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Abstract

Question matching is the task of identifying
whether two questions have the same intent.
For better reasoning the relationship between
questions, existing studies adopt multiple inter-
action modules and perform multi-round rea-
soning via deep neural networks. In this pro-
cess, there are two kinds of critical information
that are commonly employed: the representa-
tion information of original questions and the
interactive information between pairs of ques-
tions. However, previous studies tend to trans-
mit only one kind of information, while failing
to utilize both kinds of information simultane-
ously. To address this problem, in this paper,
we propose a Full Information Transmission
Network (FITN) that can transmit both repre-
sentation and interactive information together
in a simultaneous fashion. More specifically,
we employ a novel memory-based attention for
keeping and transmitting the interactive infor-
mation through a global interaction matrix. Be-
sides, we apply an original-average mixed con-
nection method to effectively transmit the repre-
sentation information between different reason-
ing rounds, which helps to preserve the original
representation features of questions along with
the historical hidden features. Experiments on
two standard benchmarks demonstrate that our
approach outperforms strong baseline models.

1 Introduction

Question Matching (QM) aims to identify whether
two questions have the same intent, which is widely
applied in Question Answering (QA) applications
such as community QA and intelligent customer
services. Typically, QM is regarded as a semantic
matching task (Hu et al., 2021). To correctly infer
the relationship of a given question pair, there are
two kinds of information that should be considered:
the representation information of questions that
captures the semantics of the texts, and the inter-
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active information between questions that contains
critical hints for relationship reasoning.

For better detecting the relationship between
question pairs, it’s far from being enough to con-
duct only one single round of reasoning. Existing
methods commonly resort to multiple interaction
modules to do deep reasoning, where each module
is generally composed of an encoding layer (can be
omitted (Gong et al., 2018)) to update the represen-
tation information of questions and an interaction
layer for capturing the interactive information be-
tween questions (Kim et al., 2019; Hu et al., 2021).
In such a multi-round reasoning procedure, both
the representation and interactive information in
history rounds play a vital role in guiding the fu-
ture inference. However, previous studies either
only transmit the representation information (Kim
et al., 2019) or only the interactive information
(Gong et al., 2018), while failing to utilize both
kinds of information simultaneously.

As shown in Figure 1 (i), when performing multi-
round reasoning, if a model only transmits the rep-
resentation information, the interactive information
between questions will then be simply utilized to
generate the representation of questions for future
rounds. Consequently, the critical hints for relation-
ship reasoning conveyed by interactive information
are abandoned and cannot be directly used for fu-
ture inferences. On the other side, if a model only
transmits the interactive information, it is equiv-
alent to conduct multi-round reasoning with only
one single pass on question pairs, as shown in Fig-
ure 1 (ii). Admittedly, missing the representation
information of original questions may lead to un-
derstanding deviation and thus bring cascading er-
rors. Therefore, as shown in Figure 1 (iii), to better
perform reasoning between question pairs, a desir-
able solution should be able to transmit both the
representation and interactive information from his-
torical rounds to the current round simultaneously.

To address the aforementioned problems, in this
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Figure 1: Comparison between different reasoning process of the relationship between questions S and T when
transmitting different kinds of information.

paper, we propose a Full Information Transmission
Network (FITN) that learns to transmit both the
representation and interactive information between
each round of reasoning. In particular, we propose
a novel Memory-based Attention (Mem-Att) to
transmit the interactive information between ques-
tion pairs. In the Mem-Att, we maintain a global
interaction matrix as a memory for keeping the in-
teractive information and do inference on top of
it. Compared with traditional attentions that cal-
culate the alignment score directly, the proposed
interaction matrix keeps rich interactive informa-
tion and is more stable in the update process due
to its redundancy. Thanks to the global interaction
matrix, each round of inference could benefit from
the historical interactive information and the whole
reasoning procedure is progressive.

