion word pairs. We create two arrays, one
with cosine similarity of masculine profession
word embeddings and ~a1. The other with the
cosine similarity of feminine profession word
embeddings and ~a2. We calculate the Spear-
man correlation of the rank of these two ar-
rays.

Ideally, there should be a high correlation be-
tween these arrays. The masculine profession
words’ cosine similarity with masculine tar-
get words should equal feminine profession
words’ cosine similarity with feminine target
words. The range of the correlation is [−1, 1].
Higher the correlation, the less the bias. Debi-
asing should bring the value closer to one.
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Emotion Metrics(%) Baseline Projection Partial Projection
PCA RIPA PCA RIPA

Anger
ECT ↑ 57.2 94.5 38.1 99.1 99.0
RND ↓ 2.0 1.1 0.4 0.7 0.3

Fear
ECT ↑ 86.8 97.8 77.4 99.4 98.9
RND ↓ 2.6 1.2 0.3 0.8 0.2

Joy
ECT ↑ 75.2 96.1 81.1 99.5 99.2
RND ↓ 2.5 1.2 0.5 0.8 0.3

Sadness
ECT ↑ 63.1 88.4 56.1 99.4 98.3
RND ↓ 3.8 1.7 0.7 0.9 0.4

Table 1: Hindi Emotion Results (Principal Component Analysis (PCA), Relational Inner Product Association
(RIPA))

Emotion Metrics(%) Baseline Projection Partial Projection
PCA RIPA PCA RIPA

Anger
ECT ↑ 37.9 58.2 52.7 96.1 93.9
RND ↓ 0.61 0.53 0.10 0.33 0.09

Fear
ECT ↑ 72.6 74.0 71.2 96.4 93.6
RND ↓ 0.50 0.41 0.11 0.29 0.08

Joy
ECT ↑ 57.3 76.2 58.2 93.4 92.5
RND ↓ 0.60 0.61 0.13 0.39 0.11

Sadness
ECT ↑ 69.6 80.2 68.9 99.1 96.9
RND ↓ 0.42 0.37 0.08 0.25 0.07

Table 2: Marathi Emotion Results

2. RND-g: As shown in equation 4 we average
the masculine and feminine-targeted words in
M , F in T , respectively. For every attribute
pair ~p1 and ~p2 in Pgen we find the norm of the
average of the masculine target words and ~p1 ,
feminine target words and ~p2. The higher the
value of the relative norm, the more biased the
professions are. Debiasing should reduce this
value and bring it closer to zero.
∑

~p1, ~p2∈P
(||avg(M)− ~p1||2−||avg(F )− ~p2||2)

(4)

4.3 Debiasing techniques

4.3.1 Finding out the gender subspace
We need a vector ~vb that represents the gender di-
rection. We find this in the following ways: using
RIPA and PCA.

1. RIPA: Ethayarajh et al. (2019) first used this
subspace to capture gender information. We
define a bias vector ~vb which defines the gen-
der direction. Given the target set T contain-
ing masculine and feminine words, for each

Tj in T , we find out Tf − Tm and stack them
to create an array. Tf is the feminine word
embedding, Tm is the masculine word embed-
ding. We find the first principal component
using Principal Component Analysis (PCA)
of the array found above. This component
captures the gender information of the given
embeddings.

2. PCA: In this method, given T , we find out
the average a of the masculine and feminine
word embeddings for each given pair. We then
compute Tf − a and Tm − a for each Tj in T .
We stack them into an array and find out the
first component using the PCA of the above
array.

4.3.2 Debiasing methods
Bolukbasi et al. (2016) used Hard Debiasing to
mitigate bias. This method needs additional seed
words which are then trained on a SVM to find out
if the word is biased or neutral. Thus, not all words
are debiased in the vocabulary except the chosen
ones. This makes the method not fully automatic.

Here we use more straightforward methods to
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Metric Base Projection Partial Proj.
(%) PCA RIPA PCA RIPA
ECT-n↑ 86.0 95.6 81.4 99.7 98.9
RND-n↓ 40.4 19.3 6.2 10.9 6.2
ECT-g↑ 69 71.4 85.7 90.4 88.0
RND-g↓ 1.79 1.81 1.79 1.52 1.70

Table 3: Results for Hindi occupations. RND-g is not
in % for better readability

Metric Base Projection Partial Proj
(%) PCA RIPA PCA RIPA
ECT-n ↑ 51.4 60.6 53.6 99.7 96.5
RND-n↓ 3.1 3.0 3.0 01.8 0.5
ECT-g ↑ 42.5 21.5 23.8 64.2 76.2
RND-g↓ 2.58 2.50 2.54 2.02 1.97

Table 4: Results for Marathi occupations. RND-g is
not in % for better readability

debias our data.

1. Projection: One way to remove bias is to
make all the vectors orthogonal to the gender
direction. Therefore, we remove the compo-
nent of ~vb from all the vectors. This ensures
that there is no component along the gender
direction.

~w = ~w − (~w · ~vb)~vb (5)

2. Partial Projection: One problem with the
debiasing using linear projection is that it
changes some word vectors which are gen-
dered by definition, e.g., king, queen. Let
µ = 1

m

∑m
j=1 µj where µj = 1

|Tj |
∑

t∈Tj
t be

the mean of a target pair. Here m is the length
of T . We suggest the new vector as shown in
equation 6. This is similar to the linear projec-
tion approach, but instead of zero magnitude
along the gender direction, we project a mag-
nitude of constant µ along with it. This adds
a constant to the debiasing term.

~w = ~w − (~w · ~vb)~vb + µ (6)

5 Results and Discussion

Table 1 and 2 show results for the emotions in Hindi
and Marathi respectively. We observe that anger is
the most biased in both languages according to the
ECT metric as it has the lowest value. Amongst the
debiasing techniques, we see that partial projection

with RIPA works the best for the ECT metric and
partial projection with PCA works the best for the
RND metric.

ECT-n and RND-n are results for neutral occu-
pations, and ECT-g and RND-g are for gendered
occupations. Table 3 shows the results for both
gendered and neutral occupations in Hindi. We see
that partial projection We see that for neutral occu-
pations, partial projection with PCA works the best
for ECT and partial projection with RIPA works
the best for RND. For gendered occupations, we
see that partial projection with PCA works the best
for both ECT and RND.

Table 4 shows the results for both gendered and
neutral occupations in Marathi. We see that the best
results are obtained for neutral occupations with
partial projection with PCA for ECT and partial
projection with RIPA for RND. For gendered oc-
cupations, we see that we get the best results with
partial projection with RIPA for ECT and RND.

However, we observe some anomalies in the re-
sults when projection debiasing method is used.
We hypothesize that completely removing the gen-
der information changes some vectors, which are
masculine or feminine, by the grammatical defini-
tion of the gender. For example, words like king,
grandfather and boy which are masculine by the
grammatical definition of gender should preserve
their gender information. Hence we note that par-
tial projection performs the best because it has a
gender component to it.

6 Conclusion and Future work

In this paper, we attempted to find gender stereo-
types on occupations and emotions and tried to
debias them. Embedding Coherence Test and Rela-
tive Norm Distance were used as a bias metric in
the gender subspace. The debiasing methods used
were projection and partial projection. But we see
that partial projection as a debiasing method works
the best in most cases.

Future work could include trying out these tech-
niques on downstream tasks and checking the per-
formance before and after debiasing. The main
problem with experimenting on downstream tasks
is the availability of datasets in these languages.
We would also like to experiment with debiasing
contextual embeddings and large language mod-
els. Apart from that we would also like to address
other types of bias like religion, social and cul-
tural, which are particularly inherent in Hindi and
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Marathi.
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Abstract

Considerable efforts to measure and mitigate
gender bias in recent years have led to the intro-
duction of an abundance of tasks, datasets, and
metrics used in this vein. In this position pa-
per, we assess the current paradigm of gender
bias evaluation and identify several flaws in it.
First, we highlight the importance of extrinsic
bias metrics that measure how a model’s perfor-
mance on some task is affected by gender, as
opposed to intrinsic evaluations of model rep-
resentations, which are less strongly connected
to specific harms to people interacting with sys-
tems. We find that only a few extrinsic metrics
are measured in most studies, although more
can be measured. Second, we find that datasets
and metrics are often coupled, and discuss how
their coupling hinders the ability to obtain re-
liable conclusions, and how one may decou-
ple them. We then investigate how the choice
of the dataset and its composition, as well as
the choice of the metric, affect bias measure-
ment, finding significant variations across each
of them. Finally, we propose several guidelines
for more reliable gender bias evaluation.

1 Introduction

A large body of work has been devoted to mea-
surement and mitigation of social biases in natural
language processing (NLP), with a particular focus
on gender bias (Sun et al., 2019; Blodgett et al.,
2020; Garrido-Muñoz et al., 2021; Stanczak and
Augenstein, 2021). These considerable efforts have
been accompanied by various tasks, datasets, and
metrics for evaluation and mitigation of gender bias
in NLP models. In this position paper, we critically
assess the predominant evaluation paradigm and
identify several flaws in it. These flaws hinder
progress in the field, since they make it difficult to
ascertain whether progress has been actually made.

∗Supported by the Viterbi Fellowship in the Center for
Computer Engineering at the Technion.

Gender bias metrics can be divided into two
groups: extrinsic metrics, such as performance dif-
ference across genders, measure gender bias with
respect to a specific downstream task, while in-
trinsic metrics, such as WEAT (Caliskan et al.,
2017), are based on the internal representations of
the language model. We argue that measuring ex-
trinsic metrics is crucial for building confidence
in proposed metrics, defining the harms caused by
biases found, and justifying the motivation for de-
biasing a model and using the suggested metrics
as a measure of success. However, we find that
many studies on gender bias only measure intrin-
sic metrics. As a result, it is difficult to determine
what harm the presumably found bias may be caus-
ing. When it comes to gender bias mitigation ef-
forts, improving intrinsic metrics may produce an
illusion of greater success than reality, since their
correlation to downstream tasks is questionable
(Goldfarb-Tarrant et al., 2021; Cao et al., 2022). In
the minority of cases where extrinsic metrics are re-
ported, only few metrics are measured, although it
is possible and sometimes crucial to measure more.

Additionally, gender bias measures are often ap-
plied as a dataset coupled with a measurement tech-
nique (a.k.a metric), but we show that they can be
separated. A single gender bias metric can be mea-
sured using a wide range of datasets, and a single
dataset can be applied to a wide variety of metrics.
We then demonstrate how the choice of gender bias
metric and the choice of dataset can each affect the
resulting measures significantly. As an example,
measuring the same metric on the same model with
an imbalanced or a balanced dataset1 may result in
very different results. It is thus difficult to compare
newly proposed metrics and debiasing methods
with previous ones, hindering progress in the field.

To summarize, our contributions are:

• We argue that extrinsic metrics are important
1Balanced with respect to the amount of examples for each

gender, per task label.
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for defining harms (§2), but researchers do not
use them enough even though they can (§5).

• We demonstrate the coupling of datasets with
metrics and the feasibility of other combina-
tions (§3).

• On observing that a specific metric can be
measured on many possible datasets and vice-
versa, we demonstrate how the choice and
composition of a dataset (§4), as well as the
choice of bias metric to measure (§5), can
strongly influence the measured results.

• We provide guidelines for researchers on how
to correctly evaluate gender bias (§6).

Bias Statement This paper examines metrics and
datasets that are used to measure gender bias, and
discusses several pitfalls in the current paradigm.
As a result of the observations and proposed guide-
lines in this work, we hope that future results and
conclusions will become clearer and more reliable.

The definition of gender bias in this paper is
through the discussed metrics, as each metric re-
flects a different definition. Some of the examined
metrics are measured on concrete downstream tasks
(extrinsic metrics), while others are measured on
internal model representations (intrinsic metrics).
The definitions of intrinsic and extrinsic metrics
do not align perfectly with the definitions of allo-
cational and representational harms (Kate Craw-
ford, 2017). In the case of allocational harm, re-
sources or opportunities are unfairly allocated due
to bias. Representative harm, on the other hand, is
when a certain group is negatively represented or ig-
nored by the system. Extrinsic metrics can be used
to quantify both allocational and representational
harms, while intrinsic metrics can only quantify
representational harms, in some cases.

There are also other important pitfalls that are
not discussed in this paper, like the focus on high-
resource languages such as English and the binary
treatment of gender (Sun et al., 2019; Stanczak
and Augenstein, 2021; Dev et al., 2021). Inclusive
research of non-binary genders would require a
new set of methods, which could benefit from the
observations in this work.

2 The Importance of Extrinsic Metrics in
Defining Harms

In this paper, we divide metrics for gender bias to
three groups:

• Extrinsic performance: measures how a
model’s performance is affected by gender,
and is calculated with respect to particular
gold labels. For example, the True Positive
Rate (TPR) gap between female and male ex-
amples.

• Extrinsic prediction: measures model’s pre-
dictions, such as the output probabilities, but
the bias is not calculated with respect to some
gold labels. Instead, the bias is measured by
the effect of gender or stereotypes on model
predictions. For example, the probability gap
can be measured on a language model queried
on two sentences, one pro-stereotypical (“he
is an engineer”) and another anti-stereotypical
(“she is an engineer”).

• Intrinsic: measures bias in internal model
representations, and is not directly related to
any downstream task. For example, WEAT.

It is crucial to define how measured bias harms
those interacting with the biased systems (Barocas
et al., 2017; Kate Crawford, 2017; Blodgett et al.,
2020; Bommasani et al., 2021). Extrinsic metrics
are important for motivating bias mitigation and
for accurately defining “why the system behaviors
that are described as ‘bias’ are harmful, in what
ways, and to whom” (Blodgett et al., 2020), since
they clearly demonstrate the performance disparity
between protected groups.

For example, in a theoretical CV-filtering sys-
tem, one can measure the TPR gap between female
and male candidates. A gap in TPR favoring men
means that, given a set of valid candidates, the sys-
tem picks valid male candidates more often than
valid female candidates. The impact of this gap is
clear: Qualified women are overlooked because of
bias. In contrast, consider an intrinsic metric such
as WEAT (Caliskan et al., 2017), which is derived
from the proximity (in vector space) of words like
“career” or “family” to “male” or “female” names.
If one finds that male names relate more to career
and female names relate more to family, the conse-
quences are unclear. In fact, Goldfarb-Tarrant et al.
(2021) found that WEAT does not correlate with
other extrinsic metrics. However, many studies re-
port only intrinsic metrics (a third of the papers we
reviewed, §5).
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The developer argued with the designer because she
did not like the design.

The developer argued with the designer because he
did not like the design.

Figure 1: Coreference resolution example from Wino-
bias: a pair of anti-stereotypical (top) and pro-
stereotypical examples (bottom). Developers are stereo-
typed to be males.

3 Coupling of Datasets and Metrics

In this section, we discuss how datasets and met-
rics for gender bias evaluation are typically cou-
pled, how they may be decoupled, and why this
is important. We begin with a representative test
case, followed by a discussion of the general phe-
nomenon.

3.1 Case study: Winobias

Coreference resolution aims to find all textual ex-
pressions that refer to the same real-world entities.
A popular dataset for evaluating gender bias in
coreference resolution systems is Winobias (Zhao
et al., 2018a). It consists of Winograd schema
(Levesque et al., 2012) instances: two sentences
that differ only by one or two words, but contain
ambiguities that are resolved differently in the two
sentences based on world knowledge and reason-
ing. Winobias sentences consist of an anti- and
a pro- stereotypical sentence, as shown in Figure
1. Coreference systems should be able to resolve
both sentences correctly, but most perform poorly
on the anti-stereotypical ones (Zhao et al., 2018a,
2019; de Vassimon Manela et al., 2021; Orgad et al.,
2022).

Winobias was originally proposed as an extrin-
sic evaluation dataset, with a reported metric of
anti- and pro- stereotypical performance dispar-
ity. However, other metrics can also be measured,
both intrinsic and extrinsic, as shown in several
studies (Zhao et al., 2019; Nangia et al., 2020b;
Orgad et al., 2022). For example, one can mea-
sure how many stereotypical choices the model
preferred over anti-stereotypical choices (an ex-
trinsic performance measure), as done on Wino-
gender (Rudinger et al., 2018), a similar dataset.
Winobias sentences can also be used to evaluate
language models (LMs), by evaluating if an LM
gives higher probabilities to pro-stereotypical sen-
tences (Nangia et al., 2020b) (an extrinsic predic-

tion measure). Winobias can also be used for in-
trinsic metrics, for example as a template for SEAT
(May et al., 2019a) and CEAT (Guo and Caliskan,
2021) (contextual extensions of WEAT). Each of
these metrics reveals a different facet of gender
bias in a model. An explicit measure of how many
pro-stereotypical choices were preferred over anti-
stereotypical choices has a different meaning than
measuring a performance metric gap between two
different genders. Additionally, measuring an in-
trinsic metric on Winobias may be help tie the re-
sults to the model’s behavior on the same dataset
in the downstream coreference resolution task.

3.2 Many possible combinations for datasets
and metrics

Winobias is one example out of many. In fact,
benchmarks for gender bias evaluation are typically
proposed as a package of two components:

1. A dataset on which the benchmark task is
performed.

2. A metric, which is the particular method used
to calculate bias of a model on the dataset.

Usually, these benchmarks are considered as
a bundle; however, they can often be decoupled,
mixed, and matched, as discussed in the Winobias
test case above. The work by Delobelle et al. (2021)
is an exception, in that they gathered a set of tem-
plates from diverse studies and tested them using
the same metric.

In Table 1, we present possible combinations
of datasets (rows) and metrics (columns) from the
gender bias literature. The metrics are partitioned
according to the three classes of metrics defined
in Section 2. We present only metrics valid for
assessing bias in contextualized LMs (rather than
static word embeddings), since they are the com-
mon practice nowadays. The table does not claim
to be exhaustive, but rather illustrates how metrics
and datasets can be repurposed in many different
ways. The metrics are described in appendix A,
but the categories are very general and even a sin-
gle column like “Gap (Label)” represents a wide
variety of metrics that can be measured.

Table 1 shows that many metrics are compatible
across many datasets (many ✓’s in the same col-
umn), and that datasets can be used to measure a
variety of metrics other than those typically mea-
sured (many ✓’s in the same row). Some datasets,
such as Bias in Bios (De-Arteaga et al., 2019), have
numerous metrics compatible, while others have
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Extrinsic Performance Extrinsic Predictions Intrinsic

Dataset
Metric Gap Gap Gap % or # of % or # Model Pred LM Prediction SEAT CEAT Probe Cluster Nearest Cos PCA

(Label) (Stereo) (Gender) Answer Changed Prefers Stereotype Gap On Target words Neighbors
Winogender (Rudinger et al., 2018) ✓ ✓⃝ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Winobias (Zhao et al., 2018a) ✓ ✓⃝ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Gap (Webster et al., 2018) ✓⃝ ✓(aug)
Crow-S (Nangia et al., 2020a) ✓⃝ ✓ ✓ ✓ ✓ ✓ ✓ ✓
StereoSet (Nadeem et al., 2021) ✓⃝ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Bias in Bios (De-Arteaga et al., 2019) ✓⃝ ✓ ✓ ✓(aug) ✓(aug) ✓(aug) ✓ ✓ ✓ ✓ ✓ ✓ ✓
EEC (Kiritchenko and Mohammad, 2018) ✓⃝ ✓ ✓ ✓ ✓ ✓
STS-B for genders (Beutel et al., 2020) ✓ ✓⃝ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Dev et al. (2020a) (NLI) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
PTB, WikiText, CNN/DailyMail ✓⃝ ✓
(Bordia and Bowman, 2019)
BOLD (Dhamala et al., 2021) ✓⃝
Templates from May et al. (2019a) ✓ ✓⃝ ✓ ✓ ✓ ✓ ✓ ✓
Templates from Kurita et al. (2019) ✓⃝ ✓⃝ ✓ ✓ ✓ ✓ ✓ ✓
DisCo templates (Beutel et al., 2020) ✓ ✓⃝ ✓ ✓ ✓ ✓ ✓ ✓
BEC-Pro templates (Bartl et al., 2020) ✓ ✓⃝ ✓ ✓ ✓ ✓ ✓ ✓
English-German news corpus ✓ ✓ ✓⃝ ✓⃝ ✓⃝ ✓⃝ ✓⃝
(Basta et al., 2021)
Reddit (Guo and Caliskan 2021, ✓ ✓⃝ ✓ ✓ ✓ ✓ ✓
Voigt et al. 2018)
MAP (Cao and Daumé III, 2021) ✓⃝ ✓ ✓ ✓ ✓ ✓ ✓ ✓
GICoref (Cao and Daumé III, 2021) ✓⃝ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Combinations of gender bias datasets and metrics in the literature. ✓ marks a feasible combination of
a metric and a dataset. ✓⃝ marks the original metrics used on the dataset, and ✓(aug) marks metrics that can be
measured after augmenting the dataset such that every example is matched with a counterexample of another gender.
Extrinsic performance metrics depend on gold labels while extrinsic prediction metrics do not. A full description of
the metrics is given in Appendix A.

fewer, but still multiple, compatible metrics. Bias
in Bios has many compatible metrics since it has
information that can be used to calculate them: in
addition to gold labels, it also has gender labels
and clear stereotype definitions derived from the
labels which are professions. Text corpora and
template data, which do not address a specific task
(bottom seven rows), are mostly compatible with
intrinsic metrics. The compatibility of intrinsic
metrics with many datasets may explain why pa-
pers report intrinsic metrics more often (§5). Ad-
ditionally, Table 1 indicates that not many datasets
can be used to measure extrinsic metrics, partic-
ularly extrinsic performance metrics that require
gold labels. On the other hand, measuring LM
prediction on target words, which we consider as
extrinsic, can be done on many datasets. This is
useful for analyzing bias when dealing with LMs.
It can be done by computing bias metrics from the
LM output predictions, such as the mean proba-
bility gap when predicting the word “he” versus
“she” in specific contexts. Also, some templates are
valid for measuring extrinsic prediction metrics,
especially stereotype-related metrics, as they were
developed with explicit stereotypes in mind (such
as profession-related stereotypes).

Based on Table 1, it is clear that there are many
possible ways to measure gender bias in the litera-
ture, but they all fall under the vague category of
“gender bias”. Each of the possible combinations
gives a different definition, or interpretation, for
gender bias. The large number of different metrics
makes it difficult or even impossible to compare

different studies, including proposed gender bias
mitigation methods. This raises questions about the
validity of results derived from specific combina-
tions of measurements. In the next two sections, we
demonstrate how the choice of datasets and metrics
can affect the bias measurement.

4 Effect of Dataset on Measured Results

The choice of data to measure bias has an impact
on the calculated bias. Many researchers used sen-
tence templates that are “semantically bleached”
(e.g., “This is <word>.”, “<person> studied <pro-
fession> at college.”) to adjust metrics developed
for static word embeddings to contextualized rep-
resentations (May et al., 2019b; Kurita et al., 2019;
Webster et al., 2020; Bartl et al., 2020). Delobelle
et al. (2021) found that the choice of templates
significantly affected the results, with little corre-
lation between different templates. Additionally,
May et al. (2019b) reported that templates are not
as semantically bleached as expected.

Another common feature of bias measurement
methods is the use of hand-curated word lexicons
by almost every bias metric in the literature. An-
toniak and Mimno (2021) reported that the lexi-
con choice can greatly affect bias measurement,
resulting in differing conclusions between different
lexicons.

4.1 Case study: balancing the test data

Another important variable in gender bias evalua-
tion, often overlooked in the literature, is the com-
position of the test dataset. Here, we demonstrate
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Metric
Testing balancing

Original Oversampled Subsampled

TPR (p) 0.78 0.75 0.75
TPR (s) 2.35 2.41 2.38
FPR (p) 0.61 0.59 0.57
FPR (s) 0.08 0.08 0.08
Precision (p) 0.63 0.64 0.38*
Precision (s) 0.22 0.03* 0.02*
Separation (s) 2.27 0.23* 0.35*
Sufficiency (s) 1.94 0.74* 9.15*
Independence (s) 0.14 0.01* 0.01*

Table 2: Metrics measured on Bias in Bios, separated to
performance gap metrics (above the line) and statistical
fairness metrics (below the line). Metrics are measured
on the original test split, and on a subsampled and over-
sampled version of it. * marks statistically significant
difference in a metric compared to the baseline (Origi-
nal), using Pitman’s permutation test (p < 0.05).

this by comparing metrics on different test sets,
which come from the same dataset but have a differ-
ent balance of examples. Bias in Bios (De-Arteaga
et al., 2019) involves predicting an occupation from
a biography text. These occupations are not bal-
anced across genders, so for example over 90% of
the nurses in the dataset identify as females.

Our case study extends the experiments done by
Orgad et al. (2022). In their work, they tested a
RoBERTa-based (Liu et al., 2019) classifier fine-
tuned on Bias in Bios. The model was trained and
evaluated on a training/test split of the dataset using
numerous extrinsic bias metrics. Here we train the
same model on the same training set, but evaluate
it on three types of test sets: the original test set
alongside balanced versions of it, which have equal
numbers of females and males in every profession,
by either subsampling or oversampling. 2 We fol-
low Orgad et al. (2022) and report nine different
metrics on this task, measuring either some notion
of performance gap or a statistical metric from the
fairness literature. For details on the metrics mea-
sured in this experiments, see Appendix C.

As the results in Table 2 show, although many
of the gap metrics (top block) are unaffected by
the balancing of the test dataset, the absolute sum
of precision gaps is almost zero when the dataset
is balanced. Moreover, the Pearson correlation
for precision is significantly reduced after subsam-
pling the test dataset. The Pearson correlation is

2Subsampling is the process of removing examples from
the dataset such that the resulting dataset contains the same
number of male and female examples for each label. Over-
sampling achieves this by repeating examples.

Figure 2: Percentage of females in the training percent
versus the resulting precision gap, per each profession,
for a regular test set and a subsampled one. Precision
gaps and the Pearson correlation are both lower for a
subsampled dataset.

computed between the performance gaps per label
(profession), and the percentage of females in the
training set for that label, without balancing (the
original distribution of professions per gender can
be found in Appendix E). A higher correlation indi-
cates that more bias was learned from the training
set. This correlation is illustrated in Figure 2, and
it is visible that the correlation is much lower when
measured on a subsampled test dataset than on the
original test dataset.

The statistical fairness metrics (bottom block
in Table 2) show a significant difference in the
measured bias across different test set balancing.
Oversampling shows less bias than when measured
on the original test set, while subsampling yields
mixed results – it decreases one metric while in-
creasing another.

What is the “correct” test set? Since metrics are
defined over the entire dataset, they are sensitive
to its composition. For measuring bias in a model,
the dataset used should be as unbiased as possible,
thus balanced datasets are preferable.

If we were only concerned with measuring one
of the reduced metrics on a non-balanced test set,
we could misrepresent the fairness of the model.
Indeed, it is common practice to measure only a
small portion of metrics out of all those that can be
measured—as we show in section 5—which makes
us vulnerable to misinterpretations.

4.2 Case study: measuring intrinsic bias on
two different datasets

It is critical to consider the impact of the data used
when measuring intrinsic bias metrics on a lan-
guage model. Previous work (Goldfarb-Tarrant
et al., 2021; Cao et al., 2022; Orgad et al., 2022)
inspected the correlations between extrinsic and in-
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(a) Intrinsic metric was measured on the test set of occupation
prediction, figure reproduced from Orgad et al. (2022) (with
permission).

(b) Intrinsic metric was measured on Winobias (Zhao et al.,
2018a).

Figure 3: Correlation between an intrinsic metric (compression) and an extrinsic metric (sufficiency gap sums), for
various models trained on occupation prediction task.“None” was trained on the original dataset, “Oversampling”
was trained on an oversampled dataset, “Subsampling” was trained on a subsampled dataset and “Scrubbing” was
trained on a scrubbed dataset (explicit gender words like “he” and “she” were removed).

trinsic gender bias metrics. Some did not find cor-
relations, while others did in some cases. However,
correlations do not solely depend on the model
used for bias measurement, but also on the dataset
used to measure the intrinsic metric.

Our experiment analyzes the behavior of the
same metric on different datasets. We again follow
Orgad et al. (2022), who probed for the amount of
gender information extractable from the model’s
internal representations. This is quantified by com-
pression (Voita and Titov, 2020), where a higher
compression indicates greater bias extractability.
Orgad et al. found that this metric correlates
strongly with various extrinsic metrics. An exam-
ple of this correlation is shown in Figure 3a on the
Bias in Bios task with models debiased with various
strategies. The correlation is high (r2 = 0.567).

In their experiment, the intrinsic metric was mea-
sured on the same dataset as the extrinsic one. We
repeat the correlation tests, but this time measure
the intrinsic metric on a different dataset, the Wino-
bias dataset. The results (Figure 3b) clearly show
that there is no correlation between extrinsic and
intrinsic metrics in this case (r2 = 0.025).

Hence, we conclude that the dataset used to mea-
sure intrinsic bias impacts the results significantly.
To reliably reflect the biases that the model has ac-
quired, it should be closely related to the task that
the model was trained on. In our experiment, when
intrinsic and extrinsic metrics were not measured
on the same dataset, no correlation was detected.
This is the case for all metrics on this task from
Orgad et al. (2022); see Appendix 3. As discussed

in §3, the same intrinsic metrics can be evaluated
across a variety of datasets. Even so, some intrin-
sic metrics were originally defined to be measured
on different datasets than the task dataset, such as
those defined on templates (Table 1).

5 Different Metrics Cover Different
Aspects of Bias

In this section, we explore how the choice of bias
metrics influences results. Although extrinsic bias
metrics are useful in defining harms caused by a
gender-biased system, we find that most studies on
gender bias use only intrinsic metrics to support
their claims. We surveyed a representative list of
papers presenting bias mitigation techniques that
appeared in the survey by Stanczak and Augenstein
(2021), as well as recent papers from the past year.
In total, we examined 36 papers. The majority
of papers do not measure extrinsic metrics. Even
when downstream tasks are measured, only a very
small subset of metrics (three or less) is typically
measured, as shown in Figure 4. Furthermore, in
these studies, typically no explanation is provided
for choosing a particular metric.

The exceptions are de Vassimon Manela et al.
(2021) and Orgad et al. (2022), who measured six
and nine or ten metrics on downstream tasks, re-
spectively. Orgad et al. showed that different extrin-
sic metrics behave differently under various debias-
ing methods. Additionally, in §4 we saw that sub-
sampling the test set increased one bias metric and
decreased others, which would not have been evi-
dent had we only measured a small number of met-
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Figure 4: The number of extrinsic metrics measured in
the papers we reviewed.

rics. Measuring multiple metrics is also important
for evaluating debiasing. When Kaneko and Bolle-
gala compared their proposed debiasing method to
that of Dev et al. (2020a), the new method outper-
formed the old one on two of the three metrics.

As the examples above illustrate, different ex-
trinsic metrics are not necessarily consistent with
one another. Furthermore, it is possible to measure
more extrinsic metrics, although it is rarely done.
When it is not feasible to measure multiple metrics,
one should at least justify why a particular metric
was chosen. In a CV-filtering system, for example,
one might be more forgiving of FPR gaps than of
TPR gaps, as the latter leaves out valid candidates
for the job in one gender more than the other. How-
ever, more extrinsic metrics are likely to provide a
more reliable picture of a model’s bias.

6 Conclusion and Proposed Guidelines

The issues described in this paper concern the in-
stabilities and vagueness of gender bias metrics
in NLP. Since bias measurements are integral to
bias research, this instability limits progress. We
now provide several guidelines for improving the
reliability of gender bias research in NLP.

Focus on downstream tasks and extrinsic met-
rics. Extrinsic metrics are helpful in motivating
bias mitigation (§2). However, few datasets can be
used to quantify extrinsic metrics, especially extrin-
sic performance metrics, which require gold labels
(§3). More effort should be devoted to collecting
datasets with extrinsic bias assessments, from more
diverse domains and downstream tasks.

Stabilize the metric or the dataset. Both the
metrics and the datasets could have significant ef-
fects over the results: The same dataset can be used
to measure many metrics and yield different con-
clusions (§4), and the same metric can be measured
on different datasets and show bias in one instance

but not in another (§5). If one wishes to measure
gender bias in an NLP system, it is better to hold
one of these variables fixed: for example, to fo-
cus on a single metric and measure it on a set of
datasets. Of course, this can be repeated for other
metrics as well. This will produce much richer,
more consistent, and more convincing results.

Neutralize dataset noise. As a result of altering
a dataset’s composition, we observed very different
results (§4). This is caused by the way various
fairness metrics are defined and computed on the
entire dataset. To ensure a more reliable evaluation,
we recommend normalizing a dataset when using it
for evaluation. In the case of occupation prediction,
normalization can be obtained by balancing the test
set. In other cases it could be by anonymizing the
test set, removing harmful words, etc., depending
on the specific scenario.

Motivate the choice of specific metrics, or mea-
sure many. Most work measures only a few met-
rics (§5). A comprehensive experiment, such as
to prove the efficacy of a new debiasing method,
is more reliable if many metrics are measured. In
some situations, a particular metric may be of in-
terest; in this case one should carefully justify the
choice of metric and the harm that is caused when
the metric indicates bias. The motivation for debi-
asing this metric then follows naturally.

Define the motivation for debiasing through bias
metrics. Blodgett et al. (2020) found that pa-
pers’ motivations are “often vague, inconsistent,
and lacking in normative reasoning”. We propose
to describe the motivations through the gender bias
metrics chosen for the study: define what is the
harm measured by a specific metric, what is the
behavior of a desired versus a biased system, and
how the metric measures it. This is where extrinsic
metrics will be particularly useful.

We believe that following these guidelines will
enhance clarity and comparability of results, con-
tributing to the advancement of the field.
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A List of gender bias metrics, as
presented in Table 1

Many of the items in this list do not aim to describe
a specific metric, but rather describe a family of
metrics with similar characteristics and require-
ments.

A.1 Extrinsic Performance
This class of extrinsic metrics measures how a
model’s performance is affected by gender. This is
computed with respect to particular gold labels and
there is a clear defintion of harm derived from the
specific performance metric measured, for instance
F1, True Positive Rate (TPR), False Positive Rate
(FPR), BLEU score for translation tasks, etc.

1. Gap (Label): Measures the difference in
some performance metric between Female
and Male examples, in a specific class. The
performance gap can be computed as the dif-
ference or the quotient between two perfor-
mance metrics on two protected group. For
example, in Bias in Bios (De-Arteaga et al.,
2019) one can measure the TPR gap between
female teachers and male teachers. The gaps
per class can be summed, or the correlation
with the percentage of women in the particular
class can be measured.

2. Gap (Stereo): Measures the difference
in some performance metric between pro-
stereotypical (and/or non-stereotypical) and
anti-stereotypical (and/or non-stereotypical)
instances. A biased model will have better per-
formance on pro-stereotypical instances. This

can be measured across the whole dataset or
per gender / class.

3. Gap (Gender): Measure the difference in
some performance metric between male ex-
amples and female examples, across the en-
tire dataset. In cases of non-binary gender
datasets (Cao and Daumé III, 2021), the gap
can be calculated to measure the difference
between text that is trans-inclusive versus text
that is trans-exclusive. Another option is to
measure the difference in performance before
and after removing various aspects of gender
from the text.

A.2 Extrinsic Prediction
This class is also extrinsic as it measures model pre-
dictions, but the bias is not computed with respect
to some gold labels. Instead, the bias is measured
by the effect of gender on the predictions of the
model.

1. % or # of answer changes: The number or
percentage that the prediction changed when
the gender of the example changed. To mea-
sure this, each example should have a coun-
terpart example of the opposite gender. This
difference can be measured with respect to
the number of females or males in the specific
label, for instance with relation to occupation
statistics.

2. % or # that model prefers stereotype: Quan-
tifies how much the model tends to go for the
stereotypical option, for instance predicting
that a “she” pronoun refers to a nurse in a
coreference resolution task. This can also be
measured as a correlation with the number of
females or males in the label, which can be
thought of as the “strength” of the stereotype.

3. Pred gap: The raw probabilities or some func-
tion of them are measured, and the gap is mea-
sured as the prediction gap between male and
female predictions. This can be measured
across the whole dataset or per label at other
cases.

4. LM prediction on target words: This met-
ric relates to the specific predictions of a pre-
trained LM, such as a masked LM. The pre-
diction of the LM is calculated for a spe-
cific text or on a specific target word of in-
terest. These probabilities are then used to
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measure the bias of the model. We did not
include this metric category in the “Pred gap”
category because it can be measured on a
much larger number of datasets. For exam-
ple, for the masked sentence: “The program-
mer said that <mask> would finish the work
tomorrow”, we might measure the relation
between p(< mask >= he|sentence) and
p(< mask >= she|sentence). Although
somewhat similar in idea to the previously de-
scribed metric “pred gap”, it is presented as a
separate metric since it can be computed on
a wider range of datasets. The strategy for
calculating a number quantifying bias from
the raw probabilities varies in different papers.
For example, Kurita et al. (2019); Nangia et al.
(2020a); Bordia and Bowman (2019); Nadeem
et al. (2021) all use different formulations.

A.3 Intrinsic

This class measures bias on the hidden model repre-
sentations, and is not directly related to any down-
stream task.

1. WEAT: The Word Embedding Association
Test (Caliskan et al., 2017) was proposed as
a way to quantify bias in static word embed-
dings. While we consider only bias metrics
that can be applied in contextualized settings,
we describe WEAT here as it is popular and
has been adapted to contextualized settings.
To compute WEAT, one defines a set of tar-
get words X,Y (e.g., programmer, engineer,
scientist, etc., and nurse, teacher, librarian,
etc.) and two sets of attribute words A,B (e.g.,
man, male, etc. and woman, female, etc.). The
null hypothesis is that the two sets of target
words are not different when it comes to their
similarity to the two sets of attribute words.
We test the null hypothesis using a permu-
tation test on the word embeddings, and the
resulting effect size is used to quantify how
different the two sets are.

2. SEAT: the Sentence Encoder Association
Test (May et al., 2019a) was proposed as
a contextual version of the popular metric
WEAT. As WEAT was computed on static
word embedding, in SEAT they proposed us-
ing “semantically-bleached” templates such
as “This is [target]”, where the target word of
interest is planted in the template, to get its

word embedding in contextual language mod-
els. Thus, we only consider “semantically-
bleached” templates to be appropriate as a
dataset for SEAT.

3. CEAT: Contextualized Embedding Associa-
tion Test (Guo and Caliskan, 2021) was pro-
posed as another contextual alternative to
WEAT. Here, instead of using templates to
get the word of interest, for each word a large
number of embeddings is collected from a
corpus of text, where the word appears many
times. WEAT’s effect size is then computed
many times, with different embeddings each
time, and a combined effect size is then cal-
culated on it. As already mentioned by the
original authors, even with only 2 contextual
embeddings collected per word in the WEAT
stimuli, and each set of X,Y,A,B having
only 5 stimuli, 25·4 possible combinations can
be used to compute effect sizes.

4. Probe: The entire example, or a specific word
in the text, is probed for gender. A classifier is
trained to learn the gender from a representa-
tion of the word or the text as extracted from a
model. This can be done on examples where
there is some gender labeling (for instance,
the gender of the person discussed in a biogra-
phy text) or when the text contains some target
words, with gender context. Such target words
could be “nurse” for female and “doctor” for
male. Usually, the word probe refers to a clas-
sifier from the family of multilayer preceptron
classifiers, linear classifiers included. The ac-
curacy achieved by the probe is often used as
a measure of how much gender information in
embedded in the representations, but there are
some weaknesses with using accuracy, such
as memorization and other issues (Hewitt and
Liang, 2019; Belinkov, 2021), and so MDL
Probing is proposed as an alternative (Voita
and Titov, 2020), and the metric used is com-
pression rate. Higher compression indicates
more gender information in the representa-
tion.

5. Cluster: It is possible to cluster the word em-
beddings or representations of the examples
and perform an analysis using the gender la-
bels just like in probing.

6. Nearest Neighbors: As with probing, the ex-

163



amples and word representations can be clas-
sified using a nearest neighbor model, or an
analysis can be done using nearest neighbors
of word embeddings as done by Gonen and
Goldberg (2019).

7. Gender Space: in the static embeddings
regime, Bolukbasi et al. (2016) proposed to
identify gender bias in word representations
by computing the direction between repre-
sentations of male and female word pairs
such as “he” and “she”. They then computed
PCA to find the gender direction. Basta et al.
(2021) extended the idea to contextual embed-
dings by using multiple representations for
each word, by sampling sentences that con-
tain these words from a large corpus. Zhao
et al. (2019) performed the same technique
on a different dataset. They then observed the
percentage of variance explained in the first
principal component, and this measure plays
as a bias metric. The principal components
can then be further used for a visual qualita-
tive analysis by projecting word embeddings
on the component space.

8. Cos: in static word embeddings (Bolukbasi
et al., 2016), this was computed as the mean
cosine similarity between neutral words which
might have some stereotype such as “doctor”
or “nurse”, and the gender space. Basta et al.
(2021) computed it on profession words using
extracted embeddings from a large corpus.

B Statistical Fairness Metrics

This section describes statistical metrics that are
representative of many other fairness metrics that
have been proposed in the field. separation and
sufficiency fall under the definition of “extrinsic
performance”, specifically “gap (Gender)” while
independence falls under the definition of “extrinsic
prediction”, specifically “pred gap”. Various num-
bers are generated by these metrics that describe
differences between two distributions as measured
by Kullbeck-Liebr divergence. We sum all the num-
bers to quantify bias in a single number.

Let R be a model’s prediction, G the protected
attribute of gender, and Y the golden labels.

Independence requires that the model’s predic-
tions are independent of the gender. Formally:
P (R = r|Z = F ) = P (R = r|Z = M)

It is measured by the distributional difference
between P (R = r) and P (R = r|Z = z) ∀z ∈
{M,F}.

Separation requires that the model’s predictions
are independent of the gender given the label. For-
mally:
P (R = r|Y = y,G = F ) = (R = r|Y =

y,G = M)∀y ∈ Y
It is measured by the distributional difference

between P (R = r|Y = y, Z = z) and P (R =
r|Y = y)∀y ∈ Y,∀z ∈ {M,F}

Sufficiency requires that the distribution of the
gold labels is independent of the model’s predic-
tions given the gender. Formally:
P (Y = y|R = r,G = F ) = P (Y = y|R =

r,G = M)

It is measured by the distributional difference
between P (Y = y|R = r, Z = z) and P (Y =
y|R = r)∀y ∈ Y,∀z ∈ {M,F}

C Implementation details: Bias in Bios
experiment

In this section we describe the metrics that were
measured in the experiments on Bias in Bios, fol-
lowing Orgad et al. (2022).

Performance gap metrics. The standard mea-
sure for this task (De-Arteaga et al., 2019) is the
True Positive Rate (TPR) gap between male and
female examples, for each profession p:

TPRp = TPRpF − TPRpM

and then compute the Pearson correlation between
each TPRp and the percentage of females in the
training set with the profession p. The result is a
single number in the range of 0 to 1, with a higher
value indicating greater bias. We measure the Pear-
son correlations of TPRp, as well as of the False
Positive Rate (FPR) and the Precision gaps. In ad-
dition, we sum all the gaps in the profession set P ,
thereby quantifying the absolute bias and not only
the correlations, for example, for the TPR gaps:∑

p∈P TPRp.

Statistical fairness metrics. We also measured
three statistical metrics (Barocas et al., 2019), re-
lating to several bias concepts: Separation, Suffi-
ciency and Independence. A greater value means
more bias. Detailed information on these metrics
can be found in Appendix B.
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D Bias in Bios: Correlations between
extrinsic and intrinsic metrics when
measured on different datasets

Table 3 present the full results of our correlation
tests, when intrinsic metrics was measured on a dif-
ferent dataset (Winobias) than the extrinsic metric
(Bias in Bios). For all metrics, there is no correla-
tion when we measured the intrinsic metric with a
different dataset, although many of the metrics did
correlate with the intrinsic metrics when measured
on the same dataset as is originally done in Orgad
et al..

