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Abstract

Softmax is the de facto standard for normaliz-
ing logits in modern neural networks for lan-
guage processing. However, by producing a
dense probability distribution each token in the
vocabulary has a nonzero chance of being se-
lected at each generation step, leading to a vari-
ety of reported problems in text generation. α-
entmax of Peters et al. (2019) solves this prob-
lem, but is unfortunately slower than softmax.

In this paper, we propose an alternative to α-
entmax, which keeps its virtuous characteris-
tics, but is as fast as optimized softmax and
achieves on par or better performance in ma-
chine translation task.

1 Introduction

Sparseness of vector representations is a desirable
trait in neural network models for natural language
processing (NLP): words (subwords) are discrete
objects by their nature, and, accordingly, are en-
coded by one-hot embeddings at the input and out-
put of neural networks. However, to predict a cate-
gorical response in neural models, softmax is most
often used, which produces a dense probability
distribution, i.e. every category (word/subword)
receives a non-zero probability.

Recent studies suggest that it is this output den-
sity that poses problems when the trained NLP
model is used for inference. For example, in the
case of text generation, unconstrained sampling
from a trained language model results in poor qual-
ity of the resulting text (Holtzman et al., 2020). In
neural machine translation (NMT), exact decoding
from a trained model often results in empty text
(Stahlberg and Byrne, 2019).1 To get around these
problems, constrained decoding techniques have
been proposed, most of which artificially impose
sparsity on softmax prediction. For example, Fan

1The authors called this phenomenon the cat got your
tongue problem.

et al. (2018) propose to sample from the top-k prob-
able words, and Holtzman et al. (2020) propose to
sample from the most probable words, which com-
prise the cumulative probability p. While these
methods are effective, they are ad-hoc solutions
that lead to a mismatch between how the model is
trained and how it is used at inference.

In this regard, the works on sparse alternatives to
softmax stand apart since they allow us to make in-
ference from the model in the same way than it was
trained. Some of the most successful and elegant
solutions are sparsemax (Martins and Astudillo,
2016) and its generalization α-entmax (Peters et al.,
2019). When coupled with suitable losses, these
transformations are not inferior to softmax, and
sometimes even surpass it as measured with fi-
nal performance metrics on a number of tasks. A
problem with these transformations however is that
they are significantly slower than softmax when the
number of categories (vocabulary size) is tens of
thousands, as in the case of text generation. This is
because α-entmax transformation—in its original
formulation—requires sorting over the logits.2

In this work, we ask the question: is it possible
to obtain a sparse output like that of α-entmax, but
without its degradation in computational speed?
Our answer is affirmative—we propose a sparse
output transformation that

• is on par or superior to softmax and α-entmax
in the NMT tasks,

• works as fast as softmax during training and
at inference,

• gives the same training dynamics as α-entmax
(in training steps).

The most surprising thing is that such a transforma-
tion is simply a shifted ReLU raised to power 1

α−1 ,
which we call α-ReLU.

2We also compare against an approximate version which
only performs sorting on the highest values of the logits.
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The rest of the paper is organised as follows. In
Sect. 2 we motivate the choice of α-ReLU as the
output transformation, and also select an appro-
priate loss function. In Sect. 3 we experimentally
confirm our claims about performance and output
speed of α-ReLU in the NMT task. Sect. 4 is de-
voted to a comparative analysis of α-ReLU and
α-entmax in terms of sparsity, ability to solve the
empty translation problem, and training dynamics.

2 α-ReLU at Output

Our departure point is the α-entmax transformation
of Peters et al. (2019) which can be defined for
z ∈ Rd as

α-entmaxi(z) = [(α− 1)zi − τ(z)]
1

α−1
+ , (1)

where [x]+ := max{x, 0}, and τ : Rd → R is
the (unique) function that satisfies

∑
j [(α−1)zj−

τ(z)]
1

α−1
+ = 1 for any z. It is this threshold τ that

makes the computation of α-entmax slow, because
one needs to sort the components of z to find τ
(Peters et al., 2019, Alg. 2).

As we can see, the threshold τ is only needed to
ensure that α-entmax(z) is a probability distribu-
tion. We loosen this constraint, and only require
non-negative weights, which is sufficient for most
uses. Consider then a transformation

α-ReLUi(z) := [(α− 1)zi − τ ]
1

α−1
+ , (2)

where τ is a constant that does not depend on z. In
order to force α-ReLU(z)—applied to the logits
z—to converge to the one-hot vector ey of the gold
label y we need to adjust the corresponding loss.
This can easily be done by feeding the logits z
and the output α-ReLU(z) into the following loss,
which we call α-ReLU loss.

`(z, y) = (α-ReLU(z)− ey)
>
(
z− τ

α−11
)

+ Hα[α-ReLU(z)], (3)

where Hα[p] := 1
α(α−1)

(
1−∑j p

α
j

)
, α 6= 1, is

the Tsallis α-entropy (Tsallis, 1988), and 1 :=
(1, . . . , 1) ∈ Rd is a vector of ones. The rationale
for coupling α-ReLU with the loss (3) is the fol-
lowing

Lemma 1. For any τ ∈ R, the gradient of the
α-ReLU loss (3) is given by

∇z`(z, y) = α-ReLU(z)− ey.

Proof. The proof is in Appendix B.1.