Meanwhile, to effectively transmit the represen-
tation information of questions, we introduce an in-
teresting connection method, namely the Original-
Average Mixed Connection (OA-mixed Connec-
tion). Instead of feeding only the hidden features
from the last reasoning round, when performing
reasoning at the current round, we regard both the
hidden features and the original representation em-
beddings of questions as the input. Such a connec-
tion method enables our model an ability to explic-
itly utilize the entire rich information of original
texts when inference. In addition, the OA-mixed
Connection employs the average operation over
hidden features from the last two rounds to build
the input hidden feature for the current reasoning
round. Compared with the residual connection (He
et al., 2016) that treats the information in each
round equally, the average connection pays more
attention to the information in the nearer rounds,
and thus brings better discrimination ability.

We evaluate our proposed method on the Quora
and LCQMC benchmarks. Experimental results

show that FITN outperforms the non-pretrained
baselines with considerable margins. Furthermore,
compared with pre-trained models (small ones with
comparable parameter sizes as FITN), our FITN
also achieves better performance, which reveals
the advantage of proposed method under resource-
constrained conditions. All these illustrates the
effectiveness of our method.

In sum, our major contributions are three-fold:

• We propose the Full Information Transmis-
sion Network (FITN) that can better utilize
the historical information, capturing both the
representation and interactive information of
questions for question matching.

• We propose the memory-based attention for
keeping and transmitting the interactive infor-
mation and the original-average mixed con-
nection to fully utilize the original embedding
features of texts and historical hidden features.

• We evaluate the proposed FITN on two bench-
mark datasets, where considerable improve-
ments are gained over strong baseline models.

2 Methodology

In this section, we introduce our proposed full infor-
mation transmission network (FITN) in detail. As
shown in Figure 2, FITN comprises three modules:
the embedding module, the interaction module and
the prediction module. In FITN, we first embed
each question in the embedding module, then do
inference in the interaction module and finally pre-
dict their relationship in the prediction module.

We denote two input questions as S =
{s1, s2, ..., sm} and T = {t1, t2, ..., tn} where
si/tj is the ith/jth token of question S/T and m/n
is the token length of S/T .
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Figure 2: Architecture of the FITN model.

2.1 Embedding Module

In the embedding module, we apply the word em-
bedding along with the character embedding to
embed tokens in each question. The character em-
bedding is randomly initialized and then processed
by a convolutional neural network (CNN) with a
max-pooling operation. Formally, the final repre-
sentation esi of token si is calculated as follows:

esi = [Emb(si); ChConv(si)] (1)

where [; ] denotes the concatenation operation,
Emb is the word embedding and ChConv is the
character-level CNN. Each word in S and T is
treated in the same procedure and then S and T can
be represented as ES ∈ Rm×de and ET ∈ Rn×de .

2.2 Interaction Module

The interaction module is the core of our FITN,
composed of N same-structured blocks for doing
N rounds of inference. Each block contains 3 com-
ponents: the encoding layer, the memory-based
attention layer and the original-average mixed con-
nection layer. We denote I lS and I lT as the inputs
of the lth block, where I0S = ES and I0T = ET .

2.2.1 Encoding Layer

We encode two questions through a Bi-LSTM en-
coder to extract the contextual representation of

each token in questions, shown as:

H l
S = BiLSTMl(I lS) (2)

H l
T = BiLSTMl(I lT ) (3)

where H l
S ∈ Rm×dh and H l

T ∈ Rm×dh are the hid-
den representations of I lS and I lT in the lth round,
respectively.

2.2.2 Memory-based Attention Layer
As shown in Figure 3, we maintain a global interac-
tion matrix for keeping and transmitting the inter-
active information in the memory-based attention
(Mem-Att) layer. The global interaction matrix is
treated as a memory, which keeps all the historical
interactive information and will be updated when
getting the new one. For each pair of tokens, we
keep an interactive vector instead of an attention
score in the global interaction matrix. The inter-
active vector keeps richer information and is more
stable in the update process due to its redundancy.

Figure 3: Architecture of the Mem-Att.

