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Abstract

Multimodal named entity recognition and rela-
tion extraction (MNER and MRE) is a funda-
mental and crucial branch in information extrac-
tion. However, existing approaches for MNER
and MRE usually suffer from error sensitiv-
ity when irrelevant object images incorporated
in texts. To deal with these issues, we pro-
pose a novel Hierarchical Visual Prefix fusion
NeTwork (HVPNeT) for visual-enhanced en-
tity and relation extraction, aiming to achieve
more effective and robust performance. Specif-
ically, we regard visual representation as plug-
gable visual prefix to guide the textual repre-
sentation for error insensitive forecasting deci-
sion. We further propose a dynamic gated ag-
gregation strategy to achieve hierarchical multi-
scaled visual features as visual prefix for fu-
sion. Extensive experiments on three bench-
mark datasets demonstrate the effectiveness of
our method, and achieve state-of-the-art perfor-
mance1.

1 Introduction

Named entity recognition (NER) and relation ex-
traction (RE) are important tasks in information ex-
traction and knowledge base population, due to its
research significance in natural language process-
ing (NLP) and wide applications (Hosseini, 2019;
Zhang et al., 2020; Qin et al., 2021; Zhang et al.,
2021c). Currently, with the rapid development of
multimodal learning, multimodal NER (MNER)
and Multimodal RE (MRE) methods (Moon et al.,
2018; Zheng et al., 2021) have been proposed to
enhance linguistic representations with the aid of vi-
sual clues from images. It significantly extends the
text-based models by taking images as additional
inputs, since the visual contexts help to resolve
ambiguous multi-sense words.

∗ Corresponding Author.
1Code is available in https://github.com/

zjunlp/HVPNeT.
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Figure 1: Motivation for robust and effective hierarchi-
cal modality fusion.

The essence of MNER and MRE tasks is how to
learn great visual features and how to incorporate
it into textual representation for enhancing NER
and RE. Early methods (Zhang et al., 2018; Moon
et al., 2018) study how to incorporate the feature
of whole image into the textual representation. Yu
et al. (2020); Zhang et al. (2021a); Zheng et al.
(2021) further validate that object-level visual fu-
sion is more specific and important for MNER and
MRE. Recently, RpBERT (Sun et al., 2021) pro-
pose to train a classifier of whether the “Image
adds to the tweet meaning” before MNER tasks.
However, they heavily rely on pre-training on large
extra annotated corpus of image-text relevance and
only focus on the whole image with ignoring the
bias of relevant object-level visual fusion. In prac-
tice, irrelevant objects may directly exert negative
effects on the text inference. Meanwhile, it is not
trivial to acquire absolutely relevant object-level
visual information to enhance the text. Thus, an
effective method should be derived to learn better
visual representation and alleviate error sensitivity
of irrelevant object images for social media NER
and RE tasks.

Considering images often appear before the text
in a web document, we argue that images can be
regarded as the prefix for their textual descriptions,
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which is inspired by prompt learning (Gao et al.,
2021; Li and Liang, 2021; Liang et al., 2022; Zhang
et al., 2021d) in the language model. Specifically,
given a image-text pair, we prepend object-level
image feature sequence of length Vi (visual prefix)
to the text sequence at each self-attention layer of
BERT (Devlin et al., 2019). Note that the visual pre-
fix is a pluggable operation and don’t require any
annotation on relevance. Therefore, visual prefix
can not only introduce object-level visual signals,
but also further reduce the impact on the archi-
tecture representing text. Intuitively, visual prefix
regarded as a prompt for text may helps alleviate
the error sensitivity of irrelevant object images.

While Convolution Neural Networks (CNNs)
contain the multi-scale information with pyrami-
dal feature hierarchy (Ren et al., 2015) from low
to high levels. And BERT encodes a rich hierar-
chy of linguistic information (Jawahar et al., 2019)
from the bottom to the top. Inspired by Lin et al.
(2017); Liu et al. (2018) that objects of different
sizes can have appropriate feature representations
at the corresponding scales, we propose to make
each layer of BERT aware of hierarchical multi-
scale visual features to make a more enlightened
and comprehensive forecasting decision.