By Lemma 1, gradient-based minimization of `
indeed forces α-ReLU(z) → ey. Notice that this
is similar to what happens when the softmax nor-
malization is coupled with the cross-entropy loss
or when α-entmax is coupled with the entmax loss.
In both cases differentiating the loss with respect to
logits gives p−ey, where p is either softmax(z) or
α-entmax(z) (Martins and Astudillo, 2016; Peters
et al., 2019).

Remark. Recall that α-entmax is a generaliza-
tion of sparsemax. For example, 2-entmax is es-
sentially sparsemax, and for α ∈ (1, 2) we get
a smoothed version of sparsemax. Similarly, α-
ReLU is a kind of generalization of ReLU. So, the
standard ReLU is 2-ReLU (with τ = 0), and for
α ∈ (1, 2) we get a smoothed ReLU (see Fig. 1).

Figure 1: The graph of α-ReLU(x) for several α ∈
(1, 2], with τ = 0. 2-ReLU is a standard ReLU(x) :=
[x]+.

3 Experiments

In theory, nothing prevents α-ReLU from learning
what α-entmax is learning. However, in practice
we can have a different picture, because training
is conditioned by many factors—the size of the
dataset, the architecture of the neural network, the
optimization algorithm, etc. In this section, we
compare α-ReLU empirically with α-entmax (as
well as with sparsemax and softmax), assuming
all other factors are fixed. The goal of these ex-
periments is to evaluate the consequences of using
α-ReLU as drop-in replacement for α-entmax.

We test α-ReLU at output in a neural machine
translation task (Sutskever et al., 2014), which is
essentially a conditional text generation task. Com-
pared to open-ended text generation, there is a
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Output Transform Loss IWSLT De→En WMT En→De WMT En→Ru

softmax cross-entropy 35.3 28.7 22.4
sparsemax sparsemax loss 35.5 26.6 19.6
1.5-entmax 1.5-entmax loss 36.6 28.6 23.9
1.5-entmax (k = 100) 1.5-entmax loss 36.7 28.4 23.7
1.5-ReLU 1.5-ReLU loss 37.3 28.6 24.6

# Trainable parameters 47M 75M 75M

Table 1: NMT results: comparison of softmax, sparsemax, 1.5-Entmax and the proposed 1.5-ReLU as the output
transformations in the Transformer NMT model. Reported is detokenized test BLEU.

clearer metric of the quality of the generated text—
the BLEU score (Papineni et al., 2002). As in
open-ended text generation, at each prediction step,
the NMT system needs to make a choice from all
words (subwords) of the vocabulary, the size of
which can reach several tens of thousands. There-
fore, the sparsity of the output distribution becomes
critical in such setups, since it can explicitly pre-
vent the occurrence of most of the words that are
inappropriate in the context.

3.1 Setup
Data. We conduct experiments on three datasets
of varied sizes:

• IWSLT’14 De→En (Cettolo et al.), 172K
training examples,

• WMT’14 En→De (Bojar et al., 2014), 4.5M
training examples,

• WMT’13 En→Ru (Bojar et al., 2013), 1.3M
tranining examples.3

We preprocess all datasets using the byte pair en-
coding algorithm (Sennrich et al., 2016) with 10K
merge operations on IWSLT, 40K merge opera-
tions on WMT En→De, and 60K merge operations
on WMT En→Ru. We report detokenized case-
sensitive BLEU with SacreBLEU (Post, 2018).4

Hyperparameters α and τ . In all experiments
we set α = 1.5, because this value was recom-
mended by Peters et al. (2019); Peters and Martins
(2021) as the middle ground between α = 1 (soft-
max) and α = 2 (sparsemax).

The value for τ is chosen as follows: we run the
first batch through a non-trained neural network,

3We did not use the Yandex 1M Parallel Corpus because
of its license restrictions.

4BLEU+case.mixed+lang.en-
de+numrefs.1+smooth.exp+tok.13a+version.1.5.1

which has 1.5-entmax at the output, in the forward
direction and determine the average τ value across
the batch. This value is then used to train the 1.5-
ReLU network. Our preliminary experiments have
shown that 1.5-ReLU convergence is sensitive to
the τ value, and that having output close to the
probability distribution early in the learning phase
works well with the rest of hyperparameters which
are set to their default values.

Training. We trained the Transformer Base
(Vaswani et al., 2017) using the OpenNMT-py 2.0
toolkit (Klein et al., 2017). Optimization details
are in Appendix A.

3.2 Results
The results are given in Table 1. Reported are
test BLEU scores for best checkpoints which are
selected based on validation BLEU. We observe
that the 1.5-ReLU performs on par with 1.5-entmax
or better, while sparsemax is inferior to all others.

Training Time. Fig. 2&3 show the training dy-
namics in training steps and in wall time on
WMT’14 En→De. Despite the closeness of perfor-
mance in intermediate steps and at the end of train-
ing, we see that on the larger datasets 1.5-entmax
is slower in wall time than softmax and 1.5-ReLU.

To speed up the learning process, Peters et al.
(2019) recommended limiting the number of sorted
logits in the α-entmax to the k largest logits. We
tried this using k = 100, which is the default value
in the author’s implementation of α-entmax.5 The
resulting training dynamics are shown as dashed
curves in Fig. 2&3. As we can see, partial sorting
indeed speeds up the learning process, and at the
same time does not harm the quality of the transla-
tion compared to α-entmax with full sorting. But
in the end, learning is still slower than in the case

5https://github.com/deep-spin/entmax
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Figure 2: Training dynamics in training steps.