In each round, we firstly update the global inter-
action matrix and then do attention based on this
matrix. In this way, the interactive information in
history can be transmitted into the current round
and provides assistance on the soft-alignment and
inference between the two questions.

Global Interaction Matrix Update The global
interaction matrix is updated through two steps:
current interaction matrix calculation and global
interaction matrix combination.

Current Interaction Matrix Calculation The
current interaction matrix in the lth round M l ∈
Rn×m×dh is calculated as follows:

M l = H l
S ⊙H l

T (4)

For each pair of tokens si and tj in the question
S and T , the interaction vector M l

i,j ∈ Rdh in M l

is calculated through the element-wise multiplica-
tion operation, shown as:

M l
i,j = H l

si ◦H l
tj (5)

where ◦ is the element-wise multiplication.
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Global Interaction Matrix Combination Af-
ter that, we combine the current interaction matrix
M l and the global interaction matrix M̄ l−1 in the
previous round and feed the concatenation result of
them into a fully-connected layer with a non-linear
activation function as the global interaction matrix
M̄ l ∈ Rn×m×dm in the lth round:

M̄ l =

{
F (M l) l = 0

F ([M l; M̄ l−1]) l > 0
(6)

where M̄ l
i,j ∈ Rdm in M̄ is calculated as:

M̄ l
i,j = f(wl

m[M̄ l−1
i,j ;M l

i,j ] + blm) (7)

where [; ] is vector concatenation across row, wl
m ∈

R(dh+dm)×dm and blm ∈ Rdm correspond to the
weight and bias respectively.

Attention over Interaction Matrix Next, we do
inference and alignment through the global inter-
action matrix. We firstly adopt a dense-pooling
method to extract an attention map from the global
interaction matrix. More specifically, we utilize a
fully-connected layer with a nonlinear function to
convert each vector into the attention value. Each
element Attli,j in the attention map Attl ∈ Rm×n

is calculated as:

Attli,j = f(wl
pM̄

l
i,j + blp) (8)

where wl
p ∈ Rdm×1 and blp ∈ R correspond to the

weight and bias, respectively. Then, the attentive
representation Al

si of si in the lth round is weighted
summed by H l

tj , where the weights are calculated
by the softmax operation over Attli,j :

Al
si =

n∑

j=1

softmax(Attli,j)H
l
tj (9)

Finally, we calculate the average and the dif-
ference between the attentive representation AS/T

and the contextual representation HS/T , concate-
nate the results with themselves together, and then
feed the concatenation result into a fully-connected
layer to get the outputs of the block.

U l
S = [H l

S ;A
l
S ; (H

l
S +Al

S)/2;H
l
S −Al

S ] (10)

U l
T = [H l

T ;A
l
T ; (H

l
T +Al

T )/2;H
l
T −Al

T ] (11)

Ol
S = f(wl

fU
l
S + blf ) (12)

Ol
T = f(wl

fU
l
T + blf ) (13)

where Ol
S ∈ Rm×dh , Ol

T ∈ Rn×dh , wl
f ∈

R4dh×dh , and blf ∈ Rdh are the weight and bias
respectively.

2.2.3 Original-Average Mixed Connection
Layer

Finally, we transmit the representation information
through the original-average mixed connectivity
pattern (OA-mixed connection) in this layer. The
question representation input to each round of in-
ference can be divided into two parts: the original
features from the initial embedding of questions
and the hidden features extracted from previous
inference rounds. Both of them play a vital role in
each round of inference, where the original features
can lead the model to make inference in the right
direction, and the hidden features contain deeper
contextual and interactive information. Besides,
the hidden features can be seen as the information
enhancement of the original features. Formally, the
whole process can be shown as:

I l =

{
IE l = 0

[IE ; I
l
H ] l > 0

(14)

where I l ∈ Rm×(de+dh) (l > 0) is the l-th round
input, IE is the initial embedding, and I lH is the
l-th round hidden input, calculated as:

I lH =





O0 l = 1

(Ol−1 + I l−1
H )/2 l > 1

= Ol−1

2 + · · ·+ O1

2l−1 + O0

2l−1

(15)
where Ol are the hidden outputs of the interaction
module before the average connection.