To this end, we propose a novel Hierarchical
Visual Prefix fusion NeTwork (HVPNeT) for
visual-enhanced entity and relation extraction.
Specifically, inspired by SimVLM (Wang et al.,
2021), we propose visual prefix-guided fusion
mechanism involving concatenate object-level
visual representation as the prefix of each self-
attention layer in BERT, which is a more soft and
robust attention module for visual enhanced NER
and RE. We further design a dynamic gate for each
layer to generate image-dependent paths, so that a
variety of aggregated hierarchical multi-scaled vi-
sual features can be considered as visual prefix for
enhancing NER and RE. Overall, we summerize
the major contributions of our paper as follows:

• We present a hierarchical visual prefix fusion
network towards MNER and MRE, incorpo-
rating hierarchical multi-scaled visual features
through visual prefix-based attention mecha-
nism at each self-attention layer of BERT to
generate effective and robust textual represen-
tation for reducing error sensitivity.

• We utilize the exploitation of dynamic gates to
fully leverage the hierarchical visual features.

Thus, textual representation of each layer in
Transformer can be aware of corresponding
hierarchical visual features adaptively. To the
best of our knowledge, this paper is the first
work to leverage hierarchical pyramidal visual
features for multimodal learning.

• We evaluate our method on MNER and MRE
tasks. Our experimental results on three
benchmark datasets validate the effectiveness
and superiority of our HVPNeT

2 Related work

Multimodal Entity and Relation Extraction As
the crucial components of information extraction,
named entity recognition (NER) and relation ex-
traction (RE) have attracted much attention in the
research community (Liu et al., 2019; Zhang et al.,
2021b; Liu et al., 2021; Chen et al., 2021b,a). Pre-
vious studies typically focus on textual modality
and standard text. As multimodal data become in-
creasingly popular on social media platforms, early
research focusing on textual modality and stan-
dard text is limited. Recently, several studies have
focused on the MNER and MRE task, aiming to
utilize the associate images to recognize the named
entities and their relation better.

In the early stages, Zhang et al. (2018),Lu et al.
(2018), (Moon et al., 2018) and Arshad et al.
(2019) propose to encode the text through RNN
and the whole image through CNN, then designing
implicit interaction to model information between
two modalities to explore multimodal NER tasks.
Recently, Yu et al. (2020); Zhang et al. (2021a)
propose to leverage regional image features to rep-
resent objects in the image to exploit fine-grained
semantic correspondences based on Transformer
and visual backbones.

While most of the current methods ignore the
error sensitivity, one exception is that Sun et al.
(2021), which proposes to learn a text-image rela-
tion classifier to enhance multimodal BERT to re-
duce the interference from irrelevant images while
requiring extensive annotation for the irrelevance
of image-text pairs.

Pre-trained Multimodal Representation
The pre-trained multimodal BERT has recently
achieved significant improvements in many
multimodal tasks (e.g., visual question answer-
ing). We summarize and compare The existing
visual-linguistic BERT models can be divided
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into two aspects as follows: 1) Architecture.
The single-stream structures consist of Unicoder-
VL (Li et al., 2020), VisualBERT (Li et al., 2019),
VL-BERT (Su et al., 2020), and UNITER (Chen
et al., 2020b), where the text tokens and images
are combined into a sequence and fed into BERT
to learn contextual embeddings. The two-streams
structures, LXMERT (Tan and Bansal, 2019) and
ViLBERT (Lu et al., 2019), separately process the
visual and language into two streams with inter-
acting through cross-modality or co-attentional
transformer layers. 2) Pretraining tasks. The
pretraining tasks of multimodal visual-language
model mainly consist of masked language model-
ing (MLM), masked region classification (MRC),
and image-text matching (ITM). However, most of
previous models are pre-trained on the datasets of
image captioning (Sharma et al., 2018; Chen et al.,
2015) or visual question answering where multi-
modal interactions are required. Applying current
visual-language models to the MNER and MRE
task may not result in a good performance, since
MNER and MRE mainly focus on leveraging
visual information to enhance the text rather
than conducting prediction on the image side.

3 Methodology

As illustrated in Figure 2, we present a novel hi-
erarchical prefix fusion network for multi-modal
entity and relation extraction. Note that our method
can also be applied to other visual-enhanced tasks
towards text.

3.1 Collection of Pyramidal Visual Feature

On the one hand, the image associated with a sen-
tence maintains several visual objects related to the
entities in the sentence, further providing more se-
mantic knowledge to assist information extraction.
On the other hand, the global image features may
express abstract concepts, which play the role of
a weak learning signal. Thus, we collect multiple
visual clues for multimodal entity and relation ex-
traction, which involves taking the regional image
as the vital information and the global images as
the supplement.

Given an image, we follow (Zhang et al., 2021a)
to adopt the visual grounding toolkit (Yang et al.,
2019) for extracting local visual objects with top
m salience. Then, we rescale the global image
and object image to 224× 224 pixels as the global
image I and visual objects O = {o1, o2, ..., om, }.