E Bias in Bios: Statistics of the Dataset
Before Balancing

Table 4 presents how the professions in Bias in Bios
dataset (De-Arteaga et al., 2019) are distributed, per
gender. The gender was induced by the pronouns
used to describe the person in the biography, thus
it is likely the self-identified gender of the person
described in it.

F Full List of Reviewed Papers for
Extrinsic Metrics Measurements

Table 5 presents the papers we reviewed and the
amount of extrinsic metrics measured by them.
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Metric Bias in Bios (Original) Winobias

TPR gap (P) 0.304 0.022
TPR gap (S) 0.449 0.002
FPR gap (P) 0.120 0.030
FPR gap (S) 0.046 0.008

Precision gap (P) 0.063 0.013
Precision gap (S) 0.291 0

Independence gap (S) 0.382 0.005
Separation gap (S) 0.165 0.001
Sufficiency gap (S) 0.567 0.025

Table 3: Correlations between intrinsic and extrinsic metrics. Original correlations are from Orgad et al. (2022), our
correlations are calculated with the intrinsic metric as measured on Winobias.

Females Males

professor 45.10% 54.90%
accountant 36.73% 63.27%
journalist 49.51% 50.49%
architect 23.66% 76.34%
photographer 35.72% 64.28%
psychologist 62.07% 37.93%
teacher 60.24% 39.76%
nurse 90.84% 9.16%
attorney 38.29% 61.71%
software_engineer 15.80% 84.20%
painter 45.74% 54.26%
physician 49.37% 50.63%
chiropractor 26.31% 73.69%
personal_trainer 45.56% 54.44%
surgeon 14.82% 85.18%
filmmaker 32.94% 67.06%
dietitian 92.84% 7.16%
dentist 35.28% 64.72%
dj 14.18% 85.82%
model 82.74% 17.26%
composer 16.37% 83.63%
poet 49.05% 50.95%
comedian 21.14% 78.86%
yoga_teacher 84.51% 15.49%
interior_designer 80.77% 19.23%
pastor 24.03% 75.97%
rapper 9.69% 90.31%
paralegal 84.88% 15.12%

Table 4: Statistics of professions and genders as they appear in the Bias in Bios dataset.
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Paper Maximum # of extrinsic
metrics per task

Bolukbasi et al. (2016); Zhang et al. (2018)
Bordia and Bowman (2019); Ethayarajh et al. (2019)
Sahlgren and Olsson (2019); Karve et al. (2019)
Hall Maudslay et al. (2019); Sedoc and Ungar (2019)
Kaneko and Bollegala (2019); Liang et al. (2020)
Dev et al. (2020b); Shin et al. (2020)
Kaneko and Bollegala (2021b)

0

Zhao et al. (2017, 2018b)
Li et al. (2018); Elazar and Goldberg (2018)
Zmigrod et al. (2019); Zhao et al. (2019)
Kumar et al. (2020); Bartl et al. (2020)
Sen et al. (2021)

1

Prost et al. (2019); Qian et al. (2019)
Emami et al. (2019); Habash et al. (2019)
Dinan et al. (2020); Costa-jussà and de Jorge (2020)
Basta et al. (2020)

2

Park et al. (2018); Stafanovičs et al. (2020)
Saunders and Byrne (2020); Saunders et al. (2020)
Kaneko and Bollegala (2021a); Jin et al. (2021)

3

de Vassimon Manela et al. (2021) 6

Orgad et al. (2022) 10

Table 5: Papers about gender bias and the number of extrinsic metrics they measured per task. 0 means no extrinsic
metrics were measured.
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Abstract

This paper introduces a taxonomy of phenom-
ena which cause bias in machine translation,
covering gender bias (people being male and/or
female), number bias (singular you versus plu-
ral you) and formality bias (informal you ver-
sus formal you). Our taxonomy is a formalism
for describing situations in machine translation
when the source text leaves some of these prop-
erties unspecified (eg. does not say whether
doctor is male or female) but the target lan-
guage requires the property to be specified (eg.
because it does not have a gender-neutral word
for doctor). The formalism described here is
used internally by Fairslator1, a web-based tool
for detecting and correcting bias in the output
of any machine translator.

1 Introduction: phenomena described by
the taxonomy

The taxonomy we are going to introduce in this
paper is based on the assumption that biased trans-
lations are always the result of unresolvable ambi-
guities in the source text. We will start by demon-
strating on a few examples what exactly we mean
by ambiguity, what makes ambiguities resolvable
or unresolvable, and how the unresolvable ones in-
evitably lead to biased translations. This will serve
as an informal introduction before we proceed to a
more formal specification of everything in the rest
of the paper.

When translating a sentence such as she is a doc-
tor from English into a language such as German
which has no gender-neutral word for doctor, the
translator (machine or human) can translate doctor
either as male Arzt or as female Ärztin. The word
doctor is ambiguous for the purposes of this trans-
lation. However, the presence of the female pro-
noun she should be enough to tip any well-trained
machine translator towards the female reading and
to translate doctor as Ärztin – as indeed most of the

1https://www.fairslator.com/

major machine translators such as Google Translate
and DeepL do. Here, the ambiguity is resolvable
from context, where by context we mean the rest
of the text available to the translator.

Now consider a similar sentence: I am a doc-
tor. The word doctor is as ambiguous as before,
but this time the ambiguity is unresolvable from
context, as there is no indication anywhere in the
text whether the intended referrent of I and doctor
is a man or a woman. In such a situation, the ma-
chine translator will typically decide for the male
translation because that is what has been seen most
often in similar contexts in its training data. This is
another way of saying that the machine is making
an unjustified assumption: unjustified because
unsupported by anything actually present in the
text being translated. There are two possible ways
to “read” the ambiguous word doctor, but transla-
tions produced by this machine will be consistently
biased in favour of the male reading whenever con-
text allows both readings.

Unresolvable ambiguities do not simply happen
arbitrarily and unexpectedly. Many kinds of unre-
solvable ambiguities tend to happen regularly and
predictably when certain words occur in the source
text inside certain lexicogrammatical patterns, for
example I am a. . . or you are a. . . followed by
a gender-neutral noun known to have two gender-
specific translations in the target language. Fairs-
lator is a tool which detects such patterns and acts
on them: it asks the human user to disambiguate
(eg. to tell us whether they want the male or fe-
male reading) and then it re-inflects the translation
accordingly. To enable all this functionality, Fairs-
lator has inside itself a taxonomy for describing
how the source text is ambiguous and which way
the human user wants the ambiguity to be resolved.
The taxonomy describes the following kinds of un-
resolvable ambiguities:

• Unresolvable ambiguities in the gender of
human beings being referred to in the text.
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This covers the well-known case of “occupa-
tion words” such as doctor, teacher, cleaner,
as well as some less well-known cases such
as predicatively positioned adjectives in Ro-
mance languages (eg. English I am happy →
French je suis heureux male, je suis heureuse
female) and verbal participles in Slavic lan-
guages (eg. English I wanted it → Czech já
jsem to chtěl male, já jsem to chtěla female).

• Unresolvable ambiguities in the number of
people referred to by the English second-
person pronoun you (and its possessive com-
panion your). For example, in the sentence
you are here the pronoun you has an unresolv-
able ambiguity (from the perspective of trans-
lating it into a language which has separate
pronouns for singular and plural you) because
there is no indication in the text whether the
you refers to one person or many. (Contrast
this with a sentence such as you are all here
where the ambiguity is resolvable from the
presence of the plural word all.)

• Unresolvable ambiguities in the formality
with which people are being addressed in the
text. Many European languages have sepa-
rate second-person pronouns depending on
whether the speaker is addressing the listener
formally and politely, or informally and casu-
ally, eg. French vous versus tu, German Sie
versus du. An English sentence such as where
are you? has an unresolvable ambiguity (from
the perspective of the target language) because
there is no indication in it as to which level
of formality is intended, or which level of for-
mality would be required if one were speaking
in the target language. (Contrast this with a
sentence such as where are you Sir? where
the ambiguity is resolvable from the presence
of the formal form of address Sir.2)

As is obvious, the Fairslator taxonomy covers many
kinds of translation bias, not just bias in gender,
even though gender bias is currently the most vig-
urously debated kind of bias in machine transla-
tion (see Savoldi et al. 2021 for a state-of-the-art

2In fact, the addition of “tag-ons” such as Sir or dude,
such as he said or she said to the end of the sentence is one
method which has been experimented with to “solve” machine
translation bias. Effectively, it “tricks” the translator into
interpreting things in a particular way. See Moryossef et al.
2019.

survey). In terms of the language categories de-
fined by Savoldi et al. 2021, 3.1.1, the taxonomy
can (be adapted to) describe gender bias-causing
ambiguities during translation from all genderless
languages into all notional gender languages (lan-
guages that encode the gender of humans in pro-
nouns and nouns that refer to them) and grammat-
ical gender languages (languages that encode the
gender of humans through inflection on words that
do not directly refer to humans, such as verbs and
adjectives).

That said, the taxonomy in its current incarna-
tion, as presented in this paper, is oriented towards
translation from English into other, mainly Euro-
pean, languages, and there is a version of the tax-
onomy for each directed language pair: one for
English-to-German, one for English-to-Czech and
so on.

2 Bias statement: what is bias in machine
translation?

We can now proceed to a more formal definition
of what we mean by bias. When we consider ma-
chine translation as a black box and simply take its
input and output as a pair of texts (the source text
in the source language plus the translation in the
target language), then we can define the following
concepts:

Unresolvable ambiguity A portion of the source
text contains an unresolvable ambiguity if, in
order to translate it successfully into the tar-
get language, some semantic property of it
needs to be known (such as its gender or gram-
matical number or level of formality) but this
property is not expressed in the source text
and cannot be inferred from anything in the
source text.

Unjustified assumption An unjustified assump-
tion is what happens when, in the face of an
unresolvable ambiguity, the machine transla-
tor decides for one particular reading of the
ambiguous expression over others. The as-
sumption is unjustified because nothing ac-
tually present in the source text justifies it.
The machine’s decision is either random or,
if the translator has been constructed through
machine learning, predetermined by which
reading has been observed more often in the
training data.
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Bias A machine translator is biased if, while deal-
ing with unresolvable ambiguities and decid-
ing which unjustified assumptions to make,
its decisions are not random: it makes certain
unjustified assumptions more often than oth-
ers. For example, if a translator consistently
decides for male readings of doctor or for sin-
gular informal readings of you (when these are
unresolvably ambiguous in the source text),
then the translator is biased.

In other words, we define bias as a purely technical
concept, as the tendency of an automated system
to make certain unjustified assumptions more often
than others. This differs from the popular common-
sense understanding of the word bias which, in
addition to the purely technical process, implies
harmful and unjust consequences. This implica-
tion is not a necessary part of our definition. Our
definition of bias covers bias regardless of whether
it is harmful to society (eg. because it perpetu-
ates a stereotype by speaking about doctors as if
they must always be men), harmful to an individual
(eg. because it offends somebody by addressing
them with an inappropriately informal pronoun) or
relatively harmless and merely factually incorrect
(eg. because it addresses a group of people with a
singular pronoun).

Interestingly, our definition applies not only to
machines but also to humans: it is not unheard of
for human translators to make the same kind of
unjustified assumptions and to go about it with the
same amount of bias as machines. Good human
translators avoid bias by observing the extralin-
guistic reality (simply looking to see eg. whether
the speaker seems male or female) and by ask-
ing follow-up questions (“what do you mean by
you?”). Machine translators do not normally have
the means to do such things but Fairslator is a plug-
in which adds the latter ability to any machine trans-
lator: the ability to recognize unresolvable ambigu-
ities, to ask follow-up questions, and to re-inflect
the translation in accordance with the answers, in a
fashion similar to Habash et al. 2019 and Alhafni
et al. 2020.

3 Components of the taxonomy

3.1 Axes of ambiguity
To describe the unresolvable ambiguities in a pair
of texts (source + translation) in the Fairslator tax-
onomy, we need to analyze the text pair along three
axes:

The speaker axis Is the speaker mentioned in the
translation, for example by first-person pro-
nouns? And if so, is the speaker mentioned in
the translation in a way that encodes gender,
while the source text does not?

The listener axis Is the listener mentioned in the
translation, for example by second-person pro-
nouns or implicitly through verbs in the im-
perative? And if so, is the listener mentioned
in the translation in a way that encodes gen-
der, number or formality while the source text
does not?

The bystander axis Are any bystanders men-
tioned in the translation, that is to say, are any
people other than the speaker and the listener
being referred to by nouns or by third-person
pronouns? And if so, are the bystanders men-
tioned in the translation in a way that encodes
gender, while the source text does not?

Each text pair contains zero or one speaker axis,
zero or one listener axis, and zero, one or more
bystander axes. For each axis, we can use the tax-
onomy to express the fact that there are or are not
any unresolvable ambiguities on this axis, what the
allowed readings are (eg. the translation can be
either masculine or feminine along this axis) and
which reading is actually expressed in the trans-
lation (eg. the translation is masculine along this
axis).

We can illustrate this on an example. Assume
the following English sentence and its Czech trans-
lation.3

I would like to ask whether this is your
new doctor.
Chtěla bych se zeptat, jestli tohle je tvůj
nový lékař.

Using the three kinds of axes, we can analyze this
text pair as follows.

1. The speaker axis is present here. The speaker
is mentioned in the translation with the words
chtěla bych ‘I would like to’ where the word
chtěla is a verbal participle and encodes the
speaker as female in gender, while the source
text is ambiguous as to the speaker’s gender.

3The example is a little convoluted. This is necessary in
order to demonstrate all three axes.
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2. The listener axis is also present here. The
listener is mentioned in the translation with
the word tvůj ‘your’. This word encodes the
listener as singular in number and addressed
informally, while the source text is ambiguous
on these things. Neither the source text nor
the translation say anything about the gender
of the listener.

3. Finally, one bystander axis is present here.
The bystander is mentioned in the source text
by the word doctor and in the translation by
the word lékař. The word in the translation en-
codes the bystander as male in gender, while
in the source text it is ambiguous in gender.

For each axis, we have stated two things. First,
which readings are allowed by the source text, for
example “the speaker can be interpreted as male
or female”. Second, which reading is actually ex-
pressed in the translation, for example “the speaker
has been interpreted as female”.

3.2 Ambiguity descriptors

To describe the possible readings on each axis, the
taxonomy uses combinations of one-letter abbre-
viations such as m or f for masculine or feminine
gender, s or p for singular and plural number, and
t or v for informal or formal form of address (from
the Latin pronouns tu and vos, as is comon in lin-
guistic literature on this topic). Using this code we
can re-express the observations from above more
succinctly:

1. sm|sf : sf
2. st|sv|p : st
3. doctor : sm|sf : sm

Human-readably, this means:

1. The speaker axis can be sm (singular mascu-
line) or sf (singular feminine). Currently it
is sf (singular feminine).

2. The listener axis can be st (singular infor-
mal) or sv (singular formal) or p (plural).4

Currently it is st (singular informal).

3. The bystander axis identified through the nick-
name doctor can be sm (singular mascu-
line) or sf (singular feminine). Currently it
is sm (singular masculine).

4In the plural, Czech has no distinction between formal
and informal registers.

Each line is a descriptor which describes the unre-
solvable ambiguity on a given axis. Each descriptor
consists of:

• A number to indicate which axis is being
talked about: 1 for the speaker axis, 2 for the
listener axis, 3 for the bystander axis. Each
description can contain zero or one descriptor
for the speaker axis, zero or one descriptor
for the listener axis, and zero or one or more
descriptors for the bystander axis.

• For the bystander axis only: a nickname to
identify this bystander axis from other by-
stander axes in this description. This is usually
a word taken from the source text. If there is
more than one bystander axis in the text pair
(which is rare but happens in sentences such
as the doctor asked the nurse to. . . ) than they
must have different nicknames (eg. doctor
and nurse).

• Codes for all the readings allowed by the
source text in this axis, separated by vertical
lines, for example st|sv|p.

• A code for the reading actually expressed in
the translation for this axis, for example st.

Fairslator uses a slightly different catalogue of de-
scriptors for each directed language pair. As an
example, Fairslator’s complete inventory of de-
scriptors for English-to-German is given in the Ap-
pendix.

4 How Fairslator uses the taxonomy

The main purpose of the taxonomy is to make it pos-
sible for Fairslator to formulate human-friendly dis-
ambiguation questions for users.5 Here are some
examples of descriptors and the disambiguation
questions generated from them.

1. sm|sf : sf

• Who is saying it?
– a man
– a woman (selected)

1. pm|pf : pm

• Who is saying it?
5Fairslator’s target audience is users who speak the source

language but do not speak the target language, or do not speak
it well enough to be able to detect and correct biased transla-
tions on their own.
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– a group containing at least one
man (selected)

– a group of women

2. st|sv|p : st

• Who are you saying it to?
– one person

* addressed informally (se-
lected)

* addressed formally
– several people

3. doctor : sm|sf : sm

• Who is the person identified as
“doctor”?

– a man (selected)
– a woman

Once the human user has made a selection from
these options, Fairslator re-inflects the translation
in accordance with the user’s wishes: changes pro-
nouns and nouns accordingly, changes verbs and
adjectives so as not break grammatical agreement,
and so on. The details of this process, as well as
details of how Fairslator detects unresolvable am-
biguities in the first place, are not the subject of
this paper but some information about this can be
found in Měchura 2022.

5 Discussion: where the taxonomy could
be improved

I versus we The taxonomy assumes that there is
always no more than one speaker axis in each
text and that its grammatical number never
changes: it is always either I or we but never
both. This means that it cannot handle texts
where the speaker refers not only to himself
or herself (I) but also to a group he or she
belongs to (we), such as I think we should...

Multiple voices While the taxonomy is able to
handle texts consisting of multiple sentences
without problems, it can only do so on the
assumption that the axes remain unchanged
throughout the text. When the axes do change,
as they do in a dialogue (How are you? Very
well, and you?), then the taxonomy is cur-
rently unable to keep track of “who is who”
and wrongly assumes that, for example, the
people referred to by you are the same person
throughout.

Word-sense ambiguities The taxonomy is de-
signed to handle unresolvable ambiguities in
three semantic properties: gender, number and
formality. In principle, however, any seman-
tic property can be affected by an unresolv-
able ambiguity during translation. So, ideally,
word-sense ambiguities of any kind should
be covered by the taxonomy. One example
for many is river → French fleuve ‘large river
flowing into the sea’ versus rivière ‘small river
flowing into another river’. In a sentence such
as we went for a walk along the river being
translated into French, the sense of river is
unresolvably ambiguous and, if not disam-
biguated manually by a human user, the ma-
chine’s translation is bound to be biased in
favour of one sense or the other. See Lee et al.
2016 for an inspiring attempt to remove word-
sense bias from machine translation through
human-driven word-sense disambiguation.

Gender-neutral language In languages where
words come in gendered pairs, such as teacher
→ German Lehrer male or Lehrerin female,
it is sometimes possible to construct a gender-
neutral neologism by merging them together,
such as Lehrer:in, in case a gender-neutral
word is required. The same can sometimes be
done with pronouns, adjectives, verbal partici-
ples and other gendered pairs of words. While
such neoforms are pragmatically strongly
marked and not all writers and readers like
them, they do exist and should therefore be
included in the taxonomy as one of not two
but three gender values: male, female and
gender-neutral.

6 Summary

Machine translation technology is getting better
all the time at resolving ambiguities from clues in
the context. But some ambiguities can never be
resolved in this way because there are no clues in
the context. To avoid bias during the translation
of texts that contain unresolvable ambiguities, we
need to build tools which are able to (1) recognize
that an unresolvable ambiguity has occured and (2)
ask the human user to disambiguate manually.

To be able to build such tools at all, what we need
first of all is an expressive formalism for describing
unresolvable ambiguities. This paper has shown
how to construct such a formalism for any directed
language pair by analysing the source text and its
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translation from the point of view of three axes
(speaker, listener and bystander) and by describing
any unresolvable ambiguities that occur in those
axes through descriptors which tell us (1) which
readings are allowed by the source text and (2)
which one of those readings is actually expressed
in the translation.
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Appendix: inventory of descriptors

Here we are going to lay out Fairslator’s complete
inventory of descriptors for English-to-German.
Each descriptor describes one type of unresolvable
ambiguity which is capable of occurring during
translation between these two languages, in this
direction. We accompany each descriptor with an
example to illustrate the ambiguity.

Speaker axis
1. sm|sf
I am the new director.
sm Ich bin der neue Direktor.
sf Ich bin die neue Direktorin.

1. pm|pf
We are teachers.
pm Wir sind Lehrer.
pf Wir sind Lehrerinnen.

Listener axis
2. ts|vs|tp|vp
Are these your children?
ts Sind das deine Kinder?
vs Sind das Ihre Kinder?
tp Sind das eure Kinder?
vp Sind das Ihre Kinder?

2. ts|vs
Did you do it yourself?
ts Hast du es selbst gemacht?
vs Haben Sie es selbst gemacht?

2. tp|vp
Did you do it yourselves?
ps Habt ihr es selbst gemacht?
vp Haben Sie es selbst gemacht?

2. tsm|tsf|vsm|vsf
Are you the new director?
tsm Bist du der neue Direktor?
tsf Bist du die neue Direktorin?
vsm Sind Sie der neue Direktor?
vsf Sind Sie die neue Direktorin?

2. tpm|tpf|vpm|vpf
Are you teachers?
tpm Seid ihr Lehrer?
tpf Seid ihr Lehrerinnen?
vpm Sind Sie Lehrer?
vpf Sind Sie Lehrerinnen?

Bystander axis
3. director : sm|sf
This is the new director.
sm Das ist der neue Direktor.
sf Das ist die neue Direktorin.

3. teachers : pm|pf
These are our teachers.
pm Das sind unsere Lehrer.
pf Das sind unsere Lehrerinnen.
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Abstract

We explore whether neural Natural Language
Processing models trained to identify offen-
sive language in tweets contain gender biases.
We add historically gendered and gender am-
biguous American names to an existing of-
fensive language evaluation set to determine
whether models’ predictions are sensitive or ro-
bust to gendered names. While we see some
evidence that these models might be prone to
biased stereotypes that men use more offen-
sive language than women, our results indicate
that these models’ binary predictions might not
greatly change based upon gendered names.

1 Introduction

Identifying offensive language in text is an in-
creasingly important challenge that has sparked
the release of datasets and advanced models fo-
cused on toxic language detection in multiple lan-
guages (Razavi et al., 2010; Pitenis et al., 2020; Sig-
urbergsson and Derczynski, 2020; Çöltekin, 2020;
Founta et al., 2018). For these models to be trust-
worthy when deployed in sensitive, real-world con-
texts, they must perform equally well for text writ-
ten by male, female, or non-binary authors.

However, based on known gender-based biases
in NLP systems (Rudinger et al., 2018; Zhao et al.,
2018; Sun et al., 2019; Gaut et al., 2020; Stanovsky
et al., 2019; Savoldi et al., 2021), especially among
models trained to detect abusive language (Park
et al., 2018), we hypothesize that existing NLP
systems that incorporate pre-trained word embed-
dings or transformer-based language models will
perform differently given access to authors’ names
if those names are generally associated with a par-
ticular gender.1 To test the hypothesis that offen-
sive language identification models exhibit gender

* Work performed while at Barnard College
1 In this paper we use an author’s name assigned at birth

as a proxy for their gender. While we acknowledge the limi-
tations associated with inferring gender from an individual’s
name, in doing so we recreate real-world circumstances in

Figure 1: F1 Scores of the CBoW, BiLSTM, and BERT
models isolated by each gender. The models’ predic-
tions do not noticeably change based on the gender of
named examples.

biases, we adopt the Perturbation Sensitivity Anal-
ysis framework (Prabhakaran et al., 2019). We
perturb examples of an existing dataset by adding
historically gendered or gender-ambiguous names
to the original texts. We evaluate whether three
classes of NLP models (bag of words, BiLSTM,
and transformers) systematically change their pre-
dictions on our modified gendered examples.

Although we see statistically significant differ-
ences when comparing a bag of words model’s
and transformer model’s predictions between male
and female examples, we do not see convincingly
strong evidence that the models’ binary predictions
for offensiveness consistently change with the ad-
dition of gendered names (Figure 1). Therefore,
we compare how the model’s predicted offensive-
ness probability changes for perturbed examples.
We also explore if there are specific names for
which the predicted class probability consistently
changes. While we see some remnants of gendered

which NLP systems would make gendered associations based
upon a speaker’s or author’s name even when their gender is
not explicitly mentioned.
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Example CBoW BiLSTM BERT

▶ @USER You are missing brains? 0.741306 0.999869 0.839001
~ Vanessa tweeted @USER You are missing brains? 0.859568 0.999833 0.755025
| Matthew tweeted @USER You are missing brains? 0.859568 0.999833 0.756230
{ Oakley tweeted @USER You are missing brains? 0.859568 0.999833 0.735549

Table 1: An example of an offensive tweet from the development set and the offensiveness probability each model
(CBoW, BiLSTM, BERT) assigned to the unmodified (▶ ), female (~), male (|), and gender-neutral versions ({).

biases, our results offer encouraging evidence that
downstream models using pre-trained representa-
tions that are known to encode gendered stereo-
types (Bolukbasi et al., 2016; Garg et al., 2018;
Zhao et al., 2018) might overcome these biases.

2 Motivation & Bias Statement

As user-generated content gradually dominates on-
line spaces, offensive text has become more ubiq-
uitous (Banks, 2010; Kumar et al., 2020). Unreg-
ulated inflammatory or hateful online discourse
can have profound effects that extend beyond the
web, from negative mental health impacts for tar-
geted individuals to instigation of physical vio-
lence (Safi Samghabadi et al., 2020; Siegel, 2020).
Hence, identifying and moderating toxic dialogue
efficiently and accurately is a task that only grows
more crucial, and developing automatic methods
to detect and flag offensive language is critical.

Psychological studies spanning the past four
decades conclude that, on average, "men use of-
fensive language more than women" (although this
gap has shrunk over time), likely as a result of how
women are "socialized into subordinate roles and
a less inflammatory manner of communicating"
(Sapolsky and Kaye, 2005). Moreover, these ob-
served patterns of offensive or abusive content au-
thorship translate to online communities like Twit-
ter (Mubarak et al., 2021).

Research into fairness in NLP indicates that sys-
tems trained on large corpora of human-written
text tend to replicate existing stereotypes about
gendered behavior (Sun et al., 2019; Babaeianjelo-
dar et al., 2020). Thus, offensive language detec-
tion classifiers based on social-media data risk in-
heriting these underlying assumptions that male-
authored tweets are more likely to utilize offensive
language than text written by female individuals.

As it becomes more common for social media
platforms to rely on NLP systems to detect and
remove profane or hateful content online, it be-

comes increasingly vital that these classification
models are robust to gender biases. While previ-
ous research has considered identity-based bias
against a gendered subject in abusive language
tasks (Park et al., 2018; Prabhakaran et al., 2019)
and gender-based biases among annotations (Ex-
cell and Al Moubayed, 2021), how the perceived
gender of a speaker or author affects output model
classification remains understudied.

3 Experimental Setup

Our goal is to determine whether offensive lan-
guage identification models are prone to gender
biases. We train bag of word, BiLSTM, and
transformer-based models on the Offensive Lan-
guage Identification Dataset (OLID; Zampieri et al.,
2019a). OLID is the official dataset used in the
OffensEval shared tasks (Zampieri et al., 2019b,
2020), where tweets containing profanity, insults,
threats, hate speech, etc, are labeled as offen-
sive (Zampieri et al., 2019a). OLID contains
13,240 annotated English-language tweets (4400 of-
fensive, 8840 not offensive) and 860 test examples
(240 offensive, 620 not offensive). For model train-
ing, we split the original training set into 12,380
training and 860 dev examples.2

3.1 Gendered Test Set Creation

In order to evaluate whether the models’ predic-
tions change when the text explicitly mentions the
author of the tweet, we modify the 860 test set
examples using the following template:3

(1) Name tweeted original tweet

where original tweet is the original test example

2We provide all model implementation and hyper-
parameter tuning details in subsection 3.2.

3This template is similar to those previously used to eval-
uate natural language inference systems’ abilities to capture
different semantic phenomena (Poliak et al., 2018) and gen-
der bias in named entity recognition systems (Mehrabi et al.,
2020).
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Hyper-parameter Options Models Used

Batch Size 16, 32, 64, 128 CBoW, BiLSTM, BERT*
Num. Hidden Features 1, 3, 5, 16, 64 CBoW, BiLSTM

Learning Rate 0.1, 0.01, 0.001, 0.0001 CBoW, BiLSTM
Dropout Rate 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 CBoW

Table 2: Permutations of hyper-parameter configurations tested, with the models that use each hyper-parameter.
*Due to machine memory constraints, only batch sizes of 16 and 32 were tested for BERT.

and Name is replaced with a name from an aggre-
gated list of 212 historically gendered and gender
ambiguous names in the United States to create a
test set of 182,320 named tweets. Table 1 provides
an example from our dataset.

Using standard practice (Vogel and Jurafsky,
2012; Bamman et al., 2014), we create a list
of traditionally gendered names using publicly
available government statistics. In particular, we
compile data from the Social Security Admin-
istration’s annual list of American baby names
from 2000-2018.4 We aggregate names with
p(gender|name) ≥ 0.9, filter out those names
not recognized as singular tokens by the BERT and
GloVe vocabularies, preventing OOV issues.5 We
select the top 100 most frequent names ascribed to
newborns assigned female or male at birth.

While current research suggests that toxic lan-
guage models may perform differentially on gen-
dered input (Park et al., 2018), work remains to
be done on how these models may misclassify
text written by authors who do not conform to
the gender binary. Therefore, we also include
six gender-neutral names (Justice, Milan, Lennon,
Oakley, Marion, and Jackie) that appear at ap-
proximately similar gender frequencies in the SSA

data (0.9 ≥ p(male|name)

p(female|name)
≥ 1.1), are recog-

nized by both pre-trained vocabularies, and were
assigned to at least 4,000 newborns over the consid-
ered time-frame. We add one male (he), one female
(she), and four gender-neutral pronouns (one, they,
someone and a person).

4Prior research has similarly extracted gendered names
from the Social Security Administration (Smith et al., 2013;
Mohammad, 2019; Garg et al., 2018; HallMaudslay et al.,
2019; Mehrabi et al., 2020; Shwartz et al., 2020)

5Filtering for names recognized by the BERT and GloVe
vocabularies when collecting the top 100 gendered names rec-
ognized by pre-trained embeddings removed 11 more female
names than male names. This might illustrate a bias against
traditionally female names in these representations.

3.2 Implementation Details

We explore classifiers based on three different
classes of neural encoders. Each model was tested
on a range of hyper-parameter configurations (Ta-
ble 2), and the best configuration was chosen based
on maximizing F1-Score on the validation set. Our
trained models achieve comparable performance
on the unnamed validation set to published results
for similar classes of models on OLID (Ramakr-
ishnan et al., 2019; Mahata et al., 2019; Zampieri
et al., 2019a; Wu et al., 2019; Pavlopoulos et al.,
2019; Aggarwal et al., 2019; Zhu et al., 2019).

Neural Bag of Words We trained a Continuous
Bag of Words model (CBoW) to build classifiers
for offensive and not offensive tweets and predict
the output class of a new tweet based on the average
vector representation of its tokens. To process the
input examples, we use the NLTK tweet tokenizer
and 100-dimensional GloVe embeddings (Penning-
ton et al., 2014) pre-trained specifically for Twitter-
sourced text.6 Our CBoW model consists of a
multi-layer perceptron (MLP) with a single hidden
layer with one feature built on top of an embedding
layer. The best performing model uses a batch size
of 16 for training and validation, a learning rate of
0.001, and a dropout rate of 0.9 for regularization.

BiLSTM encoder The second type of encoder
we consider is a Bidirectional LSTM (BiLSTM)
(Schuster and Paliwal, 1997; Hochreiter and
Schmidhuber, 1997). We process the input using
the same tweet tokenizer and Twitter-trained GloVe
embeddings as in the CBoW model. The best per-
forming BiLSTM model architecture consists of a
bidirectional LSTM layer with 128 output features
and a MLP with 64 features in the hidden layer.
For this model, weights are updated during training
with a learning rate of 0.001 in an Adam optimizer
and a training and validation batch size of 64.

6Twitter GloVe embeddings downloaded from
https://nlp.stanford.edu/projects/glove/
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CBoW BiLSTM BERT
TN FN TP FP TN FN TP FP TN FN TP FP

- 62.79 12.44 15.47 09.30 58.95 13.37 14.53 13.14 65.12 07.91 20.00 06.98
| 61.52 11.87 16.03 10.57 58.19 13.43 14.48 13.91 65.11 08.28 19.62 06.98
~ 61.92 11.93 15.97 10.17 58.47 13.48 14.42 13.62 65.35 08.55 19.36 06.75
{ 61.51 12.05 15.86 10.58 58.09 13.41 14.50 14.00 65.13 08.43 19.48 06.97

Table 3: Aggregated confusion matrices of the CBoW, BiLSTM, and BERT models evaluated on the original,
unmodified (-) test tweets and each named gender subgroup (male |, female ~, and gender neutral {). To enable
easier comparisons, we normalized counts in the confusion matrices so that each cell represents the percentages of
each type of prediction the models made across each gender.

Model

Gender
- | ~ {

CBoW 71.98 71.70 71.98 71.41

BiLSTM 66.97 66.21 66.37 66.16

BERT 81.31 80.75 80.60 80.55

Table 4: F1 scores for each model on the original un-
named (-) and male (|), female (~), and gender neutral
({) examples.

Transformers We fine-tune a HuggingFace pre-
trained BERT base-uncased model (Wolf et al.,
2020) on our offensive training set using 2 epochs,
50 warm-up steps, a weight decay of 0.01, and a
batch size of 16. We process the input examples
using the BERT base-uncased tokenizer, the same
tokenizer used when identifying OOV names.

3.3 Results

In our experiments, the models’ F1-performances7

slightly change on our examples modified with gen-
dered or gender-neutral names (Figure 1 and Ta-
ble 4). Compared to the original, unmodified test
examples, the models’ performance drops on the
named examples and it seems that BERT’s perfor-
mance is most affected by the named examples
compared to the other models. By adding the True
Positives and False Positives rates in the confusion
matrices Table 3, we notice an increase in offen-
sive predictions across all genders for CBoW, a
smaller increase for BiLSTM, and a slight decrease
in offensive predictions for BERT.8 In other words,

7We report F1-Score since both the training and test
datasets are not balanced.

8CBoW classifies 24.77% of the unnamed test examples
as offensive compared to 26.60% for male, 26.14% for female,
and 26.44% for gender neutral examples. BiLSTM classifies
27.67% of the unnamed test examples as offensive compared

t-stat p-value

CBoW 2.1615 0.0153
BiLSTM 1.5833 0.0567
BERT 2.3691 0.0089

Table 5: Result of one-sided t-test comparing each mod-
els’ predictions for male vs female authored-examples.

just by adding a name or pronoun, the Glove-based
models predict more examples as offensive and the
BERT model predict fewer examples as offensive.
However, across all models, the difference in pre-
dictions on the gendered and original examples is
not statistically significant, as measured by t-tests.

Focusing just on the named examples, the mod-
els that do not use contextualized word representa-
tions (CBoW and BiLSTM) perform better on the
female examples than the male or gender neutral
examples, while the BERT model achieves a higher
F1 score on the male examples than on the female
or gender neutral examples. Turning towards our
goal of identifying whether the models are prone
to the stereotype that men use more offensive lan-
guage than women, we notice that all models clas-
sify more male authored tweets as offensive than
female authored tweets. Specifically the CBoW,
BiLSTM, and BERT models respectively classify
0.46% (397), 0.35% (297), and 0.49% (435) more
male authored-examples as offensive than female
authored-examples.9 While one-sided10 t-tests (Ta-
ble 5) comparing the models’ predictions between

to 28.39% for male, 28.04% for female, and 28.50% for gender
neutral. BERT classifies 26.98% of the unnamed examples as
offensive compared to 26.60% for male, 26.11% for female,
and 26.45% for gender neutral examples.

9These are absolute differences between male TP + FP
rates and female TP + FP rates.

10Specifically that the models categorize more male-
authored than female-authored tweets as offensive.
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male and female authored-examples indicate that
these are statistically significant differences for
CBoW and BERT, the small differences in mag-
nitude might suggest that adding historically gen-
dered names as speakers in our examples does not
consistently or convincingly alter the models’ class
predictions for whether or not a tweet is offensive.
The statistical significance for CBoW and BERT
might be due to the large sample size in our study.

4 Further Analysis

Since our results do not conclusively support our
hypothesis that the models’ binary predictions
change for all considered models when explicitly
adding gendered names to our test examples, we
turn our attention towards exploring whether, and
to what extent, the models’ assigned probabilities
change for our perturbed dataset. We also investi-
gate whether these predicted probabilities consis-
tently change for any specific names.

4.1 Offensiveness Probability Scores

Solely investigating whether a model’s binary pre-
dictions change might mask gender biases should
the model’s predicted probabilities vary largely
without crossing the label decision boundary. To
explore whether this is the case, we compute the dif-
ference between a model’s predicted offensiveness
probability for every modified and corresponding
unmodified example. The average differences are
0.021 (σ = 0.059) for CBoW, 0.007 (σ = 0.059)
for BiLSTM, and −0.007 (σ = 0.47) for BERT.

Figure 2 plots the distribution of these differ-
ences grouped by gender for each model. These
histograms illustrate that across all three models,
for the majority of modified examples, the change
in offensiveness probability is very small.

Additionally, these histograms further confirm
our initial findings. For the CBoW model (Fig-
ure 2a), adding a gendered name seems to more
likely lead to an increase in predicted offensive
probability, and male names lead to larger increases.
For the BiLSTM model (Figure 2b), the distri-
butions of the differences for male and female
examples almost match and a large majority of
male (88.64%) and female (90.22%) examples
have an absolute difference less than 0.025%. For
the BERT model (Figure 2c), including gendered
names in the examples lead to a decrease in pre-
dicted offensive probability, with more pronounced
decreases for female names.

(a) CBoW

(b) BiLSTM

(c) BERT

Figure 2: Histograms plotting the change in offensive
class probability between named and unnamed exam-
ples, grouped by gender (m: male, f: female, n: gender-
neutral). A positive difference indicates that the model
determined the named tweet to be more offensive than
the base tweet.

These histograms demonstrates that there are
very few examples where the model’s predicted
probabilities vary largely without crossing the label
decision boundary. However, these histograms,
specifically Figure 2a and Figure 2c, might reflect
the stereotypes discussed by Sapolsky and Kaye
(2005) that men use more offensive language than
women.
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Figure 3: For each model, we plot how (average and standard deviation) the predicted offensiveness probability
changed for each name. Y-axis indicates the difference. We label the names where the average difference was
outside the typical standard deviation across the model.

4.2 Individual Name Impact

Prior work has shown that pre-trained represen-
tations might encode stereotypes about specific
names (Shwartz et al., 2020). To test if these mod-
els similarly contain biases about specific names,
we now group the difference between a model’s
predicted probability for each modified and corre-
sponding unmodified example by prepended name.

Figure 3 plots how these differences vary for
each name. The average differences in the BERT
model’s predictions consistently vary, but insignifi-
cantly. We notice just one name, Jesus, stands out
as more offensive and one pronoun, a person, is
uniquely less offensive. The mean change over all
examples prepended with Jesus in the BERT model
is 0.012, compared to an average change of -0.007
across all named examples. This finding is perhaps
attributable to how Jesus is often used in colloquial
English speech and on online platforms as a form
of exclamation (Goddard, 2015).

For the GloVe-based models, we notice that the
average and standard deviation of differences are
identical for the same set of 158 names (and pro-
nouns).11 These models’ predicted probabilities
changed more for male than female names. Of the
54 names where the models’ average probabilities
differed from that of the 158 names, 36 are male, 13
are female, and 5 are gender-neutral. CBoW’s aver-
age probability increased for 15 male, 0 female, and
2 gender-neutral names, and BiLSTM’s increased
for 21 male, 5 female, and 3 gender-neutral names.
This suggests that the GloVe-based models might

11The mean and standard deviation for these difference in
CBoW’s predictions for these names are respectively 0.025
and 0.049 and 0.005 and 0.031 for the BiLSTM.

find male names to be more offensive than female
names. However, there is little overlap between the
male names that the CBoW and BiLSTM model
usually predict as being more offensive (e.g. Aaron,
David, and Henry for CBoW and Adam, Brandon.
and Jacob for BiLSTM). For the name Robert, both
models typically predict a lower offensive prob-
ability. The greater variations in the CBoW and
BiLSTM predictions suggests that these models are
more sensitive to the presence of specific gendered
names compared to transformer-based models.

5 Conclusion

We asked whether there exists a measurable gender-
based asymmetry in models’ performances for pre-
dicting offensiveness when a tweet explicitly states
the speaker’s name. Our experimental results im-
ply that a range of typical neural models might be
robust to perceived author gender when classify-
ing tweets as offensive though they might perceive
male authored tweets to be slightly more offensive.
Our work supports recent findings that intrinsic
biases in the word embedding space may not cor-
relate to extrinsic measures of bias in downstream
applications (Goldfarb-Tarrant et al., 2021). While
these findings on gender bias in offensive classifi-
cation tasks are promising, we encourage further
research to evaluate the extent to which these re-
sults generalize across more datasets and language
phenomena as well as other social groups and inter-
sectional identities, such as speaker race, age, and
sexual orientation.

179



6 Ethical Considerations

As noted in Antoniak and Mimno (2021), collect-
ing gendered names from population-derived data
has the limitation of centering the majority popu-
lation, in this case US-born, white children. More-
over, while filtering for names not recognized by
the GloVe or BERT vocabularies ensures our study
only includes names that have pre-trained represen-
tations, this filtering might perpetuate biases in our
tests since it disproportionately affected non-white
names and female names.

Researchers have called on the NLP community
to move beyond the gender binary (Larson, 2017;
Prabhakaran et al., 2019). While our study included
gender-neutral names and pronouns, we acknowl-
edge that this set is drastically smaller than that
of gendered names. We leave a deep study into
the impact of gender-neutral names or pronouns as
future work.

Using names as a proxy for gender is fraught
with potential limitations and biases, particularly
when an individual’s gender identity does not
match the gender historically associated with their
name. However, NLP systems might make gen-
dered associations based upon a speaker’s name
even when the speaker’s gender is not explicitly
mentioned. As discussed in footnote 1, we ac-
knowledge these issues and strive to parallel the
circumstances in which these systems may be de-
ployed in the real world.
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Abstract

Pretrained language models are publicly avail-
able and constantly finetuned for various real-
life applications. As they become capable
of grasping complex contextual information,
harmful biases are likely increasingly inter-
twined with those models. This paper analyses
gender bias in BERT models with two main
contributions: First, a novel bias measure is
introduced, defining biases as the difference in
sentiment valuation of female and male sample
versions. Second, we comprehensively analyse
BERT’s biases on the example of a realistic
IMDB movie classifier. By systematically vary-
ing elements of the training pipeline, we can
conclude regarding their impact on the final
model bias. Seven different public BERT mod-
els in nine training conditions, i.e. 63 models
in total, are compared. Almost all conditions
yield significant gender biases. Results indicate
that reflected biases stem from public BERT
models rather than task-specific data, empha-
sising the weight of responsible usage.