Here, instead of the residual connection, we ap-
ply the average connection to capture the hidden
features. Compared with the residual connection
that treats the information in each round equally,
the average connection pay more attention to the
information in the nearer rounds. Besides, the resid-
ual connection’s summation operation may cause
the variance of the vectors in the hidden part to go
larger as the layers deepen. In comparison, the av-
erage connection can balance the variance between
the two parts of the question representation.

2.3 Prediction Module
The final representations of the two questions in the
interaction module are the last block’s next inputs
IN+1
S and IN+1

T . To extract a proper representa-
tion for each question, we apply the max-pooling
operation over them, i.e.:

VS = max(IN+1
S ) (16)

VT = max(IN+1
T ) (17)
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Table 1: Experimental results on the Quora and LCQMC datasets. Para. denotes the number of parameters. The
evaluation metric of Quora is accuracy (%), and that of LCQMC is accuracy (%) and F1. The results are average
scores using 5 different seeds along with the standard deviation.

Type Model Para. Quora LCQMC

Non-pretrained

BiMPM(Wang et al., 2017) 1.6m 88.2 83.3/84.9
DIIN (Gong et al., 2018) 4.4m 89.1 -/-
CSRAN (Tay et al., 2018) - 89.2 -/-
RE2 (Yang et al., 2019) 2.8m 89.4 -/ -
Enhanced-RCNN (Peng et al., 2020) 7.3m 89.5 -/-
TIM-W (Zhou et al., 2020) - 89.6 -/-
DRCN (Kim et al., 2019) 6.7m 90.2 -/-
GMN (Chen et al., 2020) - - 84.6/86.0
LET (Lyu et al., 2021) - - 84.8/86.1
COIN (Hu et al., 2021) 6.5m 89.4 85.6/86.5

Pre-trained

AlBERT-tiny (Lan et al., 2020) 4.1m - 85.3/86.3
BERT-tiny (Turc et al., 2019) 4.4m 87.2 -/-
BERT-mini (Turc et al., 2019) 11.3m 88.8 -/-
AlBERT-base (Lan et al., 2020) 11.7m 90.0 86.3/87.0

Ours FITN 2.5m 90.6±0.1 86.0±0.5/87.1±0.4

where VS , VT ∈ Rdh+de and max extracts the max-
imum value in each column of the inputs.

Finally, we concatenate VS and VT to get the
feature vector V and feed the feature vector V into
a two-layer feed-forward network with one hidden
layer and one softmax layer to make the prediction.

3 Experiments

We evaluate our FITN on two QM benchmarks:
the Quora (English dataset) (Iyer et al., 2017) and
LCQMC (Chinese dataset) (Liu et al., 2018). The
Quora dataset contains over 400k question pairs
collecting from Quora, an English community ques-
tion answering (cQA) website, and the data splits
(380K/10K/10K) are provided in BIMPM (Wang
et al., 2017). The LCQMC collects over 260k
question pairs from a Chinese cQA website called
BaiduKnows (240K/8K/12K).

3.1 Implementation Details
In the original FITN, we initialize the word embed-
ding with 300d Fasttext vectors (Bojanowski et al.,
2017) for the English task and 300d Word2Vec
vectors trained in Baidu Encyclopedia (Qiu et al.,
2018) for the Chinese task, respectively. We ran-
domly initialize the character embedding with a
25d vector and extract a 50d character representa-
tion by CNN. Then, we conduct three rounds of
inference and set the hidden size of each layer to
100d in the interaction module. Finally, we set

500 hidden units for the 2-layer FFN in the pre-
diction module. We apply an Adam (Kingma and
Ba, 2015) optimizer with a learning rate of 1e-3.
We train 100 epochs on the Quora dataset and 20
epochs on the LCQMC dataset. We run 5 times
with 5 different randomly selected seeds and re-
port the mean value with the standard deviation
selected according to the best performance in the
development set.

