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Abstract

Answering complex logical queries on incom-
plete knowledge graphs (KGs) with missing
edges is a fundamental and important task for
knowledge graph reasoning. The query em-
bedding method is proposed to answer these
queries by jointly encoding queries and enti-
ties to the same embedding space. Then the
answer entities are selected according to the
similarities between the entity embeddings and
the query embedding. As the answers to a com-
plex query are obtained from a combination of
logical operations over sub-queries, the embed-
dings of the answer entities may not always fol-
low a uni-modal distribution in the embedding
space. Thus, it is challenging to simultaneously
retrieve a set of diverse answers from the em-
bedding space using a single and concentrated
query representation such as a vector or a hyper-
rectangle. To better cope with queries with di-
versified answers, we propose Query2Particles
(Q2P), a complex KG query answering method.
Q2P encodes each query into multiple vectors,
named particle embeddings. By doing so, the
candidate answers can be retrieved from dif-
ferent areas over the embedding space using
the maximal similarities between the entity em-
beddings and any of the particle embeddings.
Meanwhile, the corresponding neural logic op-
erations are defined to support its reasoning
over arbitrary first-order logic queries. The ex-
periments show that Query2Particles achieves
state-of-the-art performance on the complex
query answering tasks on FB15k, FB15K-237,
and NELL knowledge graphs.

1 Introduction

Reasoning over a factual knowledge graph (KG) is
the process of deriving new knowledge or conclu-
sions from the existing data in the knowledge graph
(Chen et al., 2020). A recently developed sub-task
of knowledge graph reasoning is complex query
answering, which aims to answer complex queries
over large knowledge graphs (Hamilton et al., 2018;

Logical Knowledge Graph Queries Interpretations

𝑞1 = 𝑉? . ∃𝑉:𝑊𝑖𝑛 𝑇𝑢𝑟𝑖𝑛𝑔𝐴𝑤𝑎𝑟𝑑, 𝑉
∧ ¬𝐶𝑖𝑡𝑖𝑧𝑒𝑛 𝐶𝑎𝑛𝑎𝑑𝑎, 𝑉
∧ 𝐺𝑟𝑎𝑑𝑢𝑎𝑡𝑒(𝑉, 𝑉?)

Find where the non-Canadian Turing 
award laureates graduated from. 

𝑞2 = 𝑉? . ∃𝑉: 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑠 𝑉?, 𝑉
∧ (𝐴𝑠𝑠𝑜𝑐 𝑉, 𝑇1 ∨ 𝐴𝑠𝑠𝑜𝑐 𝑉, 𝑇2
∨ 𝐴𝑠𝑠𝑜𝑐 𝑉, 𝑇3 )

Find the substances that interact 
with the proteins associated with 
diseases T1, T2, or T3.

𝑞3 = 𝑉? ∶ 𝑀𝑜𝑣𝑒𝑠𝑇𝑜 𝑉?, 𝐴𝑚𝑒𝑟𝑖𝑐𝑎
∧ ¬𝐼𝑠𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡 𝑉?, 𝐴𝑚𝑒𝑟𝑖𝑐𝑎
∧ 𝑊𝑖𝑛𝑠 𝑉?, 𝑁𝑜𝑏𝑒𝑙𝑃𝑟𝑖𝑧𝑒

Find entities, who are not American, 
were the Nobel Prize winners and 
eventually moved to the US.

Figure 1: The example logical knowledge graph queries
and their interpretations in natural language.

Ren et al., 2020; Ren and Leskovec, 2020). Com-
pared to KG completion tasks (Liu et al., 2016;
West et al., 2014), complex query answering re-
quires reasoning over multi-hop relations and logi-
cal operations. As shown in Figure 1, complex KG
queries are defined in predicate logic forms with
relation projection operations, existential quanti-
fiers ∃, logical conjunctions ∧, disjunctions ∨, and
negation ¬. Answering these queries is challenging
because real-world knowledge graphs (KG), such
as Freebase (Bollacker et al., 2008), NELL (Carl-
son et al., 2010), and DBPedia (Bizer et al., 2009),
are incomplete. Consequently, sub-graph matching
methods cannot be used to find the answers.

To address the challenge raised from the incom-
pleteness of knowledge graphs, the query embed-
ding methods are proposed (Hamilton et al., 2018;
Ren et al., 2020; Ren and Leskovec, 2020; Sun
et al., 2020). In this line of research, the queries
and entities are jointly encoded into the same em-
bedding space, and the answers are retrieved based
on similarities between the query embedding and
entity embeddings. In general, there are two steps
in encoding a query to the vector space. First, a
query is parsed into a computational graph with a
directed acyclic graph (DAG) structure, as shown
in Figure 2 (A). Then, the query representation
is iteratively computed following the neural logic
operations and relation projections in the DAG.