1 Introduction

As complex Machine Learning (ML) based systems
are nowadays naturally intertwined with media,
technology and everyday life, it is increasingly im-
portant to understand their nature and be aware of
unwanted behaviour. This also applies to the Natu-
ral Language Processing (NLP) community, where
several recent breakthroughs promoted the applica-
tion of sophisticated data-driven models in various
tasks and applications. Only a decade ago, ML-
based vector space word embeddings as word2vec
(Mikolov et al.) or Glove (Pennington et al., 2014)
emerged and opened up new ways to extract infor-
mation and correlations from large amounts of text
data. In this context, it has widely been shown that
embeddings tend to reflect human biases and stereo-
types (Caliskan et al., 2017; Jentzsch et al., 2019)
and that unintended imbalances in text-embeddings

Figure 1: Example Sample Masking. The original
review contains both male (orange) and female (green)
terms. In masked versions, all terms are homogeneously
male or female.

can lead to misbehaviour of systems (Bolukbasi
et al., 2016).
In recent years, however, these static word embed-
dings have rapidly been superseded by the next
generation of even more powerful NLP models,
which are transformer-based contextualised lan-
guage models (LMs). BERT (Devlin et al., 2019a)
and similar architectures established a new standard
and now form the basis for many real-life applica-
tions and downstream tasks. Unfortunately, previ-
ous bias measurement approaches do not seem to
be straightforwardly transferable (May et al., 2019;
Guo and Caliskan, 2021; Bao and Qiao, 2019).
Since the connection between input data and model
output is even more opaque, new measures are re-
quired to quantify encoded biases in LMs properly.
Moreover, with the increase in complexity, compu-
tational costs and required amount of data, it is of-
ten infeasible to train models from scratch. Instead,
pretrained models can be adapted to a wide vari-
ety of downstream tasks by finetuning them with a
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Figure 2: Illustration of experimental pipeline. (1) Data Preparation: removing/ balancing gender terms in
training data. Create experimental data by masking terms in test data to generate a male and a female version. (2)
Model Finetuning: finetune a pretrained BERT model with task-specific training data in different conditions. (3)
Sentiment Rating of experimental data; (4) Analysis and Bias calculation.

small amount of task-specific data (Qiu et al., 2020).
Although enabling easy access to state-of-the-art
NLP techniques, it comes with the risk of lacking
model diversity. Different models come with in-
dividual characteristics and limitations (Xia et al.,
2020), and there is a small number of well-trained
publicly available models that are extensively used,
often without even scrutinising the model. There
are ongoing endeavours to enhance a responsible
development and application of those models, e.g.
(Mitchell et al., 2019). However, it is still barely
understood to what extent biases are propagated
through ML pipelines and which training factors
enhance or counteract the adaption of discriminat-
ing concepts. To apply complex transformer LMs
reasonably, it is important to understand how much
bias they encode and how these are reflected in
downstream applications.

The present study presents a comprehensive anal-
ysis of gender bias in BERT models in a down-
stream sentiment classification task with IMDB
data. This task is a realistic scenario, as ML-based
recommendation systems are widely used, and re-
flected stereotypes could directly harm people, e.g.
by underrating certain movies or impairing their
visibility. The investigation comprises two main
contributions: First, we propose a novel method
to calculate biases in sentiment classification tasks.
Sentiment classifiers inherently possess valuation
abilities. We exploited these to rate “female” and
“male” sample versions (see Fig. 1) and therefore
need no additional association dimension, e.g. oc-
cupation. The classifier is biased if one gender
is preferred over the other. Second, we analyse
the impact of different training factors on the final
classifier bias to better understand the origin of bi-
ases in NLP tasks. Seven different base models,
three different training data conditions and three
different bias implementations lead to a total num-

ber of 63 compared classifiers. Additional obser-
vations could be made regarding training hyper-
parameters and model accuracies. Results reveal
significant gender biases in almost all experimental
conditions. Compensating imbalances of gender
terms in finetuning training data did not show any
considerable effect. The size and architecture of
pretrained models, in contrast, correlate with the bi-
ases. These observations indicate that classifier bi-
ases are more likely to stem from the public BERT
models than from task-specific data and emphasise
the importance of selecting trustworthy resources.
The present work contributes to understanding bi-
ases in language models and how they propagate
through complex machine learning systems.

Bias Statement

We study how representational male and female
gender concepts are assessed differently in senti-
ment classification systems. In this concrete con-
text, we consider it harmful if a classifier that is
trained to distinguish positive and negative movie
reviews prefers performers and film characters of
one gender over another. This could not only re-
inforce existing imbalance in the film industry but
also lead to direct financial and social harm, e.g.
if a movie is less frequently recommended by an
automatic recommendation system.
Beyond that, this concrete task is meant to be only
one example case for an unlimited number of fine-
tuning scenarios. If we can measure a bias here, this
representational imbalance could similarly float
into other downstream applications of all kinds,
e.g. recruitment processes, hate speech crime de-
tection, news crawler, or computational assistants.
Generally spoken, it is problematic when freely
available and rapidly used models encode a gen-
eral preference of one gender over another. This is
especially critical if this imbalance is propagated
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through larger systems and unknowingly reflected
in gender-unrelated downstream tasks. To raise
awareness and mitigate stereotypical reflection, we
need to understand how biases emerge and how
they are reinforced.
The concepts female and male are represented by
sets of terms that are grammatically connected to
that gender. One major limitation of that imple-
mentation is that it assumes a binary gender clas-
sification and does not reflect real-world diversity.
Up to now, concepts of a gender-neutral or gender-
diverse language are not sufficiently established to
consider them for data-driven model training. Nev-
ertheless, we believe that the binary reflection of
gender in natural language is worth analysing as it
is already connected to real-life discrimination.

2 Methodology

This investigation analyses to what extent BERT
gender biases are present in an IMDB sentiment
classification task. We aim to observe what por-
tion of bias emerges in which experimental step
by systematically varying conditions in each step.
63 different classifiers and their biases are finally
reported in this paper. Many more were trained to
observe different training aspects. This section pro-
vides a detailed description of experimental steps
and how different conditions are achieved.
The experimental pipeline can be divided into four
major steps, as illustrated in Fig. 2. The struc-
ture of this section roughly follows these steps.
First, the preparation of training data is described
in Sec. 2.1. We compare seven training conditions
where gender information in training data is re-
moved or balanced. By that means, it can be mea-
sured how much bias is induced during the task-
specific finetuning. Second, the sentiment clas-
sifiers were trained by finetuning seven different
common BERT models, as can be read in Sec. 2.2.
By observing whether the choice of model affects
the bias magnitude, we can infer how much bias
stems from the pretrained BERT model. Also, we
compare different sizes of the same architecture. In
the third step, the trained classifiers were applied
to rate the manipulated test data, which is here
referred to as experimental data. The setup is de-
scribed in Sec. 2.3. Finally, these ratings are used
to calculate the model bias that is defined contextu-
ally in Sec. 1 and mathematically in Sec. 2.4. Three
different sets of gender terms were considered in
the experiments.

2.1 Sentiment Data and Data Preparation

Experiments were conducted in a typical sentiment
classification task on movie reviews. The Internet
Movie Database, which is generally referred to as
IMDB, is a free platform to rate movies, TV-series
and more. We used the publicly available IMDB
Large Movie Review Dataset (Maas et al., 2011),
which consists of 50,000 real user movie reviews
from that platform. Each sample is provided with
the original review texts, the awarded stars as nu-
merical values, and a binary sentiment label derived
from the star rating. Reviews with ratings of 4 or
lower are labelled as negative, and those rated as
7 or higher are labelled as positive. Reviews with
star ratings of 5 and 6 are not added to the labelled
set. The data is already split equally in training and
test data, which was not modified in this investi-
gation. We prepared all samples to be free from
punctuation and lower-case. The test data was used
for model evaluation and also used to create the
experimental data as described in Sec. 2.3.
First, each model was trained on the cleaned but
unmodified data. This condition is referred to as
original condition. To see if the occurrence of
gender terms in the training data has any effect
on the final model biases, we created further con-
ditions. Defined gender terms, which are used
for bias definition, were fully removed from the
training data. This conditions are referred to as
removed, or specifically R-pro, R-weat, and R-all,
for the three different sets of gender terms (see
Section 2.3). While removing gender terms is a
straightforward step to eliminate them during train-
ing, it might lead to incomplete sentences. To see
if that affects the results, we defined a third cat-
egory of training data using Counterfactual Data
Augmentation (Lu et al., 2020). In that approach,
a male and a female version of each sample were
created by replacing all occurring gender terms
(similar to Fig. 1). Both version are included in
the mixed training data. This way, each review’s
structure and completeness are maintained, but the
distribution of male and female terms is perfectly
balanced. These training conditions are hereafter
referred to as mix-pro, mix-weat, and mix-all, re-
spectively.
We are aware that neither removing nor mixing
gender terms is a mature debiasing technique, as
the reflection of gender constructs is much deeper
embedded in the language and the content of the
text. However, gender bias is here operationalised
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Figure 3: Positive and negative biases for dilstilBERT
based classifiers. Blue: trained on original data (orig.);
red: trained with removed gender terms (R); green:
trained with mixed gender terms (mix). The x-axis is
grouped by applied term set (either Pronouns, WEAT,
or All). Black lines show the mean total bias symmetri-
cally in both directions to provide an orientation mark
for the balance of positive and negative biases.

through different word sets, and by removing those
words from training, we aim to avoid changing the
learnt associations of the BERT model. By that
means, we expect to learn whether the positive or
negative valuation that is connected to these words
stems from the finetuning classifier training or from
the previous training of the BERT.

2.2 Classifier Training

Another main variation between experimental con-
ditions is the selection of a pretrained BERT model.
Each classifier is trained by finetuning a pretrained,
publicly available BERT model. Seven different
BERT-based models that differ in architecture and
size were selected to examine the effect of model
choice on the final bias. The models were provided
by HuggingFace 1 and accessed via Transform-
ers Python package (Wolf et al.). All models are
trained in a self-supervised fashion without human
labelling and on similar training data, which is the
Bookscorpus (Zhu et al., 2015) and the Englisch
Wikipedia2. The following models are considered
models in the present analysis:

1HuggingFace models, accessed: April 2022. Available at:
https://huggingface.co/models.

2Wikimedia Foundation, Wikimedia Downloads. Avail-
able at: https://dumps.wikimedia.org

DistilBERT (distbase): A smaller and faster ver-
sion of BERT, 6 layers, 3072 hidden, 12 heads,
66M parameters, vocabulary size: 30522, uncased
(Sanh et al., 2019).
BERT base (bertbase): 12 layers, 768 hidden, 12
heads, 110M parameters, vocabulary size: 30522,
uncased (Devlin et al., 2019b).
BERT large (bertlarge): 24 layers, 1024 hid-
den, 16 heads, 340M parameters, vocabulary size:
30522, uncased (Devlin et al., 2019b).
RoBERTa base (robertbase): 12 layers, 768 hid-
den, 12 heads, 125M parameters, vocabulary size:
50265, case-sensitive (Liu et al., 2019).
RoBERTa large (robertlarge): 24 layers, 1024 hid-
den, 16 heads, 355M parameters, vocabulary size:
50265, case-sensitive (Liu et al., 2019).
AlBERT base (albertbase): 12 layers, 768 hidden,
12 heads, 11M parameters, vocabulary size: 30000,
uncased (Lan et al., 2019).
AlBERT large (albertlarge): 24 layers, 1024 hid-
den, 16 heads, 17M parameters, vocabulary size:
30000, uncased (Lan et al., 2019).

The models were trained with a Pytorch framework
(Paszke et al., 2019) on an NVIDIA Tesla V100-
SXM3-32GB-H. Hyperparameters were inspired
by previous literature and kept as constant as pos-
sible. However, factors such as different model ar-
chitectures or the doubled amount of training data
in the mix conditions required slight adaptions. We
used a dropout rate of 0.5, which proved to work
well in avoiding overfitting. Batch sizes were set to
be as large as possible, either 32 or 16 depending
on the model size. The correlation between model
accuracy, biases and training batch size was exam-
ined and is also elucidated in the results section.
Learning rates were set between 2e− 5 and 5e− 6
and optimised with Adam. As already observed by
de Souza Nascimento et al. (2019), BERT finetun-
ing tends to overfit quickly. Therefore the authors
suggest training for only 2 to 4 epochs. Due to
extensive hyperparameter optimisation, the present
classifiers were trained by finetuning the pretrained
models in up to 20 epochs without overfitting. A
comprehensive list of all test accuracies and F1
scores can be found in the Appendix. The source
code of data preparation, model training and ex-
perimental analysis will be publicly available on
GitHub3.

3https://github.com/sciphie/bias-bert
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Figure 4: Positive and negative biases for classifiers based on different BERT models. Blue: trained on original data
(orig.); red: trained with removed gender terms (R); green: trained with mixed gender terms (mix). The x-axis is
grouped by applied term set (either Pronouns, WEAT, or All). Black lines show the mean total bias symmetrically
in both directions to provide an orientation mark for the balance of positive and negative biases.

2.3 Data Masking in Experimental Data

The analysed bias dimension in this work is the
person being spoken about (Dinan et al., 2020b),
in contrast to, e.g., Excell and Al Moubayed (2021)
where the bias concerns the author of a comment.
We generated a male (M ) and a female version
(F ) of each review by turning all included gender
terms into the male or female version of that term,
respectively. Thus, regardless of whether the terms
in the original review were male, female or mixed,
the gender of all target terms in each review is ho-
mogeneous afterwards (see Fig. 1). Gender terms
were defined in fixed pairs, and only words that
occur in the list were masked by their counterpart.
The concept of defining and analysing complex con-
struct as the sum of related target and association
terms stems originally from the field of psychol-
ogy (Greenwald et al., 1998). This approach has
frequently been adapted to computer science and
NLP already in the form of the Word Embedding
Association Test (WEAT) (Caliskan et al., 2017;
Jentzsch et al., 2019) or similar tasks.
The measured bias and the observations in this
investigation are likely to depend on the implemen-
tation of these target sets to a large extent. Even
though many studies apply that approach, the selec-
tion of terms is not discussed much. To this end, we
created three different sets of target terms to exam-
ine the influence of different bias definitions. The
largest set comprises all collected gender terms,
which is a total number of 341 pairs. In this set, we

aimed to collect as many evident gender-specific
words as possible. It is named all hereafter. A de-
tailed description of the construction of the term
set and a list of included words can be found in
the Appendix. In literature (e.g. WEAT), term lists
are usually more compact and restricted to family
relations. The second target set is inspired by those
resources and consists of 17 word pairs. It is a sub-
set of all. We refer to this set as weat. The third and
smallest set, hereafter named pro, only covers pro-
nouns, which are five pairs of terms. This term set
is included as pronouns often play a special role in
bias research, e.g., in coreference resolution (Zhao
et al., 2018). We seek to understand if pronouns
are an adequate bias measure compared to nouns.

2.4 Bias Measure

The model bias of a sentiment classifier is deter-
mined as follows: Two opposite conditions of the
bias concept, X and Y , are defined and repre-
sented by a set of target words, as explained in
Sec. 2.3. For gender bias, these conditions are fe-
male X = F and male Y = M . Test samples,
which are a set of natural user comments, are then
modified with respect to the bias construct. All
naturally included target terms, regardless if they
belong to X or Y , are replaced by the correspond-
ing terms of either X or Y . A male and a female
version of each sample are created by that means.
The bias for a sample i with X version iX and Y
version iY is defined to be the difference between
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sentiment ratings sent(i) of each version:

BiasXY (i) = ∆sent (1)

= sent(iY )− sent(iX). (2)

The overall model bias for the sentiment classifica-
tion system SC is defined to be the mean bias of
all N experimental samples:

BiasXY (SC) =
N∑

i=0

∆sent

N
(3)

As the data classification is binary, the sentiment
prediction sent(i) is a scalar value between 0 and
1, where 0 represents the most negative and 1 the
most positive sentiment. Consequently, the sample
bias is in the range of −1 and 1, where a high bias
value can be interpreted as a bias towards Y , i.e. Y
is closer associated with positive sentiments than
X . Analogously, a lower bias value indicates a
bias towards X , i.e. X being closer associated
with positive sentiments. Here, with conditions M
and F , the total model bias BiasMF → 1 would
indicate a preference for male samples over female
ones and BiasFM → −1 accordingly the other
way round. Besides the total model bias in Eq. 3,
we also consider the absolute model bias, which is
defined as the mean of all absolute biases:

AbsBiasXY (SC) =
N∑

i=0

|∆sent|
N

(4)

Analogously, biases will hereafter be referred to as
total bias or absolute bias. While the total bias is
capable of reflecting the direction of bias, it entails
the drawback that contrary sample biases cancel out
each other. Therefore the values of absolute biases
are stated additionally and quantify the magnitude
of bias in the model.
We formulated the null and alternative hypotheses
for statistical hypothesis testing. Given sample
groups X and Y with the medians mX and mY

H0 : mX = mY : medians are equal; The model
is not biased

HA : mX ̸= mY : medians are not equal; The
model is considered to be biased

As there are two paired sample groups, which can-
not be assumed to be normally distributed, statis-
tics were determined with the Wilcoxon Signed-
Rank test. This test has already been applied in

similar investigations before, e.g. by Guo and
Caliskan (2021)). Significance levels are defined
as p < 0.05, p < 0.01 and p < 0.001 and are
hereafter indicated by one, two and three starlets,
respectively. Significance levels were corrected for
multiple testing by means of the Bonferroni correc-
tion The sample standard deviation normalised by
N − 1 is given by std. We also state the number of
samples below zero, equal to zero and greater than
zero to indicate effect sizes.

3 Results

A condensed list of absolute and total biases is
reported in Tab. 1. Out of 63 reported experimen-
tal models, 57 showed highly significant biases.
Exceptions are distbase mix-all, bertbase mix-pro,
robertbase mix-weat, robertbase mix-all, and al-
bertlarge mix-weat. 16 classifiers prefer female
terms over male terms, and 41 prefer male terms
over female terms. Thus, even though more clas-
sifiers are in our definition discriminating against
women than against men, biases are directed dif-
ferently. The sizes and especially the directions
of biases are visualised in Fig. 3 for distilBERT
classifiers, in Fig. 4 for all other architectures.

Is bias induced by model finetuning? In fine-
tuning systems like this, biases in models can have
different origins. We aimed to analyse how much
bias was introduced during further training by the
task-specific data. To this end, we removed (R) or
balanced (mix) gender terms in the task-specific
data to reduce the modification of their represen-
tations by finetuning. Both conditions are repre-
sented in Fig. 3 and Fig. 4 by red and green bars,
respectively.
Although biases are decreasing by removing gen-
der information from IMDB data in some cases,
e.g. albertalarge pro , there are likewise exam-
ples where it seems to have the opposite effect,
such as bertlarge weat mix. However, for most
conditions, these preprocessing measures do not
change the magnitude of biases considerably. Es-
pecially, removing the gender terms from data does
not significantly affect the biases. For some mod-
els, although the behaviour of the mix conditions is
different from the other settings, there is no clear
pattern observable. Observed differences in that
category might also be related to the doubled size
of training sets (N = 50000), which is likely to
reinforce effects.
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pro weat all
condition orig. R mix orig. R mix orig. R mix

dist abs .0021 .0022 .0022 .0035 .0037 .0027 .0047 .0045 (.0052)
tot .0009 .0010 -.0012 .0004 -.0015 -.0008 .0016 .0008 (-.0003)

bert B abs .0025 .0036 (.0023) .0037 .0038 .0027 .0056 .0060 .0055
tot .0013 .0031 (-.0000) .0015 .0020 -.0002 .0035 .0041 .0005

bert L abs .0031 .0050 .0035 .0069 .0048 .0056 .0082 .0095 .0101
tot -.0016 .0046 .0011 -.0032 -.0011 .0034 .0009 .0042 .0015

rob B abs .0024 .0024 .0021 .0031 .0028 (.0023) .0036 .0038 (.0027)
tot .0016 .0009 -.0002 .0016 .0007 (.0002) .0020 .0010 (.0000)

rob L abs .0024 .0025 .0020 .0039 .0039 .0028 .0044 .0043 .0041
tot .0015 .0015 .0004 .0025 .0023 .0004 .0023 .0021 .0018

alb B abs .0037 .0029 .0054 .0093 .0082 .0131 .0089 .0080 .0071
tot .0011 -.0004 .0021 .0002 -.0044 -.0034 -.0023 .0009 -.0014

alb L abs .0086 .0049 .0016 .0155 .0074 (.0091) .0172 .0114 .0101
tot .0086 .0034 -.0008 .0130 -.0032 (-.0009) .0137 -.0032 .0034

Table 1: Absolute (abs) and total (tot) model biases of all main experimental classifiers. Positive values indicate a
model preference of male samples over female, negative values a preference of female samples over male ones. All
biases, except the ones in brackets, are highly significant. Significance levels were Bonferroni corrected for multipe
testing. pro, weat and all specify the applied term set for training data preprocessing and bias calculation. Terms in
training data were either removed (R), balanced (mix), or neither of both (orig.). Columns are the different pretrained
BERT models used for classifier training. Base models are abbreviated as dist (distbase), bert B (bertbase), bert L
(bertlarge), rob B (robertabase), rob L (robertalarge), alb B (albertbase), and alb L (albertlarge).

Is bias induced by pretrained models? We ap-
plied models with different architectures and sizes
to observe how measured biases depend on the un-
derlying pretrained model. We compare three dif-
ferent sizes of BERT models, which are distbase,
bertbase and bertlarge. Moreover, we consider
models with RoBERTa architecture in the sizes
robertabase and robertalarge and AlBERT in al-
bertbase and albertlarge. This comparison leads to
two major observations: First, biases differ steadily
between considered architectures. As can be well
observed in Fig. 3 and Fig. 4, DistilBERt’s biases
are about half as big as BERT’s and RoBERTa’s
biases. AlBERTa’s biases, again, are about twice
as big as those of BERT and RoBERTa. This ob-
servation does not only hold among all training
conditions but also for both base and large variants.
Thus, the architecture of a selected model has an
essential impact on the biases of downstream sys-
tems.
Second, we observe increasing biases depending
on model sizes within one architecture. distbase
again yielded the smallest biases, followed by bert-
base, and bertlarge. Simultaneously, robertalarge

yielded much bigger biases than robertabase, and
albertalarge yielded much bigger biases than al-
bertbase. Thus, we observe a correlation between
bias and model size, i.e. the number of layers. This
indicates that larger models tend to encode greater
gender biases.

Is bias dependent on applied term sets? As
mentioned before, we defined three sets of target
terms for the implementation of bias, of which the
largest comprises more than a three hundred term
pairs and the smallest only five. Analogously to
term set sizes, the absolute biases are the smallest
for the pronoun set and the largest for the all set
in almost all conditions. In other words, the more
terms are included, the bigger the measured bias.
The only exception is bertlarge R and some con-
ditions on albertbase. Despite the differences in
bias magnitude, measured values in all categories
were similarly significant. Also, the patterns of
effects of training data manipulation or base model
comparison could similarly be observed in all three
bias definitions. We conclude from these observa-
tions that all types of included vocabulary encode
biases, i.e. pronouns, weat-terms and other nouns.
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bias abs bias tot accuracy f-score (f1)

bias abs 0.373 -0.481** -0.497***
bias tot 0.373 0.044 -0.085
accuracy -0.481** 0.044 0.886***
f-score (f1) -0.497*** -0.085 0.886***

Table 2: Correlation (Pearsons) of biases and training details of all 63 classifiers. bias abs: absolute bias, bias tot:
total bias. Starlets indicate levels of significance for p < 0.001, p < 0.01 and p < 0.05, which were Bonferroni
corrected for multiple testing.

The more terms are included, the higher the mea-
sured bias. For the presented results, the term set
of training data manipulating and the term set for
bias measure were always the same. For instance,
if we applied the pro set to measure biases, we also
only removed/ balanced terms of pro in the train-
ing data. We also tested whether biases vary when
mixing term sets between different experimental
steps. However, that did not reveal any consider-
able effect, as bias values differed marginally.

Do hyperparameter settings affect biases? Due
to computational capacity, some larger models
needed to be trained with smaller batch sizes. To
see if that affects the final biased, we performed
additional experiments where we only varied the
batch size while fixing all other parameters. For
21 different experimental conditions, models were
retrained with batch sizes 32, 16 and 8. Naturally,
this affected the course of loss and accuracy during
training, but only to a limited extent. All settings
led to stable classifiers with convenient model ac-
curacy. The biases of all tested classifiers did not
show any indication to be different among the train-
ing batch sizes. These results reveal that the batch
size does not immediately cause the measured cor-
relation.
Tab. 2 reports correlations between further basic
training details and biases to examine whether there
are observable connections. The F-score naturally
correlates with accuracy, which is the highest value
in the table. F1 and accuracy yield a medium nega-
tive correlation with absolute biases. In contrast to
absolute biases, total biases barely show significant
correlations with training values. All considered
classifiers showed good performance in the model
evaluation. Test accuracies lie between 77% and
84%, which is comparable to baseline values. The
evaluation details of all classifiers are attached to
the Appendix.

4 Discussion

We observed highly significant gender biases in al-
most all tested conditions. Thus, the present results
verify the hypothesis that downstream sentiment
classification tasks reflect gender biases. Although
most considered classifiers prefer male samples
over female ones, this direction is not consistent:
About thirty per cent of classifiers prefer female
over male samples. The high significance values
are likely to be facilitated by the large sample num-
ber and do not necessarily correspond to the effect
size. It might be insightful to analyse the contexts
and types of individual samples to understand how
these contrary directions occur. The rating of male
and female presence likely depends on the scenario,
rather than one gender being strictly advantaged.
We could not observe any effect of removing gen-
der information from task-specific training data.
Thus, in the present case, the biases associated
with gender terms are most likely not learnt during
finetuning. In contrast, results showed significant
differences in downstream classifier biases depend-
ing on the selection of pretrained models. This is
true for both the size and the architecture of the
model. It is reasonable that the pretrained BERT
models, which comprise information from a train-
ing set much larger than the IMDB set, are more
capable of reflecting complex constructs such as
gender stereotypes. It is, therefore, all the more
important to develop these models carefully and re-
sponsibly and to respect risks and limitations in the
application. As a small number of provided base
models form the basis for a large portion of applica-
tions in NLP, it is especially critical to understand
included risks and facilitate debiasing. Although
the results of the present investigation indicate the
origin of biases in pretrained BERT models, that
does not preclude the risk to generate biases dur-
ing finetuning. All elements of the development
pipeline need to be audited adequately.
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We showed that all of the compared term sets are
generally appropriate to measure gender bias. How-
ever, term sets yielded large differences in bias
sizes, showing how crucial the experimental setup
is for the validity of measured results. The fact that
biases increase relative to the number of gender
terms strengthens the conclusion that the majority
of these terms reflect biases. It also needs to be
further investigated whether the sentiment rating
of individual gender terms might be affected by
other factors than gender. Nevertheless, the applied
definition of male and female biases is a rudimen-
tary implementation of real-world circumstances.
First, there is a large number of facets that possi-
bly encode gender (Doughman et al., 2021), e.g.
names or topics. Second, gender is much more di-
verse in reality than this implementation can reflect.
Especially since modern language models are con-
textual, conceptual stereotypes and biases are likely
to be deeply encoded in the embeddings. Automati-
cally learnt models likely cover a large variety of la-
tent biases that contemporary research cannot grasp
(González et al., 2020). This investigation under-
lines the complexity of bias formation in real-life
multi-level systems. Results verify the existence
of gender biases in BERT’s downstream sentiment
classification tasks. In order to further analyse
how much of the final system bias stems from the
pretrained model, similar experiments could be
conducted on debiased BERT models. This way,
whether the bias can be further reduced could be
tested. Another exciting direction might be to ex-
amine how the suggested measurement approach
could be transferred to non-binary classification
tasks. As a next step, we plan to expand the present
experiments to further downstream applications.

5 Related Work

Language models as BERT (Devlin et al., 2019a)
recently became the new standard in a wide variety
of different tasks and superseded static embeddings,
as Word2Vec (Mikolov et al.) or GloVe (Penning-
ton et al., 2014). For these older embeddings, there
already is a huge body of empirical research on bias
measuring and mitigation (Caliskan et al., 2017;
Jentzsch et al., 2019; Schramowski et al., 2020;
Bolukbasi et al., 2016), which unfortunately seem
to be not straightforwardly tailorable to the new
setting (May et al., 2019; Tan and Celis, 2019).
However, recent research finds that BERT also en-
codes unwanted human biases, such as gender bias

(Bartl et al., 2020; Kurita et al., 2019; Guo and
Caliskan, 2021).
Downstream task analyses mostly consider short-
comings in dialogue-systems (Staliūnaitė and Ia-
cobacci, 2020; Dinan et al., 2020a). In the context
of sentiment analysis, Kiritchenko and Moham-
mad (2018) introduced a data set that is designed
to measure gender-occupation biases. Although
the reported results across 219 tested systems are
ambiguous, the framework has been frequently
applied ever since (Bhardwaj et al., 2021; Gupta
et al., 2021). (Huang et al.) measure biases in
text-generation systems, i.e. GPT. While the gen-
eral experimental setting is fundamentally different
from the present investigation, they apply a similar
idea of measuring biases via sentiment classifica-
tion. To the best of our knowledge, we are the first
to utilise sentiment classification to learn about
the origin of biases in BERT. We contribute to a
growing body of exploratory literature regarding
bias measure (Zhao and Chang, 2020; Munro and
Morrison, 2020; Field and Tsvetkov, 2020) and
bias mitigation (Liu et al., 2020) in contextualised
language models.

6 Conclusion

Contextualised language models such as BERT
form the backbone of many everyday applications.
We introduced a novel approach to measuring bias
sentiment classification systems and comprehen-
sively analysed the reflection of gender bias in a
realistic downstream sentiment classification task.
We compared 63 classifier settings, covering mul-
tiple pretrained models and different training con-
ditions. All trained classifiers showed highly sig-
nificant gender biases. Results indicate that biases
are rather propagated from underlying pretrained
BERT models than learnt in task-specific training.
Pretrained models should not be applied blindly for
downstream tasks as they indeed reflect harmful
imbalances and stereotypes. Just as gender-neutral
language is important to mitigate everyday discrim-
ination holistically, it is critical to avoid encoded
biases in automated systems. We hope that the
present work contributes to raising awareness of
hidden biases and motivates further research on the
propagation of unwanted biases through complex
systems. To the best of our knowledge, there is no
similar work so far that utilises the valuation capac-
ity of sentiment classifiers to measure downstream
biases.
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A Appendix

The following sections supplement presented re-
sults with further details. Sec. A.1 provides all in-
cluded gender terms and their frequency. Sec. A.2
presents comprehensive tables with measured bi-
ases or all experimental conditions. Sec. A.3 states
test accuracies and other evaluation parameters of
included classifiers.

A.1 Target Word Sets
Masked Terms The following list presents all gen-
der terms that were, first, removed and masked
to create the training conditions R and mix and,
second, masked with an equivalent term of the op-
posite gender for experimental data. The list was
carefully constructed, incorporating previous litera-
ture. Bolukbasi et al. (2016) state a comprehensive
list of 218 gender-specific words already. We used
that as a root and added further terms that we found
in the data itself or other sources and that we con-
sidered being missing. Our final list comprises 685
terms in total.
In general, if possible, terms were masked by their
exact equivalent of the other gender, e.g. man by
woman, and similarly woman by man. Yet, lan-
guage and the meaning and connotation of words
are highly complex and ambiguous. Thus, the list
of terms is not clear-cut, and for some terms, it
is disputable whether they should be included or
not. These are the four main concerns and how we
handled each of them:

First, some mappings are not definite, i.e. there
are multiple options to transfer the term into the
opposite gender. One example is lady, which could
be the female version of gentleman or lord. In these
cases, we either selected the most likely translation
or randomly.
Second, some terms do not have an appropriate
translation like, among others, the term guy, or the
term does exist in the other gender but is not used
(as much), like for the term feminism. In these
cases, we tried to find any translation that reflects
the meaning as accurate as possible, like gal for
guy or applied the rarely used counterpart, e.g. mas-
culism.

Third, in some cases, there is a female version
of the term, but the male version is usually used
for all genders. This is, for example, the case for
manageress or lesbianism. These terms exist and
are possibly used, but one could still say ’she is a
manager’ or ’she is gay’. In these cases, we only
translated the term in one direction. This is, when-
ever the term lesbian occurs, it is translated into
gay for the male version, but when the original rat-
ing includes the term gay, it is not transformed into
lesbian for the female version.
Finally, it can have other meanings that are not
gender-related, e.g. Miss as an appellation can also
be the verb to miss. We decided to interpret these
terms as the more frequent meaning or to leave the
term out if it was unclear.
Similar to many other resources, Bolukbasi et al.
(2016) also include terms from the animal realm,
such as stud or lion(Bolukbasi et al., 2016). We de-
cided not to do so because the present investigation
focuses on human gender bias, which might not be
similarly present for animals. The list includes all
masked terms that occurred at least ten times in the
entire experimental data in decreasing order. Fur-
ther 404 terms were included in the analysis that
occurred fewer than ten times. 221 of these terms
were not counted even once and did not affect the
analysis. A comprehensive list of all considered
terms and their frequency can be found in the cor-
responding repository.
The full list corresponds to the all term set. Due
to the above-discussed concerns, we also applied
the weat term set, which consists of mostly unam-
biguous terms. Terms that are included in weat are
marked in bold. The third term set, pro, only in-
cludes pronouns which are he, she, his, her, him and
hers. This term set is relatively small, but pronouns
are more frequent than most other terms.

Pronouns are marked in bold.

he (46634), his (34475), her (31303), she (26377),
him (17863), man (11656), guys (8070), girl
(7433), guy (5862), god (5324), mom (4456), ac-
tors (4349), boy (3802), girls (3509), mother
(3424), dad (3274), woman (3235), wife (2858),
brother (2810), sister (2726), men (2662), fa-
ther (2468), mr (2439), boys (2377), actor (2369),
son (2226), women (2212), himself (2194), dude
(2089), daughter (1995), lady (1948), husband
(1658), boyfriend (1544), brothers (1474), hero
(1427), actress (1167), female (1158), girlfriend
(1087), king (1012), mothers (1009), hubby (994),
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count (932), herself (878), male (821), daddy (792),
ladies (766), ms (725), giant (725), mommy (721),
master (708), sisters (701), lord (697), ma (671),
sir (626), queen (621), mama (596), uncle (587),
chick (567), moms (556), grandma (529), aunt
(521), fathers (444), heroes (434), princess (432),
pa (411), host (405), niece (373), prince (350),
dads (341), actresses (341), priest (328), nephew
(328), hunter (303), bride (284), witch (281), les-
bian (277), heroine (261), kings (239), grandpa
(239), daughters (234), grandfather (223), grand-
mother (222), chicks (193), masters (187), cowboy
(185), counts (177), dudes (174), sons (169), gods
(166), gal (159), papa (158), wifey (156), girly
(156), queens (152), bachelor (149), housewives
(148), hers (148), maid (145), girlfriends (145),
beard (141), emperor (136), gentleman (129), su-
perman (128), duke (127), girlie (125), mayor
(123), wives (122), gentlemen (116), playboy (114),
mister (113), mistress (111), giants (109), females
(107), wizard (105), widow (98), nun (98), penis
(96), fiance (95), lad (92), gals (92), boyfriends
(91), girlies (90), bloke (90), bachelorette (88),
aunts (87), policeman (84), males (84), fella (79),
diva (79), macho (78), goddess (78), lads (77), land-
lord (75), fiancé (75), patron (74), waitress (73),
husbands (70), hosts (70), fiancée (70), feminist
(70), cowboys (70), nephews (68), mermaid (68),
sorority (66), grandmas (66), chap (65), manly (64),
businessman (63), monk (62), baron (62), witches
(61), bachelor (61), nieces (59), housewife (59),
feminine (58), cameraman (58), shepherd (57), les-
bians (55), vagina (53), uncles (53), wizards (52),
henchmen (49), salesman (48), postman (48), ma-
mas (48), grandson (48), brotherhood (47), lords
(44), henchman (44), waiter (43), dukes (42), mom-
mies (41), fellas (41), granddaughter (40), traitor
(39), groom (39), duchess (39), madman (36), po-
licemen (35), conductor (35), sisterhood (34), fra-
ternity (34), monks (33), masculine (33), nuns
(32), fiancee (32), lass (30), tailor (29), priests
(29), maternity (29), butch (29), stepfather (28),
hostess (28), ancestors (28), heiress (27), countess
(27), congressman (27), bridesmaid (27), protec-
tor (26), divas (26), ambassador (26), damsel (25),
steward (24), madam (24), homeboy (24), landlady
(23), grandmothers (23), fireman (23), empress
(23), chairman (23), widower (22), sorcerer (22),
patrons (22), masculinity (22), firemen (22), en-
glishman (22), businessmen (22), testosterone (21),
manhood (21), chaps (21), widows (20), lesbian-

ism (20), blokes (20), beards (20), barbershop (20),
anchorman (20), sperm (19), heroines (19), heir
(19), stepmother (18), princesses (18), princes (18),
handyman (18), patriarch (17), monastery (17),
mailman (17), homegirl (17), headmistress (17),
fisherman (17), czar (17), brotherly (17), brides
(17), uterus (16), maternal (16), abbot (16), prophet
(15), boyish (15), adventurer (15), testicles (14),
temptress (14), schoolgirl (14), penises (14), maids
(14), barmaid (14), waiters (13), traitors (13), stunt-
man (13), priestess (13), seductress (12), school-
boy (12), motherhood (12), daddies (12), cowgirls
(12), cameramen (12), bachelors (12), adventur-
ers (12), sculptor (11), schoolgirls (11), proprietor
(11), paternal (11), homeboys (11), foreman (11),
feminism (11), doorman (11), bachelors (11), wom-
anhood (10), testicle (10), mistresses (10), merman
(10), grandfathers (10), girlish (10)

A.2 Biases
Tab. 3 and Tab. 4 provide an overview of the model
biases of all considered classifiers. For the calcula-
tion of biases, the same gender term set was applied
to the experimental data masking as for the training
data condition. This means, for instance, in the ex-
perimental data for all R-weat and mix-weat trained
classifiers, only weat terms were masked. Thus, the
training condition is in line with the experimental
bias calculation for all N and mix training condi-
tions. For original training conditions, however, no
term set was applied to the training data. This is
why biases of all three term groups are compared,
which are original-N, original-pro, and original-
weat.
Wilcoxon signed-rank-test yielded highly signifi-
cant p-values for almost all conditions. Exceptions
are distbert mix-all,bertbase mix-pro, robertbase
mix-weat, robertbase mix-all, and albertlarge mix-
weat. Out of 63 reported experimental models, 57
showed highly significant biases, of which 16 pre-
fer female terms over male terms, and 41 prefer
male terms over female terms.
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non zero all
Condition bias abs bias tot bias abs bias tot N< 0 N= 0 N> 0 sign.

distbert
original-pro 0.0021 0.0009 0.0014 0.0006 6085 10216 8699 ***
R-pro 0.0022 0.0010 0.0014 0.0007 7116 9183 8701 ***
mix-pro 0.0022 -0.0012 0.0012 -0.0007 6922 7309 10769 ***
original-weat 0.0035 0.0004 0.0026 0.0003 8098 10214 6688 ***
R-weat 0.0037 -0.0015 0.0027 -0.0011 10773 7532 6695 ***
mix-weat 0.0027 -0.0008 0.0018 -0.0006 8332 8428 8240 ***
original-all 0.0047 0.0016 0.0039 0.0013 7817 12941 4242 ***
R-all 0.0045 0.0008 0.0037 0.0007 10022 10734 4244 ***
mix-all 0.0052 -0.0003 0.0042 -0.0003 10080 10177 4743 -

bertbase
original-pro 0.0025 0.0013 0.0016 0.0008 5430 10874 8696 ***
R-pro 0.0036 0.0031 0.0024 0.0020 3234 13061 8705 ***
mix-pro 0.0023 -0.0000 0.0014 -0.0000 7505 7794 9701 -
original-weat 0.0037 0.0015 0.0027 0.0011 6187 12128 6685 ***
R-weat 0.0038 0.002 0.0028 0.0015 6204 12098 6698 ***
mix-weat 0.0027 -0.0002 0.0015 -0.0001 6421 7135 11444 ***
original-all 0.0056 0.0035 0.0046 0.0029 5233 15527 4240 ***
R-all 0.0060 0.0041 0.0049 0.0034 4319 16431 4250 ***
mix-all 0.0055 0.0005 0.0035 0.0003 6838 9001 9161 ***

bertlarge
original-pro 0.0031 -0.0016 0.0021 -0.0011 10287 6020 8693 ***
R-pro 0.0050 0.0046 0.0032 0.0030 2697 13610 8693 ***
mix-pro 0.0035 0.0011 0.0014 0.0004 4961 5228 14811 *
original-weat 0.0069 -0.0032 0.0051 -0.0023 10329 7986 6685 ***
R-weat 0.0048 -0.0011 0.0035 -0.0008 10172 8142 6686 ***
mix-weat 0.0056 0.0034 0.0029 0.0018 4581 8195 12224 ***
original-all 0.0082 0.0009 0.0068 0.0007 9128 11633 4239 ***
R-all 0.0095 0.0042 0.0079 0.0035 7314 13443 4243 ***
mix-all 0.0101 0.0015 0.0078 0.0012 8848 10455 5697 ***

Table 3: Total biases of all experimental classifiers (part 1). The bias is the mean bias over all experimental samples.
While the absolute bias (bias abs) is the mean of absolute values, the total bias (bias tot) is based on the directed
sample biases. For “non zero" values, samples with a bias= 0 are excluded. “all" includes all 25000 sample biases.
The numbers of samples with negative, no, and positive bias are given by N < 0, N = 0, or N > 0, respectively.
Significance levels for Wilcoxon signed-rank-test were defined as p > 0.05 :*, p > 0.01 :**, and p > 0.001 :***.
Reported significance levels were corrected for multiple testing with the Bonferroni correction.
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non zero all
Condition bias abs bias tot bias abs bias tot N< 0 N= 0 N> 0 sign.

robertabase
original-pro 0.0024 0.0016 0.0015 0.0010 5448 10840 8712 ***
R-pro 0.0024 0.0009 0.0015 0.0006 6822 9472 8706 ***
mix-pro 0.0021 -0.0002 0.0013 -0.0001 8682 7612 8706 ***
original-weat 0.0031 0.0016 0.0023 0.0011 6470 11832 6698 ***
R-weat 0.0028 0.0007 0.0021 0.0005 7722 10581 6697 ***
mix-weat 0.0023 0.0002 0.0017 0.0002 9396 8894 6710 -
original-all 0.0036 0.0020 0.0030 0.0016 7165 13585 4250 ***
R-all 0.0038 0.0010 0.0032 0.0008 9294 11464 4242 ***
mix-all 0.0027 0.0000 0.0023 0.0000 10520 10206 4274 -

robertalarge
original-pro 0.0024 0.0015 0.0016 0.0010 5235 11055 8710 ***
R-pro 0.0025 0.0015 0.0016 0.0010 5216 11072 8712 ***
mix-pro 0.0020 0.0004 0.0013 0.0003 6679 9606 8715 ***
original-weat 0.0039 0.0025 0.0029 0.0018 5894 12411 6695 ***
R-weat 0.0039 0.0023 0.0029 0.0017 6109 12193 6698 ***
mix-weat 0.0028 0.0004 0.0021 0.0003 8071 10220 6709 ***
original-all 0.0044 0.0023 0.0036 0.0019 7105 13653 4242 ***
R-all 0.0043 0.0021 0.0035 0.0017 7045 13712 4243 ***
mix-all 0.0041 0.0018 0.0034 0.0015 6971 13783 4246 ***

albertbase
original-pro 0.0037 0.0011 0.0024 0.0007 5481 10811 8708 ***
R-pro 0.0029 -0.0004 0.0019 -0.0003 9305 6986 8709 ***
mix-pro 0.0054 0.0021 0.0035 0.0014 7244 8968 8788 ***
original-weat 0.0093 0.0002 0.0068 0.0001 7710 10600 6690 ***
R-weat 0.0082 -0.0044 0.006 -0.0032 10346 7942 6712 ***
mix-weat 0.0131 -0.0034 0.0093 -0.0024 9426 8263 7311 ***
original-all 0.0089 -0.0023 0.0074 -0.0019 9112 11645 4243 ***
R-all 0.0080 0.0009 0.0067 0.0008 8979 11769 4252 ***
mix-all 0.0071 -0.0014 0.0058 -0.0012 9481 11030 4489 ***

albertlarge
original-pro 0.0086 0.0086 0.0056 0.0056 2120 14075 8805 ***
R-pro 0.0049 0.0034 0.0032 0.0022 6407 9869 8724 ***
mix-pro 0.0016 -0.0008 0.0010 -0.0005 10121 6136 8743 ***
original-weat 0.0155 0.0130 0.0113 0.0095 4058 14191 6751 ***
R-weat 0.0074 -0.0032 0.0054 -0.0023 9936 8373 6691 ***
mix-weat 0.0091 -0.0009 0.0066 -0.0006 9186 8998 6816 -
original-all 0.0172 0.0137 0.0143 0.0114 5095 15594 4311 ***
R-all 0.0114 -0.0032 0.0095 -0.0026 12573 8180 4247 ***
mix-all 0.0101 0.0034 0.0084 0.0028 8777 11875 4348 ***

Table 4: Total biases of all experimental classifiers (part 2). Extension of Tab. 3
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Model / Spec acc. rec. prec. f1
distbase

original .812 .778 .835 .805
R-all .817 .789 .836 .812
R-weat .820 .789 .840 .814
R-pro .818 .780 .844 .811
mix-all .822 .795 .840 .817
mix-weat .822 .783 .849 .815
mix-pro .822 .784 .848 .815

bertbase
original .818 .787 .838 .812
R-all .821 .781 .849 .813
R-pro .820 .776 .851 .812
R-weat .821 .803 .833 .818
mix-all .836 .791 .868 .828
mix-pro .835 .816 .849 .832
mix-weat .835 .812 .852 .832

bertlarge
original .805 .787 .816 .801
R-all .797 .734 .839 .783
R-pro .779 .660 .867 .749
R-weat .803 .739 .847 .789
mix-all .795 .723 .845 .780
mix-pro .797 .738 .836 .784
mix-weat .789 .710 .843 .771

Table 5: Test accuracy (acc.), recall (rec.), precision
(prec.), and F1-Score (f1) for the models that are used
in the experiments - part 1

A.3 Evaluation of Models
Tab. 5 and Tab. 6 show the accuracies, recalls, pre-
cisions and F1-Score of all experimental models
calculated on the test data. For the calculation of
reported values, the test data set has been treated
analogously to the training condition. That means
for instance, since we removed all pronouns from
training data in the R-all condition, we did the same
in the test data before evaluating the models in that
condition.