3.2 Experimental Results

The main experimental results are shown in Table 1.
We compare our FITN with non-pretrained models
at first. In particular, we employ the baselines in-
cluding: 1) DIIN(Gong et al., 2018): a CNN-based
model that employs a DenseNet on the interac-
tion matrix; 2) RE2 (Yang et al., 2019): a CNN-
based model with the augmented residual connec-
tion; 3) Enhanced RCNN (Peng et al., 2020): a
model that encodes sentences by multi-layer CNNs
and adopts the attention-based RNNs for relation-
ship inference; 4) TIM-W (Zhou et al., 2020): a
model based on deep mutual information estima-
tion; 5) DRCN (Kim et al., 2019): a co-attention
BiLSTM model with dense-connection; 6) GMN
(Zhou et al., 2020): a neural graph matching model;
7) LET (Lyu et al., 2021): a transformer-based
model that employs the external linguistic knowl-
edge derived from Graph Attention Networks; and
8) COIN (Hu et al., 2021): A CNN-based model
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with a deep context-aware cross-attention based
interaction module.

We can see that our model outperforms all these
baselines on the two benchmarks. More specifi-
cally, our model beats DIIN because we can keep
updating the representation information based on
the historical representation information during it-
erations. Compared with DRCN, our FITN utilizes
the historical interactive information for inference
and in return acquires performance improvements
with fewer inference rounds. Besides, the historical
interactive information can also benefit our model
on deeper inference. Therefore, the performance
of our model is unsurprisingly better than RE2.

In addition, to further verify the effectiveness
of our FITN under restricted computing resources,
we compare our FITN with 4 publicly available
tiny pre-trained models, which are distilled from
large pre-trained models (BERT-tiny and BERT-
mini (Turc et al., 2019) that are distilled from
BERT-base (Devlin et al., 2019)) or directly pre-
trained by large-scale datasets (AlBERT-tiny and
AlBERT-base (Lan et al., 2020)). As shown in
Table 1, our model can achieve competitive or
even better performance than pre-trained models
with similar model size. It demonstrates that our
FITN can be a desirable choice compared with pre-
trained models in resource-constrained scenarios.

3.3 Analysis

In this subsection, we firstly verify the effectiveness
of our proposed Mem-Att and OA-mixed connec-
tion, then show the impact of inference rounds on
model performance, and finally further analyze the
Mem-Att by a statistical analysis and a case study.

3.3.1 Effectiveness of the Mem-Att
We compare Mem-Att with three attention mecha-
nisms to verify the ability of Mem-Att to maintain
richer interactive information and leverage histori-
cal interactive information to aid future inference,
containing 1) the scaled dot product attention (Dot-
Att); 2) the scaled weighted dot product attention
(wDot-Att); and 3) the interactive attention (Inter-
Att), a variance of Mem-Att, which is only based
on the current interaction matrix. The functions of
these attentions are shown as following:

Att =





Poolatt(F (M c)) Inter-Att
STT√

d
Dot-Att

SWTT√
d

wDot-Att

(18)

Table 2: Comparison experiments about different atten-
tion mechanisms on the Quora dataset.

Attentions Dev Acc. Test Acc.

Dot-Att 88.4 88.0
wDot-Att 88.8 88.3
Inter-Att 90.4 90.1

Mem-Att 90.8 90.6

Table 3: Comparison experiments about different con-
nectivity patterns on the Quora dataset.

Patterns Dev Acc. Test Acc.

Direct 90.3 90.0

Dense 90.4 90.3
Residual 90.5 90.2

OA-mixed 90.8 90.6

where d is the dimension of the question represen-
tation, S ∈ Rd×m, T ∈ Rd×n and W ∈ Rd×d.

