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Abstract

This paper describes our submissions to the
EMNLP 2022 shared task on Understanding
Figurative Language as part of the Figurative
Language Workshop (FigLang 2022). Our sys-
tems based on pre-trained language model T5
are divide-and-conquer models which can ad-
dress both two requirements of the task: 1) clas-
sification, and 2) generation. In this paper, we
introduce different approaches in which each
approach we employ a processing strategy on
input model. We also emphasize the influence
of the types of figurative language on our sys-
tems.

1 Introduction

Recent years have witnessed the great rise of Ar-
tificial Intelligence (AI). Due to the performance
of AI, many downstream tasks from any fields are
solved efficiently. One of the central topic in AI is
Natural Language Understanding (NLU) in which
Natural Language Inference (NLI) or Recogniz-
ing Textual Entailment (RTE) plays an important
role, which was pointed out in (MacCartney and
Manning, 2008).

While RTE was defined as a task of determin-
ing whether a natural language hypothesis h can
be inferred from a given premise p (MacCartney,
2009), Figurative Language Understanding (FLU)
was considered as a task of determining whether
any figure of speech depends on a non-literal mean-
ing of some or all of the words used (Chakrabarty
et al., 2022). Therefore, FLU can be framed as a
kind of RTE task (Chakrabarty et al., 2022; Stowe
et al., 2022).

In addition, the EMNLP 2022 shared task
requires not only to generate the label (en-
tail/contradict), but also to generate a plausible
explanation for the prediction, whose example is
shown in Table 1. Especially, the entail/contradict
label and the exploration are related to the mean-
ing of the figurative language expression. This is a

Premise The place looked impenetrable and inescapable
Hypothesis The place looked like a fortress.
Label Entailment

Explanation
A fortress is a military stronghold,
hence it would be very hard to walk into,
or in other words impenetrable and inescapable.

Table 1: Examples of relations between a premise and a
hypothesis: E (Entailment), C (Contradiction).

challenging task that require to propose a approach
that could tackle both tasks: 1) classification, 2)
generation.

Over the past few years, a number of high-
performance systems have been created solving
several NLP tasks based on pre-trained transformer
models (Vaswani et al., 2017; Devlin et al., 2019;
Lewis et al., 2019; Raffel et al., 2020b). However,
there have still been very few works related to fig-
urative language due to the lack of high-quality
datasets and the challenge of this task.

Therefore, thanks to the exclusive dataset of the
shared task, in this paper, we advocate different
approaches which are mainly based on pre-trained
language model T5 (Raffel et al., 2020b), combin-
ing to employ various input processing strategies
to tackle the task.

In this paper, we conduct an investigation into
the benefit of using state-of-the-art seq2seq pre-
trained language models (T5) to evaluate figurative
language understanding task in EMNLP 2022. We
also employ a divide-and-conquer model with dif-
ferent potential input processing strategies to im-
prove the performance of our system. Then, we
point out the importance of the types of figurative
language in this task.

2 System Description

In all our submissions, we considered both two
tasks: the NLI task, and the explanation generation
task as two seq2seq tasks. Therefore, we fine-tuned
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two tasks jointly as a simultaneous computation
model which first predicts label, and then the expla-
nation. In addition, we also used the attribute about
types of Figurative Language across the data as a
predictor and treated it as seq2seq tasks. Therefore
we have 3 component models based on fine-tuning
pre-trained model T5 (Raffel et al., 2020b): NLI
predictor, Type predictor, and Generator.

2.1 T5

T5 transformer is a encoder-decoder model or
sequence-to-sequence model. It is a “unified frame-
work that converts every language problem into a
text-to-text format” (Raffel et al., 2020b). Com-
pared to other transformers which take in natural
language data by converting to corresponding nu-
merical embeddings, T5 takes in data in the form
of text, and also produce the text as an output. This
text-to-text nature does not require any the change
of hyper-parameters and loss functions when learn
NLP tasks (Grover et al., 2020). Furthermore, T5
has been trained on a multi-task mixture of unsu-
pervised and supervised tasks in which include our
NLI task and generation task. Therefore, T5 model
is one of the most prominent pre-trained models
that we can use.

Figure 1: Overview of input and output of T5.

<prefix>: Input sentences

Encoder Decoder

Output

2.2 NLI predictor and Type predictor

In this two component models, the premise and
hypothesis sentences are concatenated and fed to
the encoder, then while the decoder of NLI task is
the label prediction (entail/contradict), the decode
of Type predictor is the type prediction (Paraphrase,
Sarcasm, Simile, Metaphor, Idiom). The overview
of two component models are shown in Fig.2

Figure 2: Overview of two component models. Red
diagram is NLI predictor, the green diagram is Type
predictor.