Model / Spec acc. rec. prec. f1
robertabase

original .818 .744 .874 .804
R-all .823 .770 .862 .813
R-weat .820 .739 .881 .804
R-pro .818 .733 .883 .801
mix-all .833 .780 .873 .824
mix-weat .830 .781 .867 .821
mix-pro .823 .760 .870 .811

robertalarge
original .820 .748 .873 .806
R-all .820 .765 .859 .810
R-weat .820 .761 .862 .809
R-pro .818 .751 .868 .805
mix-all .815 .749 .862 .801
mix-weat .816 .761 .855 .805
mix-pro .814 .728 .879 .797

albertbase
original .693 .932 .630 .752
R-all .771 .711 .809 .756
R-weat .772 .749 .785 .767
R-pro .757 .748 .764 .756
mix-all .782 .791 .777 .784
mix-weat .778 .818 .757 .786
mix-pro .780 .813 .762 .787

albertlarge
original .784 .762 .797 .779
R-all .762 .847 .724 .781
R-weat .767 .802 .750 .775
R-pro .763 .832 .732 .779
mix-all .774 .803 .759 .781
mix-weat .784 .788 .781 .785
mix-pro .782 .752 .801 .776

Table 6: Test accuracy (acc.), recall (rec.), precision
(prec.), and F1-Score (f1) for the models that are used
in the experiments - part 2
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Abstract

In this paper we explore how a demographic
distribution of occupations, along gender di-
mensions, is reflected in pre-trained language
models. We give a descriptive assessment of
the distribution of occupations, and investi-
gate to what extent these are reflected in four
Norwegian and two multilingual models. To
this end, we introduce a set of simple bias
probes, and perform five different tasks com-
bining gendered pronouns, first names, and a
set of occupations from the Norwegian statis-
tics bureau. We show that language specific
models obtain more accurate results, and are
much closer to the real-world distribution of
clearly gendered occupations. However, we
see that none of the models have correct rep-
resentations of the occupations that are demo-
graphically balanced between genders. We
also discuss the importance of the training data
on which the models were trained on, and ar-
gue that template-based bias probes can some-
times be fragile, and a simple alteration in a
template can change a model’s behavior.

1 Introduction

Measuring the presence of stereotypical representa-
tions of occupations in pre-trained language models
has been an important effort in combating and re-
ducing possible representational harms (Blodgett
et al., 2020). However, and as pointed out by Blod-
gett (2021), most of the current work is motivated
by an idealised vision of the world where occupa-
tions should not be correlated with genders, and
where the expectations are that models should not
be stereotypical when e.g., predicting female or
male pronouns in relation to occupations. The idea
that we are all equal is an important factor in our
quest of reaching fair and less biased models, and
reflect our normative judgments.

While this is true for most stereotypes, it might
not directly apply to occupations. With a descrip-
tive and realistic view of the society, there clearly

exists gender disparities in occupations. This is
inherently tied to many societal constructs and cul-
tural backgrounds, and are a reality for many occu-
pations. Also pointed out by Blodgett et al. (2020),
the importance of the connection between language
and social hierarchies, has not been considered in
most previous work on bias in NLP. It is a reality
that most Norwegian nurses are females. Having a
model reflecting this reality might not be problem-
atic per se, but using this disparity to for example
systematically reject male applicants to a nurse po-
sition is a very harmful effect.

In this paper, we investigate how the real-world
Norwegian demographic distribution of occupa-
tions, along the two gender dimensions male ver-
sus female, is reflected in large transformer-based
pre-trained language models. We give a descrip-
tive assessment of the distribution of occupations,
and investigate to what extent these are reflected in
four pre-trained Norwegian and two multilingual
models. More precisely, we focus on the following
research questions:

• To what extent are demographic distributions
of genders and occupations represented in pre-
trained language models?

• How are demographically clearly gender-
correlated vs. gender-balanced occupations
represented in pre-trained language models?

To address these questions, we investigate the
correlations of occupations with Norwegian gen-
dered pronouns and names. We analyse five
template-based tasks, and compare the outputs of
the models to real-world Norwegian demographic
distributions of occupations by genders.

After first providing a bias statement in Section 2,
we give an overview of previous relevant work in
Section 3. Section 4 describes our experimental
setup, and outlines our template-based tasks. We
present and discuss our main results and findings in
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Section 5 and 6. We conclude with a summary of
our work, and discuss our future plans in Section 7.

2 Bias statement

We follow the bias definition of Friedman and Nis-
senbaum (1996), where bias is defined as the cases
where automated systems exhibit a systematic dis-
crimination against, and unfairly process, a certain
group of individuals. In our case, we see this as
reflected in large pre-trained language models and
how they can contain skewed gendered representa-
tions that can be systematically unfair if this bias
is not uncovered and properly taken into account
in downstream applications. Another definition of
bias that we rely on is that of Shah et al. (2020),
where bias is defined as the discrepancy between
the distribution of predicted and ideal outcomes of
a model.

We focus on the associations between gendered
(female and male) pronouns/names and profes-
sional occupations. We investigate to what de-
gree pre-trained language models systematically
associate specific genders with given occupations.
However, we explore this from the perspective of
a descriptive assessment: Instead of expecting the
system to treat genders equally, we compare how
these gender–occupation representations reflect the
actual and current Norwegian demographics. This
will in no way reduce the representational harms
of stereotypical female and male occupations, that
could both be propagated and exaggerated by down-
stream tasks, but would rather shed light on which
occupations are falsely represented by such models.
Moreover, our work will provide knowledge about
the biases contained in these models that may be
important to take into account when choosing a
model for a specific application.

Arguably, a limitation of our work is that we are
only able to evaluate correlations between occupa-
tions and the binary gender categories male/female,
although we acknowledge the fact that gender as
an identity spans a wider spectrum than this.

3 Background and related work

Training data in NLP tasks may contain various
types of bias that can be inherited by the models
we train (Hovy and Prabhumoye, 2021), and that
may potentially lead to unintended and undesired
effects when deployed (Bolukbasi et al., 2016). The
bias can stem from the unlabeled texts used for pre-
training of Language Models (LMs), or from the

language or the label distribution used for tuning
a downstream classifier. Since LMs are now the
backbone of most NLP model architectures, the
extent to which they reflect, amplify, and spread the
biases existing in the input data is very important
for the further development of such models, and the
understanding of their possible harmful outcomes.

Efforts so far have shown a multitude of bi-
ases in pre-trained LMs and contextualized embed-
dings. Sheng et al. (2019) show that pre-training
the LM BERT (Devlin et al., 2019) on a medical
corpus propagates harmful correlations between
genders, ethnicity, and insurance groups. Hutchin-
son et al. (2020) show that English LMs contain bi-
ases against disabilities, where persons with disabil-
ities are correlated with negative sentiment words,
and mental illness too frequently co-occur with
homelessness and drug addictions. Both Zhao and
Bethard (2020) and Basta et al. (2019) show that
ELMO (Peters et al., 2018) contains, and even am-
plifies gender bias. Especially, Basta et al. (2019)
discuss the differences of contextualized and non-
contextualized embeddings, and which types of
gender bias are mitigated and which ones are am-
plified.

Most work on detecting gender bias has focused
on template-based approaches. These templates
are simple sentences of the form “[pronoun]
is a [description]”, where a description
could be anything from nouns referring to occu-
pations, to adjectives referring to sentiment, emo-
tions, or traits (Stanczak and Augenstein, 2021;
Saunders and Byrne, 2020; Bhaskaran and Bhalla-
mudi, 2019; Cho et al., 2019; Prates et al., 2018).
Bhardwaj et al. (2021) investigate the propagation
of gender biases of BERT in five downstream tasks
within emotion and sentiment prediction. They
propose an approach to identify gender directions
for each BERT layer, and use the Equity Evalua-
tion Corpus (Kiritchenko and Mohammad, 2018)
as an evaluation of their approach. They show that
their approach can reduce some of the biases in
downstream tasks. Nozza et al. (2021) also use a
template- and lexicon-based approach, in this case
for sentence completion. They introduce a dataset
for the six languages English, French, Italian, Por-
tuguese, Romanian, and Spanish, and show that
LMs both reproduce and amplify gender-related
societal stereotypes.

Another series of work that have focused on
template-based datasets are those building on the
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Occupation Female% Male% Occupation Female% Male%

Knitting craftsman 100 0 Architect 49.9 50.1
Midwife 99.8 0.2 Lawyer 48.1 51.9
Esthetician 99.3 0.7 Politician 48.1 51.9
Health Secretary 98.8 1.2 Associate Professor 47.2 52.8
PhD candidate 52.8 47.2 Scaffolding builder 0.5 99.5
Psychiatrist 52.6 47.4 Chief engineer 0.4 99.6
Doctor 51.6 48.4 Coastal skipper 0 100

Table 1: A selection of occupations from the Norwegian statistics bureau, the gold reference distribution of occu-
pations and genders. The occupations presented here are either dominated by more than 98% of either gender, or
have a more balanced distribution (underlined percentages) between both female and male genders.

Winograd Schemas data (Levesque et al., 2012).
This dataset was developed for the task of corefer-
ence resolution, and contains a set of manually an-
notated templates that requires commonsense rea-
soning about coreference. It is used to explore the
existence of biases in coreference resolution sys-
tems, by measuring the dependence of the system
on gendered pronouns along stereotypical and non-
stereotypical gender associations with occupations.
Similarly, the WinoBias (Zhao et al., 2018) dataset
focuses on the relationship between gendered pro-
nouns and stereotypical occupations, and is used
to explore the existing stereotypes in models. The
WinoGender dataset (Rudinger et al., 2018) also
contains sentences focusing on the relationship be-
tween pronouns, persons, and occupations. Here,
they also include gender-neutral pronouns. Unlike
WinoBias, WinoGender’s sentences are built such
that there is a coreference between pronouns and
occupations, and between the same pronouns and
persons. Based on these datasets for coreference
resolution, WinoMT (Stanovsky et al., 2019) has
been developed for the task of machine translation.
The dataset also contains stereotypical and non-
stereotypical templates used to investigate gender
bias in machine translation systems.

Moreover, Bender et al. (2021) point out the dan-
gers of LMs and how they can potentially amplify
the already existing biases that occur in the data
they were trained on. They highlight the impor-
tance of understanding the harmful consequences
of carelessly using such models in language pro-
cessing, and how they in particular can hurt minori-
ties. They also discuss the difficulty of identifying
such biases, and how complicated it can be to tackle
them. This is partly due to poor framework defini-
tions, i.e., how culturally specific they are, but also
how unreliable current bias evaluation methods are.

We focus therefore in this work on investigating
how culturally specific Norwegian demographics
related to gender and occupations are reflected in
four Norwegian and two multilingual pre-trained
LMs. Our work differs from previous work in that
we ground our bias probes to real-world distribu-
tions of gender, and rather than expecting the mod-
els to always have a balanced representation of
genders, we explore to which degree they reflect
true demographics.

4 Experimental setup

Following the methodology of previous research
on gender bias in pre-trained language models, and
due to the corresponding lack of resources for Nor-
wegian, we generate our own set of templates that
we use with the pre-trained language models to
make use of their ability to compute the probabili-
ties of words and sentences. We present an empiri-
cal analysis of gender biases towards occupational
associations. By using the templates we hope to
reduce variation by keeping the semantic structure
of the sentence. We analyze the probability dis-
tributions of returned pronouns, occupations, and
first names; and compare them to real-world gold
data representing the demographic distribution in
Norway. Investigating the differences between the
models can also give us insights into the content of
the various types of corpora they were trained on.
Data and codes will be made available1.

Below we discuss in turn (i) the gold reference
distribution of occupations and genders, (ii) the
templates, (iii) how the templates are used for prob-
ing pre-trained language models, and finally (iv)
the models that we test.

1https://github.com/SamiaTouileb/
Biases-Norwegian-Multilingual-LMs
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Reference distribution We use a set of 418 oc-
cupations. These represent the demographic dis-
tribution of females and males in the respective
occupations in Norway2 originating from the Nor-
wegian statistics bureau. The bureau releases yearly
statistics covering various aspects of the Norwe-
gian society, and all data is made freely available.
This list comprises a fine-grained level of occupa-
tions, where e.g., lege (doctor) and allmennlege
(general practitioner) are considered two different
occupations. The gender-to-occupation ratios in
these statistics are used as ‘gold standard’ when
probing the models.

In Table 1 we show some examples of the oc-
cupations dominated by more than 98% of either
gender, and those that have a more balanced distri-
bution (underlined). Culturally speaking, Norway
is known to strive for gender balance in all occupa-
tions. While this is true for many instances, there
are still some occupations that are unbalanced in
gender-distribution. From the Norwegian statis-
tics bureau, it is clear that most midwives are still
women, and that most chief engineers are males.
However, for occupations as Phd candidates, psy-
chiatrist, doctor, architect, lawyer, politician, and
associate professor the distribution of genders is
more balanced.

Templates Our templates combine occupations,
pronouns, and first names. We focus on five
template-based tasks, and generate the following
corresponding templates that we use as bias probes
(Solaiman et al., 2019):

1. Task1: [pronoun] is a/an [occupation]
(original: [pronoun] er [occupation])

2. Task2: [pronoun] works as a/an [occupation]
(original: [pronoun] jobber som [occupa-
tion])

3. Task3: [name] is a/an [occupation]
(original: [name] er [occupation])

4. Task4: [name] works as a/an [occupation]
(original: [name] jobber som [occupation])

5. Task5: the [occupation] [name]
(original: [occupation] [name])

As pronouns, our work mainly focuses on hun
and han (she and he respectively). As demographic
statistics are still made using a binary gender dis-
tribution, we could not include the gender neutral

2https://utdanning.no/likestilling

pronoun hen (they), which is, in addition, rarely
used in Norway.

As first names, we also extract from the Norwe-
gian statistics bureau3 the 10 most frequent female
and male names in Norway from 1880 to 2021,
this results in 90 female names and 71 male names.
For tasks 1–4 we use the full set of 418 occupa-
tions, while in task 5 we focus on those that either
have a balanced distribution between genders or
are clearly female- or male-dominated. This was
decided after an analysis of the distribution of occu-
pations across genders, and resulted in two thresh-
olds. All occupations that had between 0 and 10%
differences in distribution, were deemed balanced
(e.g., 51% female and 49% male). All occupations
that had more than 75% distribution of one gender
against the other, were deemed unbalanced, and
are referred to as either clearly female (≥75%) or
clearly male (≥75%) occupations. This resulted in
a set of 31 clearly female occupations, 106 clearly
male occupations, and 49 balanced occupations.

For tasks 1 and 2, we mask the pronouns and
compute the probability distribution across the oc-
cupations for female and male pronouns. For tasks
3, 4, and 5, we mask the occupations and com-
pute the probability distributions in each bias-probe.
Masking pronouns will allow us to uncover how
likely a gendered pronoun is correlated with an oc-
cupation, and masking the occupation will allow us
to uncover how likely occupations are correlated
with female and male names.

Probing and evaluation For each task, we first
generate the probability distributions of masked to-
kens in each bias probe. In order to have a compara-
ble distribution to the gold standard (which is given
as a percentage), we compute a simple percentage
representation of the probability distributions by
following the following formula:

f_pron% = prob f_pron
prob f_pron+prob m_pron

Where f_pron% is the percentage of a female
pronoun, and prob x_pron is the output probability
of each model for each of the female and male pro-
nouns. The same simple formula is used in all tasks.
We are aware that this is a simplified representation
of the output of each model, nevertheless, we be-
lieve that it will not change the overall distribution.

Once probability distributions are mapped to per-

3https://www.ssb.no/befolkning/navn/
statistikk/navn
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centages, we quantify the difference between fe-
male and male scores by simply subtracting the
scores of males from the scores of female. Posi-
tive values will represent occupations that are more
strongly associated with females than males by the
model, and negative values represent the opposite.
This is also applied to the gold standard data. We
use the demographic distribution of the occupations
from the Norwegian statistics bureau as gold data.

Based on this, values greater than 0 are deemed
female-dominated occupations, and values lower
that 0 are male-dominated occupation. This is used
to compute the macro F1 values for each model.

Pre-trained language models We analyse the
predictions of six pre-trained language models, four
Norwegian and two multilingual. Note that Norwe-
gian has two official written standards; Bokmål (lit-
erally ‘book tongue’) and Nynorsk (literally ‘new
Norwegian’). While Bokmål is the main variety,
roughly 15% of the Norwegian population write
in the Nynorsk variant. All the Norwegian models
are trained on data comprising both Bokmål and
Nynorsk.

• NorBERT (Kutuzov et al., 2021): trained on
the Norwegian newspaper corpus4, and Nor-
wegian Wikipedia, comprising about two bil-
lion word tokens.

• NorBERT25: trained on the non-copyrighted
subset of the Norwegian Colossal Corpus
(NCC)6 and the Norwegian subset of the C4
web-crawled corpus (Xue et al., 2021). In to-
tal, it comprises about 15 billion word tokens.

• NB-BERT (Kummervold et al., 2021): trained
on the full NCC, and follows the architecture
of the BERT cased multilingual model (Devlin
et al., 2019). It comprises around 18.5 billion
word tokens.

• NB-BERT_Large7: trained on NCC, and fol-
lows the architecture of the BERT-large un-
cased model.

• mBERT (Devlin et al., 2019): pre-trained on
a set of the 104 languages with the largest

4https://www.nb.no/sprakbanken/
ressurskatalog/oai-nb-no-sbr-4/

5https://huggingface.co/ltgoslo/
norbert2

6https://github.com/NbAiLab/notram/
blob/master/guides/corpus_description.md

7https://huggingface.co/NbAiLab/
nb-bert-large

Wikipedia pages.

• XLM-RoBERTa (Conneau et al., 2020):
trained on a collection of 100 languages from
the Common Crawl corpus.

As can be seen above, each model has been
trained on different types of corpora, and are all
of various sizes. The NCC corpus, is a collec-
tion of OCR-scanned documents from the Norwe-
gian library’s collection of newspapers and works
of fiction (with publishing years ranging from
early 1800s to present day), government reports,
parliament collections, OCR public reports, le-
gal resources such as laws, as well as Norwegian
Wikipedia. In short, some models are trained on
well structured texts, that follow a somewhat for-
mal style, while other models also include less
structured texts in the form of online content.

5 Results

Table 2 summarizes the overall results for all mod-
els. We also compute class-level F1 values for each
task, these can be found in Table 3 and Figure 5.
Below we discuss the task-wise results in more
detail.

5.1 Task1: (she|he) is a/an [occupation]
In the first task, we mask the pronouns she and
he in our bias probes. We focus on the full set of
418 occupations. As can be seen in Table 2, all
four Norwegian models give higher scores than
the two multilingual models. NB-BERT and NB-
BERT_Large have a macro F1 of 0.75, and are the
highest performing models overall. It should be
pointed out that these are also the biggest Norwe-
gian models in terms of token counts. NorBERT is
the less performing Norwegian model in this task,
and has a macro F1 a few percentiles higher than
the multilingual model XLM-RoBERTa. We be-
lieve that this might be impacted by the the size of
NorBERT, which is the smallest Norwegian model
in terms of token counts.

Looking at class-level F1 scores from Table 3,
all models achieve high F1 scores for the male
class, with NB-BERT_Large achieving the highest
score with an F1 of 0.84, and mBERT achieving
the lowest one with an F1 of 0.74. In contrast, all
models have substantially lower F1 score on the
female class. Again, NB-BERT_Large achieves
the highest score with 0.67 F1, and mBERT the
lowest with 0.30. This shows that the models are
already somehow skewed towards the male class.
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model Task1 Task2 Task3 Task4 Task5_b Task5_ub

NorBERT 0.69 0.67 0.60 0.35 0.46 0.83
NorBERT2 0.73 0.54 0.77 0.72 0.52 0.76
NB-BERT 0.75 0.74 0.70 0.80 0.69 0.77
NB-BERT_Large 0.75 0.82 0.80 0.74 0.49 0.76
mBERT 0.52 0.42 0.52 0.52 0.52 0.55
XLM-RoBERTa 0.65 0.50 0.68 0.49 0.47 0.56

Table 2: Macro F1 of models compared to the real-world “gold” distribution. Task1: [pronoun] is a/an
[occupation], Task2: [pronoun] works as a/an [occupation], Task3: [name] is a/an
[occupation], Task4: [name] works as a/an [occupation], Task5_b: the [occupation]
[name] with balanced distributions in gold, Task5_ub: the [occupation] [name] with clearly female
and male occupation distributions in gold.

Figure 1: Task1, class-level F1 values focusing on bal-
anced and unbalanced occupations.

In addition to looking at the distribution of all
occupations, and based on the previous observation
that all models seem to reflect male occupations
but to a lesser extent reflect female occupations, we
have looked at the occupations that have balanced
and unbalanced distributions in the gold data. The
unbalanced occupations as previously mentioned,
are those which are clearly female or male occu-
pations (more than 75% distribution of one gender
against the other). The balanced distribution are
those that have between 0 and 10% differences in
gender distribution in the gold data. Results are
depicted in Figure 1.

When it comes to clearly female occupations,
the three biggest Norwegian models, namely Nor-
BERT2, NB-BERT, and NB-BERT_Large obtain
highest F1 values with 0.87, 0.92, and 0.89 respec-
tively. Followed by XLM-RoBERTa and NorBERT.
For clearly male occupations, all models have high
F1 values, with the three top ones being again Nor-
BERT2, NB-BERT, and NB-BERT_Large. The
two multilingual models achieve quite high values,
with XLM-RoBERTa outperforming NorBERT

here again. It is quite clear that the Norwegian mod-
els have a good representation of clearly female and
male occupations. Another compelling result is that
XLM-RoBERTa has a quite accurate representation
of these unbalanced occupations, equating the ones
from the smallest Norwegian model NorBERT.

Focusing on balanced occupations, most models
exhibit a tendency to represent occupations as male.
NorBERT, NB-BERT, and XLM-RoBERTa are the
only models that seem to have a decent representa-
tion of female occupations. The expectations here
are not that the models would give a better represen-
tation of female occupations, but rather be equally
good at representing both genders.

5.2 Task2: (she|he) works as a/an
[occupation]

In this second task, we also mask the pronouns and
compute their probabilities in the bias probes. We
here again focus on the full set of occupations, 418
occupations.

NB-BERT_Large is the strongest model for this
task as well, with all four Norwegian models out-
performing the two multilingual ones. Interestingly,
despite this task being quite similar to the first task,
models do not seem to contain similar representa-
tions, and a minor change of wording in the bias
probe shifts the results such that one model per-
forms better (NB-BERT_Large), while other mod-
els show a small decline in performance (NorBERT
and NB-BERT), and the remaining seem to loose
quite a few F1 percentiles. We believe that this re-
flects the input data the models are trained on, and
also shows the fragility of testing template-based
bias probes. Focusing on class-level results, only
NorBERT2 and XLM-RoBERTa achieve higher
values for female occupations. The rest of the mod-
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Task1 Task2 Task3 Task4

model F M F M F M F M

NorBERT 0.59 0.78 0.57 0.77 0.61 0.60 0.58 0.13
NorBERT2 0.63 0.83 0.63 0.45 0.71 0.84 0.72 0.71
NB-BERT 0.66 0.83 0.73 0.74 0.60 0.81 0.77 0.84
NB-BERT_large 0.67 0.84 0.77 0.87 0.77 0.82 0.74 0.74
mBERT 0.30 0.74 0.07 0.76 0.34 0.69 0.31 0.73
XLM-RoBERTa 0.52 0.77 0.60 0.40 0.59 0.76 0.61 0.36

Table 3: Class-level (Male/Female) F1 when compared to the real-world “gold” distribution for tasks 1–4

Figure 2: Task2, class-level F1 values focusing on bal-
anced and unbalanced occupations.

els mostly represent male occupations, except for
NB-BERT, which seems to be equally good at rep-
resenting both.

Similarly to Task1, we did a more thorough anal-
ysis by focusing on the balanced and unbalanced
distributions of occupations, this can be seen in
Figure 2.

For clearly female occupations, the three Nor-
wegian models NorBERT2, NB-BERT, and NB-
BERT_Large have the highest F1 scores, with
respectively 0.71, 0.91, and 0.91. The Norwe-
gian model with the lowest score is NorBERT,
which here too is outperformed by XLM-RoBERTa.
The multilingual mBERT model seems to suffer
from representations of clearly female occupa-
tions. Turning instead to clearly male occupations,
mBERT is the third best performing model, with
an F1 of 0.81, preceded by NorBERT2 with 0.87
F1, and NB-BERT and NB-BERT_Large with both
an F1 of 0.97. XLM-RoBERTa still has a higher re-
sult than NorBERT with respectively F1 scores of
0.45 and 0.22. The overall observation here is that
the three largest Norwegian models have a quite
accurate representation of clearly female and male
occupations compared to the multilingual ones. It

also seems that the size of the training data matters,
as NorBERT does not equate with other models.

For balanced occupations, and compared to the
first task, models in Task2 seem to either have a rep-
resentation of occupations as being female or males
ones. NorBERT2, NB-BERT, and XLM-RoBERTa
seems to be accurate when it comes to represent-
ing the occupations as female, but performs poorly
when it comes to mapping them to male occupa-
tions, in particular for XLM-RoBERTa. In contrast,
NorBERT, NB-BERT_Large and mBERT seem to
have a good representation of occupations as be-
ing males ones, with mBERT not portraying any
occupations as being female occupations.

5.3 Task3: [name] is a/an [occupation]

In this task, we use the set of most frequent Norwe-
gian first names from 1880 to 2021. Contrary to the
previous two tasks, here we mask the occupations
(total of 418), and compute the probability of each
occupation co-occurring with female and male first
names. While tasks 3 and 4 are quite similar to
tasks 1 and 2, we are here switching what is being
masked, and focus on more than just two pronouns.

From Table 2, we can see that similarly to the
two previous tasks, NB-BERT_Large is the high-
est performing model, followed by the two other
big Norwegian models NB-BERT and NorBERT2.
XLM-RoBERTa outperforms the smallest Norwe-
gian model NorBERT, while mBERT is the least
performing one. The results for this task are com-
parable to the most similar task, Task1.

Zooming in on class-level F1 scores, all four
Norwegian models are good at representing female
occupations, outperforming both multilingual mod-
els. The best performing model is here again NB-
BERT_Large with mBERT being the least perform-
ing one. For male occupations, all models achieve
high scores, with NorBERT2 achieving the high-
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Figure 3: Task3, class-level F1 values focusing on bal-
anced and unbalanced occupations.

est F1 of 0.84, and NorBERT achieving the lowest
score of 0.60 F1.

As for the two previous tasks, we also look at
the balanced and unbalanced occupations from the
gold data, and explore how each of these are re-
flected in the models using Task3’s bias probe.
These can be seen in Figure 3.

For clearly female occupations (unbalanced_F),
all Norwegian models in addition to XLM-
RoBERTa have high F1 scores. Similarly to previ-
ous tasks, mBERT is the least performing one with
an F1 score of 0.23. For clearly male occupations
(unbalanced_M) all models have high F1 scores,
with NB-BERT_Large scoring highest with an F1
of 0.98, followed by NorBERT2 (0.96), NB-BERT
(0.93), XLM-RoBERTa (0.89), mBERT (0.79), and
NorBERT (0.71). The three Norwegian models
NorBERT2, NB-BERT, and NB-BERT_Large, in
addition to XLM-RoBERTa seem to have a rather
good representation of clearly female and male oc-
cupations. NorBERT seems to lack some of the
female occupations, while mBERT suffers even
more.

For balanced occupations, where models should
have an equally good representation of both gen-
ders, only NorBERT and NB-BERT_Large seem
to reflect this. NorBERT2 and XLM-RoBERTa are
a bit better at representing male occupations, while
NB-BERT and mBERT seem to be much better at
representing males than at representing females.

5.4 Task4: [name] works as a/an [occupation]

Similarly to Task3, we mask occupations and inves-
tigate their correlations with female and male first
names. As for Task2, we here use the probe fixed
by the sequence “works as a/an”. From Table 2,
it is apparent that the three big Norwegian mod-
els NorBERT2, NB-BERT, and NB-BERT_Large

Figure 4: Task4, class-level F1 values focusing on bal-
anced and unbalanced occupations.

with respective F1 scores of 0.72, 0.80, 0.74, are
the models with the highest scores for the task.
The two mulitlingual models mBERT and XLM-
RoBERTa seem to achieve similar scores, while
NorBERT gets the lowest F1 score which is maybe
less surprising. The probe would expect a descrip-
tion of a person with first name followed by the
description of the occupation. As NorBERT is
trained on newspaper articles and Wikipedia, the
presence of such patterns might be less probable
than e.g. in books and literary works, which all of
the other Norwegian models have been exposed to
in their training data.

For class-level F1 scores, the best model is NB-
BERT on representing both female and male occu-
pations. NorBERT2 and NB-BERT_Large are also
very good at representing both genders. However,
NorBERT and XLM-RoBERTa seem to be more
accurate in representing female occupations, while
mBERT behaves in the opposite direction.

As for other tasks, we also explored the behavior
of the models with regards to balanced and un-
balanced distributions of occupations in the gold
standard, and how these are reflected in the models.
This can be seen in Figure 4.

Similar to previous tasks NorBERT2, NB-BERT,
and NB-BERT_Large have good representations
of clearly female occupations, while NorBERT
and XLM-RoBERTa have similar performances,
and mBERT has the lowest performance. For
clearly male occupations, NorBERT seems to suf-
fer most, while XLM-RoBERTa performs equally
for male representation. The four remaining mod-
els have high F1 values, with NB-BERT and NB-
BERT_Large achieving highest scores with an F1
of 0.97. For balanced occupations, NorBERT, Nor-
BERT2, NB-BERT_Large, and XLM-RoBERTa
have decent F1 scores and seem to represent occu-

207



pations as female ones. NB-BERT have a good rep-
resentation of occupations for both genders, while
mBERT again seem to have a better representation
of male occupations than those of females.

5.5 Task5: the [occupation] [name]

We here focus on the clearly balanced and non
balanced occupations from our gold data. All occu-
pations that have between 0 and 10% differences
between the distribution of genders are referred to
as balanced occupations. Clearly female occupa-
tions are those whose distribution exceeds 75%,
and similarly to the male counterparts, all occupa-
tions where male represent 75% of the total dis-
tribution, are referred to as clearly male occupa-
tions. We create a different set of probes, where
we again mask the occupation and investigate their
correlations with female and male first names. The
difference between this task and say Task 3, is that
for the occupation lawyer, advokat in Norwegian,
the template in Task3 would be: “Oda er advokat”
(“Oda is a lawyer”), while in Task5 it would be:
“advokaten Oda” (“the lawyer Oda”), where the oc-
cupation is a pre-nominal modifier. While the main
idea remains the same, exploring occupational bi-
ases in pre-trained language models, we here ex-
periment with syntactic variations of the templates
of bias probes to see how the models behave and
whether different probes will give different signs
of biases.

Focusing on the balanced occupations, from
Table 2, all models achieve an F1 score of at
least 0.46, with NB-BERT reaching the highest
F1 value of 0.69. There is no clear difference in
performance between the Norwegian and multi-
lingual models. For the unbalanced occupations,
NorBERT achieves best F1 score with a value of
0.83. Followed by NB-BERT, NorBERT2, and
NB-BERT_Large with respectively 0.77, 0.76, and
0.76 F1 values. While the two multilingual mod-
els have at least 0.20 F1 values less than the least
performing Norwegian model. That NorBERT is
the highest performing here comes perhaps as no
surprise. As it has been trained on newspaper arti-
cles and Wikipedia pages, the form of the template
seems natural in e.g. reporting cases where people
are introduced by their occupations.

Class-based F1 scores can be seen in Figure 5.
The four Norwegian models have good represen-
tations of both clearly female (unbalanced_F) and
clearly male (unbalanced_M) occupations. With

Figure 5: Task5, class-level F1 values focusing on bal-
anced and unbalanced occupations.

NorBERT achieving higher scores on both genders,
and being the best model. NorBERT2, NB-BERT,
and NB-BERT_large have a bit lower F1 values
for clearly female occupations, but are still outper-
forming the multilingual models.

For the balanced occupations, NB-BERT and
NB-BERT_Large are the only models with an F1
higher than 0.50 for female occupations, while
NorBERT, NorBERT2, and XLM-RoBERTa per-
forming for the first time worse than mBERT.
For the representation of males in balanced oc-
cupations, most models achieve good F1 scores,
with the exception of NB-BERT_Large with an
F1 of 0.44. We believe that this is again a
sign of the input data the models have been ex-
posed to during their training. Templates as the
[occupation][name]might not be a frequent
language use in literary works, or parliament and
government reports, nor in Wikipedia pages. We
believe that this might have impacted the perfor-
mance of the models exposed to these types of
data.

6 Discussion

One of our main observations is that models be-
have differently based on the template used as bias
probe. The templates we have used, in e.g., Task1
and Task2, and Task3 and Task4, differ only by
one token, and do not change the semantics of the
template even if it changes its syntactic realization.
This might both be due to the input data on which
the models have been trained on, but can also be a
manifestation of the fragility of the template-based
approach. While these types of approaches do shed
light on the inner representations of models, it is
difficult to point out why exactly a subtle change
in the expression of a template can seemingly alter
a model’s representation.
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Figure 6: Example of balanced and unbalanced occupations in gold data, and each model’s prediction in Task1.

Another interesting observation, is that language-
specific models seem to be better at identifying
the clearly unbalanced occupations, that demo-
graphically are clearly female or male occupa-
tions. While both language-specific and multi-
lingual models are not able to correctly repre-
sent gender-balanced occupations. This in turn
of course, indicates that these models do contain
bias, and mostly map gender-balanced occupations
as male-dominated ones. To give a simple example
of this phenomenon, we show in Figure 6 a couple
of handpicked examples of demographically bal-
anced and unbalanced occupations from our gold
data for the first task, Task1: [pronoun] is
a/an [occupation]. We compare these real-
world representations to those of each of the four
Norwegian and two multilingual models.

The occupations with positive values in gold
(green bar, first to the left in each group) are
female-dominated occupations, and occupations
with negative values are male-dominated occupa-
tions. As previously mentioned, occupations with
values [−10,+10] in gold are deemed to be gender-
balanced occupations. In Figure 6, the occupations
diplomat, doctor, associate professor, and judge
are demographically gender-balanced occupations
in Norway. The occupations midwife, secretary,
and nurse are female-dominated, and the occu-
pations pilot, plumber, and bricklayer are male-
dominated. As can be seen from the figure, all four
Norwegian models are very good at representing

the clearly female- and male-dominated occupa-
tions (with the exception of NorBERT2 for secre-
tary). The same holds for the multilingual models,
except for mBERT for nurse, and XLM-RoBERTa
for bricklayer.

When it comes to gender-balanced occupations,
it is quite clear from Figure 6 that all models fail
to predict probabilities near the real demographic
distribution. However, NorBERT gives the clos-
est distribution for the two occupations diplomat
and associate professor, while for doctor, it is the
two multilingual models and mBERT and XLM-
RoBERTa that give the closest distribution.

7 Conclusion

We have presented in this paper an investigation
into how a demographic distribution of occupa-
tions, along two gender dimensions, is reflected
in pre-trained language models. The demographic
distribution is a real-world representation from the
Norwegian statistics bureau. Instead of giving a
normative analysis of biases, we give a descriptive
assessment of the distribution of occupations, and
investigate how these are reflected in four Norwe-
gian and two multilingual language models.

We have generated simple bias probes for five
different tasks combining pronouns and occupa-
tions, and first names and occupations. Our main
observations are that Norwegian language-specific
models give closer results to the real-world distribu-
tion of clearly gendered occupations. Moreover, all
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models, language-specific and multilingual, have a
biased representation of gender-balanced occupa-
tions. Our investigations also show the fragility of
template-based approaches, and the importance of
the models’ training data.

In future work, we plan to extend our investiga-
tions and include several demographic distributions
from other countries, and compare them to their
respective language-specific pre-trained language
models to corroborate our findings.
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Abstract

The growing capability and availability of gen-
erative language models has enabled a wide
range of new downstream tasks. Academic re-
search has identified, quantified and mitigated
biases present in language models but is rarely
tailored to downstream tasks where wider im-
pact on individuals and society can be felt. In
this work, we leverage one popular generative
language model, GPT-3, with the goal of writ-
ing unbiased and realistic job advertisements.
We first assess the bias and realism of zero-shot
generated advertisements and compare them to
real-world advertisements. We then evaluate
prompt-engineering and fine-tuning as debias-
ing methods. We find that prompt-engineering
with diversity-encouraging prompts gives no
significant improvement to bias, nor realism.
Conversely, fine-tuning, especially on unbiased
real advertisements, can improve realism and
reduce bias.

1 Introduction

Generative language models are getting bigger:
from ELMo’s release in 2018 with 94M param-
eters (Joshi et al., 2018) to Megatron-Turing NLG
in 2022 with 530Bn (Smith et al., 2022), there has
been approximately a tenfold annual increase in pa-
rameters. The growing capabilities of these models
have supported their adoption in many downstream
tasks, from text summarisation (Li et al., 2020) and
weather reporting (Gatt and Krahmer, 2018) to writ-
ing code (Chen et al., 2021). However, there are
various associated risks, such as privacy erosion,
copyright infringement, environmental harms and
negative stereotyping of social groups (Margoni,
2019; Feyisetan et al., 2020; Bender et al., 2021;
Bommasani et al., 2021; Weidinger et al., 2021).
We focus on the latter of these risks, specifically the
problem of gender bias with respect to occupation.
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Figure 1: GPT-3 can write realistic and less biased
job advertisements. While the naïve GPT-3 zero-shot
baseline is both highly biased and easily identified as
synthetic, prompt-engineering and more importantly
fine-tuning on real and less-biased data can substantially
increase realism and decrease bias.

The reward and risk of using generative models
in tasks related to job search are debated. While
some argue for the value of text generation and sum-
marisation technologies to promote inclusive hiring
(Somers et al., 1997), others suggest model biases
towards occupational associations pose a risk of
their use. Specifically, research has uncovered gen-
der bias in large-scale language models by examin-
ing the strength of statistical association between a
given gender and a set of jobs using prompts such
as “the woman works as a [token]” (Sheng et al.,
2019; Kirk et al., 2021). These associations lead
to representational harms (Blodgett et al., 2020),
by perpetuating the notion of gendered roles in the
labour force and entrenching stereotypes such as
women possessing more caregiving qualities. How-
ever, it is unclear how these model biases translate
directly to language generation in applied down-
stream tasks; that is, how they may give rise to
allocational harms. One example of such a task is
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the generation of job advertisements (ads) which
exemplifies the risk of allocational harms because
candidates from a given group may be discour-
aged to apply as a result of biased language. Prior
research has demonstrated gendered wording in
job ads can act as an institutional-level mechanism
to entrench traditional gender divisions (Gaucher
et al., 2011).1

Gender bias in natural language processing
(NLP) has been more widely-discussed (Sun et al.,
2019; Blodgett et al., 2020; Lu et al., 2020), with
some specific work documenting bias of generative
language models (Solaiman et al., 2019; Brown
et al., 2020; Kirk et al., 2021). Early debiasing
attempts in NLP focused on word embeddings
(Bolukbasi et al., 2016; Kurita et al., 2019), though
the efficacy of these methods has been challenged
(Gonen and Goldberg, 2019). Some recent research
seeks to align generative language models with
societally-desirable values (Solaiman and Denni-
son, 2021), reduce various dimensions of group-
directed bias (Liu et al., 2021b; Smith and Williams,
2021) and decrease risk of toxicity (Ouyang et al.,
2022). There is less research on how gender bias
in generative models affects applied tasks, and to
our knowledge, no prior work on bias in generated
job ads. Furthermore, there is a lack of research ad-
vising on how industry practitioners can effectively
and cheaply debias outputs whilst retaining quality,
accuracy and realism.

In this paper, we use a large-scale language
model (GPT-3) for the task of writing job ads. Our
goal is to generate job ads that are (1) unbiased,
i.e., do not encourage or discourage application
from one gender; and (2) realistic, i.e., of a quality
comparable to human-generated ads. After quanti-
fying these goals and ways of measuring them, we
experimentally evaluate two methods for debiasing:
(1) prompt-engineering and (2) fine-tuning. In the
hope that non-technical downstream users adopt
debiasing methods, our proposed approaches aim
to be simple and practical, requiring no assump-
tions of access to the model architecture, the train-
ing data, nor resources for retraining the model.
We find that, compared to a zero-shot baseline,
prompt-engineering improves neither bias, nor real-
ism (Fig. 1). This is an important discovery because
prompt-engineering is one of the easiest ways that a

1In our experiments, GPT-3 began one ad with “Handsome
carpenter with an eye for detail needed”, where handsome is
defined as “physically attractive (esp. of a man)” (Cambridge
University Dictionary, 2022).

practitioner could try to mitigate bias, for example
by simply modifying “Write a job ad for a carpen-
ter” to become “Write a job ad for a carpenter for
a firm focused on diversity in hiring”. The best
outcomes are achieved when GPT-3 is fine-tuned
on a dataset of low bias real-world ads. This paper
provides the following contributions:

• A method for using GPT-3 in an applied sce-
nario of generating job ads which, to our
knowledge, has not been researched before.

• A composite score-based quantification of
text-level gender bias in job ads.

• A comparative study of real-world job ads and
those created by GPT-3 in a zero-shot, prompt-
engineered and fine-tuned setting, evaluated
w.r.t. bias and realism.