Figure 3: Training dynamics in absolute time. 1.5-entmax (k=100) is a variant of 1.5-entmax in which sorting is
performed only for the largest k = 100 logits.

Figure 4: Normalized inference for WMT En→Ru
with different beam sizes.

of 1.5-ReLU. Of course, one can try to select such
k that the speed of calculating the 1.5-entmax will
be as close as possible to the speed of 1.5-ReLU
without losing quality, but this requires additional
efforts on the part of the user, and this must be
done for each case separately. Also note that both
1.5-entmaxes (with full and partial sorting) can-
not learn the English-Russian data set as well as
1.5-ReLU.

In this regard, 1.5-ReLU does not require addi-
tional fine-tuning, converges as fast as softmax in
absolute time and performs on par or better. Thus
1.5-ReLU combines all three desired properties:
computation speed, task performance, and sparsity
of output.

Inference Time. We measured inference time of
translating the WMT En→Ru test data with the
different strategies and with different beam sizes.
The results—normalized by the smallest value—
are shown in Fig. 4. As can be seen the relative
difference seems independent of the beam size:
softmax is almost twice faster than 1.5-entmax
(with full sorting over the logits). Even though
the softmax version is optimized through the soft-
max CUDA kernel, it performs equivalent to the
1.5-ReLU model in terms of computation speed.

4 Analysis

4.1 Empty Translations

We remind the reader that the cat got your tongue
problem (Stahlberg and Byrne, 2019) is one of the
main motivations for using sparse transformations
when generating text. As Peters and Martins (2021)
have shown, 1.5-entmax successfully tackles this
problem by significantly lowering the proportion of
cases where an empty string is more likely than the
beam search hypothesis. For 1.5-ReLU, we also
calculated this proportion, and compared it with the
proportions for softmax and sparsemax (Table 2).
As we see, 1.5-ReLU also successfully tackles the
cat got your tongue problem.
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Figure 5: Sparsity as proportion of zero components after ap-
plying 1.5-ReLU and 1.5-entmax, test sets.

Figure 6: Sparsity on training set.

Output IWSLT WMT WMT
Transform De→En En→De En→Ru

softmax 7.5% 29.8% 31.7%
sparsemax 0% 0.03% 0%
1.5-entmax 0% 0.2% 0%
1.5-ReLU 0% 0.3% 0.1%

Table 2: Percentage of development set examples
for which the model assigns higher probability to the
empty string than to the beam-decoded hypothesis.

4.2 Sparsity

To compare the sparsity of 1.5-ReLU and 1.5-
entmax we depict in Fig. 5 the distributions of the
number of zero components after applying these
transformations (recall that for softmax all compo-
nents are always nonzero). Since we constructed
the α-ReLU in such way that it mimics the α-
entmax (at least in the early stages of training), we
expected that these two transformations would have
similar properties, including sparsity. However,
this is not the case: as we can see, the 1.5-ReLU
is significantly less sparse than the 1.5-entmax. It
is noteworthy that lower sparsity in this case cor-
relates with a better performance in the translation
task (see Table 1).

A possible explanation for the difference in spar-
sity levels could be that α-ReLU, in contrast to
α-entmax, behaves significantly differently on the
test set than on the training set. However, this is
not the case: for example, comparing the sparsity
on the IWSLT training set (Fig. 6), we see that
the distributions of non-zero components are al-
most the same as on the test set for 1.5-ReLU and
1.5-entmax.

Note that the sparsity of α-ReLU and α-entmax

is approximately the same at the beginning of train-
ing due to how we initialize τ in 1.5-ReLU (mak-
ing it as close as possible to 1.5-entmax’s τ in the
untrained model, Sec. 3.1). However, during train-
ing, α-ReLU’s τ remains fixed, and the model can
only adapt the logits themselves so that α-ReLU(z)
converges to the corresponding one-hot vector. At
the same time, in α-entmax, τ(z) adapts together
with logits z. We hypothesize that during train-
ing, the entmax’s τ(z) gradually increases which
entails greater sparsity by the end of the training.
However, the logits themselves also change during
training, so the increase in τ may not be the cause
of greater sparsity. To find out, we track the dy-
namics of mean logit norm ‖z‖ and mean τ during
training for both 1.5-entmax and 1.5-ReLU (Fig. 7).
As we can see, the logit sizes grow in both cases.

Figure 7: Evolution of the mean τ(z) and ‖z‖ dur-
ing training for 1.5-entmax and 1.5-ReLU models on
IWSLT’14 En→De.

At the same time, the 1.5-entmax’s τ(z) increases
following the logit size, while the 1.5-ReLU’s τ
remains constant. From this we conclude that the
sparsity of 1.5-entmax is inevitably less than the
sparsity of 1.5-ReLU.
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4.3 Impact of τ

The selection of τ was described in Section 3.1.
However, the question arises: does the described
approach lead to the choice of the optimal τ? To
find out, we trained the α-ReLU models for τ ∈
{0, 0.1, 0.2, ..., 0.9, 1, 2, 5, 10} on the IWSLT data.
Note that all of these τ ’s have led to almost the
same result at the end of the training (as predicted
by Lemma 1). In Fig. 8, we present the dynamics of
early training only for τ ∈ {0, 0.1, 0.2, 0.3, 5, 10},
since the curves for τ ∈ {0.4, ..., 0.9, 1, 2} practi-
cally coincided with the optimal curve correspond-
ing to τ = 0.3. Note that our τ selection method

Figure 8: Impact of τ on training dynamics, IWSLT’14
En→De.

gave a value of 0.33, thus we have no evidence
against the adequacy of our method.