In the area of CV, the feature fusion method that
leveraging features from different blocks of pre-
trained models (Wang et al., 2019; Kim et al., 2018;
Lin et al., 2017) is widely applied for improving
model performance. Inspired by such practices,
we take the first step to focus on the application
of pyramid features in the area of multi-modality.
We propose to fuse hierarchical image features into
each Transformer layer; thus, leveraging a feature
pyramid is essential. Typically, given an image, we
encode it with a backbone model and generate a list
of pyramidal feature maps {F1, F2, F3, . . . , Fc}
with different scales, then map them with Mθ(·) as
follows:

Vc =Conv1×1(Fc), (1)

Vi =Conv1×1(Pool(Fi)), i = 1, 2, ˙c− 1, (2)

where i denotes the i-th block of the backbone
model, c denotes the number of blocks in the visual
backbone model (here is 4 for ResNet), Pool repre-
sents the pooling operation, where the features are
aggregated to the same spatial sizes. The 1×1 con-
volutional layer is leveraged to map the pyramidal
visual features to match the embedding size of the
Transformer.

3.2 Dynamic Gated Aggregation
Although objects of different sizes can have appro-
priate feature representations at the corresponding
scales, it is not trivial to decide which block in the
visual backbone is assigned visual prefix for each
layer in Transformer. To address this challenge, we
propose constructing the densely connected rout-
ing space, where hierarchical multi-scaled visual
features are connected with each transformer layer.

3.2.1 Dynamic Gate Module
We conduct routine processes through a dynamic
gate module, which can be viewed as a procedure of
path decision. The motivation of the dynamic gate
is to predict a normalized vector, which represents
how much to execute the visual feature of each
block. In the dynamic gate, g(l)i ∈ [0, 1] denotes
the path probability from the i-th block of visual
backbone to the l-th layer of Transformer. It is
calculated as g(l) = G(l)(V ) ∈ Rc, where G(l)(·)
denotes the gating function according to the l-th
layer in Transformer, c represents the numbers of
the block in backbone. We first produces the logits
α
(l)
i of the gate signals:

α(l) = f(Wl(
1

c

c∑

i=1

P (Vi))), (3)
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Figure 2: The overall architecture of our hierarchical visual prefix for multimodal entity and relation extraction.

where f(·) denotes the activate function
Leaky_ReLU, P represents the global aver-
age pooling layer. We first squeeze the input
features Vi with a shape of (di, hi, w) from the
i-th bloc by an average pooling operation. Then
we add the features from multiple blocks to
generate the average vectors. We further reduce
the feature dimension by c with the MLP layer Wl

and consider a soft gate via generating continuous
values as path probabilities. Afterward, we
generate the probability vector g(l) for the l-th
layer of Transformer as follows:

g(l) = Softmax(α(l)) (4)

3.2.2 Aggregated Hierarchical Feature
Based on the above dynamic gate g(l), we can de-
rive the final aggregated hierarchical visual feature
Vgated to match the l-th layer in Transformer, as:

V
(l)
gated = g(l)V (l). (5)

Formally, the final visual features Ṽ
(l)
gated corre-

sponding to the l-th layer of Transformer is ob-
tained by the following concatnation operation,

Ṽ
(l)
gated = [V

(l,I)
gated;V

(l,o1)
gated ; . . . ;V

(l,om)
gated ], (6)

which will be adopted to enhance layer-level repre-
sentations of textual modality through visual prefix-
based attention.

3.3 Visual Prefix-guided Fusion
We regard hierarchical multi-scaled image feature
as visual prefix, and prepend the sequence of visual

prefix to the text sequence at each self-attention
layer of BERT(Devlin et al., 2019) In particular,
given an input sequence X = {x1, x2, ..., xn}, the
contextual representations H l−1 ∈ Rn×d is first
projected into the query/key/value vector:

Ql = H l−1WQ
l ,K

l = H l−1WK
l ,V l = H l−1W V

l .
(7)

As for aggregated hierarchical visual features
Ṽ

(l)
gated, we use a set of linear transformations W ϕ

l ∈
Rd×2×d for l-th layer to project them into the same
embedding space2 of textual representation in self-
attention module. Besides, we define the operation
of visual prompt ϕl

k, ϕ
l
v ∈ Rhw(m+1)×d as:

{ϕl
k, ϕ

l
v} = Ṽ

(l)
gatedW

ϕ
l , (8)

where hw(m+ 1) represents the length of the vi-
sual sequences, m denotes the number of visual
objects detected by the object detection algorithm.
Formally, the visual prefix-based attention are cal-
culated as follows:

Prefix_Attentionl = softmax(
Ql[ϕl

k;K
l]T√

d
)[ϕl

v;V
l].