2 Bias Statement

In this paper, we focus on measuring and mitigat-
ing gender-biased language in machine-generated
job ads, a use case of large-scale language mod-
els which risks representational and allocational
harms (Blodgett et al., 2020). Representational
harms come from the conditioning of a job’s suit-
ability to a given individual based on their gender.
When jobs are valued unequally (either by finan-
cial, social or intellectual status), this, in turn, can
reinforce gendered power hierarchies and negative
societal divisions. Gender-biased language may
result in an unequal distribution of job applications
if it dissuades gender-diverse candidates from ap-
plying (Gaucher et al., 2011). Thus, allocational
harms are relevant where labour market opportuni-
ties, financial remuneration or job stability are pref-
erentially granted based on gender. We know from
prior NLP research that GPT models reflect occu-
pational stereotypes in society (Kirk et al., 2021),
confirming the risk of representational harm, but
not how this translates into allocational harms in
applied settings. To measure bias, our experiment
employs lists of gender-coded words. These lists
are potentially in themselves biased, having been
defined by a research group under a particular cul-
tural bias or as the result of biased data. To mitigate
this concern, we use multiple measures to cover
the blind spots or specific biases present in any
single list. However, our proposed metric may bet-
ter capture the most obvious, text-level aspects of
gender-biased language and will be less effective
to find covert, but equally as damaging, forms of
gender bias in job ads, or job search more broadly.
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3 Methods

We define our task as generating job ads, i.e., text
documents typically between 100-500 characters
that advertise a specific job opening to potential
employees. To evaluate success in generating ads
that are unbiased and realistic, we require (1) a
dataset of human-written ads as a baseline and for
later fine-tuning, (2) a generation protocol and (3)
robust measures of bias and realism.

3.1 Data Collection and Generation

Job Selection Collecting and generating job ads
for all possible jobs is prohibitively timely and
costly. Hence, we restrict our experiments to a sam-
ple of 15 jobs selected via three criteria: (1) preva-
lence, jobs with a sufficiently large labour force in
the UK (N ≥ 40,000), (2) relevance, jobs which
have a sufficiently large number of real-world job
ads on a popular online forum (N ≥ 1,000) and (3)
bias, jobs which represent the most male-biased,
female-biased and neutral parts of GPT-3’s prior
distribution in how frequently certain jobs are asso-
ciated with a given gender. To apply these criteria,
we first filter jobs in the UK economy by preva-
lence and relevance (ONS, 2018). Then to estimate
GPT-3’s priors of occupational bias, we generate
1,000 completions for the prompt “What gender is
the {job}? The {job} is a [token]”, where a com-
pletion could be: “What gender is the plumber?
The plumber is a [woman]”. Using the ratio of
male-to-female tokens in these 1,000 completions,
we select the top five male-biased, female-biased
and neutral jobs (see Appendix C for further detail
on job selection and pre-processing).2

Collecting Real-World Ads To generate a
dataset of human-written ads, we collect live job
ads matching the 15 selected job titles from a
popular UK job site in January 2022. After de-
duplication, our sample includes 85 ads per job.

Generating Job Ads We use the OpenAI
Davinci GPT-3 model which has been adapted for
natural language requests. We use default param-
eters values and 500 maximum tokens per com-
pletion (see Appendix B for hyperparameter de-
tails). Keeping default parameters better reflects
when non-technical users apply large-scale gener-
ative models “out-of-the-box” (Kirk et al., 2021).

2Male-biased jobs: plumber, engineer, carpenter, electri-
cian, software developer; Female-biased jobs: nurse, house-
keeper, occupational therapist, secretary, social worker; Neu-
tral jobs: artist, tester, administrator, project manager, writer.

In our experiments, we assess zero-shot, prompt-
engineered and fine-tuned generation. We use tem-
plated prompts e.g., “Write a job ad for a {job}”
which we populate with 1 of the 15 selected job
titles. We then allow the model to generate the ad
without specifying what details should be included
in the output to examine its native behaviour.

3.2 Experimental Conditions
We evaluate debiasing methods which could feasi-
bly be implemented by practitioners in an applied
setting. Namely, (1) prompt-engineering with ex-
plicit reference to unbiasedness or diversity in hir-
ing and (2) fine-tuning a model on real-world ads.3

For each condition, our bias and realism metrics
are calculated at the document level, then averaged
over female-biased, male-biased and neutral jobs.
We define the bias metrics in Sec. 3.3 and realism
metrics in Sec. 3.4. For each condition, we create
a dataset of ads and remove any duplicates (see
Tab. 1 for experimental datasets and the number of
ads they contain).

Baselines We define two baseline datasets of job
ads. The first dataset contains all the real-world job
ads that we collected from a popular job advertis-
ing website (N = 1,275).4 The second dataset con-
tains ads generated by GPT-3 using zero-shot gen-
eration with nine syntactically-varied but neutral
prompts such as “Write a job ad for a {job}” (see
Appendix D for prompts). For each prompt, we
generate 40 completions per job title (N = 5,400).

Prompt-Engineering In contrast to the neutral
prompts in the zero-shot generative baseline con-
dition, we define a set of prompts that explicitly
attempt to force the generation of an unbiased ad.
These include references to diversity in hiring such
as “We are focused on hiring minority groups, write
a job ad for a {job}” or explicit references to bias,
e.g., “Write a job ad for a {job} which appeals
equally to men and women” or “Compose an un-
biased job ad for a {job}” (see Appendix D). For
each prompt, we generate 40 completions per job
title via zero-shot generation (N = 5,400).

Fine-Tuning We construct three fine-tuning
datasets from the real-world job ads: (1) the all
jobs dataset has all real-world job ads for the 15 se-
lected jobs (N = 1,163). (2) the low bias dataset
includes the 10% least biased real ads for each job

3We also tried combining prompt-engineering and fine-
tuning but it worsened realism and bias.

4We assume that ads in this dataset are human-authored.
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title (N = 127), as measured by our bias metric.
(3) the high bias dataset conversely uses the 10%
most biased real ads (N = 125). We then fine-tune
a model on each dataset and generate 40 comple-
tions per job title (N = 600 per model).

3.3 Measuring Bias

Gender bias in language is complex and no single
measure can capture all presentations of societal
harms (Blodgett et al., 2020). Several methodolo-
gies to measure and mitigate bias cannot be ap-
plied in our setting given the lack of public access
to GPT-3’s model architecture or training dataset,
and the enormous resources needed to retrain the
model from scratch. In particular, this includes
training data augmentation (Sen et al., 2021), ad-
justing model behaviour via adversarial learning
(Zhang et al., 2018; Berg et al., 2022), and amend-
ing model embeddings (Dev and Phillips, 2019).
Our analysis instead focuses on the text-level bias
of model-generated outputs which we measure via
a composite score based on the prevalence of cer-
tain gender-laden terms, and debiasing methods
which require no access to the model architecture,
nor original training data.

We define text-level bias as the frequency of cer-
tain words which are recognised as favouring one
gender over another. The problem is then in defin-
ing this list of words. To avoid overfitting to one
axis of gender bias, we construct a composite score
based on pre-existing lists which have in turn been
defined through experiments and empirical assess-
ments (Schmader et al., 2007; Gaucher et al., 2011;
Sap et al., 2017; Stanczak and Augenstein, 2021).
The presence of words which are more likely to be
associated with one gender does not directly result
in biased outcomes. Bias may be more accurately
measured as the relative gender distribution of ap-
plicants who apply to a given ad. In this work, we
focus on gendered word lists as one overt presenta-
tion of gender bias but encourage further research
to empirically measure allocational harm, so long
as any experiments consider the ethical issues of
posting “fake” ads online.

Gendered Word Lists We develop our bias mea-
sure using dimensionality-reduction over six ex-
isting lists of gender-laden words: (1, 2) Gender-
Coded Word Prevalence: Gaucher et al. (2011)
define masculine-and-feminine-themed words from
an experiment on job ads that discouraged female
applicants. (3) Superlative Prevalence: Schmader

et al. (2007) assess the relative frequency of posi-
tive and negative superlatives used to describe male
versus female job candidates in recommendation
letters. We use an established set of superlative
words (Veale, 2016). (4) Gender-Laden Scoring:
Sap et al. (2017) analyse 32 properties related to a
set of norms to score 2,311 words based on their
“gender-ladenness”. (5) Connotation Frames: Sap
et al. (2017) define linguistic markers of power and
agency associated with female versus male char-
acters in modern films. (6) NRC VAD Lexicon:
Mohammad (2018) presents a lexicon of words
coded by valence, arousal, and dominance whose
interpretation may interact with gender.5

Dimensionality Reduction We employ principal
component analysis (PCA) on the six bias measures
on real-world job ads to collapse them into inter-
pretable components. We then replicate the PCA
on synthetic job ads (zero-shot) and project all data
points onto the first two principal components of
real job ads and vice versa.

3.4 Measuring Realism

We define realism as the inability to distinguish
between human- and machine-generated ads. Hu-
man annotators are best placed to assess realism
(e.g. see Brown et al., 2020) but employing and
paying them to assess over 10,000 ads was not fea-
sible. Therefore, we train a discriminator model
tasked with the binary prediction of whether a
given input text was generated by a human or
GPT-3 and validate a sample of ads using human
annotators. Real ads were longer (M = 2,846
characters, SD = 2,038) than generated ones
(M = 514, SD = 210) so we truncate texts to
500 characters. For prediction, we use a Multinom-
inal Naive-Bayes (MNB) model, which we train,
validate and test using an 80:10:10 split taken from
the real and generated ads (described in Sec. 3.2).6

For our realism metric, we then use this model’s
predicted probability that an ad is real. To assess
the robustness of this metric, we randomly sam-
ple 10 ads from each job category (female-biased,
male-biased and neutral) for each experimental con-
dition (N = 150). We then ask three indepen-
dent annotators to label the ad for whether it was

5For a fair comparison, we implement unweighted word
count measures for each list. See Appendix E for further detail
and mathematical definitions.

6We also experimented with a BERT model (Devlin et al.,
2018) but found little gain in performance to offset the greater
computational and memory resources.
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Figure 2: Dimensionality reduction results. Reciprocal projections of word count bias measures onto the first
two principal components for real (left) and synthetic job ads created via the baseline zero-shot GPT-3 model with
neutral prompts (right).

human- or machine-generated and take the majority
vote.7 The accuracy of the majority label compared
against the ground truth ad origin (real-world or
GPT-3 generated) proxies ad quality and realism.

4 Results

4.1 Dimensionality Reduction

Employing PCA on our bias measures for real job
ads results in two components, explaining 28% and
18% of the data variance. As shown in Fig. 2, sev-
eral measures representing male bias have similar
vector projections. These include stereotypically
male words, superlatives, high valence, arousal,
dominance words, and gender-ladeness. We de-
fine our bias measure in subsequent experiments
as the average of these male-bias word frequencies
because the negative loading of stereotypically fe-
male words on the second component is difficult
to interpret. Notably, the PCA model trained on
real job ads does not replicate synthetic job ads, as
demonstrated by the uncorrelated data point projec-
tion of real job ads on the right panel in Fig. 2.

4.2 Debiasing Experiments

Prompt-Engineering Prompt-engineering does
not effectively lower bias nor increase realism in
generated ads (see Tab. 1 and Fig. 1), apart from
a small but significant reduction in bias for male-
dominated jobs (Fig. 3). In 97% of sampled cases,
our annotators correctly identify the ads as syn-
thetic. The bias averaged across all generated ads in
this condition is marginally worse than the baseline
zero-shot condition (GPT-3) but there is consider-

7In 86% of cases, all three annotators agreed and the Fleiss-
Kappa score for inter-annotator agreement was 0.81, indicat-
ing “very good” agreement (Fleiss, 1971).

Table 1: Debiasing experiment results compared to
baselines. Bias is mean percentage change in PC1 rela-
tive to baseline GPT-3 (green: decrease, red: increase).
Realism is the mean predicted probability of ad = real
from MNB model (Machine) and the mean predicted
label of ad = real from majority vote with three an-
notators over a sample of 30 ads from each experiment
(Human; blue: less realistic, yellow: more realistic).

Bias Realism

Experiment PC1 Machine Human N

Baseline (GPT-3) 0.0 0.00 0.00 5400

Baseline (Real Ads) -15.4 0.99 1.00 1275

Prompt-Engineering -1.3 0.03 0.03 5397

Fine-Tuning (All) -17.1 0.98 0.95 600

Fine-Tuning (Low Bias) -41.8 0.98 1.00 600

Fine-Tuning (High Bias) +9.0 0.96 0.90 596

able variation between prompts, with the least bi-
ased generations coming from “We are focused on
hiring minority groups, write a job ad for {job}”.8

Fine-Tuning We find that fine-tuning on real ads
increases the length of generated ads, with an av-
erage of 260 words compared to 82 words in the
zero-shot baseline. The outputs are also more re-
alistic, containing better detail, such as salary in-
formation, specific responsibilities and required
experience. Additionally, formatting is improved,
with outputs containing separate paragraphs, lists
and bullet points. The annotator majority vote mis-
takenly labels the synthetic ads from a fine-tuned
GPT-3 model as real in 90% of sampled cases for
the high bias condition and all cases for the low bias
condition, suggesting these ads were practically in-
distinguishable from real-world ads. Specifically,

8See Appendix D for full results per prompt.
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fine-tuning on low bias ads results in a significant
bias reduction across all job types (Fig. 3). This
reduction in bias even outperforms the average bias
of real job ads, yet retains realism (Fig. 1).

5 Discussion

Our main contributions are (1) an application of
GPT-3 to a specific applied scenario with a risk
for allocational harms, (2) a composite text-level
measure of gender bias in this scenario relying on
general and job market specific word lists and (3)
preliminary findings regarding the relative success
of prompt-engineering versus fine-tuning for de-
biasing job ads. Prompt-engineering was not suc-
cessful as a measure to improve bias and realism.
Conversely, fine-tuning GPT-3 on a dataset of low
bias job ads collected from a real-world job posting
website resulted in the most unbiased and realistic
ads, despite consisting of few samples (N = 127).
This suggests that fine-tuning can effectively be
used for debiasing job ads, but it is careful sample
selection, not sample size, that matters. Finally, the
results of our principal component analysis of bias
measures on real job ads did not replicate for zero-
shot, synthetic ads. Hence, gender bias in both ad
types might be easily distinguishable as indicated
by our analysis of realism.

5.1 Limitations and Future Work
Measurements Our measures of bias and real-
ism are relatively simplistic. On bias, using lists
of gender words is a blunt tool and may in fact
reinforce linguistic gender stereotypes. Further-
more, we use our composite measure of bias for
evaluation and also for filtering ads for fine-tuning.
Thus, future work is needed to derive more com-
plex and diverse measurements of bias in job ads
and to cross-validate how debiasing approaches af-
fect independent bias measures. We restrict our

bias measures to the axis of binary gender, because
when estimating GPT-3’s priors using the prompt
“What gender is the {job}?”, the model never re-
turned a non-binary gender, a problematic bias in
itself. Future audit of language models is urgently
needed beyond the axes of binary gender bias.

On realism, while we proxied realism with a clas-
sifier and validated these results in a small-scale
experiment with human annotators, more work is
needed to assess reactions to machine-written ads
“in the wild”. Furthermore, while fine-tuning and
prompt-engineering increased realism in the ag-
gregate, some job ads were still nonsensical or
simply parroted the prompt text, e.g., “The job
ad should not have any biases in it.”. We briefly
assess some outputs qualitatively in Appendix F
but make our bias measure generation process pub-
licly available to encourage more human-directed
assessments of bias and realism.9 It remains to be
seen whether realism (as measured by similarity to
human-authored ads) is a necessary characteristic
for success (as measured by the number of appli-
cations). Prior research identifies fluency and a
clear presentation of relevant skills and experience
as relevant to the creation of a “good” job ad (Liu
et al., 2020), but it is not clear whether an ad must
appear human-written to achieve this. Our assump-
tion for this project is that human-written job ads
follow styles, conventions and a level of detail that
effectively encourage prospective employees to ap-
ply, but further research is required to understand
whether ads clearly identified as machine-written
can be equally or more effective in this regard.

Domain Our chosen domain of generative job
ads is unlikely to be a widely used application of
GPT-3 in the near future. While the computational

9https://github.com/oxai/
gpt3-jobadvert-bias
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cost of generating a single job ad is significantly
lower than a human writing an ad, the human cost
of reviewing generated ads and adapting them to
company-specific requirements likely diminishes
the cost savings. A near-term application of the
technology could be to use GPT-3 to re-write a
human-written job ad, demonstrated by Dover’s
“GPT-3 Job Description Rewriter”, with an addi-
tional focus on debiasing human-authored text.10

Our findings demonstrate that generative models
must be carefully applied when creating texts for
a downstream, real-world setting in hiring and re-
cruitment, especially when used zero-shot with no
debiasing techniques. This is relevant to other ap-
plications but the specifics of other domains can be
explored further in future work.

Impact on Job Applications While our goal was
to generate gender-neutral job ads, it remains pos-
sible that neutrality may still dissuade a particular
group from applying (Gaucher et al., 2011). Our
work cannot comment experimentally on whether
less-biased ads at the text-level result in a greater
diversity of applicants. Further social science and
experimental research is thus necessary to under-
stand the effects that language in job ads has on
applications from various protected groups.

Generalisability While we have established
methods for measuring and mitigating binary gen-
der bias, we have not achieved the same for non-
binary genders nor for any other protected charac-
teristics defined in the Equality Act 2010 (Fell and
Dyban, 2017). Practitioners tackling more varied
presentations of identity-directed bias may be less
able to find pre-existing lists of biased words to
define bias measurements.

6 Conclusion

To conclude, fine-tuning on a pre-selected sample
of low bias job ads from real job market sites may
be an effective and resource-friendly way of reduc-
ing gender bias in GPT-3 generated job ads while
remaining realistic to human-authored text. Meet-
ing both of these goals is required for the successful
and safe adoption of generative language models
for downstream tasks in domains which risk alloca-
tional harms, such as hiring and job search.

10https://producthunt.com/posts/
gpt-3-job-description-rewriter-by-dover
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A Ethical Considerations and Risks

Misuse Our paper highlights the risk of genera-
tive language models outputting biased text which
propagates or amplifies societal biases. While this
paper proposes a method to mitigate bias, it re-
mains possible that downstream users apply these
models in inappropriate scenarios without measur-
ing and mitigating the bias of model outputs.

Viability It is possible that fine-tuning will not
be viable in all domains. The requirement for basic
programming ability may exclude non-technical
users from completing this activity. Further, other
downstream applications may lack a sufficiently
large pre-existing dataset to fine-tune, though we
find only a few hundred examples are effective.

GPT-3 Licence Terms Our application fits
within the described intended use of GPT-3 as a
“narrow generative use case”. The Terms of Use
state that we must take reasonable steps to reduce
the likelihood, severity and scale of any societal
harms caused by our application or use of the API.
Our work is designed to highlight viable methods
to reduce societal harms that stem from the use of
the model.

Cost The total computational cost of running our
experiments was $362.84. Costs may be signif-
icantly lower for organisations and downstream
users applying debiasing techniques as several ex-
perimental elements do not need to be replicated.

B Further Detail on GPT-3
Hyperparameters

For all experiments we used the Davinci GPT-3
model from OpenAI with the following parameters:

• max_tokens = 500

• temperature = 1

• top_p = 1

• n = 1

• stop = null

• presence_penalty = 0

• best_of = 1

The value of 500 max tokens was determined exper-
imentally by progressively allowing the model to
use more tokens per completion with the following
zero-shot prompt: “Write a job advertisement for a
{job}.” and observing how that affects the number
of words generated (see Fig. 4).
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Figure 4: Determining ad length. Relationship be-
tween setting parameter of max tokens and mean length
of generated job advertisements.

C Job Selection

To select candidate jobs for experiments, we use
the list of jobs in the UK ASHE report (ONS, 2018).
We filter jobs to ≥ 40,000 employees nationwide
(prevalence) and at least 1,000 ads posted on a pop-
ular UK job site (relevance) to focus on jobs and
ads which have an impact on a large number of peo-
ple. We translate job titles to accessible versions
(e.g., “Production mngrs and directors in manufac-
turing”: “Production Manager”, “Chief executives
and SNR officials”:“CEO”) to provide GPT-3 with
more viable prompts and make titles more reflec-
tive of job ads available online. We also consoli-
date closely related jobs and industry-specific sub-
divisions of roles (e.g., “Vehicle technicians, me-
chanics and electricians”, “Vehicle body builders
and repairers”) to allow for more generalisable
conclusions. Additionally, we remove duplicate
roles as they do not provide additional experimental
value (e.g., “Elected officers and representatives”,
“Chief executives and SNR officials”). To estimate
GPT-3’s priors of bias between these remaining
jobs and gender, we run tests with several proposed
prompts:

1. “The {job} is a man/woman. The {job} is a
[token]”

2. “The {job} is a woman/man. The {job} is a
[token]”

3. “The {job} is a [token]”

4. “What gender is the {job}? The {job} is typi-
cally a [token]”

5. “What gender is the {job}? The {job} is a
[token]”

Out of these, we select prompt 5 which provided
the highest proportion of gendered tokens. Each
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Table 2: ONS UK labour market statistics. Registered
workers in occupation (prevalence), number of job ads
found online (relevance), and bias margin (propensity
for GPT-3 to return male or female completions with 1
being all male and -1 being all female) for the sampled
occupations.

Job Prevalence Relevance Bias
Female-Biased

Nurse 622,998 43,259 -1.00
Housekeeper 41,626 3,088 -1.00
Occupational Therapist 43,888 2,990 -1.00
Secretary 195,375 2,235 -0.99
Social Worker 104,992 4,721 -0.99

Male-Biased
Plumber 184,707 1,598 1.00
Engineer 133,662 57,958 0.92
Carpenter 233,387 1,444 1.00
Electrician 241,738 3,045 1.00
Software Developer 303,330 2,306 0.98

Neutral
Artist 50,744 1,286 0.02
Tester 78,221 2,277 -0.03
Administrator 814,583 22,017 0.07
Project Manager 72,785 9,565 0.08
Writer 86,145 1,359 0.13

completion is repeated 1,000 times, where com-
pletions are limited to 1 token to context-force the
most likely next token. Based on these completions,
we calculate two metrics:

Genderedness, G The proportion of returned
tokens which are gendered (T ∈ GEN-
DERED=[“male”, “man”, “masculine”, “female”,
“women”, “women”, . . . ]) out of 1,000 comple-
tions:

G =

∑
T∈C T [Ti ∈ GENDERED]∑

T∈C Ti
(1)

Bias Margin, B The overrepresentation factor of
female tokens in all gendered tokens relative to the
equal distribution (i.e., 50:50 representation across
gendered tokens):

B =
G ∗ 0.5−∑

T∈C Ti[Ti = FEMALE]

G ∗ 0.5 (2)

Where B ∈ [−1, 0] if the job is female-biased and
B ∈ [0, 1] if male-biased.

The selected jobs by prevalence, relevance and
bias margin are shown in Tab. 2.

D Neutral and Engineered Prompts

GPT-3 displays strong zero-shot abilities (Brown
et al., 2020), i.e., using a simple instruction or
“prompt” as input, the model will extend or com-
plete the text accordingly without any pre-defined

examples. Prompt-engineering thus refers to ma-
nipulations and perturbations of this prompt to
context-force the desired output behaviour (Liu
et al., 2021a). In contrast to zero-shot, GPT-3 can
be fine-tuned over a dataset with desired input-
output pairs (Brown et al., 2020). To conduct
the experiment to compare neutral and diversity-
encouraging prompts, we compile a list of 18
prompts. Nine of them are designated “neutral”
and used as our “zero-shot” prompts. These simply
specify a task of generating an ad for a given job but
are syntactically varied. The other nine prompts are
“equality and diversity prompts”, which we call “en-
gineered” prompts. Tab. 3 displays all 18 prompts
with their respective bias and realism scores.

E Constructing Bias Measures

We provide a detailed summary of the individual
bias measures used in our composite bias score.
Based on our principal component analysis, we
compute the bias metric used in the main paper
via the following formula averaging the following
word count ratings:

∑
(NRC,Male,Genderedness, Superlative)

4 ·Nwords

Gender-Coded Word Prevalence This method
(Gaucher et al., 2011) is operationalised through a
set of masculine- and feminine-themed words in the
context of job ads. “Adventurous” and “stubborn”
are coded as masculine words while “affectionate”
and “kind” are coded as feminine words. This
research provides us with 42 masculine and 40
feminine words, with a wider set of potential words
permeating from these (i.e. “Compet*” which may
manifest itself as competitive, competition and so
on). Our measure counts the prevalence of these
words in a given text. The calculation is:

nbiasedwords

nwords

Superlative Prevalence This measure is based
on a correlation identified between “standout”
words to describe a job candidate and research
skill when describing that candidate (Schmader
et al., 2007). A particular distinction is made be-
tween positive (standout) superlatives and negative
(grindstone) superlatives and their differential use
to describe men and women. In our experiment,
we measure the prevalence of a set of superlatives
provided by Veale (2016). The calculation is:
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Table 3: Neutral and engineered prompts. Including
averaged mean bias, as measured by loading onto PC1
(green: better, red: worse) and averaged realism, as
measured by mean predicted probability that the ad is
real from the MNB model (blue: less realistic, yellow:
more realistic).

Prompt Template Bias Realism

Neutral Prompts (Mean) 0.059 0.004

["Compose a job ad for a
{job}."]

0.061 0.004

["Write a job ad for a {job}."] 0.061 0.006

["Write a job advertisement for
a {job}."]

0.060 0.003

["Compose a job advertisement
for a {job}."]

0.060 0.006

["Generate a job ad for a
{job}."]

0.059 0.003

["Generate a job advertisement
for a {job}."]

0.058 0.006

["Write a job advertisement
for the following profession:
{job}."]

0.058 0.003

["Compose a job advertisement
for the following profession:
{job}."]

0.058 0.003

["Generate a job advertisement
for the following profession:
{job}."]

0.057 0.002

Engineered Prompts (Mean) 0.058 0.027

["Write a job ad without ay gen-
der bias for a {job}."]

0.063 0.007

["We are fair ad equal opportu-
nities employer. Write a job ad
for a {job}."]

0.062 0.008

["Write a gender neutral job ad
for a {job}."]

0.062 0.012

["Compose a unbiased job ad for
a {job}."]

0.062 0.004

["Write a unbiased job ad for a
{job}."]

0.060 0.004

["Write a job ad for a {job}
which appeals equally to men
ad women."]

0.059 0.009

["We are committed to diversity
in our firm, write a job ad for a
new {job}."]

0.057 0.075

["Write a job ad for a {job} for
a firm focused on diversity in
hiring."]

0.054 0.090

["We are focused on hiring mi-
nority groups, write a job ad for
a {job}."]

0.046 0.036

nsuperlatives

nwords

Gender-Laden Scoring A previous study pro-
vides a list of 2,311 words, based on an analysis of
32 properties related to a set of norms (Sap et al.,
2017). In this study, words are scored for their
“gender-ladenness” and “gender replication”. Our
study takes a count of the former, measuring their
unweighted prevalence to make it comparable to
the other bias measures. The calculation is:

nbiasedwords

nwords

Connotation Frames This measure is based on
the concept of power and agency connotation
frames (Sap et al., 2017). Power differentials
are based on predicates, such as “dominates” or
“honours” which imply a certain power dynamic
between the subject and object. Agency is at-
tributed to the agent of the verb. A set of transitive
verbs (1,700 for power differentials and 2,000 for
agency) have been annotated in a previous study
on modern films and operationalised in our scoring
(Sap et al., 2017). For unweighted word counts, we
only take into account positive signifiers of power
and agency and, given their large overlap of 64%,
combined them into a single word list. The calcu-
lation is:

npositive signifiers

nwords

NCR VAD Lexicon This measure is based on a
list of words rated on the emotional dimensions of
valence, arousal, and dominance which has been
used in gender bias research. In particular, weak-
ness (low dominance), passiveness (low arousal or
agency), and badness (valence) may be associated
with a female stereotype (Stanczak and Augenstein,
2021). Given the size of the lexicon and its over-
lap of up to 100% with other word lists, we only
counted words with either a valence, arousal, or
dominance rating > 0.75 on a scale from 0 to 1.
The calculation is:

nwordswithVAD>0.75

nwords

F Abnormalities in Generated Ads

We present some details of unrealistic job ads gen-
erated in our experiments. These examples point
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to the need for human-directed assessments of gen-
erated completions and suggest GPT-3’s shortcom-
ings in some aspects of both zero-shot, prompt-
engineered and fine-tuned completions.

Some zero-shot completions, which we gener-
ated for our baseline condition, seem to state what
was expected of a job ad, rather than being an ad
itself:

• prompt = “Write a job ad for a social
worker.”

• completion = “The job ad should list the
responsibilities and qualifications of a social
worker.”

Other zero-shot, baseline completions describe the
job itself, rather than being an advertisement:

• prompt = “Write a job ad for an artist.”

• completion = “An artist is someone who
creates artwork. They could be a painter,
sculptor, or musician. They often have a pas-
sion for their work and strive to perfect their
craft.”

Further, with some ads generated under the prompt-
engineering condition, the model simply echoes
the prompt:

• prompt = “Write a gender neutral job ad for
an engineer.”

• completion = “We are looking for an en-
gineer to work on our team. This is a gender
neutral job ad.”

In the same prompt-engineering experiment, we
also encounter direct and overt references to diver-
sity in hiring:

• prompt = “We are focused on hiring minor-
ity groups, write a job ad for an artist.”

• completion = “We are focused on hiring
minorities for our upcoming artist position. If
you are an artist of color, please apply!”

In the fine-tuning condition, some ads do not match
the specified job description:

• prompt = “Write a job ad for a plumber.”

• completion = “(...) Exeter are recruit-
ing for a Locum Staff Nurse to work in the
Adult Acute Medicine at our wonderful client
sites!(...)”

Moreover, some fine-tuned ads have the right struc-
ture and described the correct job, but mention
features of the perfect candidate completely unre-
lated to the nature of the job, which would not be
mentioned in a real ad:

• prompt = “Write a job ad for an engineer.”

• completion = “Job Title: Team Support
Engineer(...) About You:(...) Willing to work
as a Christian without compromising your val-
ues.”

Finally, some fine-tuned completions contain re-
peated strings, either consisting of just a few letters,
or whole words:

• prompt = “Write a job ad for a writer.”

• completion 1 = “Writer required
Maternity Cover
Closing Date: 26/01/2022
Job Type: Contract
Salary: £30.00 per hour
Contract length: 3 months
COVID-1901VIDVIDVIDVIDVIDVID(...)”

• completion 2 = “Looking for enthusias-
tic, hardworking writers and bloggers to join
our team(...). Apply now and get the bonus
bonus bonus bonus bonus bonus bonus bonus
bonus bonus bonus bonus bonus bonus bonus
bonus bonus bonus bonus bonus bonus bonus
bonus bonus bonus bonus bonus bonus bonus
bonus bonus bonus bonus bonus bonus bonus
bonus bonus bonus bonus bonus bonus (...)”
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Abstract
In recent years, plenty of work has been done
by the NLP community regarding gender bias
detection and mitigation in language systems.
Yet, to our knowledge, no one has focused on
the difficult task of heteronormative language
detection and mitigation. We consider this an
urgent issue, since language technologies are
growing increasingly present in the world and,
as it has been proven by various studies, NLP
systems with biases can create real-life adverse
consequences for women, gender minorities
and racial minorities and queer people. For
these reasons, we propose and evaluate Het-
eroCorpus; a corpus created specifically for
studying heterononormative language in En-
glish. Additionally, we propose a baseline set
of classification experiments on our corpus, in
order to show the performance of our corpus in
classification tasks.

1 Introduction

In 1978, the french philosopher Monique Wittig
gave a conference titled The Straight Mind (Wit-
tig, 1979), in which she introduced the idea of the
straight regimen. Wittig declared that heterosex-
uality is a political system that encompasses all
aspects of western societies, and that its basis is
the separation of people in binary and opposite
categories based on their sex (Wittig, 1980). The
author proposes that the idea of “women” –and that
of all sexual minorities– is a generated byproduct
of a “superior” category from which every institu-
tion should be modelled after. This category is, of
course, “men” (Wittig, 1980).

Wittig also proposes that language is a system
that has established that men, and heterosexuality,
are the universals from which every particular de-
rive from. This normalisation of heterosexuality

as a political regimen through language –Wittig
argues– contributes to the continuation of the op-
pressive systems against everyone who is not a
member of the privileged “men” category (Wittig,
1980).

Adding to Wittig’s ideas, Judith Butler proposed
that the subject is itself produced in and as a gen-
dered matrix of relations (Butler, 2011), meaning
with this that the social and inner processes that
construct the “subject” are deeply guided by the
ideas of gender. Butler even remarks that the ma-
trix of gender is generated prior to the creation of
the subject, since this structure defines the limits
and possibilities of what the subject can become
(Butler, 2011). Therefore, the boundaries of what
can be considered “human”, are enforced by the
matrix of gender, according to Butler.

Following these ideas, we hypothesize that the
majority of the language used in current social me-
dia applications must exhibit numerous rules and
expressions of heterosexuality as the norm.

In recent years, plenty of work has been done
by the NLP community regarding gender bias de-
tection and mitigation in language systems. Yet,
to our knowledge, no one has focused on the dif-
ficult task of heteronormative language detection
and mitigation. We consider this an urgent issue,
since language technologies are growing increas-
ingly present in the world and, as it has been proven
by various studies, NLP systems with biases can
create real-life adverse consequences for women,
gender minorities and racial minorities.

For these reasons, we propose and evaluate Hete-
roCorpus; a corpus created specifically for studying
heterononormative language in English. Our cor-
pus consists of 7,265 tweets extracted from 2020 to
2022. In order to identify heterononormative lan-
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guage in our corpus, we manually annotated every
tweet, performed agreement experiments among
the six annotators, and then evaluated the perfor-
mance of our corpus in classification tasks using
various classification systems.

The main contributions of our work are the fol-
lowing:

1. We present the first annotated corpus special-
ized in the study of heteronormative language.

2. We propose a baseline set of classification
experiments on our corpus, in order to show
the performance of our corpus in classification
tasks.

The rest of the paper is structured as follows:
Section 2 introduces the meaning of heteronorma-
tive and the negative impact it has had in society
in general and the LGBTQIA+ community in par-
ticular. It also provides and overview of the work
that has been done so far in gender bias detection
and mitigation in NLP. Section 3 explains the con-
figuration, annotation and challenges on compiling
the HeteroCorpus, a data set especially designed
for the detection of heteronormativity. In Section
4 we present the pre-processing and classification
experiments. The results are discussed in Section
5. We close the paper with conclusions and future
work (Section 6).

2 Related Work

In this section we will consider literature that ex-
plores what heteronormativity is and how the sense
of the word has evolved over time, motivations to
challenging heteronormativity, heteronormativity
and gender bias as explored in natural language pro-
cessing (NLP), and how this paper will contribute
to this domain.

2.1 What is heteronormativity?
The word heteronormativity was coined by Warner
(1991) and has been applied to a variety of
contexts since then. The definition was re-
cently analyzed and redefined to differentiate
between these contexts (Marchia and Sommer,
2019). The authors propose formalizing the
term heteronormativity to distinguish its us-
age among the following four distinct con-
texts; heterosexist-heteronormativity, gendered-
heteronormativity, hegemonic-heteronormativity,
and cisnormative-heteronormativity. We adapt the
definition of heteronormativty from the dictionary

CAER, (Diccionario de Asilo CAER-Euskadi),
This definition translated to English is as follow:

Heteronormativity refers to the social,
political and economic regimen im-
parted by the patriarchy, extending itself
through both the public and private do-
main. According to this regimen, the
only acceptable and normal form to ex-
press sexual and affective desires, and
even one’s own identity is heterosexual-
ity, which assumes that masculinity and
femininity are substantially complemen-
tary with respect to desire. That is, sex-
ual preferences as well as social roles
and relationships that are established be-
tween individuals in society should be
based in the ‘masculine-feminine’ binary,
and always corresponds ‘biological sex’
with gender identity and the social re-
sponsibility assigned to it.

For simplicity, we seek to binarize the categori-
cal definition of (Marchia and Sommer, 2019) this
allows us to take advantage of binary decision clas-
sification of heteronormativity on our corpus.

Heteronormative speech has been found to create
boundaries of normative sexual behavior, and relate
to behaviors and feelings against violations of these
norms. Results from recent investigation suggests
that heteronormative attitudes and beliefs are rele-
vant to political alignment and aspects of personal-
ity (Janice Habarth, 2015). Furthermore, we would
like to bring to light The Gender Similarities Hy-
pothesis, the idea that the biological sexes are more
similar than they are different (Hyde, 2005). This is
a stark contradiction to traditional arguments about
biological differences between the sexes. Hyde
finds that there is significant evidence to support
her claim that many stereotypical biological differ-
ences between the sexes lack proper evidence to
back them up, in fact, evidence seems to suggest the
opposite in many cases. For example, some may
believe that men are typically better than women
at math, but Hyde’s evidence concludes that the
difference in mathematical ability is close to zero,
and in some cases women outperform men.

Taking this into account with the claims of
Habarth, we conclude that heteronormative speech
has a substantial impact on perceptions of gender
and sexuality, more so than actual biological differ-
ences between the sexes impact language.
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2.2 Negative impact of heteronormativity

Given this definition we seek to justify the impor-
tance of detecting and challenging heteronormative
ideology, not only to prevent harm but to promote
gender equality and the inclusion of LGBTQIA+
people in society 1.

Recent investigation has shown that language
can reflect sexist ideology. Coady (2017) has found
that the process of iconisation, the partitioning of
humans into two binary groups based on gender,
can be projected onto language through sexist gram-
mar and semantics in a process called fractal recur-
sivity making the masculine gender the generic
form. This linguistic gender norm leads to erasure
of other genders and sexual identities from public
discourse. Furthermore, Gay et al. (2018) demon-
strate that presence of gender in language shows
culturally acquired gender roles, and how these
roles define house hold labor allocations. They
go on to conclude that analysis of language use is
promising because it is an observable and quan-
tifiable indicator of values at the individual level
These studies suggest that gender and sexual norms
can be reflected in language use, Coady even con-
cludes that the use of this language perpetuates
such norms.

In fact, several recent studies have demonstrated
that language use can be a subtle but effective bar-
rier for gender minorities. Stout and Dasgupta
(2011) demonstrate this by conducting experiments
with mock job interviews with woman, finding that
gender exclusive language during the interview neg-
atively impacts the performance of women, how-
ever gender inclusive language, i.e. "he or she",
or gender neutral language, i.e. "one", led to
an improved performance among women. Mean-
while Davis and Reynolds (2018). demonstrate that
using language that normalizes the binary sex clas-
sification is strongly associated with a gender gap
in educational attainment. That is, heteronorma-
tive language is not only indicative of sexual and
gender disparity, it also is a proponent of it.

Research shows that not only does heteronor-
mative speech disadvantage women, patterns in
language use on social media can be indicative
of psycho-social variables demonstrating personal-

1Here we wish to clarify that we promote preventative ac-
tion against all gender and sexual discrimination. LGBTQIA+
refers to the lesbian, gay, bisexual, transgender, queer, intersex,
asexual communities as well as all additional gender and sex-
ual identities that deviate from the traditional heteronormative
relationship.

ity traits and emotional stability among men and
women. For example, men more commonly use
possessive pronouns before nouns referring to a
female partner, i.e. "my girlfriend" (Schwartz et al.,
2013). Eaton and Matamala (2014) even find that
heteronormative beliefs about men and women may
encourage sexually coercive behavior in intimate
relationships.

Many of these previous studies have dealt with
language use and it’s relationship with discrimina-
tion based on the "men and women" gender binary.
Let us know to explore research on heteronormative
language and it’s effect on LGBTQIA+ individuals.
Lamont (2017) finds in a survey of LGBTQIA+
individuals, that the majority report finding that the
heternormative script of relationships are constrain-
ing, unimaginative, and heavily gendered, suggest-
ing that many members of the queer community
feel restricted by the expectation set by heteronor-
mative values. While Smits et al. (2020) analyzed
heteronormative speech and casual use of homo-
negative slurs in young men in sports and found
that this language was used almost devoid of mean-
ing except to express lack of masculinity, disap-
proval, and negativity, concluding that this use of
speech attributes to the preservation of heteronor-
mative discourse in spite of growing acceptance
of non-heterosexual male athletes. Another study
finds that many LGBTQIA+ social work students
experience an overwhelming amount of discrim-
ination, mostly perpetuated through harmful dis-
course (Atteberry-Ash et al., 2019). Lastly, King
(2016) finds that heteronormative speech and polic-
ing of gender roles in children lead to hypermas-
culine and violent men, concluding that violence
to the queer community can all be connected to
heteronormativity in everyday life.

2.3 Gender bias detection and mitigation in
NLP

While heteronormativity refers to a more compre-
hensive system, gender bias is an element to this
system since both are based on the idea of creating
separate realities for people according to one of
the two genders they were assigned at birth. Since,
to the best of our knowledge, there is no litera-
ture on heteronormative language detection in NLP
systems, we choose gender bias efforts as both
motivation and justifaction for our work. Gender
bias is the preferential treatment towards men over
women, often unintentionally and exhibited by all
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genders (Corinne A. Moss-Racusin et al., 2012).
To continue, we will take a look recent litera-

ture that seeks to address gender bias in the NLP
space. Sun et al. (2019) address this with a litera-
ture review, bringing to light the lack of research
pertaining to gender bias in NLP, and a lack of con-
crete methods for detecting and quantifying gender
bias. They go on to address that debiasing methods
in NLP are frequently insufficient for end-to-end
models in many applications. We envision our
corpus contributing to the development and verifi-
cation of methods for the detection of that arises
from heteronormative language.

Recent work has come forth to formalize how
gender should be considered ethically in the de-
velopment (Larson, 2017), bringing to light how
many recent studies have brought gender as a vari-
able in their experiments whilst assuming binary
categories. Most often however, it was found that
many recent or widely cited papers gave little to no
explanation for how they defined these categories,
simply describing the variable as "gender" or "sex"
without further clarification. This is indicative of
a heteronormative mindset used in much of NLP
research.

The bias of researchers can be reflected in the
work they are doing, and we hope that the work
that comes from our anti-heternormative dataset
can bring these biases to light.

Lu et al. (2018) propose a metric to quantify
gender bias in NLP in response to existing mod-
els that exhibit bias, such as text auto-completion
that makes suggestions based on the gender binary.
They also propose a method to mitigate gender bias.
Bordia and Bowman (2019) address existing lan-
guage models and point out the gender bias that
they contain. They note that many text corpora
exhibit problematic biases that an NLP model may
learn. Gender bias, as we have seen, can reflect
and be perpetuated by heteronormativity. However,
the scope of our work is to further generalize the
bias in question to go beyond the gender binary
and include LGBTQIA+ people. Dev et al. (2021)
survey non-binary people in AI to illustrate nega-
tive experiences they have experienced with natural
language systems. They challenge how gender is
represented in NLP systems and question whether
we should be representing Gender as a discrete
category at all.

Once the NLP community established that gen-
der biases indeed exist in many NLP systems, many

efforts have been made towards detecting and mit-
igating these biases. Next, we mention some of
these techniques in various NLP tasks and systems:
from machine translation, coreference resolution,
word embeddings, large language models to sen-
timent analysis. First, we focus on the works re-
garding large language models, specifically, BERT.
Bhardwaj et al. (2020) state that contextual lan-
guage models are prone to learn intrinsic gender-
bias from data. They find that BERT shows a sig-
nificant dependence when predicting on gender-
particular words and phrases, they claim such bi-
ases could be reduced by removing gender specific
words from the word embedding. Zhao et al. (2018)
go on to produce gender-neutral word embeddings
that aim to preserve gender information in certain
dimensions of word vectors while freeing others
of gender influence, they release a gender neutral
variant of GloVe, GN-GloVe. Kurita et al. (2019)
proposes a method to measure bias in BERT, which
successfully identifies gender bias in BERT and ex-
poses stereotypes embedded in the model. Recent
models have been developed to mitigate gender
bias in trained models, such as Saunders and Byrne
(2020), who use transfer learning on a small set
of gender-balanced data points from a data set to
learn un-biasedly, rather than creating a balanced
dataset.

Many recent efforts focus on the creation of cor-
pora for gender bias detection and mitigation. Such
as Doughman and Khreich (2022), who create a
text corpus avoiding gender bias in English, much
like our research, however we focus on heteronor-
mativity. Likewise, Bhaskaran and Bhallamudi
(2019) create a dataset that is used for detecting oc-
cupational gender stereotypes in sentiment analysis
systems. Parasurama and Sedoc (2021) state that
there are few resources for conversational systems
that contain gender inclusive language. Cao and
Daumé III (2020) present two data sets. GAPwhich
substitues gender indicative language for more gen-
der inclusive words, such as changing he or she for
the word they or neopronouns. They also present
GIcoref, an annotated dataset about trans people
created by trans people.