4.4 Estimation of τ without data

On closer inspection, we noticed that the pre-
entmax logits in the untrained Transformer model
are distributed according to the normal law, regard-
less of what data is supplied to the input, Shapiro-
Wilk test, p-value > 0.15. This allows us, using
asymptotic theory, to estimate τ as

τ̂ =

√
dmodel

2(dmodel + dvocab)
· Φ−1(1− p∗), (4)

where dmodel is the size of hidden representations,
dvocab is the vocabulary size for a target language,
Φ−1(·) is the probit function and p∗ is the solution
of a non-linear equation that involves functions
related to the standard normal distribution (see Ap-
pendix B.2 for details). Table 3 compares the τ̃
calculated by running data through an untrained
model with the estimate τ̂ obtained from (4). As
we can see, τ̂ practically coincides with τ̃ with an

IWSLT’14 WMT’14 WMT’13
De→En En→De En→Ru

dmodel 512 512 512
dvocab 10,000 40,000 60,000
p∗ .0184 .0171 .0169

τ̃ .33 .17 .14
τ̂ .33 .17 .14

Table 3: Estimating threshold of 1.5-entmax: τ̃ is a
value obtained by running a data through an untrained
model; τ̂ is an estimate based on asymptotic theory, i.e.
without running the data through the model.

accuracy of two decimal places. Unfortunately, the
formula (4) is not universal: it is only true for the
Transformer architecture.

4.5 Self-normalization
The attentive reader may have noticed that the out-
put of α-ReLU is not normalized, i.e. the compo-
nents of α-ReLU(z) do not have to sum up to 1.
Accordingly, the question arises: how correct is it
to compare translation scores at different steps of
the beam-search decoding if the conditional prob-
abilities are not normalized? However, the com-
parison is possible if the α-ReLU(z) components
add up to approximately the same number, i.e. if
the model is self-normalizing. To check this, we
ran the trained α-ReLU model on the IWSLT and
WMT’14 test sets, and looked at the distribution of∑

i α-ReLUi(z) at each decoding step. The results
are shown in Fig. 9. As we can see, the sum of the

Figure 9: Distribution of the sum of α-ReLU(z) com-
ponents across the IWSLT’14 and WMT’14 test sets:
α-ReLU self-normalizes.

α-ReLU(z) components concentrates well around
its mean ≈ 1.24 (IWSLT) and 1.09 (WMT’14),
which might indicate that the model indeed has a
self-normalization property.

4.6 Training Dynamics
As we noted in Sect. 3.2, the training dynam-
ics are similar in all three cases (softmax, 1.5-
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entmax, 1.5-ReLU) when time is measured in train-
ing steps. Here we attempt to explain this phe-
nomenon through the recently proposed Neural
Tangent Kernel (NTK) approach of Jacot et al.
(2018). Roughly speaking, the NTK theory sug-
gests that a sufficiently wide neural network trains
like a kernel regression. We use this theory to show
(in Appendix B.3) that in all three cases the logits
z(x, t) for a training instance x at a training step
t evolve (approximately) according to the same
differential equation

dz

dt
= −E(x′,y′)[Kσ(x, x′) · (σ(z′)− ey′)], (5)

where expectation is over training examples
(x′, y′), σ(·) is one of the transformations con-
sidered (softmax, α-entmax, or α-ReLU), and
Kσ(x, x′) ∈ Rd×d is a positive semi-definite
matrix that depends on σ. The Equation (5) is
a non-linear matrix differential equation which
in general cannot be solved analytically. How-
ever, it has an equilibrium point z(x, t) such that
E(x′,y′)[Kσ(x, x′) · (σ(z′)− ey′)] = 0, thus its so-
lution converges to this point as t→∞. This simi-
larity in the evolution of σ(z) implies the similarity
in the evolution of the perfomance metric—such as
BLEU—across all three transformations.

4.7 Human Evaluation
Although the BLEU metric (Papineni et al., 2002)
has stood the test of time, it is still an automated
assessment of translation quality. To double-check
the reliability of the results from Table 1, we de-
cided to manually evaluate the translations from
the WMT’13 En→Ru test split. To do this, we
followed the human evaluation setup from (Berard
et al., 2019). We formed two random samples of
135 instances each and gave them to two annotators.
45 instances were shared across two samples in or-
der to calculate inter-annotator agreement. Each
instance consists of an original sentence in English
and 4 candidate translations into Russian (refer-
ence, softmax, entmax, α-ReLU). The annotators
were to rate each translation on a 4-point scale. For
annotation instructions, see Appendix C.

The order of candidate translations was shuffled
for each instance, so the annotators did not know
which sentence is from which model. Nevertheless,
the annotator always had a good chance of guessing
which translation was the reference one, due to
the large difference in quality between human and
machine translation.

Model Avg. Score Std. Dev.

Reference 3.9 0.30
Softmax 3.3 0.75
1.5-entmax 3.2 0.74
1.5-ReLU 3.3 0.74

Table 4: Results of Human Evaluation across 270
random examples (with repetitions) from WMT’13
En→Ru test split. Scores are on a 4-point scale.