Although the query embedding methods are ro-
bust for dealing with the incompleteness of KGs,
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Figure 2: An example of answering a knowledge graph query by using the Query2Particles method. (A) The
computational graph corresponds to the query “where did the non-Canadian Turing award laureates graduate from.”
(B) The Query2Particles encodes each query into a set of vectors, called particle embeddings. The logical operations
iteratively compute particle embeddings following the computational graph. The answers are determined by using
the maximum similarities between the entity embeddings and any one of the resulting particle embeddings.

the embedding structure used for encoding the
queries can be improved. Because of the multi-hop
and compositional nature of complex KG queries,
a single query may contain multiple sufficiently
diverse answers. Thus, the ideal query embedding
may follow a multi-modal distribution1 in the em-
bedding space. For example, the answers to the
query, “Find entities, who are not American, were
the Nobel Prize winners and eventually moved to
the US,” involve intermediate entities with differ-
ent attributes, such as gender, nationality, research
fields, etc. It is difficult to use a single embedding
vector to find all final answer embeddings. Box
embedding (Ren et al., 2020) partially solved this
problem, but for complicated attributes, a single
box may be too coarse, and intermediate entities
are distributed far away from each other, so they
are more like several disjoint clusters rather than
a single big region in the embedding space. So
for the query embedding methods, the capability
to simultaneously encode a set of answers from
different areas is necessary.

To better address the diversity of answers, we
propose Query2Particles, a new query embedding
method for complex query answering. In this ap-
proach, each query is encoded into a set of vectors
in the embedding space, called particle embeddings.
The particle embeddings of a query are iteratively
computed by following the computational graph
parsed from the query. Then the answers to this
query are determined by using the maximum simi-
larities between the entity embeddings and any one
of the resulting particle embeddings. Experimental
results show that Query2Particle achieves state-of-
the-art performance on complex query answering
over three standard knowledge graphs: FB15K,
FB15k-237, and NELL. Meanwhile, the inference

1A multi-modal distribution is a distribution with two or
more distinct peaks in the probability density function.

(A) (B) (C) (D)

Figure 3: In the example embedding space, the yel-
low dots are the answer entities, and the blue dots are
the non-answer entities. The purple areas in (B), (C),
and (D) demonstrate the neighborhoods of the vector
embedding, the box embedding, and the particle embed-
dings respectively. In this case, the particle embeddings
are more suitable for finding the answers clustered in
different areas in the embedding space.

speed of Query2Particles is comparable to other
query embedding methods and is higher than query
decomposition methods on multi-hop queries. Fur-
ther analysis indicates that the optimal numbers of
particles for different query types depend on the
structures of the queries. Our experimental code is
released on github2.

2 Related Work

Other query embedding approaches are closely re-
lated to our work. These query embedding meth-
ods leverage different structures to encode logical
KG queries, and they can answer various scopes
of logical queries. The GQE method proposed by
Hamilton et al. (2018) can answer the conjunctive
queries by representing queries as vector represen-
tations. Ren et al. (2020) used hyper-rectangles to
encode and answer existential positive first-order
(EPFO) queries. At the same time, Sun et al. (2020)
proposed to improve the faithfulness of the query
embedding method by using centroid-sketch rep-
resentations on EPFO queries. The conjunctive
queries and EPFO queries are both subsets of first-
order logic (FOL) queries. The Beta Embedding
(Ren and Leskovec, 2020) is the first query embed-

2https://github.com/HKUST-KnowComp/query2particles
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ding method that supports a full set of operations
in FOL by encoding entities and queries into prob-
abilistic Beta distributions. In a contemporaneous
work, Zhang et al. (2021) uses cone embeddings
to encode the FOL queries. As shown in Figure 3,
compared to these query embedding approaches,
the Q2P method can encode the FOL queries to
address the diversity of answers. Note that, Ren
et al. (2020) proposed to use the disjunctive nor-
mal form (DNF) to address the answer diversities
resulting from the union operations. This partly
solve the problem, but the diversity of the answers
is not solely caused by the union operation, but a
joint effort of multi-hop projections, intersection,
and complement. As a result, using particle embed-
dings is a more general solution.

Query decomposition (Arakelyan et al., 2020) is
another approach to answering complex knowledge
graph queries. In this line of research, a complex
query is decomposed into atomic queries, and the
probabilities of atomic queries are modeled by link
predictors. In the inference process, continuous
optimization and beam search are used for finding
the answers. Meanwhile, the rule and path-based
methods (Guo et al., 2016; Xiong et al., 2017; Lin
et al., 2018; Guo et al., 2018; Chen et al., 2019)
use pre-defined or learned rules to do multi-hop
KG reasoning. These methods explicitly model
the intermediate entities in the query. Instead, the
query embedding methods directly embed the com-
plex query and retrieve the answers without explicit
modeling intermediate entities. So the query em-
bedding methods are more scalable to large knowl-
edge graphs and complex query structures.

Neural link predictors (Wang et al., 2014; Trouil-
lon et al., 2016; Dettmers et al., 2018; Sun et al.,
2018) are also related to this work. The link predic-
tors learn the distributed representations of entities
and relations in embedding space and use different
neural structures to classify whether there exists a
certain relation between two entities. The link pre-
dictors can be used for one-hop queries, but cannot
be directly used for answering complex queries.