(9)

Remark 1 We regard hierarchical multi-scaled vi-
sual features as visual prefix at each fusion layer
and sequentially conduct multi-modal attention to
update all textual states. In this way, the final tex-
tual states encode both the context and the cross-
modal semantic information simultaneously. which

2Remarkably, the key and value in the self-attention mod-
ule contain the different information in two types of semantic
space, here 2 means that we apply two sets of transformation
parameters to project aggregated visual features to match the
state update process, respectively.
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is beneficial to reduce error sensitivity for irrele-
vant object elements.

3.4 Classifier

Based on above description, we get the final rep-
resentation of BERT, HL = U(X, Ṽ

(l)
gated), where

U(·) denotes the operation of visual prefix-based
attention. Finally, we conduct different classifier
layers for NER and RE, respectively.

Named Entity Recognition. Following (Moon
et al., 2018; Yu et al., 2020), we also adopt the
CRF decoder to perform the NER task. For-
mally, we feed the final hidden vectors HL =
of BERT to the CRF model. For a sequence of
tags y = {y1, . . . , yn}, the probability of the label
sequence y and the objective of NER are defined
as follows (Lample et al., 2016a):

p(y|HL) =

∏n
i=1 Si(yi−1, yi, H

L)∑
y′∈Y

∏n
i=1 Si(y′

i−1, y
′
i, H

L)
,

Lner = −
M∑

i=1

log(p(y(i)|U(X(i), Ṽgated))).

(10)

where Y represents the pre-defined label set with
the BIO tagging schema, and S(·) represents poten-
tial functions. Details can be referred in (Lample
et al., 2016a).

Relation Extraction. An RE dataset can be de-
noted as Dre = {(X(i), r(i))}Mi=1, the goal of RE
is to predict the relation r ∈ Y between subject
entity and object entity. Specifically, a [CLS]
head is utilized to compute the probability distribu-
tion over the class set Y with the softmax function
p(r|X) = Softmax(WHL

[CLS]), and the pa-
rameters of L and W are fine-tuned by minimizing
the cross-entropy loss over p(r|X) on the entire X
as follows:

Lre = −
M∑

i=1

log(p(r(i)|U(X(i), Ṽgated))). (11)

4 Experiments

In the following section, we conduct experiments
to evaluate our method on two multimodal infor-
mation extraction tasks, MNER and MRE. Specifi-
cally, we adopt ResNet50 (He et al., 2016) as visual
backbone and BERT-base (Devlin et al., 2019) as
textual encoder. Results on three datasets demon-
strate that our HVPNeT outperforms a number of
unimodal and multimodal approaches.

4.1 Datasets

We select three datasets for our experiments:
Twitter-2015 (Zhang et al., 2018) and Twitter-
2017 (Lu et al., 2018) for MNER, MNRE (Zheng
et al., 2021) for MRE. Statistical details of datasets
and experimental details are provided in Ap-
pendix A, B.

4.2 Compared Baselines

We compare our HVPNeT with several baseline
models for a comprehensive comparison to demon-
strate the superiority of our HVPNeT. Our com-
parison mainly focuses on three groups of models:
the text-based models, previous SOTA MNER and
MRE models, and the variants of our models.

Text-based models: we first consider a group
of representative text-based models: 1) CNN-
BiLSTM-CRF (Ma and Hovy, 2016), 2) HBiLSTM-
CRF (Lample et al., 2016b) and 3) BERT-CRF for
NER. The following models are specific for RE: 4)
PCNN (Zeng et al., 2015); 5) MTB (Soares et al.,
2019) is an RE-oriented pretraining model based
on BERT.

Previous SOTA models: besides, we further con-
sider another group of previous SOTA multi-modal
approaches for MNER and MRE: 1) AdapCoAtt-
BERT-CRF (Zhang et al., 2018); 2) OCSGA (Wu
et al., 2020); 3) UMT (Yu et al., 2020); 4)
UMGF (Zhang et al., 2021a), the newest SOTA
for MNER, which proposes a unified multi-modal
graph fusion approach for MNER. 5) BERT+SG is
proposed in Zheng et al. (2021) for MRE, which
concatenate the textual representation from BERT
with visual features generated with scene graph
(SG) tool (Tang et al., 2020). 6) MEGA (Zheng
et al., 2021), the newest SOTA for MRE, which
develops a dual graph for multi-modal alignment
to capture this correlation between entities and ob-
jects for better performance. 7) VisualBERT(Li
et al., 2019), different from the above SOTA meth-
ods mainly based on co-attention, VisualBERT is a
single-stream structure, which is a strong baseline
for comparison. And the results of VisualBERT
listed in our paper are referred from Chen et al.
(2020a)