The results of human evaluation are shown in
Table 4. Cohen’s κ = 0.56, indicating moderate
agreement between annotators. As we can see, all
three models give approximately the same transla-
tion quality, and all three are significantly inferior
to the reference translation. This is generally con-
sistent with the results of 1.5-ReLU and 1.5-entmax
in Table 1, but at the same time casts doubt on the
softmax lag behind 1.5-ReLU and 1.5-entmax as
the BLEU metric suggests.

In Appendix D we give a few examples where
1.5-ReLU translates better than 1.5-entmax and
vice versa.

5 Related Work

Sparse seq2seq models. Our proposed α-ReLU
transformation is based on the α-entmax transfor-
mation of Peters et al. (2019), which in turn is
a generalization of the sparsemax transformation
(Martins and Astudillo, 2016). In our work, we
study sparseness at the output of a neural network.
Nevertheless, there are a number of works aimed
at sparsification within a neural network. For ex-
ample, Malaviya et al. (2018); Peters et al. (2019);
Correia et al. (2019) show that sparsemax and α-
entmax can replace softmax in the attention mech-
anism with some success. A recent work of Zhang
et al. (2021) attempted to replace softmax with a
component-wise ReLU in the attention mechanism.
Unfortunately, in its pure form, this replacement
leads to the inability of the model to learn at all,
since its loss function does not decrease during
optimization. The authors solve this problem by
adding a normalizing layer on top of the attention
layer.

These and other works (Zhang et al., 2019) state
that sparsity in the weights of attention produces
more interpretable patterns. However, Meister et al.
(2021) questioned this claim and were unable to
find clear evidence to support it. Therefore, in this
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work, we focused on the application of α-ReLU to
the output of the transformer model, and not to the
mechanism of attention, but at the same time we
do not deny the possibility of studying the latter.

Self-normalization. Self-normalizing training
aims to bypass the need of normalization during in-
ference time. This is done by tweaking the learning
mechanism so that the sum of all predictions sums
(approximately) to a constant value. Theoretical
work on why this works is poorly understood (An-
dreas et al., 2015) but early work in neural ma-
chine translation has shown its empirical value.
Vaswani et al. (2013) achieves that by using noise-
contrastive estimation (the neural model is used to
re-rank the output of a hierarchical phrase-based
machine translation system). Noise-contrastive es-
timation is also the standard training mechanism
for word2vec (more popular than the alternative
hierarchical softmax), which also eschews any ex-
pensive normalization. Differently, Devlin et al.
(2014) changes the training loss to include a factor
that encourages the normalizing factor to be 1. At
inference time, this is just assumed and decoding
time is reported to achieve a 15x speed-up.

6 Limitations and Risks

We believe that the main limitations of our work
are as follows:

• α-ReLU’s output is still not a probability dis-
tribution, as required by the classical formula-
tion of a probabilistic classification model.

• τ evaluation requires either running the data
through an untrained model with α-entmax at
the output, or deriving a formula similar to (4)
for each individual architecture.

• Our approach only works for the case when α-
ReLU is used at the output of the model, but
it is not clear how to use it as an alternative to
softmax/α-entmax in the attention layer.

The last mentioned limitation leads to the potential
risk of inability to learn if α-ReLU is misused in
the intermediate layers of the neural network such
as attention layers. The experiments of Zhang et al.
(2021) using vanilla ReLU (2-ReLU with τ = 0
in our notation) instead of softmax to produce at-
tention weights lead to a divergence of the loss
function of the Transformer model. This translates
into a waste of energy, especially when training

large models on large datasets. Therefore, we be-
lieve that in the future, a preliminary mathemati-
cal analysis and/or experiments with small models
on small datasets should be carried out as to why
the unnormalized distribution of attention weights
leads to the inability of the model to learn.

7 Conclusion

It seems that the sparsity of the output is natural for
(sub)word prediction models. Nevertheless, spar-
sity does not have to come with slowdown of com-
putations, as our work shows. The proposed trans-
formation, α-ReLU, gives a sparse output, shows
competitive performance, and is as fast as softmax.
The reduced dependency on the vocabulary size
seems particularly important in translation, where
neural models are moving more and more towards
multi-lingual ones, which in general have a much
higher vocabulary size in order to accommodate
enough tokens for all languages.

A natural extension of this work will be the eval-
uation of α-ReLU in the problem of open-ended
text generation, as well as a replacement for soft-
max in the attention layers of Transformer models.

Our standalone implementation of α-ReLU
in PyTorch is available at https://github.
com/MaxatTezekbayev/alpha-relu.
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A Optimization

IWSLT’14 De→En

• Architecture: Transformer, embedding size 512, 6 layers, 8 heads, hidden size 1024, shared vocabu-
lary.

• Batch size: 4096 tokens (with gradient accumulation for 8 steps).
• Optimizer: ADAM, β1 = 0.9, β2 = 0.998, noam decay, learning rate 2.0, 4000 warmup steps.
• Dropout: 0.3
• No label smoothing.

WMT’14 En→De

• Architecture: Transformer, embedding size 512, 6 layers, 8 heads, hidden size 2048, shared vocabu-
lary of 40K tokens, shared embeddings and decoder embeddings.

• Batch size: 4096 tokens (with gradient accumulation for 4 steps).
• Optimizer: ADAM, β1 = 0.9, β2 = 0.998, noam decay, learning rate 2.0, 8000 warmup steps,

average decay 0.0005.
• Dropout: 0.1.
• Attention dropout: 0.1.
• No label smoothing.

WMT’13 En→Ru Same as in WMT’14 En→De, except that Dropout is 0.3.