3 Preliminaries

In this section, we formally define the complex log-
ical knowledge graph queries and the correspond-
ing computational graphs. The knowledge graph
reasoning is conducted on a multi-relational knowl-
edge graph G = (V,R), where each vertex v ∈ V
represents an entity, and each relation r ∈ R is a

binary function defined as r : V × V → {0, 1}.
For any r ∈ R, and u, v ∈ V , there is a relation r
between entities u and v if and only if r(u, v) = 1.

3.1 First-Order Logic Query
The complex knowledge graph query is defined in
first-order logic form with logical operators such as
existential quantifiers ∃, conjunctions ∧, disjunc-
tions ∨, and negations ¬. In a first-order logic
query, there is a set of anchor entities Va ∈ V ,
existential quantified variables V1, V2, ...Vk ∈ V ,
and a unique target variable V? ∈ V . The query
intends to find the answers V? ∈ V , such that there
simultaneously exist V1, V2, ...Vk ∈ V satisfying
the logical expression in the query. For each FOL
query, it can be converted to a disjunctive normal
form, where the query is expressed as a disjunction
of several conjunctive expressions:

q[V?] = V?.∃V1, ..., Vk : c1 ∨ c2 ∨ ... ∨ cn, (1)

ci = ei1 ∧ ei2 ∧ ... ∧ eim. (2)

Each ci represents a conjunctive expression of sev-
eral literals eij , and each eij is an atomic or the
negation of an atomic expression expressed by
any of the following expressions: eij = r(va, V ),
eij = ¬r(va, V ), eij = r(V, V ′), or eij =
¬r(V, V ′). Here va ∈ Va is one of the anchor en-
tities, and V, V ′ ∈ {V1, V2, ..., Vk, V?} are distinct
variables satisfying V ̸= V ′.

3.2 Computational Graph and Operations
As shown in Figure 2 (A), for a first-order query,
there is a corresponding computational graph. In
the computational graph, each node corresponds to
an intermediate query embedding, and each edge
corresponds to a neural logic operation to be de-
fined in the following section. Both the input and
output of these operations are query embeddings.
These operations are used for implicitly modeling
different set operations over the intermediate an-
swer sets. These set operations include relational
projection, intersection, union, and complement:
(1) Relational Projection: Given a set of entities A
and a relation r ∈ R, the relational projection will
return all entities having relation r with at least one
of entity e ∈ A. Namely, Pr(A) = {v ∈ V|∃v′ ∈
A, r(v′, v) = 1}; (2) Intersection: Given sets of
entities A1, ...An ⊂ V , this operation computes
their intersection ∩n

i=1Ai; (3) Union: Given several
sets of entities A1, ...An ⊂ V , the union operation
calculates their union ∪n

i=1Ai; (4) Complement:
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Given a set of entities A, the complement opera-
tion calculates its absolute complement V −A.

4 Query2Particles

In this section, we first introduce the particle em-
beddings structure and the neural logic operations,
and then we present the learning of the model.

4.1 Particles Representations of Queries
In Query2Particles, each query is represented as a
set of vectors, called particles. For simplicity, a set
of particles {p(k)}Kk=1 are represented as a matrix
P . All the operations discussed in the following
sections are invariant to the permutations of the
particle vectors in the matrix. Formally, the particle
embeddings P ∈ Rd×K are

P = [p(1), p(2), ..., p(K)], (3)

where each vector p(k) ∈ Rd is a particle vector. As
shown in Figure 2, the computations along the com-
putation graph start with the anchor entities, such as
“Turing Award”. Suppose the entity embedding of
an anchor entity v is denoted as ev ∈ Rd. Then, the
initial particle embeddings are computed as the sum
of ev and a learnable offset matrix M ∈ Rd×K ,

P0 = ev +M. (4)

Here and in the following sections, the addition
between the matrix M and the vector ev is defined
as the broadcasted element-wise addition.

4.2 Logical Operations
In this sub-section, we define and parameterize
four types of neural logic operations: projection,
intersection, negation, and union.

4.2.1 Projection
Suppose the el ∈ Rd is the embedding vector of the
relation l. The relation projection fP is expressed
as Pi+1 = fP (Pi, el), where the Pi and Pi+1 are
input and output particle embeddings. Instead of
directly adding the same relation embedding el to
all particles in Pi to model the relation projection
following (Bordes et al., 2013), we incorporate
multiple neuralized gates (Chung et al., 2014) to
individually adjust the relation transition for each
particle in Pi, which are expressed as follows:

Z = σ(WP
z el + UzPi + bz), (5)

R = σ(WP
r el + UrPi + br), (6)

T = ϕ(WP
h el + Uh(R⊙ Pi) + bh), (7)

Ai = (1− Z)⊙ Pi + Z ⊙ T. (8)

Here, σ and ϕ are the sigmoid and hyperbolic
tangent functions, and ⊙ is the Hadamard prod-
uct. Also, WP

z ,WP
r ,WP

h , Uz, Ur, Uh are parame-
ter matrices. T is interpreted as the relation tran-
sitions for each of the particles given the relation
embedding el, and Z and R are the update gate
and the reset gate used for customizing the relation
transitions for each particle. Meanwhile, the rela-
tion projection result for each particle should also
depend on the positions of other input particles. To
allow information exchange among different parti-
cles, a scaled dot-product self-attention (Vaswani
et al., 2017) module is also incorporated,