Variants of Our Model: we set the ablation ex-
periments to explore the effectiveness of our design.
We conduct on the same parameter settings of HVP-
NeT for each variant model for a fair comparison.
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Modality Methods Twitter-2015 Twitter-2017 MNRE

Precision Recall F1 Precision Recall F1 Precision Recall F1

Text

CNN-BiLSTM-CRF 66.24 68.09 67.15 80.00 78.76 79.37 - - -
HBiLSTM-CRF 70.32 68.05 69.17 82.69 78.16 80.37 - - -
BERT-CRF 69.22 74.59 71.81 83.32 83.57 83.44 - - -
PCNN - - - - - - 62.85 49.69 55.49
MTB - - - - - - 64.46 57.81 60.86

Text+Image

AdapCoAtt-BERT-CRF 69.87 74.59 72.15 85.13 83.20 84.10 - - -
OCSGA 74.71 71.21 72.92 - - - - - -
UMT 71.67 75.23 73.41 85.28 85.34 85.31 62.93 63.88 63.46
UMGF 74.49 75.21 74.85 86.54 84.50 85.51 64.38 66.23 65.29
BERT+SG - - - - - - 62.95 62.65 62.80
MEGA 70.35 74.58 72.35 84.03 84.75 84.39 64.51 68.44 66.41
VisualBERT 68.84 71.39 70.09 84.06 85.39 84.72 57.15 59.48 58.30

HVPNeT-Flat 73.76 75.32 74.54 84.43 86.42 85.41 79.32 78.20 78.75
HVPNeT-1T3 74.25 75.45 74.85 85.43 85.85 85.75 81.18 78.46 79.25
HVPNeT-OnlyObj 74.07 76.23 75.13 85.58 87.52 86.55 81.57 80.94 81.25
HVPNeT 73.87 76.82 75.32 85.84 87.93 86.87 83.64 80.78 81.85

Table 1: Performance comparison of different competitive baseline approaches for NER and RE. Since the original
results of UMT, UMGF and MEGA only involve single extraction task, we reproduce their public code for more
comprehensive comparision.

HVPNeT-Flat: This is another variant of our
model without the pyramid structure. Here we
assign the visual features with the output of the 4-
th block of ResNet and then map the visual features
to each layer corresponding to BERT to conduct
image-text fusion.

HVPNeT-1T3: As ResNet and BERT have four
blocks and 12 layers, respectively thus, it is intu-
itive to directly map visual features in one block
to the three layers in BERT. We denote this variant
as HVPNeT-1T3 to compare with our final version
with hierarchical visual features.

HVPNeT-OnlyObj: Visual objects are consid-
ered as fine-grained image representations. We
conduct ablation by only adopting the object-level
features in this model to validate the effect of the
object features.

4.3 Overall Performance Comparison

4.3.1 Main Results
The experimental results of HVPNeT and all base-
lines on three testing sets are presented in Table 1.
From the experimental results, we can observe that:

Firstly, we can find that incorporating the visual
features is generally helpful for NER and RE tasks
by comparing the SOTA multimodal approaches
with their corresponding text-based baselines. De-
spite previous multimodal approaches can gener-
ally achieve better performance, the enormous im-
provement of F1 score for NER is only about 2.0%
(compare UMGF with BERT-CRF), which for RE
is about 5.55% (compare MEGA with MTB). This
observation reveals that the performance improve-
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Figure 3: Performances on low-resource setting on
MNER and MRE task.

ment of images on text-based NER tasks is rela-
tively limited compared with RE tasks.

Secondly, our method is superior to the newest
SOTA models UMGF and MEGA, which improves
1.36%, and 15.44% F1 scores for Twitter-2017, and
MNRE datasets, respectively. It is worth noting that
most of previous multimodal methods ignore the
error sensitivity of irrelevant object-level images,
while our method regard hierarchical visual prefix
as a prompt for text. This results indicate that our
method can effectively alleviate the error sensitivity
irrelevant object images, which is a more robust
method for visual enhanced NER and RE.

Finally, we also compare with VisualBERT,
which is a pre-trained multimodal BERT with a
single-stream structure. We notice that even as the
pre-trained multimodal model, VisualBERT leaves
much to be desired in MNER and MRE tasks,
which performs worse than UMGF and MEGA,
let alone our methods. We hold that VisualBERT
is truly dissatisfactory since the datasets and pre-
training process are less relevant to information
extraction tasks.
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Relevant Image-text Pair Weak Relevant Image-text Pair Irrelevant Image-text Pair

Taylor Hill holding Jun ’s GQ japan lol. Cold front over Blyde River Canyon in
Limpopo Province , South Africa.