A.1 GPU Power Consumption

Dataset IWSLT’14 En→De WMT’14 De→En WMT’13 En→Ru
GPU(s) 1 × RTX 2080 Ti 2 × RTX 3090 4 × Tesla V100 SXM2
Power consumption, W 250 2×320 4×300

Training time, hours

softmax 15.41 30.06 28.43
sparsemax 24.43 73.33 58.82
1.5-entmax 26.11 79.89 61.20
1.5-ReLU 16.50 31.44 24.21

TOTAL hours 82.44 214.72 172.67
TOTAL kW-hours 20.61 137.42 207.20

GRAND TOTAL kW-hours 365.23

Table 5: Power consumed by GPUs for training.

We do not report CO2 consumption, as experiments were run in different countries, making aggregate
statistics difficult to compute. The largest experiment (on WMT’13), were run in France, which benefits
from a very low CO2 emission intensity in its electrical mix.

B Proofs

Notation. We let R denote the real numbers. Bold-faced lowercase letters (x) denote vectors in
Euclidean space, bold-faced uppercase letters (A) denote matrices, plain-faced lowercase letters (x)
denote scalars, ‖ · ‖ denotes the Euclidean norm: ‖x‖ :=

√
x>x. The gradient of f : Rd → R is denoted

by∇f . The Jacobian of z 7→ g(z) is denoted by Jg(z). Also, we denote ReLU(x) := [x]+ := max{x, 0},
[d] := {1, . . . , d}, ∆d−1 := {p ∈ Rd | ∑i pi = 1, pi ≥ 0}, ey := (0, . . . , 0, 1, 0, . . . , 0) where 1 is at
yth position.
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B.1 Proof of Lemma 1.
First, let us calculate the Jacobian of the mapping z 7→ α-ReLU(z). Recall that

α-ReLUi(z) := [(α− 1)zi − τ ]
1

α−1
+ .

Therefore, the partial derivatives are given by

∂[α-ReLUi(z)]

∂zi
=

1

α− 1
· [(α− 1)zi − τ ]

1
α−1
−1

+ · (α− 1) = [(α− 1)zi − τ ]
2−α
α−1
+

= [α-ReLUi(z)]2−α,

∂[α-ReLUi(z)]

∂zj
= 0. i 6= j

Thus, the Jacobian can be written concisely as

Jα-ReLU(z) = diag{[α-ReLU(z)]2−α}, (6)

where raising to power is done component-wise (i.e. xβ = [xβ1 , . . . , x
β
d ]), and diag[x] is a diagonal matrix

with x on its diagonal.
Recall the definition of the Tsallis α-entropy:

Hα[p] :=
1

α(α− 1)


1−

∑

j

pαj


 .

Its gradient w.r.t. p is

∇p Hα[p] = − 1

α− 1
pα−1,

Combining this with (6), and using the chain rule, we have

∇z Hα[α-ReLU(z)] = [Jα-ReLU(z)]> ·
(
− 1

α− 1
[α-ReLU(z)]α−1

)

=
[
diag{[α-ReLU(z)]2−α}

]> ·
(
− 1

α− 1
[α-ReLU(z)]α−1

)

= − 1

α− 1
[α-ReLU(z)]2−α � [α-ReLU(z)]α−1

= − 1

α− 1
α-ReLU(z), (7)

where� is the Hadamard product (element-wise multiplication), and we used diag[x] ·y = x�y. Taking
into account (7), the gradient of the α-ReLU loss (3) w.r.t. z is

∇z`(z, y) = ∇z

[
(α-ReLU(z)− ey)

>
(
z− τ

α− 1
1

)]
+∇z Hα[α-ReLU(z)]

= (α-ReLU(z)− ey) + J>α-ReLU(z)

(
z− τ

α− 1
1

)
− 1

α− 1
α-ReLU(z)

= (α-ReLU(z)− ey) +
1

α− 1

[
diag{[α-ReLU(z)]2−α}

]>
[(α− 1)z− τ1]− 1

α− 1
α-ReLU(z)

= (α-ReLU(z)− ey) +
1

α− 1
[(α− 1)z− τ1]

2−α
α−1
+ � [(α− 1)z− τ1]︸ ︷︷ ︸
α-ReLU(z)

− 1

α− 1
α-ReLU(z)

= α-ReLU(z)− ey,

where in the fourth line we used [x]β+ � x = [x]β+ � [x]+ = [x]β+1
+ . This concludes the proof.
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B.2 Approximation of τ for 1.5-entmax
We derive the formula (4) in two steps: first in Lemma 2, we approximate τ(z) of 1.5-entmax when z is an
arbitrary random sample from the normal distribution with zero mean and variance σ2; next in Lemma 3,
we compute σ2 for the case when z is the pre-softmax vector of logits in the Transformer model.
Lemma 2. Let z1, . . . , zd be independent and identically distributed random variables from the normal
distribution N (0, σ2). Then the thresholding function of 1.5-entmax(z) can be approximated as

τ(z) ≈ σ

2
Φ−1(1− p∗),

where Φ−1(·) is a probit function, and p∗ is the solution of

Φ−1(1− p) = m(p)−
√

4

σ2
· ε
p
− s(p)

with

m(p) :=
1

p− ε
[
φ(Φ−1(x)

]x=p
x=ε

(8)

s(p) :=
1

p− ε
[
−φ(Φ−1(x)) · Φ−1(x) + x

]x=p
x=ε
− [m(p)]2 (9)

φ(t) :=
1√
2π
e−

t2

2

ε :=
1

d

Proof. Let z(1) ≥ . . . ≥ z(d) be a sorting of z1, . . . , zd in descending order. Peters et al. (2019) showed
that

τ(z) =
M(k)

2
−
√

1

k
− S(k)

4
, (10)

where k ∈ [d] is any index that satisfies

z(k)

2
≥ M(k)

2
−
√

1

k
− S(k)

4
≥
z(k+1)

2
⇔ z(k) ≥M(k)−

√
4

k
− S(k) ≥ z(k+1) (11)

with

M(k) :=
1

k

k∑

i=1

z(i), S(k) :=
1

k

k∑

i=1

z2(i) − [M(k)]2.