Pi+1 = Attn(WP
q AT

i ,W
P
k AT

i ,W
P
v AT

i )
T . (9)

The WP
q ,WP

k ,WP
v ∈ Rd×d are parameters used

for modeling the input Query, Key, and Value for
the self-attention module Attn. The Attn repre-
sents the scaled dot-product self-attention,

Attn(Q,K, V ) = Softmax(
QKT

√
d

)V. (10)

Here, the Q, K, and V represent the input Query,
Key, and Value for this attention layer.

4.2.2 Intersection
The intersection operation fI is defined on mul-
tiple sets of particle embeddings {P (n)

i }Nn=1.
It outputs a single set of particle embeddings
Pi+1 = fI({P (n)

i }Nn=1). The particles from the
{P (n)

i }Nn=1 are first merged into a new matrix
Pi = [P

(1)
i , P

(2)
i , ..., P

(N)
i ] ∈ Rd×NK , and this

matrix Pi serves as the input of the intersection op-
eration. The operation updates the position of each
particle according to the positions of other input
particles in {P (n)

i }Nn=1. This process is modeled
by the scaled dot-product self-attention followed
by a multi-layer perceptron (MLP) layer,

Ai = Attn(W I
q P

T
i ,W I

kP
T
i ,W I

v P
T
i )T , (11)

Pi+1 = MLP(Ai). (12)

Here W I
q ,W

I
k ,W

I
v ∈ Rd×d are parameters for the

self-attention layer. The MLP here denotes a multi-
layer proceptron layer with ReLU activation, and
the parameters in the MLP layers in different op-
erations are not shared. To keep the number of
particles unchanged, we uniformly sub-sample K
particles out of the NK particles in Pi+1 as the
final output of the intersection operation.
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Figure 4: The Pi in blue and the Pi+1 in yellow are the input and output particles respectively. (A) The embeddings
Pi are projected to Pi+1 by the relation l. (B) The resulting embeddings Pi+1 are computed from three sets of
particles Pi by the intersection fI . (C) The output Pi+1 are computed from the input Pi by the complement fC . (D)
The Pi+1 are directly taken from the all input particles in Pi without any additional parameterization.

4.2.3 Complement
The input of the complement operation is a sin-
gle set of particle embeddings Pi, and the oper-
ation fC is formulated as Pi+1 = fC(Pi). The
complement operation updates the position of each
particle based on the distributions of other input
particles. The operation is then modeled by scaled
dot-product attention followed by an MLP layer,
and this can be formulated by

Ai = Attn(WC
q P T

i ,WC
k P T

i ,WC
v P T

i )T , (13)

Pi+1 = MLP(Ai). (14)

Here, the Pi+1 ∈ Rd×K are the resulting particle
embeddings for the complement operation, and the
values in WC

q ,WC
k ,WC

v ∈ Rd×d are parameters.
Intuitively speaking, the proposed structure can
model the complement operation by encouraging
the particles to move towards the areas that are not
occupied by any of the input particles.

4.2.4 Union
The union operation is directly modeled by all the
input particles without extra parameterization. In
detail, the particles from the input particle embed-
dings are directly merged into a new set of particles,

fU ({P (n)
i }Nn=1) = [P

(1)
i , ..., P

(N)
i ]. (15)

4.3 Scoring
After the particle embeddings PT ∈ Rd×K for
the target variable of the query q are computed,
the scoring function ϕ between the particle embed-
dings PT and each entity embedding ev is used
for calculating the maximal similarities between
each particle vectors in {p(k)T }Kk=1 and entity em-
bedding vector. Here, the inner product is used to
compute the similarity scores between vectors, and
the overall scoring function is expressed by

ϕ(PT , ev) = max
k∈{1,2,...,K}

< p
(k)
T , ev > . (16)

4.4 Learning Query2Particles
To train the Query2Particles model, we compute
the normalized probability of the entity v being the
correct answer of query q by using the softmax
function on all similarity scores,

p(v, q) =
ϕ(PT , ev)∑

v′∈V ϕ(PT , ev′)
. (17)

Then we construct the cross-entropy loss from the
given probabilities to maximize the log probabili-
ties of all correct query-answer pairs:

L = − 1

N

∑

i

log p(v(i), q(i)). (18)

The (v(i), q(i)) denotes is one of the positive query-
answer pairs, and in total there are N such pairs.

5 Experiments

The experiments in this section demonstrate the
effectiveness and efficiency of Query2Particles.

5.1 Experimental Setup
The Query2Particles method is evaluated on three
commonly used knowledge graphs, FB15K (Bor-
des et al., 2013), FB15K-237 (Toutanova and Chen,
2015), and NELL995 (Carlson et al., 2010) with
the standard training, validation, and testing edges
separations. For each of these graphs, the corre-
sponding training graph Gtrain, validation graph
Gvalid, and testing graph Gtest are created from
training edges, training + validation edges, and
training + validation + testing edges respectively.