The comparison results are shown in Table 2.
With an intuition that the 3D interaction matrix
can keep richer interactive information than the 2D
attention map, the performance of the Int-Att is
unsurprisingly better than those of the wDot-Att
and the Dot-Att, which demonstrates that richer in-
teractive information can bring benefit to the model
on conducting more proper inference. Furthermore,
the performance of the Mem-Att is better than that
of the Int-Att, which reflects that the historical in-
teractive information can provide assistance on the
current and the future inference.

3.3.2 Effectiveness of the OA-mixed
Connection

To illustrate the advantage of the OA-mixed connec-
tion, we compare our method with the following
connective patterns: 1) residual connection (He
et al., 2016); 2) dense connection (Huang et al.,
2017), and 3) direct connection that directly treats
the output of the previous round as the input.

As shown in Table 3, the direct connection un-
surprisingly performs worst. These results show
that the historical representation information pro-
vides benefits for the current round of inference
and it is critical to design advanced connectivity
patterns to effectively transmit important informa-
tion between different reasoning rounds. Moreover,
our OA-mixed connection beats both the residual
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connection and the dense connection. We attribute
it to the fact that our method can preserve the entire
information of original texts. Meanwhile, the av-
erage connection we proposed can help the model
to focus more on the information conveyed by the
surrounding reasoning rounds. All these bring rich
information and helpful hints to determine the rela-
tionships between the question pair.

1 2 3 4 5
Number of Inference Rounds
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0.87

0.88
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0.91
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 (%
)
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Figure 4: The accuracy curve for different rounds of
inference on the Quora dataset.

3.3.3 Impact of the Inference Rounds
In this part, we design a comparison experiment
to demonstrate the impact of the inference rounds.
We set the inference round in our FITN from 1
to 5 and compare their performance on Quora’s
development and test set. The comparison result is
shown in Figure 4. Obviously, as the number of the
inference round increases, our model’s accuracy
increases, verifying the utility of the multi-round
inference. However, the increasing trend of the
accuracy gradually slows down as the number of
inference rounds grows. Continue stacking layers
may not bring further significant improvements.
We attribute this to the model capturing enough
information from a limited multi-round inference
under the assistance of our proposed Mem-Att and
OA-mixed connection. There is no need to stack
too many inference modules.

3.3.4 Analysis of the Mem-Att
In order to further analyze how the Mem-Att works,
we compare our Mem-Att with the Dot-Att and con-
duct a statistical analysis along with a case study
to verify that the Mem-Att can pay higher attention
to the critical word pairs and the inference round

Table 4: Statistical analysis on the Quora dataset.
“Mean±std” denotes the mean value and the standard
deviation of the attention distribution. R1., R2., and R3.
denote the attention in the round 1, 2, and 3 respectively.

Metric Mem-Att Dot-Att

R1. Mean±std 0.0967±0.0026 0.0967±0.0017
R2. Mean±std 0.0967±0.0028 0.0967±0.0003
R3. Mean±std 0.0967±0.0029 0.0967±0.0013

Pearson(R2,R1) 0.7327 0.5456
Pearson(R3,R2) 0.8521 0.5390

in the Mem-Att is progressive.

Statistical Analysis We conduct the statistical
analysis on the development set of Quora and com-
pare our Mem-Att with the Dot-Att. We calculate
the mean value and the standard deviation of the
attention distributions in each inference round to
observe the distribution characteristics. Then, we
calculate the Pearson correlation coefficient (Ben-
esty et al., 2009) to quantify the relevance between
two attention distributions in adjacent rounds. We
take the average of the above metrics among all
samples as the final metrics.

As shown in Table 4, the standard deviation of
the attention distributions in the Mem-Att is larger
than that in the Dot-Att and the distribution of the
Dot-Att tends to be uniform. It demonstrates that
our Mem-Att is more discrete and pays more atten-
tion to the specific token pairs. Besides, the Pear-
son correlation coefficient between the attention
distributions of the Mem-Att in adjacent rounds is
higher than that in the Dot-Att, which denotes that
the inference between adjacent rounds has more
relevance in the Mem-Att. The inference procedure
in the Mem-Att is progressive.