Approximating z(i) by its asymptotic mean σΦ−1
(
1− i

d

)
(Arnold et al., 2008), and denoting ε := 1

d ,
p := k

d , we have

M(k) ≈ 1

k

k∑

i=1

σΦ−1
(

1− i

d

)
≈ σ

p− ε

∫ p

ε
Φ−1(1− x)dx =

σ

p− ε

∫ p

ε
−Φ−1(x)dx

=
σ

p− ε
[
φ(Φ−1(x))

]x=p
x=ε

= σm(p),

where we approximated the average of finitely many numbers {Φ−1(1− i/d)}ki=1 by the mean value of
the function Φ−1(1− x), and then we used the fact that −φ(Φ−1(x)) is an antiderivative for the probit
function Φ−1(x); and m(p) is defined by (8).

Similarly, for the second empirical moment, we have

1

k

k∑

i=1

z2i ≈
1

k

k∑

i=1

[
σΦ−1

(
1− i

d

)]2
≈ σ2

p− ε

∫ p

ε
[Φ−1(1− x)]2dx =

σ2

p− ε

∫ p

ε
[Φ−1(x)]2dx

=
σ2

p− ε
[
−φ(Φ−1(x)) · Φ−1(x) + x

]x=p
x=ε

,
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and thus

S(k) ≈ σ2

p− ε
[
−φ(Φ−1(x)) · Φ−1(x) + x

]x=p
x=ε
− [m(p)]2 = σ2s(p),

where s(p) is defined by (9). Hence, finding k ∈ [d] that satisfies (11) is (approximately) equivalent to
finding p ∈ (0, 1) that satisfies

σΦ−1(1− p) = σm(p)−
√

4 · ε
p
− σ2s(p) ⇔ Φ−1(1− p) = m(p)−

√
4

σ2
· ε
p
− s(p). (12)

Let p∗ be the solution of (12). Then, taking into account (10), we have

τ(z) ≈ σm(p∗)
2

−
√

ε

p∗
− σ2s(p∗)

4
=
σ

2

(
m(p∗)−

√
4

σ2
· ε
p∗
− s(p∗)

)
=
σ

2
Φ−1(1− p∗),

which concludes the proof.

Lemma 3. Let z = Wx be a pre-softmax vector of logits in the OpenNMT-py (Klein et al., 2017)
implementation of the Transformer model (Vaswani et al., 2017). Then for any input, in a non-trained
model the logits z1, . . . , zd are distributed according to the normal distributionN

(
0, 2·dmodel

dmodel+dvocab

)
, where

dmodel is the size of hidden representations, and dvocab is the vocabulary size for a target language.

Proof. The default Transformer configuration in OpenNMT-py implies that the elements wij of W are

initialized from a uniform distribution U [−a, a], where a =
√

6
dmodel+dvocab

, thus

E[wij ] = 0, Var[wij ] =
(2a)2

12
=
a2

3
=

2

dmodel + dvocab
(13)

Since x is the result of a layer normalization (Ba et al., 2016), we have

1

dmodel

dmodel∑

j=1

xj = 0,
1

dmodel

dmodel∑

j=1

x2j = 1 (14)

Therefore, from (13) and (14), we have

E[zi] = E



dmodel∑

j=1

wijxj


 =

dmodel∑

j=1

E[wij ] · xj = 0,

Var[zi] = Var



dmodel∑

j=1

wijxj


 =

2

dmodel + dvocab

dmodel∑

j=1

x2j =
2 · dmodel

dmodel + dvocab
.

Being a sum of independent random variables, by the Central Limit Theorem, each zi tends to normal
distribution with the mean and variance above.

B.3 Derivation of the Equation (5)

We provide derivation for the case of α-ReLU. Extension to α-entmax and softmax is done analogously.
Let x ∈ Rn0 be the input vector. We define a feedforward neural network with L − 1 hidden layers
recursively:

h(0) = x

z(k) =
1√
nk−1

W(k−1)h(k−1),

h(k) = σ(z(k)), k = 1, . . . , L− 1
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where W(k−1) ∈ Rnk×nk−1 is the weight matrix in the kth hidden layer, and σ(·) is a nonlinear activation
function applied element-wise. We consider the case of a multi-label classification, i.e. the output layer is
a vector

z := z(L) ∈ Rd,

which is fed into the α-ReLU loss:

`(z, y) = (α-ReLU(z)− ey)
>
(
z− τ

α− 1
1

)
+ Hα[α-ReLU(z)], (15)

where Hα[p] := 1
α(α−1)

∑
j(pj − pαj ), α 6= 1, is the Tsallis α-entropy (Tsallis, 1988). Given a training

sample S := {(x, y)} learning is performed by minimizing the training error

L := E(x,y)∼S [`(z(x), y)] (16)

with respect to the network parameters θ := vec
(
{W(k−1)}k∈[L−1]

)
.