There are two sets of complex logical queries
sampled from these knowledge graphs, and the
existing methods evaluate their performance on
either of them. Specifically, Ren et al. (2020) sam-
ple nine different types of existential positive first-
order (EPFO) queries. For these queries, five types
of them (1p, 2p, 3p, 2i, 3i) are used for training
and evaluation in a supervised setting. For the rest
of four types of queries (2u, up, ip, pi), they
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Figure 5: The query structures used for training and evaluation. For brevity, the p, i, n, and u represent the projection,
intersection, negation, and union operations respectively. The query types on the left are trained and evaluated under
supervised settings. There are not training queries for the four types of queries on the right, and they are directly
evaluated at the test time to measure the generalization capability of the models to unseen query types.

FB15K FB15K-237 NELL

MODEL 1P 2P 3P 2I 3I PI IP 2U UP AVG AVG AVG

BETAE 65.1 25.7 24.7 55.8 66.5 43.9 28.1 40.1 25.4 41.6 20.9 24.6
Q2B 68.0 21.0 14.2 55.1 66.5 39.4 26.1 35.1 16.7 38.0 20.1 22.9
GQE 54.6 15.3 10.8 39.7 51.4 27.6 19.1 22.1 11.6 28.0 16.3 18.6
Q2P (OURS) 82.6 30.8 25.5 65.1 74.7 49.5 34.9 32.1 26.2 46.8 21.9 25.5

Table 1: The MRR results for existential positive first-order (EPFO) queries used by Ren and Leskovec (2020). The
full results are shown in the supplementary materials.

do not appear in the training set and are directly
evaluated in a zero-shot way. In another work, Ren
and Leskovec (2020) refine these queries by raising
the difficulties of the existing nine types of queries.
They also include five types of complement queries
(2in, 3in, inp, pni, pin) for general first-order
logic (FOL) queries. These complement queries
are also trained and evaluated in the supervised set-
ting, but their training samples are fewer than other
types. More details about the knowledge graphs
and sampled queries are shown in the appendix. To
demonstrate the performance of Query2Particles, it
is evaluated on both sets of queries. Note that, the
query-answer pairs used for training are only from
the training graph Gtrain. For validation and test-
ing, only the hard answers from validation graph
Gvalid and testing graph Gtest are evaluated.

5.2 Baselines

The Query2Particles model is compared with the
following baselines in the following sections.

Graph Query Embedding (GQE) answers con-
junctive logic queries by encoding the logical
queries into vectors (Hamilton et al., 2018).

Query2Box (Q2B) answers existential positive
first-order logic queries by encoding them into
boxes in the embedding space (Ren et al., 2020).

Beta Embedding (BetaE) answers first-order
logic queries by modeling them as Beta Distribu-
tions (Ren and Leskovec, 2020). This is the current
state-of-the-art model on first-order logic queries.

The reported mean reciprocal rank (MRR) scores
of these baselines are used by the BetaE paper (Ren
and Leskovec, 2020), and Query2Particles (Q2P)
is evaluated following with the same metrics un-
der the filtered setting, in which the rankings of
answers are computed excluding all other correct
answers. Meanwhile, the Q2P method is also com-
pared with other methods on EPFO queries with
the queries used by Ren et al. (2020).

Continuous Query Decomposition (CQD) de-
composes the complex queries to multiple atomic
queries that can be solved by link predictors
(Arakelyan et al., 2020) .

Embedding Query Language (EmQL) im-
proves the faithfulness in the reasoning process
by encoding EPFO queries into centroid-sketch
representations (Sun et al., 2020).

The reported Hit@3 results of these two base-
lines are used by Arakelyan et al. (2020); Sun et al.
(2020). Our model is evaluated on FB15K, FB15K-
237, and NELL in the same setting.

5.3 Implementation Details

The Query2Particles model is trained on the queries
in an end-to-end manner. To fairly compare with
previous methods, we set the same size of embed-
ding vectors as four hundred. We use the validation
queries to tune hyperparameters for our model by
using grid search. In the grid search, we consider
the batch size from {1024, 2048, 4096, 8192},
dropout rate from {0.1, 0.2, 0.3}, learning rate
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DATASET MODEL
2IN 3IN INP PIN PNI AVG

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

FB15K
BETAE 14.3 30.8 14.7 31.9 11.5 23.4 6.5 14.3 12.4 26.3 11.8 25.3
Q2P (OURS) 21.9 41.3 20.8 40.2 12.5 24.2 8.9 18.8 17.1 33.6 16.4 31.6

FB15K-237 BETAE 5.1 11.3 7.9 17.3 7.4 16.0 3.6 8.1 3.4 7.0 5.4 11.9
Q2P (OURS) 4.4 10.1 9.7 20.7 7.5 16.7 4.6 9.9 3.8 7.2 6.0 12.9

NELL BETAE 5.1 11.6 7.8 18.2 10.0 20.8 3.1 6.9 3.5 7.2 5.9 12.9
Q2P (OURS) 5.1 12.1 7.4 18.2 10.2 21.4 3.3 7.0 3.4 7.6 6.0 13.3

AVERAGE
BETAE 8.2 17.9 10.1 22.5 9.6 20.1 4.4 9.8 6.4 13.5 7.8 16.7
Q2P (OURS) 10.5 21.2 12.6 26.4 10.1 20.8 5.6 11.9 8.1 16.1 9.4 19.3

Table 2: The MRR and Hit@10 results for complement queries used by Ren and Leskovec (2020). Beta Embedding
is the only baseline model that can answer queries with the complement operation.