Finally, we mention two works focused on
gender-neutral pronouns in NLP systems. We find
these efforts relevant to our work, since a way
to challenge heteronormative language is to elim-
inate the gender markers in language altogether.
Lauscher et al. (2022) provide an overview for gen-
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der neutral pronoun issues for NLP, they propose
when and how to model pronouns, and present
demonstrate that the omission of these pronouns
in NLP systems contributes to the marginaliza-
tion of underrepresented groups. Finally, Bartl
et al. (2020) studies gender bias in contextualized
word embeddings for NLP systems, they propose
a method for measuring bias in these embeddings
for English.

These systems deal typically with detection and
identification of gender bias. Research that at-
tempts to include gender minorities deals with the
issue of a lack of resources that can identify bias
from heteronormativity. This paper aims to solve
that problem by providing a dataset that can use
existing debiasing techniques to address bias that
stems from heteronormativity.

3 HeteroCorpus

In this section we will describe our process for
collecting data from Twitter and the annotation
process, as well as the challenges we faced and the
resulting dataset.

3.1 Data Statement

We follow the guidelines specified by (Bender and
Friedman, 2018) to produce a Long Form data state-
ment. A data statement is important when produc-
ing NLP datasets to mitigate bias in data collection.

A. Curation Rationale We collect tweets from
popular social media platform Twitter, we use Twit-
ter because it provides a convenient medium to
collect short statements from general users in on
various topics in a digital medium. We use specific
search terms that are indicative of gender because
we aim to build a dataset that consists of heteronor-
mative speech.

B. Language variety We scrapped a set of tweets
that contained desired keywords and were in En-
glish. However, there were tweets present in other
languages, and we instructed annotators to indi-
cate them using a separate tag so they could be
discarded. There are no restrictions on the region
from which the tweet could come. Since all the
data is collected from social media, this means the
presence of hashtags, mentions, gifs, videos, im-
ages, and emojis within the tweets. Also, we found
spelling mistakes, abbreviations and slang native
to social media.

C. Tweet author demographic The demograph-
ics of the authors is not available to us since we
compiled the data by the tag EN that Twitter pro-
vides; however, due to our sampling methods, we
expect the tweets to come from a diverse set of au-
thors of various ages, genders, nationalities, races
and ethnicities, native languages, socioeconomic
classes and education backgrounds.

D. Annotator demographic All the annotators
are students members of Grupo de Ingeniería
Lingüística (Language Engineering Lab) from the
Universidad Nacional Autónoma de México. The
demographic information is shown in 1.

Categories Data
Age 20-25 years

Gender
3 women

3 men

Sex
3 female

3 male

Sexual Orientation

2 Heterosexual
2 Homosexual

1 Bisexual
1 Demisexual

Nationality
5 Mexican

1 American
Residence 6 Mexico

Field of Study

3 Linguistics
1 English Literature

1 Translation
1 Computer Science

Native Language
5 Spanish
1 English

Secondary Language
5 English
1 Spanish

Table 1: Demographics as anonymously self reported
by each annotator.

E. Speech Situation Each tweet may have a dif-
ferent speech situation. Most of them are related
to tendencies, events or memes from the year of
extraction (2022).

F. Text characteristics The tweets collected
come from a diverse set of contexts, as they could
be published alone by the author, or in response to
another user. The tweets are subject to the restric-
tions of text limit and policies of Twitter. All tweets
were posted publicly, and we remove identifying
characteristics of the user for anonymity.
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G. Recording Quality We extracted the tweets
from the Twitter API.

3.2 Data Collection

The first step was to acquire a set of tweets that
could potentially contain heteronormative language
used by the authors. To do this we crafted a list
of terms that we noticed had several heavily gen-
dered trends while reading tweets. These terms
are the following: man, men, husband, son, boy,
woman, women, wife, daughter, girl. In this selec-
tion, we have tried to avoid heavily-gendered and
queer terms, to focus in the most general frame-
work. However, we are aware that this can intro-
duce bias.

After defining the terms for our search, we per-
formed the extraction of the tweets via the Twitter
API. For each term, specifically in the English lan-
guage, we performed a search for the period of time
ranging from 1 Jan. 2020 to 10 Mar. 2022. The
total number of extracted tweets was 26,183.

The next step was to perform a filtering of
the obtained tweets. The first filter was based
on the presence or absence of adjectives in the
tweets. First, we obtained a list of the adjectives
in the entire dataset. Then we used that list to
create another list with terms that followed the
syntactic structure: adjective + relevant
search term or relevant search term
+ adjective. For example, we found the adjec-
tive nice among the tweets crawled. Therefore, all
the tweets with the pairs nice man, girl nice, etc
were kept for the next stage of filtering, since they
contained a relevant search term and an adjective.
The motivation behind this filter was that, by man-
ually observing the crawled tweets, we noticed that
those tweets with the syntactic structure described
above contained some of the most heteronormative
discourses in them. This made sense for us since it
is well known that the use of adjectives in English
has reflected gender bias (Rubini and Menegatti,
2014).

After the first filter, we obtained a dataset with
9,350 tweets in it. From those tweets, we removed
those that only contained our search terms. For
example, tweets with only the text “man!” were
removed. We decided to do this because we con-
sidered that those tweets did not contain a great
amount of semantic information relevant to het-
eronormative language, and were only indicative
of a conversation having place.

The final size of our dataset was 7,265 tweets.
The frequency distribution of the terms in our final
corpus is shown on Table 2.

Term Frequency Term Frequency

man 3070 woman 1713
men 1285 women 33
husband 708 girl 1056
boy 844 wife 740
son 655 daughter 1072

Table 2: Number of times each of the key terms appears
in the HeteroCorpus.

3.3 Annotation Protocol and Results of the
Annotation Process

The first step in the creation of the annotation pro-
tocol, was to establish the two labels that could
be assigned to the tweets. These labels were 0 -
Non-Heternormative and 1 - Heteronormative. We
also gave the annotators the option to set a label 2
for the tweets that did not have any content relevant
to the topic of the corpus. Some tweets labeled
with 2 were those that only contained hashgtags
(#) or mentions (@). Also, the tweets in other lan-
guages and those with only emojis in them were
assigned a label of 2. The tweets under this class
were removed once the annotation was finished.

Afterwards, we wrote the Annotation Guide2,
in which we defined what the annotators should
understand as heteronormativity 2.1. Furthermore,
we randomly selected a sample of 100 tweets, and
assigned a copy of this subset to each annotator be-
fore beginning the final annotation process. Each
annotator was provided with their own Google
Drive Spreadsheet document that contained the fol-
lowing four columns: the number of the tweet, the
tweet, the ID, and the label. We asked the six anno-
tators to classify the tweets in this test sample.

Then, we organized a meeting with the annota-
tors in order to test how this annotation process
turned out. In that meeting, the authors of this pa-
per evaluated the performance of each annotator.
We asked them to justify various label decisions
they made and their thought-processes behind their
annotations. Then, we gave them all some feed-
back on their annotations. Finally, we all discussed
how to settle ambiguous cases.

2This annotation guide is available in the GitHub with the
HeterCorpus dataset.
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The next step in the annotation process was the
annotation of the entire dataset. From the 7,265
tweets that comprised our dataset, we shuffled them
randomly and split them in two partitions. The first
partition had a size of 3,632, while the latter one
had a size of 3,633. Three annotators were assigned
to work on the first partition, while the other three
annotators worked on the second one. In total, each
tweet was annotated three times.

Once the annotators were done, we obtained
Cohen’s Kappa on the annotation pairs. Using
these calculations, we set on the final labels for
each tweet. The pairs with an agreement of 3/0 or
0/3 made up 65% of the dataset, while the pairs
with an agreement of 2/1 or 1/2 constituted the
remaining 35% of the tweets. We also obtained the
Fleiss’ Kappa on the entire dataset. The value of
this calculation was 0.4036. The final distribution
of the labels was of 5,284 tweets with the label 0,
and 1,981 tweets with the label 1.

A few examples of tweets can be found in Ta-
ble 3.

4 Methodology for Heteronormativity
Detection

In order to establish a baseline for classification
systems trained on our corpus, we performed a set
of classification experiments.

4.1 Data Pre-Processing
First, we removed the urls in the dataset. Then,
we tokenized and lemmatized our entire corpus.
Afterwards, we removed the mentions, punctuation
marks, and stop-words3.

The next step was to create the training and eval-
uation sets. For this, we split the corpus into two
partitions: the first one, with 90% of the tweets in
the original corpus, and the second with the remain-
ing 10% tweets.

4.2 Classification Experiments
After the text pre-processing steps, we imple-
mented two supervised classification algorithms.
The first, a SVM classifier using as features a com-
bination of bag-of-words with TF-IDF4, the sec-
ond was performed using a logistic regression al-
gorithm. For both steps, we used the same features
as previously described.

3For this we used the pre-loaded set of stop-words in En-
glish provided by nltk

4The implementation of TF-IDF we used was the one
provided by the scikit-learn library.

Various works have focused on sexism classifica-
tion in English (Jha and Mamidi (2017), Bhaskaran
and Bhallamudi (2019)). In order to have a start-
ing point for our experiments, we followed their
steps with the use of SVM and logistic regression
algorithms.

Afterwards, we proceeded to test our corpus on
a binary classification task using deep-learning ar-
chitectures; specifically, four different versions of
BERT, following de Paula et al. (2021)’s work.
These authors obtained the highest accuracy and
F1-score on a sexism prediction shared task orga-
nized on 2021 at the IberLef 2021 using a corpus
comprised of tweets in English and Spanish.

We fine-tuned the BERT-base-cased, BERT-
base-uncased, BERT-large-cased, and BERT-large-
uncased models5. The hyperparameters used while
fine-tuning the BERT models were the following,
as suggested by the original authors of BERT (De-
vlin et al., 2018). We use 4 epochs, and a batchsize
of 8; the learning rate is 2e−5 with 1e−8 steps and
a max sequence length of 100 tokens. Finally, we
use the AdamW optimizer.

5 Results and Discussion

Since the task of identifying heteronormativity in
NLP systems has not been studied yet, we compare
our classification experiments with systems that
detected gender bias. We decided not to compare
with hate speech tasks, since we consider that het-
eronormative language does not necessarily imply
hate speech.

We recognize that our baseline can only be
vaguely compared with the results obtained by
other authors in other classification tasks, since
we aim to detect different linguistic phenomena.
Following those remarks, on Table 4 we show the
results obtained on our heteronormativity detection
experiments.

It can be observed that BERT-large outperforms
the supervised classification algorithms. Also, the
low results shown on Table 4, indicate that the task
of classifying heteronormativity is not a simple one
and more work will be required in order to improve
the results of this benchmark.

6 Conclusion and Future Work

In this paper, we presente HeteroCorpus; a novel
human-annotated corpus for heteronormative lan-
guage detection. This work sets a new precedent

5We implemented scikit-learn’s wrapper for BERT.
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Tweet Text Label
Your life, little girl, is an empty page that men will want to write on 1

This is utter bullshit, plenty of women find heavier set men attractive. 1
ur boy could most definitely use a friend this week. 0

Sweet man! Yeah, it took a minute but I’m glad I didn’t have to buy from resellers 0
Beautiful you filmpje Geil beautiful you lull I your broekje are very beautiful man [...] 2

Table 3: Example tweets from the HeteroCorp. Here we present some examples of tweets, their categorization, and
the reviewer agreement. 1 indicates the tweet is heteronormative, and 0 indicates the tweet is non-heteronormative.
2 indicates a tweet that was in another language or was not intelligible.

Classifier Accuracy F1-score
SVM 0.64 0.55
LR 0.67 0.50
BERT-base-uncased 0.63 0.59
BERT-base-cased 0.68 0.62
BERT-large-uncased 0.71 0.72
BERT-large-cased 0.72 0.72

Table 4: Results for the heteronormativity detection
experiments using our corpus.

in NLP, since, to the best of our knowledge, there
has not yet been developed a similar corpus that
aims to study heteronormative language in English.
We consider that this corpus could be of use in gen-
der bias and sexism detection and mitigation tasks,
which have proven to be quite challenging. While
gender bias and sexism are not the same as the
presence of heteronormativity in language, they all
are nocive issues present in current NLP systems.
Until the NLP community finds an efficient way
to minimize these issues, language technologies
will continue to amplify the discrimination based
gender and sexual identity.

The Fleiss’ Kappa obtained on our corpus sig-
nals a moderate agreement between our annotators.
This indicates that annotating heteronormativity
can be complicated. Therefore, researchers must
take into consideration this extra challenge while
creating similar resources, since the quality of the
data depends on the expertise of the annotators.

We also present a baseline for the task of het-
eronormative language detection using our corpus,
with two supervised algorithms and with four vari-
ations of BERT.

As future work, we plan on expanding this cor-
pus by extracting a larger set of tweets containing
more nuanced forms of heteronormative discourses,
since heteronormativity is not only associated to
lexical properties in the speech, but also to more

complex forms of linguistic phenomena. In future
projects, we hope to further investigate heteronor-
mative language use in digital spaces, crafting a
dataset that better respects the multi-class definition
of heterornormativity as discussed in Section 2.

We propose the creation of similar corpora but
for other languages, since heteronormativity is a
global issue that requires joint action. Also, we
encourage researchers to develop further tools for
heteronormative language detection and mitigation,
since language technologies are rapidly increas-
ing their presence in human lives, and the implicit
biases these models have can be very costly and
damaging to human lives.

7 Ethical Considerations

7.1 Data Collection

We ensured that our dataset was obtained following
Twitter’s terms and conditions.

The full text corpus will not be released due to
Twitter’s Privacy Policy. Only the IDs of the tweets
and their labels are be available on the following
repository6.

7.2 Benefits and Limitations in the use of our
Data

This corpus has been created for the detection of
heteronormative language in English. Other possi-
ble uses could be gender bias and sexism detection
and mitigation. Every population could be bene-
fited from the integration of our corpus into their
language systems, since it’s main goal is to create
more equal language technologies.
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Abstract

Films are a rich source of data for natural lan-
guage processing. OpenSubtitles (Lison and
Tiedemann, 2016) is a popular movie script
dataset, used for training models for tasks such
as machine translation and dialogue genera-
tion. However, movies often contain biases
that reflect society at the time, and these biases
may be introduced during pre-training and in-
fluence downstream models. We perform sen-
timent analysis on template infilling (Kurita
et al., 2019) and the Sentence Embedding Asso-
ciation Test (May et al., 2019) to measure how
BERT-based language models change after con-
tinued pre-training on OpenSubtitles. We con-
sider gender bias as a primary motivating case
for this analysis, while also measuring other
social biases such as disability. We show that
sentiment analysis on template infilling is not
an effective measure of bias due to the rarity of
disability and gender identifying tokens in the
movie dialogue. We extend our analysis to a
longitudinal study of bias in film dialogue over
the last 110 years and find that continued pre-
training on OpenSubtitles encodes additional
bias into BERT. We show that BERT learns as-
sociations that reflect the biases and representa-
tion of each film era, suggesting that additional
care must be taken when using historical data.

1 Introduction

Movies are often seen as a commentary on or reflec-
tion of society. They can reveal key themes within
a culture, showcase the viewpoints of various social
classes, or even reflect the writer’s internal mindset.
Additionally, movies have widespread influence on
audience perceptions based on the messages they
contain.

Movie scripts are popular data sources for train-
ing models for natural language tasks, such as senti-
ment analysis (Frangidis et al., 2020) and dialogue
systems (Serban et al., 2015), because they are

∗Equal contribution

written to mimic natural human dialogue, easy to
collect, and much more cost effective than tran-
scribing human conversations.

However, despite this popularity, there has been
concern regarding the biases that movies contain
(Schofield and Mehr, 2016) and the potential down-
stream effects of training on biased datasets (Ku-
mar et al., 2020). More specifically, gender bias in
movies is a long-studied issue. A popular bench-
mark for gender representation is the Bechdel test1.
A movie passes the Bechdel test if it contains two
female characters who speak to each other about
something other than a man.

In the last decade, the Bechdel test has come
under criticism. O’Meara (2016) argues that the
Bechdel Test is a poor metric in three ways: it
excuses “low, one-dimensional standards” for rep-
resentation, it fails to consider intersectionality of
oppression, and it treats all conversation about men
as unempowering.

As a more intersectional and nuanced method
of measuring bias and stereotyping in movie script
datasets, we propose fine-tuning a language model
on movie scripts in order to examine bias that
the model inherits from movies and its impact on
downstream tasks. Particularly, a model trained on
movie scripts may inherit biases or offensive lan-
guage from the source material, which can lead to
differing treatment of social groups in applications
of the model. In a longitudinal analysis of bias
over time, we evaluate how models that are fine-
tuned on separate decades of movie scripts reflect
societal biases and and historical events at the time.
The form of fine-tuning we use is a continuation of
the pre-training objectives on the new dataset. The
contributions of this paper are:

• an analysis of additional bias introduced into
BERT by continued pre-training on movie
scripts, where we find that gender bias in the
model is increased when film data is added.

1https://bechdeltest.com/
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• a historically grounded analysis of social bi-
ases learned from film scripts by decade, con-
sidering gender, racial, and ideological biases.

2 Bias statement

In our analysis we use a language modeling ap-
proach to uncover and examine bias in a movie
script corpus. Our main focus is gender bias, but
we will also explore intersectional bias between
gender and disability. We define bias as implicit
bias that may result in a difference in treatment
across two groups, regardless of whether that dif-
ference causes harm. This definition of implicit
bias follows from the premise of the Implicit Bias
Association test (Greenwald et al., 2009), which
demonstrated that implicit biases impact behav-
ior. Our analysis also considers both explicit and
implicit gender biases that have the capability for
harm. In this paper we assume biases in movies are
intentional, but it is possible the author may have
been using these stereotypes as a method of raising
awareness of an issue or as satire. It is important
to note that models trained on these movie scripts
will likely not be able to pick up on the intent of the
author, but rather will learn and amplify the biases
(Hall et al., 2022).

This analysis includes a comparison between the
treatment of men and woman in film scripts, which
implicitly upholds a gender binary. We fine-tune
BERT on full movie scripts without partitioning
by gender, but we examine gender bias by compar-
ing the associations the model has learned about
men and women during the analysis. By discarding
data about people who are nonbinary, we make this
analysis tractable, but we also lose the ability to
draw meaningful conclusions about this underrep-
resented group. We choose to reduce harm by not
assuming the genders of characters; rather, we con-
sider the associations the model has learned about
gender from the speech of all characters. Thus, our
analysis is more likely to represent biases in how
characters discuss men and women who are not
present, rather than how characters treat men and
women in direct conversation.

3 Related Work

A significant amount of research has examined and
quantified gender bias in movie scripts and nar-
ratives. Past work has focused on bias in film
dialogue, using classification models to predict
whether speakers are both female, both male, or

of different genders. Schofield and Mehr (2016)
concluded that simpler lexical features are more
useful than sentiment or structure when predicting
gender.

Ramakrishna et al. (2015) use gender ladenness,
a normative rating representing word association
to feminine and masculine traits, to explore gender
bias. Specifically, they examine gender ladenness
with respect to the movie’s genre, showing that cer-
tain genres are more likely to be associated with
masculine/feminine traits than others. Gala et al.
(2020) add to the genre and gender association,
finding that certain sports, war, and science fiction
genres focus on male-dominated tropes and that
male-dominated tropes exhibit more topical diver-
sity than female-dominated tropes.

Huang et al. (2021) show that in generated sto-
ries, male protagonists are portrayed as more intel-
lectual while female protagonists are portrayed as
more sexual. Sap et al. (2017) look at more sub-
tle forms of gender bias as it relates to power and
agency. Their work uses an extended connotation
lexicon to expose fine-grained gender bias in films.

Ramakrishna et al. (2017) also looked at the dif-
ferences in portrayals of characters based on their
language use which includes the psycholinguistic
normative measures of emotional and psycholog-
ical constructs of the character. They found that
female writers were more likely to have balanced
genders in movie characters and that female char-
acters tended to have more positive valence in lan-
guage than male counterparts in movie scripts.

While these works focus on understanding bias
in film directly, we take a slightly differently fram-
ing, examining how the bias in a film dataset can
impact the biases of a language model.

Loureiro et al. (2022) examine concept drift and
generalization on language models trained on Twit-
ter data over time. Our work on longitudinal effects
of film data is distinct in timescale (reflecting the
much slower release rate of films relative to tweets)
and in motivation; (Loureiro et al., 2022) consider
the effects of the data’s time period on model per-
formance, while we examine the effects of the time
period on model biases.

4 Methods

We examine how a BERT-based language model
(Devlin et al., 2019) may inherit bias from film
data. Specifically, we use the OpenSubtitles cor-
pus (Lison and Tiedemann, 2016), a collection
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of movie subtitles from approximately 400,000
movies. While the corpus does not provide sum-
mary statistics, upon inspection it appears the vast
majority of these movies are American-produced
films. These subtitles do not contain speaker gen-
der, and often do not provide speaker names. Thus,
any bias exhibited in the model is likely from the
way the characters speak about people from differ-
ent groups– e.g. indirect, not direct, sexism.

We use the OpenSubtitles corpus to gather sen-
tences within each movie script and randomly mask
words to fine-tune BERT on the movie corpora. Fol-
lowing previous work by von Boguszewski et al.
(2021) that focused on toxic language detection
in BERT fine-tuned on movie corpora, we consid-
ered bias in the original English pre-trained BERT
as a baseline and BERT fine-tuned on movie cor-
pora (which we call FilmBERT) as a secondary
model. We used two approaches to quantify bias
in the models, which we describe in the following
sections. We then employ a longitudinal analysis
of BERT by fine-tuning on decades from 1910 to
2010 in order to quantify what societal trends and
biases the model may absorb.

4.1 Measuring Intersectional Bias through
Sentiment Analysis

We adopt the method used by Hassan et al. (2021)
to measure how the presence of gender or disability
identity tokens affects the sentiment of the pre-
dicted token in a template infilling task. We create
templates in the form “The [GENDER] [DISABIL-
ITY] person [VERB] [MASK],” where [GENDER]
and [DISABILITY] were filled with tokens related
to gender and disability. The gender list was chosen
for gender inclusiveness (Bamberger and Farrow,
2021) and the disability tokens were based on prior
work by Hutchinson et al. (2020). The templates
can be separated in 4 classes, “None” which have
no identifying tokens and will serve as our control,
“Disability” which contains a token from the disabil-
ity list, “Gender” which contains a word from the
gender list and "Disability+Gender" which contains
one disability token and one gender token. To filter
out sub-embeddings and punctuation, predicted to-
kens that contained non-alphabetic characters were
removed. The predicted tokens were then put into
a template in the form “The person [VERB] [PRE-
DICTED TOKEN].”. This allows us to measure
the sentiment of the predicted token without con-
sidering the sentiment of the [GENDER] or [DIS-

ABILITY] token. The sentence-level sentiment
scores were obtained from Textblob polarity 2. We
extend the work of Hassan et al. (2021) by running
a pairwise t-test between sentiment scores for the
classes produced by BERT and FilmBERT.

4.2 Sentence Embedding Association Test

The Word Embedding Association Test (Islam
et al., 2016) is a popular tool for detecting bias
in non-contextualized word embeddings. It was
adapted for sentence-level embeddings by May
et al. (2019) to produce the Sentence Embedding
Association Test, which can be applied to contextu-
alized embeddings. This test measures the cosine
similarity between embeddings of sentences that
capture attributes (such as gender) and target con-
cepts (such as likeability). May et al. caution that
this test may underrepresent bias in embeddings;
however, when applied with care, it can provide
strong evidence of biased associations over social
attributes and roles.

We use the original sentence embedding tests
developed by May et al. (2019), which examine a
variety of biases. There are 6 tests that measure
gender associations. The tests measure whether fe-
male names or female terms (e.g. “woman,” “she”)
are more strongly associated with words for fam-
ily life over careers, arts over math, or arts over
science, relative to male equivalents. Other tests
measure the professional “double bind,” where
women in professional settings who are more com-
petent are perceived as less likeable (Heilman et al.,
2004); the “angry black woman” stereotype, an in-
tersection of racist and sexist stereotypes (Motro
et al., 2022); racial biases, where African Amer-
ican names and identity terms are compared to
European American names and identity terms; and
word connotation differences, such as instruments
being more pleasant than weapons or flowers being
more pleasant than insects.

4.3 Longitudinal Study

The OpenSubtitles corpus contains movie scripts
from the early 1900s to the 2020s. We parti-
tion the dataset by decade and fine-tune BERT
on each decade’s data individually, producing 11
decade models, which we label FilmBERT-1910s
to FilmBERT-2010s. We exclude data pre-1910
and post-2019 because there are few movies in the
dataset for these timeframes. We also exclude all

2https://textblob.readthedocs.io/en/dev/
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music videos, restricting the sample to feature films.
Each model is trained with continued pre-training
until the training loss is minimized, to a maximum
of 25 epochs.

5 Fine-tuning on Entire Corpora Results

First, we consider results from continued pre-
training over the entire OpenSubtitles dataset.

5.1 Sentiment Analysis

We were not able to replicate similar results to Has-
san et al. (2021) with BERT. All of the classes were
weakly negative to neutral as expected. "None"
was reported to have the highest sentiment by Has-
san et al. (2021), but had the lowest average sen-
timent in our replication. This may be due to the
fact that we used a smaller language model (bert-
base-uncased versus bert-large-uncased) and less
accurate sentiment analyzer (TextBlob Polarity vs
Google Cloud Natural Language API) than the orig-
inal authors, which may have lead to a different
distribution of predicted tokens. However, we are
not interested in intra-model differences between
classes but rather inter-model differences. That is,
we would like to compare the average sentiment
from BERT against FilmBERT for each class.

We hypothesized the sentiment for gender would
become more negative. Interestingly, we see
that sentiment for all four classes of FilmBERT
became more positive with "Gender" and "Dis-
ability+Gender" having statistically significant in-
crease from the corresponding class from BERT.
An optimistic view of these results suggest that
fine-tuning on movie scripts is actually helping
BERT to unlearn negative bias with respect to
gender and disability. Given the template “the
lesbian person in a wheelchair feels [MASK]."
BERT produces the following tokens: [’uncom-
fortable’, ’awkward’, ’isolated’, ’guilty’, ’sick’,
’helpless’, ’threatened’, ’trapped’, ’alone’, ’power-
less’]. Clearly, the predicted tokens all have nega-
tive sentiment. When the same template is given to
filmBERT, it produces [’right’, ’dangerous’, ’awk-
ward’, ’suspicious’, ’strange’, ’good’, ’great’, ’old’,
’guilty’, ’normal’]. There are some common tokens,
such as “guilt” and “awkward,” but it is clear that
filmBERT is predicting a greater proportion of to-
kens with positive sentiment. Additional examples
are available in Table 3 in the Appendix.

5.2 Discussion and Limitations

It is also possible that the sentiment analysis ap-
proach is simply not a good measure of dataset
bias. This approach attempts to indirectly mea-
sure learned bias between identity tokens and the
predicted [MASK] tokens through the downstream
task of sentiment analysis. This means the model
must learn associations between identity tokens
and other words in its vocabulary. This approach
worked reasonably well with BERT as it was
trained on Wikipedia which tends to contain more
factual descriptions of people and are more likely to
contain identity tokens. However, in movies, char-
acters are often represented through visual cues and
gender or disability identifying tokens are not fre-
quently used in conversation. Additionally, models
such as BERT that use contextualized word em-
beddings have difficulty effectively representing
rare words (Schick and Schütze, 2019). When we
fine-tune BERT on a dataset where gender or iden-
tity tokens are rare, it is possible that BERT is
forgetting information about these tokens and their
influence on the masked token prediction is dimin-
ished. Because of this, we focus on the Sentence
Embedding Association Test to quantify bias in the
longitudinal study.

6 Longitudinal Study Results

We use the Sentence Embedding Association Test
(May et al., 2019) to quantify the bias in each of
the decade models, using the original association
tests designed by the authors. These tests measure
the association between two contrasting sets of
identity terms (e.g. male-identifying and female-
identifying terms) and two non-identity-based sets
(e.g. career-related terms and family-related terms).
We consider only associations that are significant
(p < 0.05), and factor both the number of significant
associations found and the relative effect sizes into
our analysis.

6.1 Gender Stereotypes

The original BERT model does not exhibit signifi-
cant associations for any of these tests, as reported
in May et al. (2019), but the film decade mod-
els display a clear pattern. FilmBERT-1910s and
FilmBERT-1920s both display a significant asso-
ciation in 5 of the 6 gender-based tests, represent-
ing gendered associations between career/family
life, science/arts, and math/arts. On average, the
effect size is slightly larger for FilmBERT-1920s.
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Class # Templates BERT Mean Sentiment filmBERT Mean Sentiment P Value
None 14 -0.00267 ±0.02 0.00431 ±0.13 0.1268
Disability 168 -0.00063 ±0.03 -0.00027 ±0.01 0.5381
Gender 238 -0.00214 ±0.04 0.00061 ±0.02 0.00135
Disability+Gender 2856 -0.00196 ±0.03 -8.647e-6 ±0.01 4.2e-41

Table 1: Sentiment Average and Variance by class for BERT and filmBERT. Grey denotes statistical significant
difference in mean sentiment between BERT and filmBERT

Test 1910s 1920s 1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s
Terms/career 0.53 0.84 -0.05 0.17 0.21 0.18 -0.48 0.07 0.09 0.10 0.53
Names/career 0.67 0.28 0.00 0.44 0.09 0.59 0.24 -0.18 0.14 0.57 0.10
Terms/math 0.07 0.63 -1.10 0.06 0.16 0.13 0.56 -0.70 0.24 -0.07 -0.02
Names/math 0.43 0.53 -0.21 -0.07 0.63 0.34 0.09 0.12 -0.72 -0.60 0.08
Terms/science 0.46 0.81 -0.73 -0.22 0.11 0.27 -0.08 0.36 0.51 -0.23 -0.23
Names/science 0.63 0.42 0.08 0.31 -0.07 0.41 -0.31 -0.09 0.01 -0.65 0.05

Table 2: Gender stereotype associations by each model. Significance is indictated by the asterisk; the numbers
represent effect size, a proxy for the gendered association between terms/names and each category (career, math,
science). Grey cells indicate a significant (p < 0.05) association between gender and the comparison traits, while
higher numbers indicate a more pronounced association of male terms/names with the category. Negative numbers
indicate female terms/names were more highly associated than male ones with the category. Each pair of traits was
tested for association to gendered terms (e.g. “woman”) and gendered names.

However, for later models, the effect becomes less
pronounced, both in terms of number of significant
associations and effect size. Table 2 displays the
effect size for all significant associations by decade.
More modern films display fewer associations be-
tween gender and careers; when these associations
do appear, they tend to be weaker.

However, the association between female names
and family life is the most persistent in this cate-
gory, recurring with a large effect size even in the
FilmBERT-2000s model.

We also observe slightly more evidence of the
“double bind” stereotype– where women who are
more competent in professional contexts are per-
ceived as less likeable (Heilman et al., 2004)– in
models post-1950. This may reflect the presence of
more woman in the workplace in society and film
during this era.

6.2 Racial Stereotypes

The “angry black woman” stereotype (Motro et al.,
2022) exists at the intersection of gender and racial
bias. We find no evidence of this stereotype in orig-
inal BERT, but evidence to suggest the presence
of the stereotype in the 1960s, 1970s, 1990s, and
2000s film models.

We find a general trend of increased evidence
of racial bias in film, particularly after the 1960s.
The effect size of this association decreases in the
1990s and 2000s models for most cases.

6.3 Social Trends

Films reflect the ideals of their producers. This
is evident in the temporal trends for one associa-
tion: the relative pleasantness of instruments and
weapons. This effect is documented in original
BERT and in all but one of the decades models.
A decrease in this effect means that either instru-
ments are perceived as more unpleasant (unlikely)
or weapons are perceived as more pleasant (which
may indicate an increase in pro-war sentiment). We
graph the effect size for the instrument/weapons
pleasantness association over time and find that the
difference in pleasantness peaks in the aftermath of
World War I, is lowest during and right after World
War II, and rises again during the Vietnam War era.

6.4 Discussion and Limitations

Our gender stereotype results are consistent with
the sociological view of film as a representative
sample of gender bias in society; gendering of pro-
fessions and subject areas has decreased since the
1910s, but is not absent altogether in modern soci-
ety.

The inflection point in gendered associations at
1930 is stark, and we believe there are at least two
possible explanations for this difference. This ef-
fect coincides with the end of the silent film era
and the rise of “talkies” or sound films. While
some theorists caution against viewing the shift to
sound films as a single, dramatic turning point in
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Figure 1: Pleasantness of instruments relative to
weapons by FilmBERT decade models. Higher effect
size here suggests that weapons are associated more
with unpleasantness by the model. There was no sig-
nificant difference in association of instruments and
weapons in FilmBERT-1980.

film (Crafton, 1999), sound did allow for action
to move more quickly and movies to feature more
dialogue than before. Subtitles in silent film were
treated as an eyesore to be minimized, while spo-
ken dialogue in the first “talkies” was a novelty
and often featured prominently (MacGowan, 1956).
Secondly, the Hays Code was adopted by Holly-
wood producers in 1930. The code, a set of guide-
lines that is now often described as a form of self-
censorship by the film industry, dictated that “no
picture should lower the moral standards of those
who see it” and that movies should uphold societal
expectations without social or political commen-
tary (Black, 1989). The code was enforced from
1934 to the mid-1950s by the Production Code Ad-
ministration, which had the power to levy large
fines on scripts that did not meet approval. This
restricted the ability of films of this era to discuss
social issues, likely reducing the rate of explicit
discussion of gender associations in dialogue; be-
cause upholding this social backdrop was required
in film, questions around the role of women outside
the home were written out of mainstream cinema.

The BERT models trained on later decades of
film learn some of the same prejudices as the early
models, but to a lesser extent. Finally, it is worth
noting that movies in later decades may have more
content centered around gender discrimination in
the form of reflection, satire, or discussion, as op-
posed to content that is contains true implicit or ex-
plicit gender discrimination. In particular, movies
set in historical periods may feature biased charac-
ters.

When first examining the racial bias results, it
may seem that the 1910s-1950s models feature less

harmful stereotypes about the African American
group; however, we caution strongly against this
interpretation. A more likely explanation is that
movies prior to the 1960s used racial slurs rather
than identity terms (e.g. “Moroccan American,”
“African American”) to refer to Black characters,
and thus the model did not learn any associations
with African American names or identity terms,
positive or negative.

The social trends results trace the history of mil-
itary film in Hollywood: patriotic movies about the
war dominated after World War II (Schipul, 2010),
and there was a strong rise in anti-war sentiment
in Hollywood during the 1950s and 1960s (Zhigun,
2016). This is a further reminder that film repre-
sents the social trends of an era, and training on
such data necessarily encodes some of these beliefs
into downstream models.

The downstream effects of using language mod-
els trained on biased data are wide-reaching and
have the potential to encode racial, gender, and
social biases that influence predictions and results.

7 Conclusions

We find that continued pre-training on film dialogue
can encode additional biases and social themes into
BERT. However, not all film data is created equal;
the strength and types of biases encoded depend
on the era of film that the data is drawn from. Our
longitudinal analysis of sentence and word asso-
ciations showcase that racial stereotypes are more
explicitly present in recent decades and gendered
associations are stronger in earlier decades, though
still present in recent decades. Lack of evidence for
a bias in a dataset can be caused by underrepresen-
tation of minority groups, which is also a concern
for downstream applications. We encourage other
researchers working with film dialogue to consider
the underlying social pressures of the source era,
and to consider additional debiasing techniques
when using data that is likely to reflect strong gen-
der and racial biases.
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A Additional Sentiment Analysis Results

Table 3: Examples of tokens predicted by BERT and
filmBERT.

BERT filmBERT

"the intersex deaf person
develops [MASK]."

[’autism’, ’deaf’, ’language’, ’difficulties’,
’speech’, ’hearing’, ’disabilities’, ’memory’,
’independently’, ’symptoms’]

[’easily’, ’rapidly’, ’successfully’,
’fast’, ’twice’, ’somehow’, ’him’,
’together’, ’it’, ’himself’]

"the polygender person with a
mental illness advises [MASK]."

[’suicide’, ’caution’, ’treatment’, ’death’,
’them’, ’intervention’, ’otherwise’, ’it’,
’this’, ’withdrawal’]

[’him’, ’me’, ’us’, ’it’, ’respect’,
’death’, ’you’, ’mr’, ’revenge’,
’access’]

"the asexual person with
dyslexia leads [MASK]."

[’suicide’, ’to’, ’death’, ’panic’, ’autism’,
’schizophrenia’, ’complications’,
’paralysis’, ’downward’, ’blindness’]

[’us’, ’today’, ’mr’, ’me’,
’now’, ’away’, ’to’, ’you’,
’him’, ’them’]
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Abstract

Natural Language Processing (NLP), through
its several applications, has been considered
as one of the most valuable field in interdis-
ciplinary researches, as well as in computer
science. However, it is not without its flaws.
One of the most common flaws is bias.

This paper examines the main linguistic chal-
lenges of Inuktitut, an indigenous language of
Canada, and focuses on gender bias identifi-
cation and mitigation. We explore the unique
characteristics of this language to help us un-
derstand the right techniques that can be used
to identify and mitigate implicit biases. We use
some methods to quantify the gender bias ex-
isting in Inuktitut word embeddings; then we
proceed to mitigate the bias and evaluate the
performance of the debiased embeddings. Next,
we explain how approaches for detecting and
reducing bias in English embeddings may be
transferred to Inuktitut embeddings by properly
taking into account the language’s particular
characteristics. We compare the effect of the
debiasing techniques on Inuktitut and English.
Finally, we highlight some future research di-
rections which will further help to push the
boundaries.

1 Introduction

Despite the complexity of low resource and endan-
gered languages, the study of these languages has
pulled many researchers in recent years, while this
can be an encouraging factor for the development
of language technologies, the complex morphology
of some languages and the lack of resources have
been considered as barriers. Moreover, as many
NLP tasks are trained on human language data, it
is expected for these applications to exhibit biases
in different forms. Hovy and Prabhumoy (2021)
described five sources where bias can occur in NLP
systems: (1) the data, (2) the annotation process,
(3) the input representations, (4) the models, and
finally (5) the research design.

Gender bias can be defined as prejudice toward
one gender over the other. Though usually tacit,
bias range from the use of gender defaults to as-
sociating between occupation and gender. As lan-
guage technologies become widespread and de-
ployed on a large scale, their social impact raises
concerns both internally and externally (Hovy and
Spruit, 2016; Dastin, 2018). To capture the situ-
ation, Sun et al. (2019) reviewed NLP studies on
this topic. However, their investigation is based
on monolingual applications where the underlying
assumptions and solutions may not directly apply
to languages other than English. Thus, depend-
ing on the language involved and the factors taken
into account, gender stereotypes have been concep-
tualized differently from study to study. To date,
gender stereotypes have been addressed through a
narrow problem-solving approach. While technical
countermeasures are necessary, the failure to take a
broader look at and engage with relevant literature
outside of NLP could be detrimental to the growth
of the field.

For example, when translating from English to
French this following sentence, by Google Trans-
late1:

(en) The engineer has asked the nurse to help her
get up from the bed.

(fr) L’ingénieur a demandé à l’infirmière de
l’aider à se lever du lit.

We can see that it identified the engineer as a
male and the nurse as a female, even though we
used "her" to indicate that we are referring to a
female. Such inadequacies not only jeopardize the
development of endangered languages applications,
but also perpetuate and amplify existent biases.

Understanding how human biases are incorpo-
rated into word embeddings can help us understand

1https://translate.google.ca/, consulted at
April 14th, 2022
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bias in NLP models, given that word embeddings
are commonly used in NLP. While some signifi-
cant work has been done toward minimizing the
bias in the embeddings, it has been proved that
some methods are insufficient and that the bias can
remain hidden within the embeddings. The words
frequency is not taken into account, regardless of
the gender distances, therefore biased terms can
remain clustered together. Furthermore, when ap-
plied to contextualized word embeddings, these
bias approaches must be changed because the em-
bedding representation of each word varies based
on the context.

This research intends to shed light on this issue
by evaluating recent efforts to identify and mit-
igate bias within the indigenous languages revi-
talization and preservation context. We focus on
Inuktitut, one of the main Inuit language of Eastern
Canada and the official language of the government
of Nunavut.

Thus, this paper is structured as follows: Section
2 presents the state-of-the-art. Section 3 presents
the bias statement. Section 4 discusses the lin-
guistic challenges of indigenous languages, with
a focus on Inuktitut. Sections 5 highlights gender
bias detection and mitigation. Section 7 presents
the evaluations and the experimental results; while
comparing with other existing approaches. Section
8 discusses the necessity of a human in the loop
paradigm. Finally, Section 9 concludes this paper
and presents potential future work.

2 Related Work

Interest in understanding, assessing, and reducing
gender bias continues to grow in the NLP field,
with recent studies showing how gender disparities
affect the language technologies. Sometimes, for
example, when visual recognition tasks fail to rec-
ognize female doctors (Zhao et al., 2017; Rudinger
et al., 2018), image caption models do not detect
women sitting next to the machine (Hendricks et al.,
2018); and automatic speech recognition works
best with male voices (Tatman, 2017). Although
previously unconcerned with these phenomena in
research programs (Cislak et al., 2018); it is now
widely recognized that NLP tools encode and re-
flect asymmetries controversial society for many
seemingly neutral tasks, including machine transla-
tion (MT). Admittedly, this problem is not new.

A few years ago, Schiebinger (2014) criticized
the phenomenon of “missing men” in machine

translation after conducting one of his interviews
through a commercial translation system. Although
there are some feminine mentions in the text, the
female pronoun "she" is mentioned several times
by the masculine pronoun. Users of online machine
translation tools have also expressed concern about
gender, having noticed how commercial systems
manipulate society’s expectations of gender, for
example by projecting the translation of engineer
into masculinity and that of medical science into
femininity.

Bolukbasi et al. (2016) proved the existence of
gender bias in English word embeddings, and pro-
posed a method called Hard Debias to mitigate the
gender bias. Liang et al. (2020) proposed a mod-
ified method that relies heavily on the sentences
used to reduce biases.

We hypothesize that because English uses the
common pronouns he and she extensively, which
are not used in Inuktitut, as much as in English,
for different reasons 2; the mitigation step encom-
passes a smaller gender subspace in comparison to
English, and thus the bias is reduced.

Another method is the Iterative Null space Pro-
jection (INLP), which is a post-hoc method that
can work on pre-trained representations (Ravfogel
et al., 2020). The INLP’s concept aims to iden-
tify task direction by training linear classifiers and
removing direction from representation. INLP is
effective in reducing gender bias. It was tested and
showed great results in both word embeddings and
contextualized word embeddings.

Most of the solutions were mainly proposed to
reduce gender bias in English, and may not work as
well when it comes to morphologically complex or
polysynthetic languages. Nevertheless, there have
been recent studies that explored the gender bias
problem in languages other than English. Zhao
et al. (2020) studied gender bias which is exhibited
by multilingual embeddings in four languages (En-
glish, German, French, and Spanish) and demon-
strated that such biases can impact cross-lingual
transfer learning tasks.

Lewis and Lupyan (2020) examined whether
gender stereotypes are reflected in the large-scale
distributional structure of natural language seman-
tics and measured gender associations embedded
in the statistics of 25 languages and related them
to data on an international dataset of psychological
gender associations.

2https://uqausiit.ca/
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Choubey et al. (2021) proposed gender-filtered
self-training to improve gender translation accu-
racy on unambiguously gendered inputs. Their
approach used a source monolingual corpus and an
initial model to generate gender-specific pseudo-
parallel corpora, which were then filtered and
added to the training data. They evaluated their
method from English to five languages, which
showed an improvement in gender accuracy with-
out damaging gender equality.

Ntoutsi et al. (2020) presented a wide multidisci-
plinary overview of bias in AI systems, with an
emphasis on technological difficulties and solu-
tions, as well as new research directions toward
approaches that are well-grounded in a legal frame-
work.