President Bush when he sees the lights
of America .

Text-Images Attention of HVPNeT

Gold Relations: per/per/couple loc/loc/contain per/loc/place_of_residence

BERT: per / per /couple ✗
VisualBERT: per / per /peer ✔
MEGA: per / per /peer ✔
HVPNeT(Ours): per / per /peer ✔

misc / misc /part_of ✗
misc / misc /part_of ✗
per / per /peer ✗

loc / loc /contain ✔

per / loc /place_of_residence ✔

misc / loc /held_on ✗
misc / loc /held_on ✗
per / loc /place_of_residence ✔

Table 2: The first row shows the split of the relevance of image-text pairs, and the several middle rows indicate
representative samples together with their entity-object attention in the test set of MNRE datasets (The y-axis
represents the textual entites, and the x-axis denotes the visual objects with length of flattened 4 patches), and the
bottom four rows show predicted relation of different approaches on these test samples.

4.3.2 Low-resource Scenario
We further conduct experiments in low-resource
settings by randomly sampling 5% to 50% from
the original training set to form a low-resource
training set. Figure 3 shows the performance of our
method in a low-resource scenario compared with
several baselines. By analyzing this results, we can
observe: 1) UMT and MEGA consistently outper-
form the compared baselines in the low-resource
scenario; the improvement indicates that incorpo-
rating the visual features is still helpful for NER
and RE tasks in low-resource scenarios. 2) More-
over, it can be observed that the performance of
HVPNeT still outperforms the other baselines. It
further proves the effectiveness and data-efficiency
of our proposed method.

4.3.3 Cross-task Scenario
Table 3 shows performance comparison of HVP-
NeT and UMGF in a cross-task scenario for ver-
satility analysis. For the first part, Twitter2017 →
MNRE denotes that the trained model on Twitter-
2017 is further used to train and test on MNRE. For
the second part, MNRE → Twitter-2017 represents
that the trained model on Twitter-2017 is used to
further train and test on Twitter-2017. From this
Table, we can observe that our HVPNeT signifi-
cantly outperforms UMGF by a more considerable
margin. Note that our method can achieve further
improvement in a cross-task scenario, while UMGF
performs worse than previous results on the corre-
sponding dataset. This justifies that our HVPNeT
is robust to automatically reduce the interference
of visual information of irrelevant pictures; thus,

Methods Twitter-2017 → MNRE MNRE → Twitter-2017

UMGF 63.85 → 62.90 ↓ (0.95) 85.51 → 84.35 ↓ (1.16)
HVPNeT 81.85 → 82.50 ↑ (0.75) 86.87 → 87.13 ↑ (0.26)

Table 3: Performance comparison of HVPNeT and
UMGF in cross-task scenario.

more image-text data may facilitate learning better
parameters for modality fusion. Besides, it is also
interesting to extend our work to multi-task learn-
ing or multi-modal pre-training and we leave these
for future works.

4.4 Detailed Model Analysis

Ablation Study. In this part, we conduct exten-
sive experiments with the variants of our model to
further analyze the effectiveness of our model. We
illustrate the results of the variant set in Table 1 .
We can observe that:

(1) Visual Prefix-guided Fusion. The core mod-
ule of our HVPNeT is visual prefix-guided fusion,
which is a pluggable operation. Therefore, ablat-
ing visual prefix-guided fusion is equivalent to a
purely bert-based baseline model. As shown in Ta-
ble 1, HVPNeT achieve significant improvements
over purely bert-based baseline model, revealing
the effectiveness of pluggable visual prefix-guided
fusion.

(2) Hierarchical Visual Features. To validate
the impact of our proposed hierarchical visual fea-
tures, we carry out experiments by introducing
two variants: 1) HVPNeT-Flat, crudely assign sin-
gle visual feature for each layer of BERT; and 2)
HVPNeT-1T3, intuitively leveraging visual fea-