FB15K FB15K-237 NELL

MODEL 1P 2P 3P 2I 3I IP PI 2U UP AVG AVG AVG

EMQL 42.4 50.2 45.9 63.7 70.0 60.7 61.4 9.0 42.6 49.5 35.8 46.8
− SKETCH 50.6 46.7 41.6 61.8 67.3 54.2 53.5 21.6 40.0 48.6 35.5 46.8

CQD-BEAM 91.8 77.9 57.7 79.6 83.7 37.5 65.8 83.9 34.5 68.0 29.0 37.6
CQD-CO 91.8 45.4 19.1 79.6 83.7 33.6 51.3 81.6 31.9 57.6 27.2 36.8
Q2P (OURS) 90.2 74.6 73.4 86.0 89.6 63.7 77.6 83.4 52.7 76.8 43.0 52.2

Table 3: The Hit@3 results for existential positive first-order queries originally used by Ren et al. (2020) and the
comparisons are made against the state-of-the-art baselines including EmQL and CQD methods. The best results
are marked in bold and the second-best ones are marked with underlines. The full results are in the appendix.

from {10−4, 3 ∗ 10−4, 10−3}, and label smoothing
from {0.3, 0.5, 0.7}. The final hyperparameters are
shown in the supplementary materials. Our experi-
ments are conducted on Titan Xp with PyTorch 1.8,
and they are repeated three times.

5.4 Comparison with Baselines

First, we compare Query2Particles (Q2P) with
GQE, Q2B, and BetaE on the first-order logic
queries used by Ren and Leskovec (2020). The
results on all fourteen types of queries are reported
in Table 1 and Table 2. To fairly compare with
the baseline methods, we keep the same number of
parameters used in each type of query embedding.

As shown in Tables 1 and 2, the Q2P model can
achieve more accurate results than GQE, Q2B, and
BetaE on all types of queries except 2u. As we
keep the number of query embedding parameters
the same, it indicates that the structure of particle
embeddings is more suitable for encoding complex
queries than boxes or Beta distributions.

Though it is slightly less accurate on the 2u
queries, Q2P is more efficient in encoding the
queries that include union operations. This is be-
cause Q2P is the first embedding method that di-
rectly models the union operation. To avoid direct
modeling of the union operation, all previous em-
bedding methods pre-process the queries by con-

verting them to DNF forms. However, the DNF
forms can be exponentially larger than the original
queries, and the conversion also takes exponen-
tial time. Meanwhile, BetaE proposes to use De
Morgan’s law to replace one union operation with
one intersection and three complements, but this
substitution still largely increases the query com-
plexity. Instead, Q2P directly models the union
operation without any pre-processing or additional
parameterization, while achieving the state-of-the-
art performance on up, which is more complicated
and involving the Union operation.

We also compare our model with EmQL and
CQD methods on the queries used by Ren et al.
(2020). On average, our model has better Hit@3
scores on all datasets3. Compared to the CQD
method, the Q2P method is better at answering
multi-hop queries. encodes the complex queries
into centroid-sketch representations, which can-
not compactly encode sufficiently diverse answers.
The Q2P method specifically addresses the diver-
sity of answers, so it has higher empirical perfor-
mance. CQD performs better on shorter queries
like 1p, 2p, and 2u, because it can use the state-
of-the-art link predictors. Also, as shown in Figure
6, the Q2P method demonstrates a faster inference

3In this paper, we only focus on the inductive setting, so we
skip the comparison with EmQL under the entailment setting,
in which the test graph is used for both training and testing.
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Figure 6: The inference time of different types of
queries on FB15k, which has the largest number of
edges among three graphs.

speed than the CQD method on multi-hop queries,
because CQD uses inference time optimization,
which is either a continuous optimization or a beam
search. The inference time optimization simplifies
the learning of CQD but also slows down the infer-
ence efficiency on large graphs.

5.5 The Improvement of Q2P-KP

Experiments show that the performance of the di-
versified queries can be largely improved by using
more particles. To demonstrate the effects, we con-
duct additional evaluations on the most diversified
10% queries for each query type, as shown in the
DIVR columns in Table 4. In doing so, we use the
number of answers to measure the diversity of each
query. In the same table, we also present the origi-
nal results in the FULL columns as a comparison.