The bias study in machine learning is not only
restricted to the computer science field. Interdis-
ciplinary research can help address this challenge
across disciplines such as psychology, sociology,
linguistics, cognitive science, and more (Datta,
2018). Hassan (2016) conducted a wide study on
the influence that English has had on other lan-
guage communities such as Inuit community. It
can be seen in the way that it has affected gender
relations specifically, by disempowering women in
indigenous communities, the same as described in
(Gudmestad et al., 2021). Men were assigned the
role of hunting, and as such, became the "bread-
winner" of the family. Women, on the other hand,
were relegated to take care of the house and chil-
dren, leaving them with no economic power and a
perceived subordinate role within the family (Leigh,
2009).

According to Williamson (2006), the Inuits use
a concept that encapsulates history, philosophy and
observations of the world surrounding them. They
call it "Qaujimajatuqangit" which is translated as
“traditional knowledge". For Inuit people, "Qauji-
majatuqangit" establishes gender equality in sev-
eral fundamental ways. It respects the balance be-
tween the gender roles, the importance of family,
and the fluidity of both gender and sexuality.

3 Bias Statement

Bias in NLP systems often goes without notice,
it’s often not even detected until after the systems
are launched and used by consumers, which can
have adverse effects on our society, such as when
it shows false information to people which leads
them to believe untrue things about society or them-

selves; thereby changing their behavior for better
or worse (Stanczak and Augenstein, 2021). The
harm of bias in NLP has been understated by some
people and overstated by others, who dismiss its rel-
evance or refuse to engage with it altogether. In this
paper, we focus on the study of gender bias. If a sys-
tem associates certain professions with a specific
gender, this creates a representational harm. Rep-
resentational harm is when an individual who falls
into one of those categories is treated less fairly
than someone outside of that category because of
their belonging to it. For example, negative selec-
tion have been reported to occur more frequently
in male dominated jobs than in other types of jobs
(Davison and Burke, 2000). Similar conclusions
have been made in the areas of competency assess-
ments and performance evaluations, women were
rated less positively than men in line jobs (which
tend to be male gender-typed), but not in staff jobs,
according to a prominent financial services organi-
zation (Lyness and Heilman, 2006). By looking at
common examples of bias in the workplace, we can
begin to understand how it can harm people in the
office When such representations are being used
in downstream NLP tasks. It can make the work
environment feel less inclusive and less productive.
Every single one of us has biases, but it’s impor-
tant to acknowledge when and how they impact our
lives and the lives of others. According to recent
research in NLP, word embeddings can incorporate
social and implicit biases inherent in the training
data (Swinger et al., 2019; Schlender and Spanakis,
2020; Caliskan, 2021). Current NLP models have
proven to be good at detecting prejudices (Ahmed
et al., 2022). However, unlike with prejudice, bi-
ases are not always obvious. While some biases are
detectable via context, others might not be—which
makes it difficult for automated systems to detect
them. In fact, detecting and mitigating bias within
automated systems prove to be more challenging
than detecting it within human beings due to sev-
eral important factors as dealing with imprecise
sentiment analysis; as opposed to humans who can
express nuanced sentiments when discussing bias.
Our effort is predicated on the assumption that ob-
served gender bias in systems are an indication of
an insufficient interest into detecting and mitigat-
ing bias, we also believe that separating genders
and professions in word embeddings would allow
systems to detect and mitigate gender rather than
promote it.
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4 Linguistic Challenges in Indigenous
Languages

In this section, we present the main linguistic
challenges of Canada’s indigenous languages, es-
pecially Inuktitut, an Inuit language of Eastern
Canada and official language of the government
of Nunavut. Thus, to better understand the chal-
lenges of NLP in Inuktitut, we explore the struc-
ture of Inuktitut words, the levels of grammatical
variations, the dialectal variations in spelling, and
gender animacy.

4.1 Morphological complexity

Most of the indigenous languages, particularly in
the Americas, belong to either the polysynthetic
language group or the agglutinative language group.
They have a complex, rich morphology that plays
an important role in human learning versus ma-
chine learning (Gasser, 2011; Littell et al., 2018).
Much of the research on their morphological anal-
ysis has focused only on linguistic aspects.

Comparing word composition in English, the
word structure in Inuit languages is variable in its
surface form. Words can be very short, composed
of three formative features such as word base, lexi-
cal suffixes, and grammatical ending suffixes. Or
they can be very long up to ten or even fifteen for-
mative morphemes as features depending on the
regional dialect (Lowe, 1985; Kudlak and Comp-
ton, 2018; Le and Sadat, 2020, 2022).

4.2 Morphophonemics

The morphophonemics of Inuktitut are highly com-
plex, in addition to the variety of morphological
suffixes that Inuktitut roots can take on (Mithun,
2015). In Inuktitut, each morpheme specifies the
sound variations that can occur to its left and/or to
itself. These modifications are phonologically con-
ditioned by the individual morphemes themselves,
rather than their contexts. This not only aggravates
the data sparsity issue, but it also poses morpholog-
ical analysis issues, which we shall address in the
research topics of this project.

4.3 Dialectal variations

The third aspect of Inuktitut which contributes to
the challenge of processing it with a computer is
the abundance of spelling variation seen in the elec-
tronically available texts. Inuktitut, like all lan-
guages, can be divided into a number of different

dialects, such as Uummarmiutun, Siglitun, Inuin-
naqtun, Natsilik, Kivallirmiutun, Aivilik, North
Baffin, South Baffin, Arctic Quebec, and Laborador
(Dorais, 1990). The primary distinction between
these dialects is phonological, which is reflected
in spelling. As a result, spelling variance, either
due to a lack of standardisation or due to numer-
ous dialect changes, contributes significantly to the
overall sparsity of the data in the corpora accessible
for experimentation (Micher, 2018).

4.4 Gender animacy
Inuit languages are known to have some particular
linguistics challenges. There is no gender marking
in nouns, like you’ll find in French and Spanish
(male / female) nouns. Instead, Inuktitut distin-
guishes words along a dimension called animacy,
because of the cultural understanding as to whether
a noun is known to be alive or not. The singular
and plural suffixes that are used in nouns, depend
on whether is is animate or inanimate.

The animacy is described as a distinction be-
tween human and non-human, rational and irra-
tional, socially active and socially passive3. For
example, animate nouns are related to humans and
animals most obviously, but other objects that are
not considered alive, like stone, table, are consid-
ered as inanimate. Animate and inanimate gender
is common in many Amerindian families such as
Cree, Inuktitut, Quechuan, Aymara, Mapudungun,
Iroquoian, and Siouan4.

5 Bias detection and mitigation

Although existing machine learning models
achieve great results on many tasks, they generally
fail in avoiding biases. Recent studies illustrate
how bias affect NLP technologies, which has cre-
ated a growing interest in identifying, analysing
and mitigating bias within the NLP community.
The problem is not new, it is well-known that NLP
systems contain and reflect algorithmic bias in
them, this controversial imbalances has developed
a large scale of concerns about its social impact.
NLP systems and tools are used in everyday life,
The time of academic naivety is finished, therefore
we must acknowledge that our models have an im-
pact on people’s lives, but not necessarily in the
way we intend (Ehni, 2008).

3https://en.wikipedia.org/wiki/List_of_languages_by
_type_of_grammatical_genders

4https://linguisticmaps.tumblr.com/post/169273617313/
grammatical-gender-or-noun-class-categories-new

247



To contextualize the plan within this larger re-
search area, we will focus on indigenous languages
that proves no exception to the existent problem
of bias in NLP systems. Indigenous languages
contain a wealth of secondary data about individ-
uals, their identity and their demographic group,
which are exploited to fulfil the objective of cre-
ating NLP systems. The focus on creating these
systems has drifted us away from creating models
as tools of understanding towards other tools that
produce great results but are far more difficult to
understand (Hovy and Prabhumoye, 2021).

Many questions may arise, such as: Is it possible
that NLP models are biased by definition? What
could be the source of this bias ? Can we figure out
what it is? Is there anything we can do about it ?

5.1 Definition of Bias
Bias is a complex concept with overlapping defini-
tions (Campolo et al., 2017). It has been considered
as a fundamental human decision-making process
since the beginning of time (Kahneman and Tver-
sky, 1973). When we apply a cognitive bias, we
are assuming that reality will behave in accordance
with prior cognitive convictions that may or may
not be accurate, with which we can make a judge-
ment (Garrido-Muñoz et al., 2021). According to
the Sociology dictionary5, bias is a term used to
describe an unjust prejudice in favour of or against
a person, group, or thing.

Machine learning bias can happen in a variety of
ways, ranging from racial and gender discrimina-
tion to age discrimination. It also exists in machine
learning algorithms throughout their development,
which is the root problem of machine learning bias.
Therefore, human biases are adopted and scaled by
machine learning systems.

5.2 Types of Bias
Machine learning models incorporate bias in many
shapes, including gender, racial and religious bi-
ases extending to unfair recruiting and age discrim-
ination. But what are really the machine learning
types of bias?

According to (Shashkina, 2022), the most com-
mon types of machine learning bias found in algo-
rithms are listed below:

• Reporting bias: It happens when the frequency
of occurrences in the training dataset does not

5Open Education Sociology Dictionary: https://
sociologydictionary.org/bias/

precisely reflect reality.

• Selection bias: This sort of bias happens when
training data is either unrepresentative or not
randomly selected.

• Group attribution bias: It happens when ma-
chine learning systems generalize what is true
of individuals to entire groups that the individ-
ual is or is not a part of.

• Implicit bias: It happens when machine learn-
ing systems are based on data that is created
on personal experience which does not neces-
sarily apply broadly.

5.3 Mitigating Bias
We still have a long way to go before machine
learning bias is completely eliminated. With the in-
creased usage of machine learning systems in sensi-
tive domains such as banking, criminal justice, and
healthcare, we should aim to create algorithms that
reduce bias in machine learning systems. Collabo-
ration between human skills and machine learning
is required to solve the problem of bias in machine
learning. It will help us in the detection and mitiga-
tion of biases by figuring out how machine learning
systems make predictions and what data aspects it
uses to make judgments. This will help us under-
stand whether the elements influencing the choice
are biased.

6 Bias Mitigation for Inuktitut

In this study, we use a methodology and data for
bias mitigation in Inuktitut, as described in the fol-
lowing section. To analyse and mitigate bias in
word embeddings, multiple sets of data (e.g. pairs
of sentences, lists of gendered words, and combi-
nations of sentences from different categories) are
required. Two algorithms are used to measure bias
in embeddings, which are applicable to traditional
embeddings. Then we demonstrate how we miti-
gate bias in either type of embedding and examine
how well the bias mitigation works on downstream
tasks. Furthermore, because this study is based
on Inuktitut embeddings, the data used is from the
Nunavut Hansard Inuktitut–English Parallel Cor-
pus 3.0 (Joanis et al., 2020) as for English.

6.1 Bias Measuring Methods
Word Embedding Association Test (WEAT)
This method, proposed by Caliskan et al. (2017),
helps to measure human bias in data presented as
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texts. It is similar to the Implicit Association Test
(IAT) proposed by (Greenwald et al., 1998). The
similarity of IAT and WEAT consists of using two
lists of target words and two lists of attribute words.
The first pair of lists represents the terms we want
to compare and the second pair of lists represents
the categories in which we suspect bias could ex-
ist (Mulsa and Spanakis, 2020). By using WEAT,
Caliskan et al. (2017) defined ten tests to assess the
bias in several areas (Mulsa and Spanakis, 2020).

In our study we converted the WEAT lists of
words used in the tests to Inuktitut and modified
them such that terms in these lists are only related
with the appropriate category. Some of the modifi-
cations correspond to the different linguistic charac-
teristics of the language and the lack of meaningful
translations of certain words in the data. Some
other changes are due to the language’s various lin-
guistic peculiarities and the lack of relevant trans-
lations for particular words in the data.

Clustering accuracy
Gonen and Goldberg (2019) provided a new metric
that shows that word embeddings with reduced
bias can stay grouped together even when the range
across attributes and targeted words (in WEAT) is
minimal. To determine the gender orientation of
each word in the lexicon, the clustering accuracy
test necessitates projecting the entire vocabulary
into male and female terms (Mulsa and Spanakis,
2020).

The pronouns he and she were used by Gonen
and Goldberg (2019), because they are commonly
used and the only variation between them is in the
gender subdomain.

Inuktitut has few personal pronouns, either in
first person (I, we) or second person (you) 6; which
represents a problem in this research by adding
extra meaning besides gender to the geometrical
difference of the pronouns (Mulsa and Spanakis,
2020).

6.2 Debiasing Methods
In this section, we present the debiaising methods
used in this research with an application on the
Inuktitut language.

Hard debias (Bolukbasi et al., 2016)
One of the earliest strategies used to detect and min-
imise bias in word embeddings was Hard Debias.
Through post-processing, it removes gender bias by

6https://uqausiit.ca/grammar-book

subtracting the component linked with gender from
all embeddings. It takes a set of gender-specific
word pairs and computes the gender direction in the
embedding space as the first principal component
of difference vectors of these pairs. Furthermore,
it removes gender bias by projecting biased word
embeddings onto a subspace orthogonal to the as-
sumed gender direction (Bolukbasi et al., 2016).
The gender orientation is skewed by the frequency
of words.

SENT debias (Liang et al., 2020)
SENT-Debias is divided into four steps: 1) identi-
fying words with bias attributes; 2) contextualising
these words into bias attribute sentences and, as a
result, their sentence representations; 3) estimating
the sentence representation bias subspace; and 4)
debiasing general sentences by eliminating the pro-
jection onto this bias subspace . These processes
are summarized in Figure 1.

Figure 1: SENT Debias Algorithm (Liang et al., 2020).

Iterative NullSpace Projection (Ravfogel et al.,
2020)
INLP stands for Iterative Nullspace Projection,
which is a method for eliminating data from neu-
ronal representations (Figure 2). This algorithm is
built on repeatedly training linear classifiers that
predict a specific property that we want to elimi-
nate; then projecting the representations onto their
null-space. As a result, the classifiers loose sight
of the target property, making it difficult to linearly
divide the data based on it. While this method is
relevant to a variety of applications, it was tested
on bias and fairness use-cases and demonstrated
that it can mitigate bias in word embeddings.

7 Data and Evaluations

We conducted some experiments on gender bias
mitigation in Inuktitut language. We used the
Nunavut Hansard Inuktitut–English Parallel Cor-
pus 3.0 (Joanis et al., 2020). The statistics of the
training corpus are described in Table 1.
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Figure 2: INLP Algorithm (Ravfogel et al., 2020).

Dataset #tokens #train #dev #test
Inuktitut 20,657,477 1,293,348 5,433 6,139
English 10,962,904 1,293,348 5,433 6,139

Table 1: Statistics of Nunavut Hansard for Inuktitut-
English

We performed our experiment using word em-
beddings, trained on the Nunavut Hansard for
Inuktitut-English. In order to pre-train the embed-
dings for Inuktitut, we used an Inuktitut segmenter
to segmentate the words before passing it to the
FastText toolkit (Bojanowski et al., 2016). The
model was trained for 40 epochs and we used 150
and 300 as the size of the dense vector to repre-
sent each token or word. In order to get terms that
are more related and close to each other we used
a small window of 2 which give us the maximum
distance between the target word and its neighbor-
ing word. We also used an alpha value of 0.03 to
preserve the strong correlation of the model after
each training example is evaluated.

We performed the WEAT test on the adapted
lists of words translated to Inuktitut. Among all the
traditional word embeddings, we see high effect
sizes and multiple tests are significant at different
levels. The results of the WEAT effect sizes on
gendered related tests are shown in Table 2 where
we see an overall high effect size across all the
scores on the original models.

The results of the WEAT effect sizes on gen-
dered related tests are shown in Table 2 where we
see a high effect size on the word embeddings de-
biased from the original models. The results after
the debiasing step shows that the bias mitigation is

WEAT
Methods Original Debiased
SENT debias 0.0338 0.499
INLP 0.0338 0.377
Hard Debias 0.0338 0.385

Table 2: Fasttext WEAT results, with significance of
p-value, for three methods such as Sent debias, INLP,
and Hard debias. Bold values are better.

effective in every model. An example of the list of
words used is illustrated below in Table 3.

WEAT words list example
Category Inuktitut

0 family angajuqqaaq
1 prof executive
2 prof ilisaiji
3 male names jaan
4 female

names
maata

Table 3: Example of WEAT words list

Because Inuktitut is a genderless language, it can
be difficult to use pronouns. Therefore following
(Gonen and Goldberg, 2019), we used common
names for males and females instead of specifically
gendered words to indicate the male and female
categories (e.g. pronouns). Three tests compare
the associations of male and female names to (1)
job and family-related words, (2) art words, and (3)
scientific domains. We observe that, following the
projection, the substantial relationship between the
groups is no longer there in the three tests. Figure
3 shows projections of the 200 most female-biased
and 200 male-biased words projected at t = 1,
which is basically the original state, and t = 35
which is the final state after debiasing. These
results represent the INLP method. The results
clearly demonstrate that the classes are no longer
linearly separable in the INLP method. This behav-
ior is qualitatively different from the Sent debias
and the Hard debias methods; which are shown to
maintain much of the proximity between female
and male-biased vectors.

7.1 Discussion

We hypothesize, in this paper, that identifying the
true gender orientation of word embeddings using
these existing Debias approaches could be chal-
lenging. We show that the geometry of word em-
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Figure 3: Example of biased clusters from original to
debiased states, using t-distributed stochastic neighbor
embedding (t-SNE)

beddings is influenced by word frequency. Popular
and rare words, for example, cluster in various sub-
regions of the embedding space, regardless of the
fact that the words in these clusters are semantically
unrelated. This may have a negative impact on the
process of determining gender direction and, as a
result, the efficacy of debiasing methods to debias
the gender. We saw that changing the frequency of
certain phrases causes large changes in the similari-
ties between the related difference vector and other
difference vectors.

We noticed, in the context of gender bias, one
disadvantage that we found out, is that all of our 3
debiasing methods, like other learning approaches,
are dependent on the data that is supplied to it; and
assumes that the training data is suitably large and
sampled from the same distribution as the test data.

In practice, this requirement is difficult to achieve,
and failing to supply properly representative train-
ing data may result in biased classifications even
after it has been applied.

We further emphasize that the WEAT and cluster-
ing tests do not test for the absence of bias; rather,
they test if bias exists in the test instances, but
bias may also exist in non-tested cases. Even if
we measure bias from a different perspective, the
bias remains, indicating that more studies on bias
mitigation approaches are needed.

8 Human-in-the-Loop Paradigm

For indigenous peoples in general, the language
is directly connected to their culture and identity.
Thus, it is very important for indigenous peoples of
Canada, to both, speak their language and practice
their culture. Inuktitut not only represents the offi-
cial language of Inuits but also represents the rich
culture of this community. With recent advances,
NLP models represent a big opportunity for the
development of tools that will further help in pre-
serving the language with respect for the culture
and realities of the indigenous people where the
language takes a big part of it.

Most communities in Nunavut offer Inuktitut or
Inuinnaqtun for the first few years of education,
and the government has vowed to develop com-
pletely bilingual students across the territory 7. As
a result, the problem remains unsolved. As a non-
indigenous people with a strong academic inter-
ests in social science, linguistics and NLP, Dorais
(2010) cites that gaining a better grasp of the gen-
eral sociolinguistic situation in Northern Canada
is the first step toward a true solution to the Inuit
culture and language difficulties. It is insufficient
to describe how Inuit people communicate (which
is the task of linguists). We must also attempt to
comprehend what they are saying and what lan-
guage means to them (Dorais, 2010). Revitalizing
indigenous language should be done for, by and
with indigenous communities. With the emergence
of AI, especially deep learning, there is a large in-
terest for the revitalization of indigenous languages.
However, there is little interest in the field of com-
puter science, and there are also very few or no
researchers from Canada’s Indigenous communi-
ties in the field of NLP.

7Source: https://www.
thecanadianencyclopedia.ca/en/article/
inuktitut
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It’s evident that human skills like insight and
creativity be easily computerized, therefore collab-
orating human skills with machine learning tech-
nologies is a great approach to keep human in the
loop for developing technologies for us. Before
building machine learning algorithms, it’s a good
idea to consult with humanists and social scientists
to verify that the models we create don’t inherit any
of the biases that people have.

Machine learning models can assist us in reveal-
ing flaws in human decision-making. So, if these
models trained on current human decisions reveal
bias, it will be important to have a second look
from human to keep this models fair. In the case
of developing machine learning technologies for
indigenous communities, it is important to keep the
collaboration and partnership with them; before,
while and after developing tools for them. Engag-
ing communities to develop machine learning tools
is very important, not only it will make the tool
more suitable and tailored to their needs but it will
also give the ownership to these communities.

9 Conclusion

This paper demonstrates that gender bias exists
in Inuktitut, among other biases (as probably in
other languages as well). Then, by appropriately
translating the data and taking into account the lan-
guage’s specific characteristics, we illustrated how
approaches used to measure and reduce biases in
English embeddings can be applied to Inuktitut
embeddings. Furthermore, we investigated the in-
fluence of mitigating approaches on downstream
tasks, finding a major effect in traditional embed-
dings, which could be regarded as favourable if
the embeddings utilised guarantee a more gender-
neutral approach. As a future work, we plan to
investigate other types of biases in Inuktitut and
collaborate with the Indigenous community. Our
main objective remain the revitalization and preser-
vation of Indigenous languages of Canada, using
NLP and machie learning techniques. We hope that
these exploratory results will encourage researches
on Indigenous and Endangered languages.
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Abstract

Previous work has examined how debiasing lan-
guage models affect downstream tasks, specifi-
cally, how debiasing techniques influence task
performance and whether debiased models also
make impartial predictions in downstream tasks
or not. However, what we don’t understand
well yet is why debiasing methods have varying
impacts on downstream tasks and how debias-
ing techniques affect internal components of
language models, i.e., neurons, layers, and at-
tentions. In this paper, we decompose the inter-
nal mechanisms of debiasing language models
with respect to gender by applying causal me-
diation analysis to understand the influence of
debiasing methods on toxicity detection as a
downstream task. Our findings suggest a need
to test the effectiveness of debiasing methods
with different bias metrics, and to focus on
changes in the behavior of certain components
of the models, e.g.,first two layers of language
models, and attention heads.

1 Introduction

Recent work has shown that pre-trained language
models encode social biases prevalent in the data
they are trained on (May et al., 2019; Nangia et al.,
2020; Nadeem et al., 2020). In response to that,
solutions to mitigate these biases have been de-
veloped (Liang et al., 2020; Webster et al., 2020;
Ravfogel et al., 2020). Some recent papers also
examined the impact of debiasing methods, e.g.,
reduction of gender bias, on the performance of
downstream tasks, e.g., classification. (Prost et al.,
2019; Meade et al., 2021; Babaeianjelodar et al.,
2020). For example,(Prost et al., 2019) showed
that debiasing techniques worsened gender bias of
a downstream classifier for occupation prediction.
(Meade et al., 2021) investigated how debiasing
methods affect the model’s language modeling abil-
ity. However, comparatively little work has been
done on exploring how debiasing methods impact
the internal components of language models, e.g.,

the models neurons, layers, and attention heads,
and what kind of changes in language models are
introduced when debiasing methods are applied to
downstream tasks. In this paper, we apply causal
mediation analysis, which investigates the infor-
mation flow in language models (Pearl, 2022; Vig
et al., 2020), to scrutinize the internal mechanisms
of mitigating gender debiasing methods and their
effects on toxicity analysis as a downstream task.

We first examine the efficacy of debiasing meth-
ods, namely, CDA and Dropout (Webster et al.,
2020), on 1) language models, namely, BERT
(Wang and Cho, 2019) and GPT2 (Salazar et al.,
2019), and 2) models (Jigsaw, and RtGender)
(Voigt et al., 2018) fine-tuned for downstream tasks.
The debiasing methods (CDA and Dropout) were
chosen because they had been shown to minimize
detrimental correlations in language models while
maintaining strong accuracy (Webster et al., 2020).
We then applied causal mediation analysis to un-
derstand how internal components of a model are
impacted by debiasing methods and fine-tuning.

In this study, we focus on gender bias as a type
of bias. We examine (1) stereotypical associations
between gender and professions in pre-trained lan-
guage models (SEAT) (May et al., 2019), (2) stereo-
types encoded in language models (CrowS-Pairs)
(Nangia et al., 2020), and (3) differences in systems
affecting users unequally based on gender (Wino-
Bias) (Zhao et al., 2018). These representational
harms can impact people negatively because they
contribute to exacerbating stereotypes inherent in
society. These harms may also result in unfavor-
able consequences when these language models
are deployed for practical purposes, e.g., when a
model behaves disproportionately against certain
demographics (Dixon et al., 2018).

1.1 Contributions

From our experiments, we learned the following
things about debiasing techniques and their impact
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on language models:
It is recommendable to test the efficacy of de-

biasing techniques on more than one bias metric.
Our results suggest that debiasing methods show
effectiveness when measured on some bias mea-
surements. However, this efficacy varies depending
on which bias metrics are used to measure the bias
of language models. This may due to different
definitions and operationalizations of bias in these
metrics, which result in varying degree of effective-
ness. This suggests that in order to make claims
about the generalizability of the effectiveness of
debiasing methods, these methods need to be tested
on more than one bias metrics.

The impact of debiasing concentrates on cer-
tain components of language models. The results
from the causal mediation analysis suggest that the
neurons located in the first two layers (including
the word embedding layers) showed the biggest
difference in debiased and fine-tuned models when
compared to the baseline model. This suggests two
things. First, the detrimental associations between
words that cause gender bias in language models
may originally be situated in those layers. Second,
the role of those layers may be crucial in mitigating
gender biases in language models. We recommend
future work to focus on those components.

Debiasing and fine-tuning methods change
the behaviors of attention heads. Our results
show that applying debiasing and fine-tuning meth-
ods to language models changes the weight that
attention heads assign to gender-associated terms.
This indicates that attention heads may play a cru-
cial role in representing gender bias in language
models.

In summary, our findings suggest that debiasing
methods can be effective in reducing gender bias
in language models, but the degree of this effective-
ness depends on how debiasing success is assessed
upon. Also, the results of the causal mediation
analysis suggest that impact of debiasing is concen-
trated in certain components of the language mod-
els. Overall, our findings suggest a need to test the
effectiveness of debiasing methods with different
bias metrics, and to focus on changes in the behav-
ior of certain components of the models. This work
further supports prior research that has shown how
making small, systematic improvements to input
data and research design can reduce major flaws
in research results and policy implications (Hilbert
et al., 2019; Kim et al., 2014; Diesner and Carley,

2009; Diesner, 2015) in society, and changes in
research results and policy implications, and how
improving the quality of lexical resources can in-
crease the prediction accuracy of more and less
related downstream tasks (Rezapour et al., 2019).

2 Related Work

2.1 Debiasing methods and their effect on
downstream tasks

Prior work has examined the effects of debiasing
methods on downstream tasks from mainly two
perspectives: 1) examining the impact of debiasing
methods on the performance of downstreams tasks,
mainly in terms of accuracy, and 2) testing whether
debiased models actually lead to debiased results of
downstream tasks. As an example for perspectives
1), (Meade et al., 2021) explored how a number of
techniques for debiasing pre-trained language mod-
els affect the performance on various downstream
tasks, tested on the GLUE benchmark. As an exam-
ple for perspective 2), (Prost et al., 2019) demon-
strated how gender-debiased word embeddings per-
form poorly in for occupation classification and
can even exacerbated gender biases, since gender-
debiasing technique obscured gender related infor-
mation. In a similar vein, (Babaeianjelodar et al.,
2020) showed how a pre-trained BERT exhibits
gender bias when fine-tuned on different corpora.
Specifically, they fine-tuned the model on toxic-
ity detection datasets (Jigsaw and RtGender), and
showed that the model learned biases to some ex-
tent. Following (Babaeianjelodar et al., 2020), we
use toxicity detection as a downstream task since
it has been shown to correlate with gender biases
(Dixon et al., 2018). Overall, while a considerable
body of research has shown that debiasing tech-
niques impact downstream tasks, comparatively
little work has been done to answer why debias-
ing methods have varying impacts on downstream
tasks, and how debiasing methods affect the inter-
nal components of the language models. In this
work, we apply causal mediation analysis to exam-
ine how debiasing methods make changes to the
internal components of language models.

2.2 Bias Metrics

CROWS-PAIRS is a benchmark dataset for mea-
suring social biases in language models (Nangia
et al., 2020). The dataset is constructed of sen-
tence pairs that entail one stereotypical and one
anti-stereotypical sentence. This benchmark also
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measures how a given model prefers stereotypical
sentences over anti-stereotypical sentences. For
instance, for the ‘gender’ stereotype, two sentences
are given ‘The man was highly skilled in CAD en-
gineering. He was considered one of the best engi-
neers in his field (stereotypical)’ and ‘The woman
was highly skilled in CAD engineering. She was
considered one of the best engineers in her field’
(anti-stereotypical). Then the pseudo-likelihood
(Wang and Cho, 2019; Salazar et al., 2019) of
a model given these sentences is calculated. A
model is considered to present biased behavior if
more than half of the examples have higher pseudo-
likelihood for stereotypical sentences than anti-
stereotypical sentences.

The Sentence Encoder Association Test
(SEAT) extends the Word Embedding Association
Test (WEAT) (Caliskan et al., 2017) to sentence-
level representations by measuring the implicit as-
sociation between target concepts and attributes
(May et al., 2019). For this research, we only use
the test sets relevant to gender bias (SEAT 6, 6b,
7, 7b, 8, and 8b). Specifically, we measure the
implicit association between the target concepts
of male and female names, and the following sets
of attributions: career and family, math, science,
and arts. The attribute sentences of a family and
career, for instance, are respectively {‘This is a
home’, ‘They are parents’...} and {‘This is an ex-
ecutive’, ‘This is a corporation. . . }. The target
sentences of Male Names and Female Names are
{This is John, That is John, Kevin is here . . . } and
{This is Amy, This is Sarah, Diana is here..}. It
calculates the proximity between those target con-
cepts and attributes, and also the effect size. The
small effect size is considered as an indication of
the less biased model. See (May et al., 2019) for
details of calculating these associations.

2.3 Debiasing Methods

Counterfactual Data Augmentation (CDA) is a
technique that uses a rebalanced corpus to debias
a given language model (Webster et al., 2020).
For example, the sentence ‘Her most significant
piece of work is considered to be her study of
the development of the.. ’ from the Wikipedia
dataset was rebalanced into ‘His most significant
piece of work is considered to be his study of
the development of the..’. (Webster et al., 2020)
demonstrated that CDA minimizes correlations
between words while maintaining strong accuracy.

Originally developed to reduce over-fitting
when training large models, the Dropout Debias-
ing Method has been adopted to mitigate biases
(Webster et al., 2020). More specifically, dropout
regularization mitigates biases as it intervenes in
internal associations between words in a sentence.

2.4 Causal Mediation Analysis
We chose to apply causal mediation analysis to
inspect the change in output following a counter-
factual intervention in intermediate components
(e.g., neurons, layers, attentions)(Pearl, 2022; Vig
et al., 2020). Through such interventions, we mea-
sure the degree to which inputs influence outputs
directly (direct effect), or indirectly through the
intermediate components (indirect effect). In the
context of gender bias, this method allows us to de-
couple how the discrepancies arise from different
model components given gender associated inputs.

Following (Vig et al., 2020), we define the mea-
surement of gender bias as

y(u) =
pθ(anti-stereotypical|u)
pθ(stereotypical|u)

where u is a prompt, for instance, "The engineer
said that", and y(u) can be denoted as

y(u) =
pθ(she | The engineer said that )
pθ(he | The engineer said that )

If y(u) < 1, the prediction is stereotypical; if
y(u) > 1, the prediction is anti stereotypical. We
make an intervention, setting gender, in order to
investigate the effect on gender bias as defined
above. To be specific, we set "profession" with
an anti-stereotypical gender-specific word. For
instance, "The engineer said that" to "The woman
said that". We define the measure of y under the
intervention x = x on template u = u as yx(u)

Total Effect measures the proportional dif-
ference between the bias measure y of a gendered
input and a profession input.

Total Effect(set-gender, null; y) =
yset-gender(u)− ynull(u)

ynull(u)

(1)

where ynull refers to no intervention prompt, an
example of this formulation is represented as

yset-gender(u) =
p(she | The woman said that)
p(he | The woman said that
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ynull(u) =
p(she | The engineer said that)
p(he | The engineer said that)

We average the total effect of each prompt u to
analyze the total effect.

Direct Effect measures the change in the
model’s outcome, in our case gender bias y(u),
when an intervention is made, while holding the
component of interest z (e.g. specific neuron,
attention heads, layers) fixed to the original
value. The direct effect indicates the change
in the model’s outcome while controlling the
component of interest. Here, we apply a set-gender
intervention, as explained above.

Indirect Effect measures the change in the model’s
outcome, intervening in the component of interest z
while holding the other parts of the model constant.
In other words, indirect effect measures the indirect
change in the model’s outcome, i.e., the gender bias
y(u) that arises from the component of interest z.

3 Experimental Setup

Models The experiment was conducted on two
pre-trained language models: GPT2 (small) (Rad-
ford et al., 2019) and BERT (bert-base-uncased)
(Devlin et al., 2018). The configuration of the
debiasing models is detailed below.

CDA WikiText-2 (Merity et al., 2016), and the
gendered word pairs 1 proposed by (Zhao et al.,
2018) is used in the pre-training phase.

Dropout Debiasing We applied dropout debi-
asing in the pre-training phase on WikiText-2
corpus (Merity et al., 2016). In GPT2, we
specifically set the dropout probability for all
fully connected layers in the embeddings, en-
coder, and pooler to (resid_pdrop=0.15),
the dropout ratio for the embeddings to
(embedding_pdrop=0.15), and the dropout
ratio for the attention (attn_pdrop) to 0.15.
For BERT, we set the dropout probability for all
fully connected layers in the embeddings, encoder,
and pooler (hidden_dropout_prob) to 0.2
and the dropout ratio for attention probabilities
(attention_probs_dropout_prob) to
0.15, following (Meade et al., 2021)

1Neutral pronouns such as they, the person, were not in-
cluded in this work. The direction of future research is to
include the neutral pronouns

Neuron Interventions For experimenting with
neuron interventions, we use a template from
(Lu et al., 2020) and a list of professions from
(Bolukbasi et al., 2016).The template has a
format of ‘The [profession][verb](because/that)’.
Experimenting with GPT2 (small) resulted in 4
templates and 169 professions.

Attention Interventions We focus on how atten-
tion heads assign weights for our attention inter-
ventions experiments. Following (Vig et al., 2020),
we used the Winobias (Zhao et al., 2018) dataset,
which consists of co-reference resolution examples.
As opposed to calculating the probability of pro-
nouns (e.g., he, she) given a prompt, we calculate
the probability of a typical continuation. For in-
stance, the given prompt "[The mechanic] fixed
the problem for the editor and [he]", the stereotypi-
cal candidate is "charged a thousand dollars", the
anti-stereotypical candidate is "is grateful". The
stereotypical candidate associates ‘he’ with the me-
chanic, while the anti-stereotypical candidate asso-
ciates ‘he’ with the ‘editor’. We calculate the y(u),
gender bias, given an prompt u, as

y(u) =
pθ(charged a thousand dollars | u)

pθ(is grateful | u)

For the intervention here, we change gender,
for example, the last word in the prompt from he
to she.

Jigsaw Toxicity Detection The toxicity de-
tection task basically means to distinguish whether
the given comment is toxic or not. The publicly
available corpus can be found at Kaggle2. It
includes comments from Wikipedia that are
offensive and biased in terms of race, gender, and
disability.

The RtGender dataset contains 25M comments
from sources such as Facebook, TED, and Reddit.
The dataset was developed by (Voigt et al., 2018).
Specifically, the posts are labeled with the gender
of the author. The responses to posts were also
collected. This dataset was meant to help with pre-
dicting the gender of an author given the comments.
This allows us to investigate gender biases in social
media.

2https://www.kaggle.com/c/jigsaw- unintended- bias- in-
toxicity- classification
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Finetune - Jigsaw RtGender

Method
Baseline
(None)

CDA Dropout None CDA Dropout None CDA Dropout

BERT 57.25 55.34 55.73 51.91 42.37 48.09 56.11 47.71 41.98
GPT2 56.87 54.96 57.63 47.71 50.00 52.67 46.18 51.53 47.33

Table 1: Stereotype scores tested on Crow-S. The lower the value, the more debiased the model is. The table
represents the scores of models not fine-tuned, and of models fine-tuned on the downstream task of toxicity detection,
on Jigsaw and RtGender corpus respectively

Model BERT
Finetuned None Jigsaw RtGender
Debiasing method None CDA Dropout None CDA Dropout None CDA Dropout
SEAT 6 0.931* 0.785* 0.889* 0.558* 0.597* 0.515* -0.268 1.963* 0.912*
SEAT 6b 0.089 0.083 0.277 0.169 -0.104 0.400* 0.227 1.895* 0.391*
SEAT 7 -0.124 -0.512 0.171 1.035* -0.626 1.223* 0.060 0.396* 0.351
SEAT 7b 0.936* 1.238* 0.849* 0.711* 0.663* 1.135* -0.085 0.506* 0.310
SEAT 8 0.782* 0.025 0.594* 0.539* -0.729 0.551* -0.091 0.786* 0.930*
SEAT 8b 0.858* 0.673* 0.945* 0.286 0.586* 0.600* -0.205 0.817* 0.929*
Model GPT2
SEAT 6 0.137 0.287 0.288 0.451* 0.029 0.667* 1.359* 1.516* 1.554*
SEAT 6b 0.003 0.012 0.032 0.554* 0.247 0.418* 0.893* 1.242* 0.976*
SEAT 7 -0.023 0.862* 0.850* 0.129 0.700* 0.751* 1.044* -0.337 0.693*
SEAT 7b 0.001 0.933* 0.819* 0.645* 1.172* 1.041* 1.060* -0.205 1.017*
SEAT 8 -0.223 0.501* 0.486* -0.057 0.545* 0.321 0.867* -0.213 0.700*
SEAT 8b -0.286 0.278 0.092 0.059 0.222 0.197 0.783* -0.288 0.984*

Table 2: The effect size of SEAT. The small effect size is an indication of the less biased model. * denotes the
significance of p-value<0.01

4 Results

4.1 Testing the efficacy of debiasing
techniques

CrowS Table 1 shows the debias stereotype
scores across for debiasing methods on the CrowS
dataset. We tested CrowS on two different models,
BERT (bert-base-uncased) and GPT2 (gpt2-small).
The first three columns show the stereotype scores
of models that are not fine-tuned on any corpus.
We consider these models as baseline models.
The debiasing techniques led to a decrease in
stereotype scores for both BERT and GPT2, except
for the GPT2 Dropout debiased model. The next
three columns show the stereotype scores of the
BERT and GPT2 fine-tuned for our downstream
task (toxicity detection), and applied to the Jigsaw
and RtGender corpora, respectively. Surprisingly,
the stereotype scores are lower than those of
the baseline models. This indicates that the
models exhibit robustness even after fine-tuning
on the corpus which contains offensive and
harmful comments. In fact, the results confirm

the findings in (Webster et al., 2020), where
CDA and Dropout debiasing methods showed
resilience to fine-tuning. However, this result
needs extra investigation, as (Babaeianjelodar
et al., 2020) suggesting that the BERT model
fine-tuned on Jigsaw toxicity and RtGender,
especially the latter, show an increase in direct gen-
der bias measures compared to the baseline models.

SEAT In order to check the generalizability of
the debiasing effects, we calculated a different bias
measure, SEAT (May et al., 2019). Table 2 shows
the effect size of SEAT. We only used the test sets
relevant to the gender associations (SEAT6, 6b, 7,
7b, 8, 8b). The debiasing effectiveness of none-fine
tuned BERT models varies depending on which
dataset the models are tested on. For example, for
SEAT-6, all tested debiasing methods show a sig-
nificant decrease in effect size, which means that
the debiasing methods did what they are supposed
to do. However, for tests on SEAT 6b and 8b, the
results show no decrease in effect size and no sig-
nificance of the results. Interestingly, the degree
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Model BERT GPT2
Methods None CDA Dropout None CDA Dropout
Jigsaw 0.944 0.919 0.949 0.950 0.929 0.947
RtGender 0.570 0.747 0.558 0.698 0.716 0.703

Table 3: Accuracy score of toxicity detection task Jigsaw and RtGender respectively

Baseline CDA Dropout Jigsaw
Jigsaw
CDA

Jigsaw
Dropout

Total effect 2.865 2.046 1.858 0.122 0.116 0.092
Male total effect 3.964 2.792 2.514 0.122 0.116 0.092
Female total effect 30.227 25.953 23.550 0.752 0.979 0.502

Table 4: Total effect statistics.

of effectiveness varies based on which corpus a
model is fine-tuned. For example, looking at the
scores of SEAT 6, the Jigsaw models showed a sig-
nificant decrease in effect size compared to those
of the not fine-tuned models, however, Rtgender
fine-tuned models showed a significant increase
in effect size. These outcomes further support the
findings by (Babaeianjelodar et al., 2020), i.e., that
because the Jigsaw dataset involves comments re-
lated to race and sexuality rather than gender, the
gender bias learned from the corpus is less severe
than for RtGender.

The results are less clear for GPT2. Overall, it
is hard to conclude that the debiasing technique
demonstrates effectiveness when tested with the
SEAT benchmark. Looking only at the results that
show significance (p-value<0.01), the debiasing
methods do not necessarily show effectiveness,
but rather exacerbate the bias measures. For
example, SEAT 7b with debiasing methods applied
to Jigsaw finetune, leads to an increase in effect
size, and SEAT 6 with debiasing applied to
RtGender finetuned, also shows increase. One
of the reasons for this observation could be that
SEAT measures association of gendered names
with professions, while debiasing methods focus
on gendered pronouns, not on the gender of a
name. Overall, our results suggest that testing the
bias of language models on a single bias measure
may not be reliable enough as measures may differ
across models and corpora on which language
models are fine-tuned. This may be in part due to
the fact that gender bias is an inherently complex
concept that furthermore depends on contexts of
text production and use, and how "gender" it is
defined and measured. Thus, evaluation on two or
more benchmark datasets is desirable.

Figure 1: The indirect effect of the top neurons by layer
index.

Accuracy Table 3 shows the accuracy scores of
the models on downstream task, toxicity detection.
Overall, the performance of debiasing methods dif-
fers between tasks and depends on context. This
supports the findings in (Meade et al., 2021). For
BERT, the Dropout debiasing method performed
better than the baseline model, however, this im-
provement didn’t hold across different datasets. For
GPT2, only the debiasing models when applied to
RtGender showed improvement in performance.

4.2 Causal Mediation Analysis

Total Effect Table 4 shows the total effect across
models. Interestingly, the fine-tuned models
exhibit a decrease in total effect when compared
to the baseline model. This indicates that their
sensitivity to gender bias is mitigated even after the
fine-tuning process. This aligns with the CrowS
stereotype scores, where the fine-tuned models
showed robustness in stereotype measures. Besides
the total effect, the male and female total effect
was measured by splitting the profession dataset
(Bolukbasi et al., 2016) based on stereotypical
male and female professions, respectively. The
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Figure 2: Weights distribution of the top attention heads of the models on two different prompts. The labels indicate
the layer-attention head index. For example, Head 0-2 refers to attention head index 2, in layer 0.

results show that the effect size is higher for female
cases, which means that the language model
exhibits more sensitivity for female professions.
According to (Vig et al., 2020), this may be in
part due to the fact the stereotypes related to
professions of females are stronger than those
related to males.

Neurons interventions Figure 1 shows the
indirect effect distribution of the top 2.5% of
the neurons. The pattern shows that the gender
bias effects are concentrated on the first two
layers, including the word embedding layer (layer
index 0). Notably, the indirect effect of the
fine-tuned models is mitigated compared to the
none-fine-tuned ones. This suggests that besides
debiasing methods, fine-tuning itself may function
as an additional debiasing phase. Also, when the
models are fine-tuned, the neurons in the first two
layers display the largest change in their behavior.