1613



Block1 Block2 Block3 Block4

0
1
2
3
4
5
6
7

Bert Layer1

Block1 Block2 Block3 Block4

0
1
2
3
4
5
6
7

Bert Layer2

Block1 Block2 Block3 Block4

0
1
2
3
4
5
6
7

Bert Layer3

Block1 Block2 Block3 Block4

0
1
2
3
4
5
6
7

Bert Layer4

Block1 Block2 Block3 Block4

0
1
2
3
4
5
6
7

Bert Layer5

Block1 Block2 Block3 Block4

0
1
2
3
4
5
6
7

Bert Layer6

Block1 Block2 Block3 Block4

0
1
2
3
4
5
6
7

Bert Layer7

Block1 Block2 Block3 Block4

0
1
2
3
4
5
6
7

Bert Layer8

Block1 Block2 Block3 Block4

0
1
2
3
4
5
6
7

Bert Layer9

Block1 Block2 Block3 Block4

0
1
2
3
4
5
6
7

Bert Layer10

Block1 Block2 Block3 Block4

0
1
2
3
4
5
6
7

Bert Layer11

Block1 Block2 Block3 Block4

0
1
2
3
4
5
6
7

Bert Layer12

0.20

0.25

0.30

0.35

0.40

0.24

0.26

0.28

0.30

0.24

0.25

0.26

0.27

0.20

0.25

0.30

0.24

0.25

0.25

0.20

0.25

0.30

0.35

0.20

0.25

0.30

0.2498

0.2500

0.2502

0.20

0.25

0.30

0.35

0.15

0.20

0.25

0.30

0.15

0.20

0.25

0.30

0.35

0.24

0.24

0.25

0.25

Block1 Block2 Block3 Block4

0
1
2
3
4
5
6
7

Bert Layer1

Block1 Block2 Block3 Block4

0
1
2
3
4
5
6
7

Bert Layer2 Bert 
Layer3

Block
1

Block
2

Block
3

Block
4

0
1
2
3
4
5
6
7

Bert 
Layer4

Block
1

Block
2

Block
3

Block
4

0
1
2
3
4
5
6
7

Bert 
Layer5

Block
1

Block
2

Block
3

Block
4

0
1
2
3
4
5
6
7

Bert 
Layer7 0

1
2
3
4
5
6
7

Bert 
Layer8 0

1
2
3
4
5
6
7

Bert 
Layer9 0

1
2
3
4
5
6
7

Bert 
Layer10 0

1
2
3
4
5
6
7

Bert 
Layer11 0

1
2
3
4
5
6
7

0.20

0.25

0.30

0.35

0.40

0.20

0.25

0.30

0.35

0.40

0.
2

0.
3

0.
4

0.
5

0.2
0

0.2
5

0.3
0

0.3
5

0.4
0

0.
2

0.
3

0.
4

0.24
9

0.25
0

0.25
1

0.
2

0.
3

0.
4

0.
5

0.
2

0.
3

0.
4

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

Figure 4: Visualization of dynamic gate learned on MNER task. Each subgraph denotes one layer in BERT, and the
ordinate and abscissa respectively represent the instance id in a batch and the block id of ResNet.

tures from low-level to high-level blocks. We ob-
serve that HVPNeT with hierarchical visual fea-
tures achieves the best performance consistently
compared with the other variants. Although the
HVPNeT-1T3 performs slightly lower than the ver-
sion of dynamic gate, it still outperforms the crude
variant HVPNeT-Flat. It reveals that the dynamic
gate can automatically learn appropriate weights
for multi-scaled visual representations, enabling
the model to learn good visual guidance for multi-
modal entity and relation extraction.

(3) Visual Clues Term. As recent SOTA mod-
els such as UMT, UMGF, and MEGA all adopt
visual objects to enhance textual representation,
we conduct experiments by ablating global images
to explore the impact of the visual clues. As ex-
pected, we find that HVPNeT-OnlyObj performs
slightly worse than HVPNeT, which is consistent
with the observation of previous works. This can be
attributed to that abstract clues maybe not be asso-
ciated with the text in information extraction tasks.
In other words, this empirical finding demonstrates
the flexibility of our methods to infuse visual clues
with different granularity.

Case Analysis for Error Sensitivity To validate
the effectiveness and robustness of our method, we
conduct case analysis for image-text relevance as
indicated in Table 2. We notice that VisualBERT,
MEGA, and our method can recognize the rela-
tion for the relevant image-text pair. We can fur-
ther find that the attention between relevant entities
and objects is significant. While in the situation
that image represents the abstract semantic that is
weak relevant to the text, only our method success
in prediction due to HVPNeT captures the more
hierarchical features. It should be noted that an-
other two multimodal baselines fail in irrelevant
image-text pairs while text-based BERT and ours
still predict correctly. These observations reveal
that our model regards visual prefix as a prompt

for text may helps learn more robust multimodal
representation, which is essential for the noise of
uncorrelated object images.