Premise: <sentence>; 
hypothesis: <sentence>

Encoder Decoder

Entail/Contradict

Premise: <sentence>; 
hypothesis: <sentence>

Encoder Decoder

Types

2.3 Generator
We employed different input processing strategies
each submission in the Generator. Specifically, in
the first submission, we simply used the premise
and hypothesis sentences as a input of the encoder
as same as NLI predictor did. However, the per-
formance of the model is not too well, so we tried
to add valuable attributes such as NLI predictor,
and Type predictor to the left of the input of the
encoder. Therefore, we conducted experiments for
submission 2, 3, 4 by adding a NLI predictor, a
Type predictor, and a NLI predictor + a Type pre-
dictor to the left of the input, respectively. Besides,
The 5th submission is similar to the 3rd submission,
except the parameters of the model. The model is
depicted in Fig.3.

3 Experiments

3.1 Experimental setting
Following the given evaluation metrics, in all our
experiments, we report the Accuracy@60 based on
evaluation scripts from the task organizing commit-
tee.

As described in Section 2, our approaches de-
pends on pre-trained language model T5. We use a
model namely T5large downloaded from the Hug-
ging Face library (Raffel et al., 2020a). The net-
work’s parameters are optimized using the AdamW
(Loshchilov and Hutter, 2017) and a linear learning
rate scheduler, which are suggested by the Hug-
ging Face default setup. The hyperparameters that
we tune include the number of epochs, batch size,
and learning rate. In particular, we set batch size
of 32, and learning rate of 3e-4 for all component
models. For NLI predictor and Type predictor, we
use 20 epochs. For Generator, the model is trained
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Figure 3: Overview of submissions. While the component (1), (1)+(2), (1)+(3) is considered as a input model of the
1st, 2nd, 3rd submission respectively, the 4th one has all 3 components as a input model.

<prefix>: <Input sentence> (1) NLI predictor (2) Type Predictor (3)

Explanation

Generator

<prefix>: <Input sentence>

Submissions Input model Score Size (bytes)
1 premise, hypothesis 58.26 39154
2 NLI predictor, premise, hypothesis 57.93 38015
3 Type predictor, premise, hypothesis 60.53 42532

4
NLI predictor, Type predictor,
premise, hypothesis

59.80 37763

Table 2: Official results of our system on test dataset.

on 40 epochs. All experiments in this paper are
conducted on Google Colab Pro.

3.2 Result and Discussion
For producing the results on the test dataset, we
splited the training dataset into the training dataset
and development dataset with 7300 samples, and
200 samples respectively for fine-tuning the pre-
trained language model T5large.

Our latest system achieved the official score
60.53 which ranked 3rd on the shared task. On each
of the submissions, the systems obtained scores
58.26, 57.93, 60.53, and 59.80 respectively. Table
2 gives the detailed results of each submissions.

Comparing the detailed scores, we found that our
submitted systems varied in performance mainly
due to the difference of input model of the sub-
missions. As described in Table 2, the system in
which the input of model is the combination of NLI
predictor, premise and hypothesis performed the
worst, while the one which has the type predictor
combining with input sentences (premise and hy-

pothesis) outperformed the rest of our experiments.
Therefore, the types of figurative language were
indicated to be an integral role in understanding
figurative language.

Depending on the input models, the Generator
has different outputs, as shown in the Table 3. Com-
pared to the models which add only one compo-
nent into the input models: NLI predictor or Type
predictor, the model of submission 4 had more
information that consists of two input sentences,
NLI predictor, and Type Predictor. However, the
Generator did not produce adequate explanations
as we expected. Therefore, the strategy including
more information may not be a good choice when
generating outputs in this case. Despite that, more
efforts are required to explore the real reason be-
hind the results, then we can learn and employ the
input processing strategies reasonably to improve
the performance of the system.

4 Conclusion and Future Work

In this paper, we have presented our system for
the EMNLP 2022 Shared Task on the Figurative
Language Understanding. Our systems are built
on fine-tuning pre-trained language model T5 with
different input processing strategies, which is a
divide-and-conquer model which integrated two or
three components: NLI predictor, Type predictor,
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Sample Explanation NLI predictor Type Predictor

"premise": "I stubbed my toe last night and cursed angrily."
"hypothesis": "Stubbing my toe last night and
cussing out loud made me so happy."
"Predicted Label": Contradiction

"Stubbing one’s toe is usually a very painful experience and
can result in people feeling angry and cursing loudly
which is not a happy feeling."
"Stubbing your toe and cursing loudly is not a good thing
because it can cause pain and discomfort." X

"Stubbing one’s toe and cursing loudly is not a good thing
and so being happy about it cannot be justified." X

"Stubbing your toe and cursing loudly is not a good way to
spend a night in bed and so someone who is happy
about it cannot be considered rational."

X X

Table 3: Examples of explanation produced by the systems.

and Generator. The performance of models are re-
lied how successful the Type predictor is, which
means the attribute about types of Figurative Lan-
guage should be considered as an integral factor of
the input of model.

Due to limited time and resources, we had not
conducted thorough enough experiments to get bet-
ter results, but the system and the involvement in
this challenge bring us a good groundwork for fur-
ther study. In the future, we plan to expand the
experiment by employing and fine-tuning other pre-
trained language models. Furthermore, we may
also explore different strategies making the most
of what we have for the input of models.
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