Attention head interventions Figure 2 shows
a qualitative analysis of the attention head inter-
ventions. The figure presents the distribution of

the attention weights of the top 3 attention heads,
given the two different sentences ‘The driver
transported the housekeeper to job because she’
and ‘The driver transported the housekeeper to job
because he’. First, we notice that the top attention
heads did not show consistency between models.
For example, the top attention heads were located
on different layers between models. For GPT2 and
Jigsaw CDA GPT2, the top attention heads were
located on layer 0, while those of CDA GPT2 were
located on layers 1 and 5, and for Jigsaw GPT2,
they were located on layer 10. This indicates that
applying debiasing methods and fine-tuning may
change the behavior of the attention heads.

Second, the debiased models (e.g., CDA GPT2,
Jigsaw CDA GPT2) assign the weights signifi-
cantly differently to gender-associated professions
(e.g., driver, housekeeper). For example, in CDA
GPT2, the head 5-10 (which indicates the 10th
attention head in layer 5) assigns around 0.5 to
the word ‘keeper’ in the first plot, while it attends
around 0.2 to that of the second plot. The head
5-10 in CDA GPT2 also attends around 0.1 to
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the word ‘driver’ in the first plot, while assigning
more than 0.1 to the ‘driver’ in the second plot.
This tendency stands in contrast to the distribution
of the attention weights of the GPT2 baseline
model, which is not debiased. Such changes in
attention weights in gender-associated terms may
indicate that debiasing and fine-tuning methods
may modify the behavior of the attention heads,
suggesting the model what to be aware of.

5 Conclusion

In this work, we have investigated how debiasing
methods impact language models, along with the
downstream tasks. We found that (1) debiasing
methods are robust after fine-tuning on downstream
tasks. In fact, after the fine-tuning, the debiasing
effects strengthened. However, this effect is not
supported across another bias measure. This indi-
cates the need for both debiasing techniques and
bias benchmarks to ensure generalizability. The
causal mediation analysis suggests that (2) The neu-
rons that showed a large change in behavior were
located in the first two layers of language models
(including the word embedding layers). This sug-
gests that careful inspection of certain components
of the language models is recommended when ap-
plying debiasing methods. (3) Applying debias-
ing and fine-tuning methods to language models
changes the weight that attention heads assign to
gender-associated terms. This indicates that atten-
tion heads may play a crucial role in representing
gender bias in language models.
Several limitations apply to this work. We only
tested these effects on one downstream task,
namely, toxicity detection. In order to check the
generalizability of these findings, experiments with
other downstream tasks are necessary.
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Figure 3: Attention weights of Dropout debiased models
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Figure 4: Main indirect Effect of attention intervention.

Figure 5: Main direct Effect of Attention Intervention
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Abstract

Knowledge distillation is widely used to trans-
fer the language understanding of a large model
to a smaller model. However, after knowledge
distillation, it was found that the smaller model
is more biased by gender compared to the
source large model. This paper studies what
causes gender bias to increase after the knowl-
edge distillation process. Moreover, we suggest
applying a variant of the mixup on knowledge
distillation, which is used to increase gener-
alizability during the distillation process, not
for augmentation. By doing so, we can signifi-
cantly reduce the gender bias amplification af-
ter knowledge distillation. We also conduct an
experiment on the GLUE benchmark to demon-
strate that even if the mixup is applied, it does
not have a significant adverse effect on the
model’s performance.

1 Introduction

Knowledge distillation (Hinton et al., 2015) is one
way to use the knowledge of a large language
model under the limited resources by transferring
the knowledge of a larger model to a smaller model.
Under the supervision of the teacher model, the
small model is trained to produce the same result
as that of the teacher model. By doing so, small
models can leverage the knowledge of larger mod-
els (Sanh et al., 2019).

To maintain the performance of the model
trained by knowledge distillation, the distilled
model focuses more on the majority appearing in
the data (Hooker et al., 2020). Recent studies have
described that pre-trained language model also re-
sults in a more biased representation when distilla-
tion proceeds (Silva et al., 2021). However, only the
issue is reported, and what part of knowledge dis-
tillation causes an increase in bias is not explored,
and no solution is provided.

∗ jaime@daangn.com
† This is work done during an internship in Naver CLOVA

AI LAB.

This paper studies which part of knowledge
distillation causes the increase of social bias and
how to alleviate the problem in terms of Dis-
tilBERT (Sanh et al., 2019). We first examine
what part that contributes to knowledge distillation
brings social bias amplification. There is no differ-
ence between the distilled and original models ex-
cept for size and training loss. Thus, we check from
two perspectives: (1) the capacity of the model be-
ing distilled and (2) the loss used in knowledge dis-
tillation. Then we suggest leveraging mixup (Zhang
et al., 2018) on the knowledge distillation loss to
mitigate this amplification by giving generalizabil-
ity during the training.

We conduct the experiments from two mea-
surements: social bias with the Sentence Embed-
ding Test (SEAT) (May et al., 2019) and down-
stream task performance with the GLUE Bench-
mark (Wang et al., 2019). We report that the factors
that increase the social bias are the student model’s
limited capacity and the cross-entropy loss term
between the logit distribution of the student model
and that of the teacher model. We also demonstrate
that applying the mixup to knowledge distillation
can reduce this increase without significant effect
on the downstream task performance.

Our contributions can be summarized as follows:

• We reveal the capacity of the model and cross-
entropy loss in knowledge distillation have a
negative effect on social bias.

• We suggest mixup as a mitigation technique if
it is applied during the knowledge distillation
proceeds.

2 Background

Knowledge distillation is trained so that a student
model outputs the same output as a teacher model’s
for one input. It makes the student model have the
problem-solving ability of the large model, even
though the student model has a smaller structure.
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DistilBERT, the model this study is mainly about,
is trained with three loss terms. First, cross-entropy
loss (Lce) forces the logit distribution between the
student model and the teacher model to be simi-
lar. Next, the student model learns language under-
standing itself with masked language modeling loss
(Lmlm). Lastly, cosine loss between two model’s
output (Lcos) makes the direction of output embed-
dings between the student model and the teacher
model closer (Sanh et al., 2019). In total, the loss
term of DistilBERT is as follows:

Loss = Lce + Lmlm + Lcos.

3 Bias Statement

In this paper, we investigate stereotypical associa-
tions between male and female gender and attribute
pairs, particularly from the perspective of sentence
embeddings in knowledge distillation language
models. For the attribute pairs, we consider Careers
and Family, Math and Arts, and Science and Arts. If
there exists a correlation between a certain gender
and an attribute, the language model intrinsically
and perpetually causes representational harm (Blod-
gett et al., 2020) through improper preconceptions.
Additionally, when the language model is trained
for other downstream tasks, such as occupation pre-
diction (De-Arteaga et al., 2019; McGuire et al.,
2021), it may lead to an additional risk of gender-
stereotyped biases.

Since knowledge distillation (KD) has become a
prevalent technique to efficiently train smaller mod-
els, it is vital to figure out to what extent the gender
biases are amplified after knowledge distillations
and which loss terms exacerbate the biases during
the training. Our work firstly conducts the in-depth
analysis and then proposes mitigation methods for
the gender bias amplification during the KD pro-
cess.

We measure the streotypical associations with
the Sentence Embedding Association Test (SEAT)
(May et al., 2019) 1. The SEAT uses semantically
bleached sentence templates such as “This is a
[attribute-word]” or “Here is [gender-word]”. Then
the associations between a gender and an attribute
are calculated by cosine similarities of sentence en-
coded embeddings. We leave the detailed equations
to calculate the SEAT scores in Appendix B.

There are several tests in SEAT. This study fo-
cuses on C6, C7, and C8 categories related to

1https://github.com/W4ngatang/sent-bias/
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Figure 1: SEAT score by adjusting the number of lay-
ers of DistillBERT. The SEAT score and the num-
ber of layers in DistillBERT are negatively correlated
(Pearson r = −0.82).

gender bias. C6 tests similarity between embed-
ding of Male/Female Names, and Career/Family
attribute words. C7 and C8 measure the similarity
between embeddings of male and female pronouns
and embeddings of Math/Arts related words and
Math/Science related words, respectively.

4 Gender Bias Amplification after KD

In this section, we conduct in-depth analyses about
what brings gender bias amplification after knowl-
edge distillation from the perspective of (1) the
student model’s capacity and (2) the loss used in
the knowledge distillation process.

4.1 Experimental Setup

We use 30% of the corpus constructed by two
datasets, the Wikipedia dataset and Bookcor-
pus (Zhu et al., 2015) dataset that were used to
create DistillBERT2. The distillation is trained for
three epochs using four V100 GPUs. All other set-
tings remain the same following the way Distil-
BERT is trained. We list the settings in Appendix
D.

4.2 Does the capacity of the student model
matter?

To figure out whether and to what extent the stu-
dent model’s parameter capacity affects the gen-
der biases, we varied the number of layers of the
student model (DistilBERT). Note that BERT and
DistilBERT have the same architecture parame-
ters except the number of layers. Figure 1 shows

2We check the DistilBERT with 30% of the corpus pre-
serves 98.73% of the performance of DistilBERT with the
entire dataset on GLUE.
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SEAT
Loss Term

Lmlm + Lcos + Lce Lmlm + Lce Lmlm + Lcos

C6 1.236 1.137 1.093
C6b 0.499 0.557 0.292
C7 0.907 1.041 1.153
C7b 1.428 1.316 0.139
C8 0.534 0.475 0.852
C8b 1.347 1.237 0.653
Avg. 0.992 0.960 0.670

GLUE Avg. 76.7 76.3 75.2

Table 1: SEAT and GLUE scores obtained by ablation
of each part in distillation loss. C6 is tested with the
names and C7 and C8 are gender pronouns. Thus, for
each test, C6b is tested with a gender pronoun, and C7
and C8 are also tested with names.

that the average SEAT scores are increasing as the
number of layers is decreasing. Quantitatively, the
number of layers has a strong negative correlation
with the SEAT score (Pearson r = −0.82), which
means that the smaller the capacity, the more se-
vere the gender bias. This result also aligns with
the previous study that reveals the models with
limited capacity tend to exploit the biases in the
dataset (Sanh et al., 2021).

4.3 Does the knowledge distillation process
matter itself?

To ascertain how each loss term contributes to the
increase in SEAT scores in the knowledge distil-
lation process, we conducted an ablation study
against each loss term. As shown in Table 1, the
model trained without the distillation loss Lce re-
sults in the lowest average SEAT score (0.670)
among the three loss functions. However, this
model shows the lowest performance (75.2%) in
the GLUE benchmark, whereas the model trained
with all loss terms results the best with 76.7%. This
implies that the transfer of the teacher’s knowl-
edge is helpful for general language understanding
tasks while exacerbating gender bias simultane-
ously. Consequently, it can be concluded that the
current knowledge distillation technique itself is
also a factor in increasing gender biases.

5 Mitigation of Bias Amplification

5.1 Proposed method

This section describes how to improve the distil-
lation process to make gender bias not amplified
even after knowledge distillation. We found two
causes (capacity, loss term) in the previous section.
Among them, we decide to modify the loss term

because this study is targeting the fixed size model,
DistillBERT.

According to the ablation study in Section 4.3,
we ascertain distillation loss (Lce) hurts gender bias
scores in a huge portion. Our intuition to alleviate
this amplification is to give supervision as fair as
possible during the knowledge distillation is pro-
ceeded. One way is to reduce the SEAT score of the
teacher model first and give its supervision to the
student model. However, most of the existing meth-
ods (Liang et al., 2020b; Cheng et al., 2021) for the
teacher are designed to work only on the special
token ([CLS]). It is not suitable for knowledge dis-
tillation that is trained with logits and embeddings
on a token-by-token basis.

In this paper, we use mixup (Zhang et al.,
2018) on knowledge distillation to increase gender-
related generalization ability by using mixup.
Specifically, when a gender-related word appears,
we use the values generalized by a mixup in the
knowledge distillation process. First, we employ
the pre-defined gender word pair (D) set (wmale :
wfemale) from the previous work (Bolukbasi et al.,
2016)3. We next make the teacher’s output logit (y)
and student’s input embedding (x) same or similar
between two corresponding gendered terms with λ
drawn from Beta(α, α) when words in D appear:

x̄ = λxwmale + (1− λ)xwfemale

ȳ = λywmale + (1− λ)ywfemale ,

. We train DistilBERT with the mixup applied in-
stances (x̄, ȳ) for words in D and with the original
instances (x, y) for the rest of words. Notice that
we do not use mixup as a data augmentation tech-
nique but rather employ its idea in the knowledge
distillation.

We view the mixup as being worked as a reg-
ularizer rather than as a learning objective when
knowledge distillation takes place (Chuang and
Mroueh, 2021; Liang et al., 2020a). Because the
student model learns masked language modeling
itself, the generalized gender information by the
mixup will act as a regularizer not to be trapped
in the information commonly appearing in the pre-
training corpus.

5.2 Experimental setup

Dataset We only use the same dataset in knowl-
edge distillation used in Section 4. Also, we lever-

3We list the pairs in Appendix C
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Supervision C6 C6b C7 C7b C8 C8b Avg.

Original Supervision
Original Teacher 1.236 0.499 0.907 1.428 0.534 1.347 0.992
Debiased Teacher (Kaneko and Bollegala, 2021) 0.889 0.294 0.509 1.192 0.838 1.292 0.836

Mixup Supervision

Output embeddings 1.215 0.460 0.761 1.541 0.650 1.420 1.008
Input embeddings 1.305 0.049 0.460 1.334 0.465 1.342 0.830
Logits + Output embeddings 1.310 0.397 1.325 0.989 0.863 1.321 1.034
Logits + Output embeddings + Input embeddings 1.246 0.049 0.566 1.367 0.407 1.144 0.796
Logits + Input embeddings (proposed) 1.176 0.062 0.447 1.218 0.310 1.211 0.738

Table 2: The result of applying mixup on distillation process in terms of SEAT score (lower scores indicate less
social bias). The lowest score on each tests are marked in bold.

Task Original
Teacher

Mixup in
distillation

MNLI 80.6 80.4
QQP 85.9 85.3
QNLI 86.5 86.2
SST-2 90.4 90.7
CoLA 44.8 43.6
STS-B 83.2 83.2
MRPC 82.2 81.7
RTE 59.9 62.1

Avg. 76.7 76.7

Table 3: The performance on the GLUE benchmark after
applying the proposed mixup (Logits + Input Embed-
dings) in the knowledge distillation.

age GLUE Benchmark to assess model perfor-
mance.

Baseline We set a baseline as the distilled model
from a teacher model that was trained with a debi-
asing method (Kaneko and Bollegala, 2021).

5.3 Experimental Results
In Table 2, we report the scores for each SEAT
test and the average. It shows that mixup (Zhang
et al., 2018) applied in the distillation process out-
performs in terms of the average SEAT score. Com-
pared to the baseline, distilled model under the
supervision of the debiased teacher, mixup scores
lower in four out of six tests (C6b, C7, C8, C8b).

Table 2 also shows the results according to the
part where the mixup is applied. We experimented
with applying mixup to many different levels of
representations in the distillation process: logits,
teacher’s output embeddings, and student’s input
embeddings. The proposed method that applies the
mixup to inputs (input embeddings) and labels (log-
its) showed the best results.

We also measure SEAT after applying the
teacher’s output embeddings. It is because, al-
though not included in the original distillation,
the cosine loss for embedding is included in the

learning process of DistilBERT. However, Table 2
reports that the mixup on output embeddings in-
creases the SEAT score in most tests and is even
higher than the original distillation process.

We also checked the performance on down-
stream tasks when mixup is applied in knowledge
distillation. Table 3 summarizes the results on
GLUE benchmark. Compared to the model using
the original distillation, the average performance
remains the same.

6 Conclusion

In this paper, we study what causes gender bias
amplification in the knowledge distillation process
and how to alleviate the amplification by apply-
ing mixup in the knowledge distillation process.
We confirmed that both the cross-entropy loss be-
tween the logits and the model capacity affects the
increase of gender bias. Since this study focused
on the DistilBERT, we alleviated the problem by
modifying the knowledge distillation loss. We re-
ported that the SEAT score decreased when the
mixup was applied to the student’s input embed-
ding and the teacher’s output logit in the distillation
method when gender-related words appeared. We
also showed that this method does not have a sig-
nificant adverse effect on downstream tasks.

There are limitations in this study. First, we used
sub-samples of the pre-training corpus. Although
we checked that there was no significant differences
when trained with a fraction of data in terms of the
SEAT score and the GLUE score, the experimen-
tal results for the entire data should be explored.
Second, we do not yet know why the SEAT score
increases when the mixup is applied to the output
embedding. The embeddings between the two gen-
ders are expected to be close, but we do not yet
figure out why the scores are reversed contrary to
expectations. We leave these as our future work.
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A Related Work

There were several attempts to apply mixup in
knowledge distillation. Du et al. (2021) uses a fair
representation created by the medium of the embed-
dings of two sensitive attributes (the neutralization)
in distillation. Students are trained with the neu-
tralized embeddings created in this way so that the
student’s input is dependent on the teacher’s output.
MixKD (Liang et al., 2020a) applies mixup during
knowledge distillation to get better performance
on the GLUE benchmark. Notably, MixKD takes
the method of training the teacher model as well
as the student model when distillation proceeds.
Our suggestion guarantees independence between
student and teacher model inputs in this work, as
DistilBERT is trained. Moreover, we train a task-
agnostic model by applying a mixup to distillation.

B Sentence Embedding Association Test
(SEAT)

Let X and Y be target embeddings, the embed-
ding of sentence template with gender word in our
case, and A and B as attribute words. The SEAT
basically measures similarity difference between
attribute words and target word w. So the similarity
difference on word w is

s(w,A,B) = [meana∈A cos(w, a)

− meanb∈B cos(w, b)].

The SEAT score (d) is the Cohen’s d on s. The
Cohen’s d is calculated as follows:

d =
[meanx∈Xs(x,A,B)− meany∈Y s(y,A,B)]

std_devw∈X ⋃
Y s(w,A,B)

.

C Gender Word Pairs

[["woman", "man"], ["girl", "boy"], ["she", "he"],
["mother", "father"], ["daughter", "son"], ["gal",
"guy"], ["female", "male"], ["her", "his"], ["her-
self", "himself"], ["Mary", "John"]]

D Experiment settings: hyperparameters

D.1 Knowledge Distillaton Hyperparameters

• temperature = 2.0

• mlm_mask_prop = 0.15

• word_mask = 0.8

• word_keep = 0.1

• word_rand = 0.1

• mlm_smoothing = 0.7

• n_epoch = 3

• batch_size = 8

• warmup_prop = 0.05

• weight_decay = 0

• learning_rate = 5e-4

• max_grad_norm = 5

• adam_epsilon= 1e-6

• initializer_range= 0.02

• α = 0.4

D.2 GLUE Experiment Hyperparameters
• max_seq_length = 128

• batch_size = 32

• learning_rate = 2e-5

• n_epochs = 3
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Abstract

The GAP dataset is a Wikipedia-based evalua-
tion dataset for gender bias detection in coref-
erence resolution, containing mostly objective
sentences. Since subjectivity is ubiquitous in
our daily texts, it becomes necessary to eval-
uate models for both subjective and objective
instances. In this work, we present a new eval-
uation dataset for gender bias in coreference
resolution, GAP-Subjective, which increases
the coverage of the original GAP dataset by
including subjective sentences. We outline the
methodology used to create this dataset. Firstly,
we detect objective sentences and transfer them
into their subjective variants using a sequence-
to-sequence model. Secondly, we outline the
thresholding techniques based on fluency and
content preservation to maintain the quality of
the sentences. Thirdly, we perform automated
and human-based analysis of the style transfer
and infer that the transferred sentences are of
high quality. Finally, we benchmark both GAP
and GAP-Subjective datasets using a BERT-
based model and analyze its predictive perfor-
mance and gender bias.

1 Introduction

In natural language, subjectivity refers to the as-
pects of communication used to express opinions,
evaluations, and speculations, often influenced by
one’s emotional state and viewpoints. It is intro-
duced in natural language by using inflammatory
words and phrases, casting doubt over a fact, or
presupposing the truth. Writers and editors of
texts like newspapers, journals, and textbooks try
to avoid subjectivity, yet it is pervasive in these
texts. Hence, many NLP applications, including
information retrieval, question answering systems,
recommender systems, and coreference resolution,
would benefit from being able to model subjectivity
in natural language (Wiebe et al., 2004).

∗ Both authors have contributed equally to the work.

Objective
Form

The authors’ statements on
nutrition studies ...

Subjective
Form

The authors’ exposé on
nutrition studies ...

Table 1: Example sentence pair from the Wiki Neutral-
ity Corpus, demonstrating the replacement of the word
’statements’ into ’exposé’ for inducing subjectivity in
the sentence.

One of the prevalent biases induced by NLP
systems includes gender bias, which affects train-
ing data, resources, pretrained models, and algo-
rithms (Bolukbasi et al., 2016; Caliskan et al., 2017;
Schiebinger et al., 2017). Many recent studies aim
to detect, analyze, and mitigate gender bias in dif-
ferent NLP tools and applications (Bolukbasi et al.,
2016; Rudinger et al., 2018; Park et al., 2018).
The task of coreference resolution involves link-
ing referring expressions to the entity that evokes
the same discourse, as defined in tasks CoNLL
2011/12 (Pradhan et al., 2012). It is an integral
part of NLP systems as coreference resolution de-
cisions can alter how automatic systems process
text.

A vital step in reducing gender bias in coref-
erence resolution was the introduction of the
GAP dataset, a human-labeled corpus contain-
ing 8, 908 ambiguous pronoun-name pairs derived
from Wikipedia containing an equal number of
male and female entities. This gender-balanced
dataset aims to resolve naturally occurring ambigu-
ous pronouns and reward gender-fair systems.

Text sampled from Wikipedia for the GAP
dataset contains mostly objective sentences, as
shown by the experiments performed in Subsection
3.2.1. Since subjective language is pervasive in
our daily texts like newspapers, journals, textbooks,
blogs, and other informal sources, it becomes essen-
tial to analyze the performance of different models
for coreference resolution using subjective texts.
Therefore, in this work, we introduce the subjec-
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tivity attribute in the GAP dataset and analyze the
performance of a BERT-based model on a newly
proposed dataset.

In this work, we make the following
contributions:-

1. We propose a novel approach for increasing
coverage of the GAP dataset to include sub-
jective text and release the GAP-Subjective
dataset.

2. We outline each step in our dataset creation
pipeline, which includes the detection of sub-
jective sentences, the transfer of objective sen-
tences into their subjective counterparts, and
thresholding of the generated subjective sen-
tences based on fluency, content preservation,
and transfer of attribute.

3. We conduct automated and human evaluations
to verify the quality of the transferred sen-
tences.

4. We benchmark GAP-Subjective dataset using
a BERT-based model and analyze its perfor-
mance with the GAP dataset.

2 Related Works

2.1 Subjectivity Modeling and Detection
Recasens et al. (2013) conducted initial experimen-
tation on subjectivity detection on Wikipedia-based
text using feature-based models in their work. The
authors introduced the "Neutral Point of View"
(NPOV) corpus constructed from Wikipedia revi-
sion history, containing edits designed to remove
subjectivity from the text. They used logistic re-
gression with linguistic features, including factive
verbs, hedges, and subjective intensifiers, to detect
the top three subjectivity-inducing words in each
sentence.

In Pryzant et al. (2019), the authors extend
the work done by Recasens et al. (2013) by
mitigating subjectivity after the detection of
subjectivity-inducing words using a BERT-based
model. They also introduced Wiki Neutrality Cor-
pus (WNC), a parallel dataset containing pre and
post-neutralization sentences by English Wikipedia
editors from 2004 to 2019. They further tested their
proposed architecture on the Ideological Books
Corpus (IBC), biased headlines of partisan news ar-
ticles, and sentences from a prominent politician’s
campaign speeches. They concluded that their mod-
els could provide valuable and intuitive suggestions

to how subjective language used in news and other
political text can be transferred to their objective
forms.

The classification of statements containing bi-
ased language rather than individual words that
induce the bias has been explored in Dadu et al.
(2020). The authors perform a comprehensive
experimental evaluation, comparing transformer-
based approaches with classical approaches like
fastText and BiLSTM. They conclude that biased
language can be detected using transformer-based
models efficiently using pretrained models like
RoBERTa.

Riloff et al. (2005) explored using subjectivity
analysis to improve the precision of Information
Extraction (IE) systems in their work. They devel-
oped an IE system that used a subjective sentence
classifier to filter its extractions, using a strategy
that discards all extractions found in subjective
sentences and strategies that selectively discard
extractions. They showed that selective filtering
strategies improved the IE systems’ precision with
minimal recall loss, concluding that subjectivity
analysis improves the IE systems.

2.2 Gender Bias in Coreference Resolution

OntoNotes introduced by Weischedel et al. (2011)
is a general-purpose annotated corpus consisting of
around 2.9 million words across three languages:
English, Arabic, and Chinese. However, the cor-
pus is severely gender-biased in which female en-
tities are significantly underrepresented, with only
25% of the 2000 gendered pronouns being femi-
nine. This misrepresentation results in a biased
evaluation of coreferencing models.

There has been considerable work on debiasing
coreferencing evaluation concerning the gender at-
tribute (Zhao et al., 2018; Webster et al., 2018). In
(Zhao et al., 2018), the authors introduced a gender-
balanced dataset Winobias, extending Ontonotes
5.0 in an attempt to remove gender bias, contain-
ing Winograd-schema style sentences centered on
people entities referred to by their occupation.

In Webster et al. (2018), the authors introduce
the GAP dataset, a gender-balanced corpus of am-
biguous pronouns, to address the gender misrepre-
sentation problem. The dataset serves as an evalua-
tion benchmark for coreference models containing
over 8.9k coreference-labeled pairs containing the
ambiguous pronoun and the possible antecedents.
The coreference-labeled pairs are sampled from
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Wikipedia and are gender-balanced, containing an
equal number of instances for both male and female
genders. This characteristic enables a gender-bias-
based evaluation to be performed for any coref-
erence model. They further benchmark the state-
of-the-art model based on Transformers (Vaswani
et al., 2017) against simpler baselines using syntac-
tic rules for coreference resolution, observing that
the models do not perform well in the evaluation.

2.3 Increasing Data Coverage

Asudeh et al. (2019) analyzed existing datasets to
show that lack of adequate coverage in the dataset
can result in undesirable outcomes such as biased
decisions and algorithmic racism, creating vulnera-
bilities leading to adversarial attacks. For increas-
ing coverage of the textual dataset, methods such
as randomly swapping two words, dropping a word,
and replacing one word with another one are heav-
ily explored. On the other hand, generating new
sentences to increase coverage via Neural Machine
Translation (NMT) and style transfer remains a
relatively less explored area.

Gao et al. (2019) explored soft contextual data
augmentation using NMT. They proposed augment-
ing NMT training data by replacing a randomly
chosen word in a sentence with a soft word, a prob-
abilistic distribution over the vocabulary. More-
over, Wu et al. (2020) constructed two large-scale,
multiple reference datasets, The Machine Transla-
tion Formality Corpus (MTFC) and Twitter Con-
versation Formality Corpus (TCFC), using for-
mality as an attribute of text style transfer. They
utilized existing low-resource stylized sequence-
to-sequence (S2S) generation methods, including
back-translation.

Textual style transfer has been explored ex-
tensively for the generation of fluent, content-
preserved, attribute-controlled text (Hu et al., 2017).
Prior works exploring textual style transfer in
semi-supervised setting employ several machine-
learning methodologies like back-translation (Prab-
humoye et al., 2018), back-translation with
attribute-specific loss (Pant et al., 2020), special-
ized transfer methodologies (Li et al., 2018), and
their transformer-based variants (Sudhakar et al.,
2019).

In a supervised setting where a parallel corpus
is available, sequence-to-sequence models perform
competitively. We use the OpenNMT-py toolkit
(Klein et al., 2017) to train sequence-to-sequence

models. Copy mechanism based sequence-to-
sequence models with attention (Bahdanau et al.,
2014) have been effective in tasks involving sig-
nificant preservation of content information. They
have been applied in tasks like sentence simplifica-
tion (Aharoni et al., 2019), and abstractive summa-
rization (See et al., 2017).

3 Corpus Creation

3.1 Preliminaries

3.1.1 GAP Dataset

The GAP dataset, as introduced in Webster
et al. (2018), is constructed using a language-
independent mechanism for extracting challeng-
ing ambiguous pronouns. The dataset consists
of 8, 908 manually-annotated ambiguous pronoun-
name pairs. It is extracted from a large set of can-
didate contexts, filtered through a multi-stage pro-
cess using three target extraction patterns and five
dimensions of sub-sampling for annotations to im-
prove quality and diversity. It is a gender-balanced
dataset with each instance assigned one of the five
labels - Name A, Name B, Both Names, Neither
Name A nor Name B, and Not Sure.

The GAP is primarily an evaluation corpus,
which helps us evaluate coreference models for the
task of resolving naturally-occurring ambiguous
pronoun-name pairs in terms of both classification
accuracy and the property of being gender-neutral.
The final dataset has a train-test-validation split of
4000− 4000− 908 examples. Each example con-
tains the source Wikipedia page’s URL, making
it possible for the model to use the external con-
text if it may. The models are evaluated using the
following two metrics: F1 score and Bias (Gender).

3.1.2 Subjectivity Detection

For detecting subjectivity in sentences, we use the
Wiki Neutrality Corpus (WNC) released by Pryzant
et al. (2019). It consists of 180k aligned pre and
post-subjective-bias-neutralized sentences by ed-
itors. The dataset covers 423, 823 Wikipedia re-
visions between 2004 to 2019. To maximize the
precision of bias-related changes, the authors drop
a selective group of instances to ensure the effective
training of subjectivity detection models.

Dadu et al. (2020) shows that the RoBERTa
model performed competitively in the WNC dataset
achieving 0.702 F1 score, with a recall of 0.681
and precision of 0.723. Following their work, we
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train a RoBERTa-based model for detecting subjec-
tive sentences.

3.2 Approach

This section describes the methodology used for the
creation of GAP-Subjective. It outlines the models
used for detecting subjectivity in the original GAP
dataset, followed by the methods used for trans-
ferring the objective sentences to their subjective
counterparts. It also presents the thresholding tech-
niques used on the generated subjective sentences
based on fluency, content preservation, and trans-
fer of attribute. Finally, it concludes by showing
the results of the human evaluations conducted to
verify the quality of the transferred sentences.

3.2.1 Subjectivity Detection
In this section, we highlight the approach used for
detecting subjectivity in the GAP dataset. Follow-
ing the works of Dadu et al. (2020), we fine-tune
the pretrained RoBERTa model using the WNC
dataset for detecting subjectivity in the sentences.
We randomly shuffled these sentences and split this
dataset into two parts in a 90 : 10 Train-Test split
and performed the evaluation on the held-out test
dataset. We used a learning rate of 2 ∗ 10−5, a
maximum sequence length of 50, and a weight de-
cay of 0.01 for fine-tuning our model. Our trained
model has 0.685 F1-score and 70.01% accuracy
along with a recall of 0.653 and precision of 0.720.
We then predict the subjectivity of the GAP dataset
using the fine-tuned model and conclude that over
86% of the sentences in the dataset are objective.
Table 2 illustrates a data split wise analysis for the
same.

3.2.2 Style Transfer
In this section, we detail the process of performing
style transfer of objective sentences present in the
GAP dataset into their subjective variants. Our task
of style transfer entails mapping a source sentence
x to a target sentence x̃, such that in x̃ the maxi-
mum amount of original content-based information
from x is preserved independent of the subjectivity
attribute.

Firstly, we train a SentencePiece tokenizer on the
English Wikipedia with a vocabulary size of 25000.
We consider numerical tokens as user-defined sym-
bols to preserve them during the transfer process.
Secondly, we train the style transfer model on the
SentencePiece tokenized Wiki Neutrality Corpus
using the OpenNMT-py toolkit. We use a 256-sized

BiLSTM layered architecture with a batch size of
16, thresholding the gradient norm to have the max-
imum value of 2 and share the word embeddings
between encoder and decoder. We use the Ada-
Grad optimizer and use a multi-layer perceptron
for global attention.

Importantly, we use the copy mechanism (Gu
et al., 2016) for the sequence-to-sequence model.
The mechanism has been proven beneficial in simi-
lar tasks, such as sentence simplification in a super-
vised setting (Aharoni et al., 2019). It is modeled
using a copy switch probability over each token
in the target vocabulary and each token in the con-
text sequence at each decoding step. Hence, it
allows the model to generate tokens that are not
present in the target vocabulary. We hypothesized
that using the copy mechanism in the models helps
in preserving important entity-linked information
like the associated pronoun and the names of the
entities necessary for coreference resolution.

We obtain a validation perplexity of 3.10 and a
validation accuracy of 84.52%, implying that the
model produced fluent and subjective sentences at
large. To further improve the quality of the dataset,
we then threshold these sentences across various
metrics important for style transfer, as in recent
works (Li et al., 2018; Sudhakar et al., 2019).

3.2.3 Thresholding Transferred Sentences

This section details about the thresholding tech-
niques used on the transferred sentences to main-
tain their quality. We perform the thresholding
taking the following into consideration: fluency,
content preservation, and transfer of attribute.

1. Fluency: We use the OpenGPT-2 (Radford
et al., 2018) as the language model to assign
perplexity to the transferred sentences 1. We
compare the perplexity of the transferred sen-
tences with the original sentences to test their
fluency and discard all the sentences in which
the perplexity change is more than 100. This
thresholding ensures relatively less change
in the sentence structure, which is measured
by the language model. Table 2 shows that
2, 635 in development, 603 in validation and
2, 641 in test of GAP-Subjective are within the
fluency threshold, comprising 44.02% of the
overall sentences.

1https://huggingface.co/transformers/
perplexity.html
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Dataset Split Total
sentences

Within GLUE
Threshold

Within
Perplexity
Threshold

Objective
sentences

Final
Thresholded

Sentences
(A ∩B ∩ C)

Percentage of
Final Thresholded
Sentences

Development 5995 2332 2635 5162 1736 28.9%
Validation 1389 527 603 1183 377 27.1%
Test 5971 2359 2641 5141 1800 30.1%
Overall 13355 5218 5879 11486 3913 29.3%

Table 2: Sentence-wise Thresholding Split

2. Content Preservation: We use sentence-level
GLEU (Mutton et al., 2007) scores for deter-
mining the content preservation of the model.
We compare the transferred sentence with
their original counterparts as a reference. We
consider all sentences having a GLEU less
than 1.0 to ensure no sentence remains the
same and more than 0.8 to provide a high level
of similarity between the transferred sentence
and the original sentence in terms of content
information. As can be observed in Table 2,
we preserve 39.07% of the overall sentences
through the GLEU-based thresholding.

3. Original Attribute: We use the subjectivity
model trained in Subsection 3.2.1 and filter
out the sentences that are already subjective
before transfer. Table 2 shows that 13.9% sen-
tences in development, 14.83% in validation,
and 13.90% in the test are subjective, corrob-
orating that majority sentences in the dataset
are objective, lacking coverage in terms of
subjectivity as an attribute.

Original
(Objective)

She died the following January, aged about
22, giving birth to their only son.

Transferred
(Subjective)

Unfortunately, she died the following January,
aged about 22, giving birth to their only son.

Original
(Objective)

Her father, Philip, was a lithographic printer,
and her mother, Ellen, ran a boarding house
in Brixton; Kathleen was their third daughter.

Transferred
(Subjective)

Her father, Philip, was a controversial lithographic
printer, and her mother, Ellen, ran a boarding house
in Brixton; Kathleen was their third daughter.

Table 3: Example of transferred subjective sentences by
the proposed approach

Table 3 illustrates the differences between the
original objective and the transferred subjective
sentences. We observe that the addition of the ad-
verb Unfortunately in the original sentence makes
it a subjective sentence, adding one’s emotional
state and viewpoints towards the event. Similarly,

the addition of the adjective controversial changes
the objective sentence to a subjective one.

Split Converted GAP Contexts
test 63.85%
development 60.60%
validation 61.89%

Table 4: Percentage of Converted GAP Contexts

Table 2 shows that 29.29% of the overall sen-
tences are left after thresholding on all three met-
rics. We then replace the original sentences with
their thresholded subjective counterparts. We ob-
serve that at least one sentence is transferred by
our approach in over 60% of the GAP contexts. A
data split wise analysis for the same is illustrated
in Table 4.

3.2.4 Human Evaluation
Although automated evaluation helps in the thresh-
olding process for reconstructing GAP-Subjective
and provides a significant indication of transfer
quality, we perform human evaluation for a deeper
analysis. We randomly sampled 68 sentences from
the dataset containing 34 sentences each from the
transferred sentences and original sentences in the
human evaluation. The judges were asked to rank
the sentence regarding its fluency and subjectivity.
Fluency was rated from 1 (poor) to 5 (perfect). Sim-
ilarly, Subjectivity was also rated from 1 (highly
objective, factual) to 5 (highly subjective).

Table 6 illustrates the results of the human eval-
uation. We observe that the transferred sentences,
on average, score 1.21 higher points on subjectivity
than the original sentences. However, this increase
in subjectivity comes with a minor 0.23 decrease
in fluency.

3.2.5 Offset Finding
We process each text to calculate the new offsets for
the concerned pronoun and both the entities. Firstly,
we determine the sentence in which the target word
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Dataset Context

GAP-Subjective

Unfortunately, however, Stevenson suffered an injury while training and was replaced by Tyson Griffin.
Gomi defeated Griffin by KO (punch) at 1:04 of the first round. Gomi would finish him with a popular
left cross following up with a right hook causing Griffin to fall face first into the canvas where Gomi then
followed up onto Griffin’s back with few short punches before the fight was stopped. He is the first person
to have stopped Griffin as all of Griffin’s previous losses have gone to a decision.

GAP

However, Stevenson suffered an injury while training and was replaced by Tyson Griffin. Gomi defeated
Griffin by KO (punch) at 1:04 of the first round. Gomi would finish him with a left cross following up with
a right hook causing Griffin to fall face first into the canvas where Gomi then followed up onto Griffin’s
back with few short punches before the fight was stopped. He is the first person to have stopped Griffin
as all of Griffin’s previous losses have gone to a decision.

Table 5: Sample Text from both datasets, GAP and GAP-Subjective

Fluency Subjectivity
Original Sentences 4.578 1.657
Transferred Sentences 4.343 2.872

Table 6: Results for Human Evaluation of the Transfer
Model

was present in the original text. We then perform
an exact match to find the word’s position in the
final transferred sentence. After finding the word’s
position in the sentence, we calculate the global
offset for the word in the reconstructed text made
of the final transferred sentences. This global offset
represents the new offset for each entity.

Dataset Split Pronoun
Found

Entity A
Found

Entity B
Found

All
Found

Development 99.90 98.65 99.00 97.55
Validation 99.34 99.78 99.56 98.68
Test 99.90 99.15 99.05 98.20

Table 7: Percentages of span offsets found in each data
split

Table 7 represents the number of instances for
which the offsets were successfully calculated as a
percentage of total examples in each split. 97.55%
instances in development, 98.68% instances in val-
idation, and 98.20% instances in test had correct
offsets for all the three entities, thus showing that
our offset finding approach was effective. To main-
tain the size of the dataset, we consider the original
instance already present in the GAP dataset if the
offset is not found.

Table 5 illustrates a sample context from GAP
and GAP-Subjective, highlighting difference be-
tween the sentences of the context, the entity posi-
tions and the pronoun positions.

4 Benchmarking GAP-Subjective

4.1 GAP-Subjective Task
GAP-Subjective is an evaluation corpus that ex-
tends the GAP corpus by augmenting transferred
subjective sentences for their objective counter-
parts. This dataset is segmented into development
and test splits of 4, 000 examples each and valida-
tion split consisting of 908 examples. The offsets
for each entity and pronoun are given in the dataset.
However, these offsets should not be treated as a
gold mention or Winograd-style task.

We evaluate GAP-Subjective and compare it with
GAP across two axes of evaluation: predictive per-
formance, and gender bias. For assessing the pre-
dictive performance, we use an overall F1 score,
denoted by O. We further calculate the F1 score for
each of the two gendered pronouns, thus resulting
in Male F1 and Female F1, denoted by M and F re-
spectively. We then calculate gender bias, indicated
by B, which is defined as the ratio of feminine to
masculine F1 scores, i.e., M/F.

4.2 Baseline Model
For benchmarking GAP-Subjective, we used the
BERT-based architecture, introduced in Yang et al.
(2019), that performs competitively in the GAP
Challenge. The authors modeled the relations be-
tween query words by concatenating the contextual
representations and aggregating the generated fea-
tures with a shallow multi-layered perceptron. For
a given query (Entity A, Entity B, Pronoun), they
obtained deep contextual representations for the
pronoun and each entity from BERT, where each
entity is composed of multiple word pieces.

Following the work of Yang et al. (2019), we use
the cased variant of BERTBase for benchmarking
GAP-Subjective. We extract features from BERT
using a sequence length of 128, batch size of 32,
and embedding size of 768. For classification, we
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Dataset/Metric Overall F1(O) Precision(P) Recall(R) Masc-F1(M) Fem-F1(F) Bias(B)
GAP-Subjective 0.789 0.772 0.807 0.786 0.792 1.007
GAP 0.796 0.778 0.815 0.802 0.790 0.984

Table 8: Results for the Benchmarking Experiments

train a multi-layered perceptron for 1000 epochs
with 0.6 dropout rate, 0.001 learning rate, 0.1 L2
regularization and 32 batch size.

4.3 Results

Table 8 illustrates the benchmarking results for
GAP-Subjective and GAP for the BERT-based ar-
chitecture. We observe a significant change in the
predictive performance of the BERT-based model
for GAP-Subjective and GAP. We observe a de-
crease of ∼ 1% in F1-score, and ∼ 2% in Masc-F1
(M), and a slight increase of ∼ 0.3% in Fem-F1
(F).

We also observe a change in the gender bias of
the model between the two datasets. To understand
this change, let us assume that the magnitude of
deviation in bias score m equals the absolute dif-
ference between the bias score and the ideal value
1 (which is obtained when there is no bias towards
any of the two genders). While the model had a
bias score of 0.984 in GAP, implying a preference
towards male entities with the m score of 1.6%.
Interestingly, GAP-Subjective shows a minor pref-
erence towards female entities with a bias score of
1.007 and m value of 0.7%.

5 Conclusion

In this work, we analyzed the addition of the sub-
jectivity attribute in GAP, a widely used evaluation
corpus for the detection of gender bias in coref-
erence resolution. We utilized sentence-level su-
pervised style transfer using sequence-to-sequence
models to transfer the objective sentences in GAP
to their subjective variants. We outlined the effi-
cacy of our proposed style transfer approach using
suitable metrics for content preservation and flu-
ency and a human evaluation of the transferred
sentences. We proposed a new evaluation cor-
pus, GAP-Subjective, which consists of the recon-
structed texts along with their new entity offsets.
We benchmarked and analyzed the predictive per-
formance and gender bias of BERT-based models
in both GAP and GAP-Subjective. Future work may
include increasing coverage of objective-heavy
datasets for other downstream tasks and increas-

ing the coverage of GAP using other attributes.

Bias Statement

This paper studies two forms of biases: gender bias
and subjective bias. We increase the coverage of
the evaluation dataset for identifying gender bias in
coreference resolution by converting objective data
to its subjective counterparts. Since most of the
original data were mined from Wikipedia, which
has a "Neutral Point of View" policy ensuring that
the data is objective, the models are evaluated for
gender bias solely in a setting devoid of subjectivity.
Since subjective bias is ubiquitous (Pryzant et al.,
2019), adding subjectivity into the evaluation cor-
pus becomes imperative when evaluating any form
of bias. While evaluating the BERTBase model
for the original GAP dataset, we found the model
to prefer Male entities at large. In contrast, the
same model trained and evaluated on the subjective
counterpart GAP-Subjective was objective to prefer
Female entities at large. Our work is based on the
belief that the setting used for evaluation datasets
for bias detection influences our understanding of
capturing the bias in the evaluated systems.
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