Lemma 4. Let the training error (16) be minimized by gradient descent with infinitesimally small learning
rate. Let z(x, t) ∈ Rd be the network output on any training instance x at time t, and y be the desired
output. Then, as the widths of hidden layers nk → ∞, ∀k ∈ [L − 1], the output z(x, t) follows the
following evolution

dz

dt
= − E

(x′,y′)∼S
[K(x, x′) · (α-ReLU(z′)− ey′)], (17)

where K(x, x′) ∈ Rd×d is a positive semidefinite matrix, and z′ := z(x′, t).

Proof. From (16) and Lemma 1 we have

∇zL = ∇z E(x′,y′)∼S [`(z′, y)] = ∇z`(z, y) = α-ReLU(z)− ey, (18)

where we denoted z := z(x, t) and z′ := z(x′, t) for shorthand. Now, consider the gradient descent
update

θt+η = θt − η∇θL ⇔ θt+η − θt
η

= −∇θL, (19)

where η is the learning rate. Taking the limit in (19) as η → 0, we have:

dθ

dt
= −∇θL = −E(x′,y′)∼S [J>z′(θ) · ∇z′L],

where the last equality is due to the chain rule. Combining this with (18), we get

dθ

dt
= −E(x′,y′)∼S [J>z′(θ) · (α-ReLU(z′)− ey′)] (20)

Applying the chain rule again, and using (20), we have

dz

dt
= Jz(θ) · dθ

dt
= −E(x′,y′)∼S [Jz(θ)J>z′(θ)︸ ︷︷ ︸

K(x,x′;θ)

·(α-ReLU(z′)− ey′)].

The quantity K(x, x′;θ) was named the Neural Tangent Kernel by Jacot et al. (2018). They also showed
(see their Theorem 1) that

K(x, x′;θ)→ K(x, x′) as n1, . . . , nL−1 →∞,

where K(x, x′) ∈ Rd×d is the deterministric kernel that does not depend on θ. This concludes the
proof.
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C Instructions for Human Annotators

You are shown a reference sentence and several candidate translations. Please indicate, for each,
on a 4-point scale, how much of the meaning is represented in the translation, ignoring the language quality.

Imagine you are a forgiving reader, ignoring any error that does not prevent you from getting
the meaning of the text. So please ignore language oddities, typographic errors and the like. (This is
difficult but key to us!)

The scale of meaning preservation is: 4 = Everything / 3 = Most / 2 = Little / 1 = None

As we are interested in comparing system’s output, you can refine your judgement using + or
−, e.g. 3+.

When you do not know, simply leave empty.

For instance, given the reference sentence

“This restaurant is beautiful and the staff is very friendly”,

valid judgements for different translations are provided in Table 6.

Score Sentence

4 “This restaurant is beautiful and the staff is very friendly.”
4 “This restaurant is beautiful and the staff is very friendly..”
4 “Beautiful restaurant, staff is very friendly.”
4− “This restaurant is beautiful and the staff is friendly.”
4− “Beautiful restaurant, staff is friendly.”
2+ “Friendly staff”
2 “This is a restaurant.”
1 “Hello guys!”
1 “Bad restaurant”
1− “Bad restaurant, bad staff”

Table 6: Evaluation example

We insist that evaluating by meaning differs from a natural intuitive evaluation. Provided the meaning is
not impacted, we want to ignore the language quality, the punctuation, the casing.
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D Translation Examples

Source Flake was the central figure in Friday’s drama.
1.5-entmax Flèjk byl central’noj figuroj v drame pjatnadcatogo

veka.
Flake was the central figure in fifteenth century
drama.

1.5-ReLU Flèjk byl central’noj figuroj v drame pjatnicy. Flake was the central figure in Friday’s drama.

Source There were smiles and blue skies on Saturday (September 29) as the leaders of Turkey and Germany
met for breakfast in Berlin.

1.5-entmax V subbotu (29 sentjabrja) byli ulybki i goluboe nebo,
poskol’ku lidery Turcii i Germanii vstretilis’ dlja
razvala v Berline.

There were smiles and blue skies on Saturday
(September 29) as the leaders of Turkey and Ger-
many met for a breakup in Berlin.

1.5-ReLU V subbotu (29 sentjabrja) byli ulybki i goluboe nebo,
tak kak lidery Turcii i Germanii vstretilis’ dlja ot-
dyha v Berline.

There were smiles and blue skies on Saturday
(September 29) as the leaders of Turkey and Ger-
many met for a holiday in Berlin.

Source That Was Really Bad Body Language:
1.5-entmax Èto byl dejstvitel’no plohoj jazyk tela That was really bad body language.
1.5-ReLU Èto byl real’nyj jazyk tela That was real body language.

Source The city of Palu, which has more than 380,000 people, was strewn with debris from collapsed buildings
1.5-entmax Gorod Palu, v kotorom prozhivaet bolee 380 000

chelovek, byl razrushen zdanijami.
The city of Palu, home to over 380,000 people, was
destroyed by buildings.

1.5-ReLU Gorod Palu, u kotorogo bolee 380 000 chelovek,
nahodilsja v upadke zdanija.

The city of Palu, which has over 380,000 inhabi-
tants, was in decay building.
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