Gate Visualization We argue that dynamic gated
aggregation for hierarchical visual representation is
another key component of HVPNeT achieving the
superior performance. Specifically, the dynamic
gated aggregation can adaptively assign different
modality integration paths for different input im-
ages, thus, incorporating visual guidance with hi-
erarchical multi-scaled information. To this end,
we randomly sample eight images in a batch and
visualize their gate vectors learned by HVPNeT ac-
cording to 12 layers of BERT in Figure 4. Note that
optimized gate vectors follow the trend of matching
low-level textual semantics with low-level visual se-
mantics and matching high-level textual semantics
with high-level visual semantics. Meanwhile, the
modality fusion obtained by dynamic gate learning
may provide some valuable insights for efficient
visual-language approaches in the future.

5 Conclusion and Future Work

In this paper, we propose a novel hierarchical vi-
sual prefix fusion neTwork (HVPNeT) for visual-
enhanced entity and relation extraction. To be spe-
cific, we present visual prefix-guided fusion by con-
catenating object-level visual representation as the
prefix of each self-attention layer in BERT, which
is a more soft and robust attention module for vi-
sual enhanced NER and RE. We further design
leveraging hierarchical multi-scaled visual repre-
sentation as visual guidance for fusion. Intuitively,
Good Visual Guidance Make A Better Extractor,
and extensive experimental and results on three
benchmarks have demonstrated the effectiveness
and robustness of our proposed method. Mean-
while, our method also face the limitation that they
don’t suitable for mulimodal tasks in visual side,
such as visual grounding.
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In the future, we plan to 1) explore more appli-
cations of hierarchical visual prefix in multimodal
representation learning, making it more flexible
and extensible; 2) try to apply the reverse version
of our approach to boost visual representation with
text for CV; 3) extend our approach to multitask
multimodal pre-training.
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A Detailed Statistics of Dataset

Dataset Train Dev Test Avg length
(characters)

Twitter-2015 4,000 1,000 3,257 95
Twitter-2017 4,290 1,432 1,459 64

Table 4: Size of the datasets in numbers of tweets.

Dataset # Sent. # Ent. # Rel. # Img.
TACRED 53,791 152,527 41 -
MNRE 9,201 30,970 23 9,201

Table 5: Comparison of MNRE with existing sentence-
level Relation Extraction dataset TACRED ( Sent.: sen-
tence, Ent.: entity, Rel.: relation,Img.: image.

B Experimental Details

This section details the training procedures and hy-
perparameters for each of the datasets. We use the
BERT-base-uncased model from hugging face li-
brary3. We follow UMGF (Zhang et al., 2021a) to
revise some wrong annotations in the Twitter-2015
dataset. Considering the instability of the few-shot
learning, we run each experiment 5 times on the
random seed [1, 49, 1234, 2021, 4321] and report
the averaged performance. We utilize Pytorch to
conduct experiments with 1 Nvidia 3090 GPUs.
All optimizations are performed with the AdamW
optimizer with a linear warmup of learning rate
over the first 10% of gradient updates to a maxi-
mum value, then linear decay over the remainder
of the training. And weight decay on all non-bias
parameters is set to 0.01. We set the number of
image objects m to 3. We describe the details of
the training hyper-parameters in the following sec-
tions.

3https://huggingface.co/

B.1 Standard Supervised Setting
In the MNER task, we fix the batch size as 8 and
search for the learning rates in varied intervals [1e-
5, 3e-5]. We train the model for 30 epochs and
do evaluation after the 16th epoch. In the MRE
task, we fix the batch size as 32 and learning rates
as 1e-5. We train the model for 12 epochs and do
evaluation after the 8th epoch. In the two tasks, we
all choices the model performing the best on the
validation set and evaluate it on the test set.

B.2 Low-Resource Setting
For different instances per class, we sample five
times on the random seed [1, 2, 49, 4321, 1234] and
report the averaged performance. For all models,
we fix the batch size as 8 and search for the learning
rates in varied intervals [3e-5, 5e-5]. We train the
model for 30 epochs and do evaluation after the
16th epoch. We choose the model performing the
best on the validation set and evaluate it on the test
set.

B.3 Cross-Task Setting
In the MNER task and RE task, we all use ResNet
and BERT-base as the backbone, we transfer the
same parameters except the classifier layer and
CRF layer when we do cross-task. In further train-
ing, we fix the batch size as 8 and search for the
learning rates in varied intervals [1e-5, 3e-5]. We
train the model for12 epochs and do evaluation af-
ter the 8th epoch. We choose the model performing
the best on the validation set and evaluate it on the
test set.
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