Case Study Then, we take a pair of similar ques-
tions “What is the cost of a Snapdragon 2100 SoC
?” and “What is the Snapdragon 2100 SoC pricing
?” as an example and visualize the attention dis-
tributions of the Mem-Att and the Dot-Att in each
round of inference. Here, the Mem-Att predicts
right and the Dot-Att predicts wrong.

As shown in Figure 5, both the Dot-Att and the
Mem-Att can align all pairs of the same word in
the first inference round, where the Mem-Att fo-
cuses more on these word pairs than the Dot-Att.
The distribution of the Mem-Att is more concen-
trated than that of the Dot-Att, which denotes that
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(a) The heat maps of Mem-Att.

(b) The heat maps of Dot-Att.

Figure 5: The heat maps of Mem-Att and Dot-Att. Take “What is the cost of a Snapdragon 2100 SoC ?” and “What
is the Snapdragon 2100 SoC pricing ?” as an example.

the Mem-Att has obvious tendency to pay atten-
tion. With the increase in the number of inference
rounds, the Mem-Att’s distribution does not tend to
be uniform. Furthermore, the change of the Mem-
Att’s distribution is continuous, where the Mem-Att
gradually deepens its focus on “cost” and “pricing”.
It demonstrates that the inference in the Mem-Att
is progressive. The Mem-Att can gradually align
word pairs with similar semantics.

4 Related Work

Question Matching can be regarded as a seman-
tic matching task, which core lies in how to
model the vector representation of texts (Shen
et al., 2018; Reimers and Gurevych, 2019; Gao
et al., 2021) and reason about the semantic rela-
tionship between text pairs. ESIM (Chen et al.,
2017) encodes texts through BiLSTM or TreeL-
STM (Socher et al., 2013) and applies the co-
attention to extract fine-grained alignment infor-
mation for inference. BiMPM (Wang et al., 2017)
matches texts from multiple perspectives by multi-
ple kinds of attentions. For better inference, many
studies tend to employ deeper models. DIIN (Gong
et al., 2018) applies a dense-net on the interaction
matrix extracted from two texts for deep inference.
DRCN (Kim et al., 2019) iterates one same block
multiple times for multi-turn inference. TIM-W
(Zhou et al., 2020) is based on deep mutual in-

formation estimation. ADIN (Liang et al., 2019)
performs multiple rounds of asynchronous reason-
ing for the NLI task. In comparison, our FITN
performs better due to the better utilization of his-
torical information.

Thanks to the knowledge obtained from mas-
sive data, pre-trained models can greatly improve
the performance of semantic matching, such as
BERT (Devlin et al., 2019) AlBERT (Lan et al.,
2020). However, the complexity of the model
and the time consumption of reasoning are greatly
increased, making them not suitable to resource-
constrained scenarios. Enhanced-RCNN (Peng
et al., 2020) compares itself with BERT in infer-
ence speed and accuracy. Although the perfor-
mance is relative low, its inference speed is 10
times faster than BERT-base. Under the resource-
constrained condition, directly using publicly avail-
able tiny pre-trained models is another solution.
These models are commonly pre-trained with
large-scale corpus (like AlBERT-tiny and AlBERT-
base (Lan et al., 2020)) or distilled from large pre-
trained models (like BERT-tiny (Turc et al., 2019)).
Compared with these tiny pre-trained models, our
FITN achieves better performance.

5 Conclusion

In this paper, we study the task of question match-
ing and propose a Full Information Transmission
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Network (FITN) that can utilize both the historical
representation and the historical interactive infor-
mation together in a simultaneous fashion. Specifi-
cally, the FITN employs a memory-based attention
to keep and transmit the historical interactive infor-
mation and an original-average mixed connectivity
pattern to transmit the representation information.
Experimental results on two benchmarks show that
our FITN takes advantage of both kinds of infor-
mation and outperforms strong baselines with con-
siderable margin.
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