We can observe that there is a significant perfor-
mance gap between the FULL and DIVR results,
which demonstrates that the diversified queries are
harder to answer. Meanwhile, it is also observed
that comparing to Q2P-1P, Q2P-KP (K>1) sig-
nificantly improves the MRR of DIVR queries by
7.8 points. From this perspective, the improvement
of Q2P-KP (K>1) over Q2P-1P is significant on
those challenging queries.

5.6 Further Ablation Study for Q2P-1P
To better explain the superior performance of Q2P-
1P over the baseline models, we conduct further
ablations studies in Table 5.

First, we remove all the self-attention layers
Attn. Then the performance of intersection opera-
tions largely decreased. This can be explained that
the self-attention structure is important for aggre-
gating the information from multiple sub-queries.

Then, we remove all the neural network struc-
tures, including all MLP and Attn from all opera-
tions, and replace them with the operations defined
in the GQE model (Hamilton et al., 2018). Then

MODELS
1P 2I 2U 2IN AVERAGE

FULL DIVR FULL DIVR FULL DIVR FULL DIVR FULL DIVR

Q2P-1P 81.8 44.8 63.4 28.8 33.4 11.3 18.9 15.0 49.4 25.0
Q2P-2P 82.6 49.4 65.1 35.5 32.1 13.3 21.9 20.7 50.4 29.7
Q2P-3P 82.9 53.0 64.4 37.7 33.6 18.6 21.8 21.6 50.6 32.8

Table 4: The FULL columns demonstrate the averaged
MRR results, and the DIVR columns demonstrate the av-
eraged MRR on the top ten-percent diversified queries.

MODELS 1P 2P 2I 2U 2IN

Q2P-KP 83.4 31.5 66.0 38.9 22.3
Q2P-1P 81.8 30.7 63.4 33.4 18.9
− SELF ATTENTION 78.5 28.5 30.9 30.3 15.2
− ALL NNS + GQE OPS 56.7 16.1 39.2 20.1 −

Q2P 68.0 21.0 55.1 35.1 −
GQE 54.6 15.3 39.7 22.1 −

Table 5: The ablation study on the Q2P neural networks.
The Q2P-KP result shows the highest result when K is
ranged from 2 to 6.

the performance of Q2P is also reduced. This indi-
cates that the neural structures in the particle opera-
tions are also important to the overall improvement.
Thus, we infer that the baseline model underfit the
complex queries in the training set, and the per-
formance can be improved by introducing more
parameters and non-linearity. This conclusion is
also aligned with Sun et al. (2020), in which they
found the baselines cannot faithfully answer the
queries that are observed in the training time.

However, solely using more complex structures
cannot address the problem raised from the diver-
sity of the answers. As shown in Table 4, on the
top of Q2P-1P, Q2P-KP (K>1) can still largely
improve the performance on the diversified queries.

6 Conclusion

In this paper, we proposed Query2Particles, a query
embedding method for answering complex logical
knowledge graph queries over incomplete knowl-
edge graphs. The Query2Particle method supports
a full set of FOL operations. Specifically, the Q2P
method is the first query embedding method that
can directly model the union operation without any
preprocessing. Experimental results show that the
Q2P method achieves state-of-the-art performances
on answering FOL queries on three different knowl-
edge graphs while using comparable inference time
as the previous methods.

7 Ethical Impacts

This paper introduces a knowledge graph reasoning
method, and the experiments are on several publicly
available benchmark datasets. As a result, there is
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no data privacy concern. Meanwhile, this paper
does not involve human annotations, and there is
no related ethical concerns.
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DATASET RELATIONS ENTITIES TRAINING VALIDATION TESTING ALL EDGES

FB15K 1,345 14,951 483,142 50,000 59,071 592,213
FB15K-237 237 14,505 272,115 17,526 20,438 310,079
NELL995 200 63,361 114,213 14,324 14,267 142,804

Table 6: The basic information about the three knowledge graph used for the experiments, and their standard
training, validation, and testing edges separation according to (Ren and Leskovec, 2020).

DATASET BATCH SIZE DROPOUT RATIO LABEL SMOOTHING LEARNING RATE

FB15K 8,192 0.1 0.5 0.001
FB15K-237 8,192 0.1 0.5 0.001
NELL995 4,096 0.3 0.7 0.0003

Table 7: The best hyperparameters used by the Query2Particles model for the experiments on the queries originally
used by (Ren and Leskovec, 2020).

(REN ET AL., 2020) TRAINING VALIDATION TEST

DATASET 1P OTHERS 1P OTHERS 1P OTHERS

FB15K 273,710 273,710 59,097 8,000 67,016 8,000
FB15K-237 149,689 149,689 20,101 5,000 22,812 5,000
NELL995 107,982 107,982 16,927 4,000 17,034 4,000

(REN AND LESKOVEC, 2020) TRAINING VALIDATION TEST

DATASET 1P/2P/3P/2I/3I 2IN/3IN/INP/PIN/PNI 1P OTHERS 1P OTHERS

FB15K 273,710 273,71 59,097 8,000 67,016 8,000
FB15K-237 149,689 149,68 20,101 5,000 22,812 5,000
NELL995 107,982 107,98 16,927 4,000 17,034 4,000

Table 8: The detailed information for the queries used for training, validating, and testing all query embedding
methods. The upper parts disclose the statistics of the queries taken from the (Ren et al., 2020) paper, while the
lower part describes the queries taken from (Ren and Leskovec, 2020). The major differences are that the queries in
(Ren and Leskovec, 2020) is harder than (Ren et al., 2020), and include five additional types of queries with the
complement operation.
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DATASET MODEL 1P 2P 3P 2I 3I PI IP 2U UP AVG

FB15K

BETAE 65.1 25.7 24.7 55.8 66.5 43.9 28.1 40.1 25.4 41.6
Q2B 68.0 21.0 14.2 55.1 66.5 39.4 26.1 35.1 16.7 38.0
GQE 54.6 15.3 10.8 39.7 51.4 27.6 19.1 22.1 11.6 28.0
Q2P (OURS) 82.6 30.8 25.5 65.1 74.7 49.5 34.9 32.1 26.2 46.8

FB15K-237

BETAE 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 9.9 20.9
Q2B 40.6 9.4 6.8 29.5 42.3 21.2 12.6 11.3 7.6 20.1
GQE 35.0 7.2 5.3 23.3 34.6 16.5 10.7 8.2 5.7 16.3
Q2P (OURS) 39.1 11.4 10.1 32.3 47.7 24.0 14.3 8.7 9.1 21.9

NELL

BETAE 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 8.6 24.6
Q2B 42.2 14.0 11.2 33.3 44.5 22.4 16.8 11.3 10.3 22.9
GQE 32.8 11.9 9.6 27.5 35.2 18.4 14.4 8.5 8.8 18.6
Q2P (OURS) 56.5 15.2 12.5 35.8 48.7 22.6 16.1 11.1 10.4 25.5

AVERAGE

BETAE 52.4 16.5 15.4 40.7 52.2 30.1 14.3 21.6 14.5 29.1
Q2B 50.3 14.8 10.7 39.3 51.1 27.7 18.5 19.2 11.5 27.0
GQE 40.8 11.5 8.6 30.2 40.4 20.8 14.7 12.9 8.7 21.0
Q2P (OURS) 59.4 19.1 16.0 44.7 57.0 32.0 21.8 17.3 15.2 31.3

Table 9: The MRR result for existential positive first order queries comparing to the BetaE, Q2B, and GQE methods.
The results are reported from the queries used by Ren and Leskovec (2020).

DATASET MODEL 1P 2P 3P 2I 3I IP PI 2U UP AVG

FB15K

EMQL 42.4 50.2 45.9 63.7 70.0 60.7 61.4 9.0 42.6 49.5
− SKETCH 50.6 46.7 41.6 61.8 67.3 54.2 53.5 21.6 40.0 48.6

CQD-BEAM 91.8 77.9 57.7 79.6 83.7 37.5 65.8 83.9 34.5 68.0
CQD-CO 91.8 45.4 19.1 79.6 83.7 33.6 51.3 81.6 31.9 57.6
Q2P (OURS) 90.2 74.6 73.4 86.0 89.6 63.7 77.6 83.4 52.7 76.8

FB15K-237

EMQL 37.7 34.9 34.3 44.3 49.4 40.8 42.3 8.7 28.2 35.8
− SKETCH 43.1 34.6 33.7 41.0 45.5 36.7 37.2 15.3 32.5 35.5

CQD-BEAM 51.2 28.8 22.1 35.2 45.7 12.9 24.9 28.4 12.1 29.0
CQD-CO 51.2 21.3 13.1 35.2 45.7 14.6 22.2 28.1 13.2 27.2
Q2P (OURS) 49.0 44.2 44.6 50.1 57.5 34.1 44.2 32.9 30.6 43.0

NELL

EMQL 41.5 40.5 38.6 62.9 74.5 49.8 64.8 12.6 35.8 46.8
− SKETCH 48.3 39.5 35.2 57.2 69.0 48.0 59.9 25.9 38.2 46.8

CQD-BEAM 66.7 35.0 28.8 41.0 52.9 17.1 27.7 53.1 15.6 37.6
CQD-CO 66.7 26.5 22.0 41.0 52.9 19.6 30.2 53.1 19.4 36.8
Q2P (OURS) 67.0 53.0 52.6 52.9 69.0 38.0 47.0 52.9 37.0 52.2

AVERAGE

EMQL 40.5 41.9 39.6 57.0 64.6 50.4 56.2 10.1 35.5 44.0
− SKETCH 47.3 40.3 36.8 53.3 60.6 46.3 50.1 20.9 36.9 43.6

CQD-BEAM 69.9 47.2 36.2 51.9 60.8 22.5 39.5 55.1 20.7 44.9
CQD-CO 69.9 31.1 18.1 51.9 60.8 22.6 34.6 54.3 21.5 40.5
Q2P (OURS) 68.7 57.3 56.9 63.0 72.0 45.3 56.3 56.4 40.1 57.3

Table 10: The Hit@3 results for existential positive first order queries comparing to the EmQL and CQD method
over the queries used by Ren et al. (2020).
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