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Abstract

Emotional conversation systems generate re-
sponses for the input queries considering the
speaker’s emotions in a conversation. Existing
emotional conversation systems output emo-
tional responses according to either a given
emotion or the user’s emotion reflected in the
input queries. Following a given emotion may
lead to an emotional drift between the given
emotion and the conversation state, and follow-
ing only the user’s emotion may aggravate the
user’s negative feelings if users suffer from a
negative mood. In this paper, we propose to
generate empathetic responses catering to the
user’s emotions while leading the conversation
to be emotionally positive. Particularly, by ab-
stracting the conversation corpus, we extract
and store the different responding strategies for
different users’ emotions and conversational
topics into a memory. We encourage positive
emotions in conversation via a sentiment eval-
uator. We model the memory outputs with a
Gaussian mixture distribution and sample a fi-
nal responding strategy from the distribution.
The strategy acts as a condition to a transformer
model to generate responses. The experiments
verify our model surpasses the baseline meth-
ods in appropriateness, diversity, and generat-
ing emotionally positive responses.

1 Introduction

Most conversation models capture only the cor-
relation between queries and responses and may
overlook speaker’s emotional states in the conver-
sation. Emotional conversation models (Zhou et al.,
2018; Song et al., 2019) consider speakers’ emo-
tions during the dialogues, where the speakers can
be either users or chatbots. Those models make
chatbots aware of the user’s emotions and enable
them to respond empathetically. There are two di-
rections for emotional conversation models. (1)
Controllable response generation enables chatbots
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Kobe Bryant had a plane crash. We lost him, so sad.

Query (from User)

Emotional Effect

Empathetic
Yes, we lost him. I'm extremely heartbroken these days. 

Response (from Chatbot)

Positive
Come on, cheer up. We still love NBA. 

Empathetic + Positive (ours)
Sorry to hear that crash. He's a legend and will be my
idol forever. Hope his family and fans can recover soon.

Re-injure

Aggravate negative feelings

Comfort and hearten

Figure 1: An example of the differences among control-
lable response generation (in red), empathetic response
generation (in blue), and our chatbot (in a mixture of
red and blue). When responding to the sad news, blunt
cheering up might lead to reinjury and a plain show of
empathy tends to aggravate negative feelings. A suitable
response should be both empathetic and positive.

to respond conditioned on a certain emotion (Shin
et al., 2020; Liu et al., 2021) or style (Zhou and
Wang, 2018; Dathathri et al., 2019). Those meth-
ods require an explicit emotion label as input and
the label dominates the chatbot’s response. (2)
Empathetic response generation, detects the user’s
emotion from the query so that the chatbots can
respond empathetically considering the user’s emo-
tion (Lin et al., 2019, 2020).

The above two directions cater to emotions in
conversation but still possess some weaknesses.
For the first direction, if the given emotion label
mismatches with the user’s emotion, controllable
responses generation leads to an emotional drift
(Deng et al., 2020) among dialogues, that is, the
emotions of query and response are inconsistent
and incoherent. As the example shown in Fig. 1,
if the user tells a sad story and the chatbot aggres-
sively encourages the emotion to be happy, the chat-
bot’s responses may be crude resulting in reinjury
to the user. As for empathetic response generation,
without acquiring any additional inductive bias, the
user’s emotion does not necessarily hint how to
respond empathetically (Shin et al., 2020), so con-
sidering the user’s emotion usually pushes chatbots
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to imitate the user’s emotion. If the user is sad
(Fig. 1), simply imitating the user’s emotion may
aggravate the user’s negative feelings.

Existing research hardly explores to balance em-
pathy and positive emotions in response generation.
To achieve that goal, we should adopt different
responding strategies to different situations and fi-
nally lead positive conversations. For example, to
respond to a sad story, we should first show our
empathy and then gently lead a positive emotion;
for a happy utterance, we can directly congratulate
the user and even share other good news.

In this paper, we propose a conversation model
that generates empathetic responses and gently
guides the mood of the conversation towards a pos-
itive direction. To customize responding strategies
to different situations, we extract implicit respond-
ing strategies for specific emotions and topics by
abstracting the training corpus. We store the ex-
tracted strategies into an emotion-specific query-
response memory to assist the response generation.
To lead positive emotions, we employ a sentiment
evaluator to encourage positive responses. The
above operations constrain the strategies and emo-
tions in generation, thus they naturally decrease the
diversity of the generated responses. To encour-
age diverse responses and fully utilize the memory
outputs, inspired by conditional variational autoen-
coder (CVAE) (Sohn et al., 2015), we model the
memory outputs with a Gaussian mixture distribu-
tion and mix the memory outputs (i.e. responding
strategies) by sampling a strategy vector z from the
distribution. Finally, the strategy vector z controls
a conventional conversation model to generate re-
sponses. Our experiments verify that our model not
only exceeds the comparing methods in quality and
diversify but also encourages positive conversation.
Our contributions are threefold: (1) We propose a
conversation model to balance users’ emotions and
positive emotions. (2) We propose to abstract the
corpus to build an emotion-specific query-response
memory to carry responding strategies for different
emotions and topics and propose a strategy mixer
to fuse memory outputs. (3) Our model surpasses
some latest emotional chatbots in appropriateness,
diversity, and positivity of responses.

2 Related Work

2.1 Conversation Systems

Large scale corpora lead to a great success in data-
driven conversation systems, including retrieval-

based (Isbell et al., 2000; Ji et al., 2014) and
generation-based methods (Shang et al., 2015).
Generation-based methods achieve the end-to-end
response generation. To prompt conversation sys-
tems, Serban et al. (2016) propose to consider the
historical utterances. Li et al. (2016) diversify the
generated response. Xing et al. (2017) strengthen
the topic coherence among conversational utter-
ances. Conversation systems also consider speak-
ers’ states, including speaker’s personalities (Zhang
et al., 2018) and roles (Hu et al., 2019).

2.2 Emotional Conversation Systems

Emotional conversation systems can be divided
into two directions: catering to the user’s emotions
and expressing the chatbot’s emotions. The first
direction aims to capture user’s emotions and make
empathetic responses (suitable responses cottoning
with the user’s states) (Lin et al., 2019, 2020; Li
et al., 2020; Lin et al., 2020; Gao et al., 2021; Li
et al., 2022). Empathy refers to the capacity to
respond with an appropriate emotion to another’s
mental states (Zhong et al., 2020). Rashkin et al.
(2019) design a pipeline system, where a classi-
fier predicts emotion words describing the user’s
query. Lin et al. (2019) propose an end-to-end neu-
ral conversation model that detects the emotion by
an encoder and generates responses with decoders.
Cao et al. (2020); Zheng et al. (2021) apply GPT
(Generative pre-training) (Radford et al., 2018) to
empathetic chatbots, and Zhong et al. (2020) em-
ploy BERT (Devlin et al., 2019) to emotional re-
sponse generation. Liu et al. (2021) construct a
dataset to simulate the dialogs between psycholo-
gist and help-seeker. Those methods mainly cater
to users’ emotions without planning emotions in
future conversations, which is different from our
model.

The second direction aims to enable the chatbot
to respond conditioned on a given emotion, which
is a sub-domain of controllable text generation (Lu-
bis et al., 2018a,b; Dathathri et al., 2019; Colombo
et al., 2019; Xu et al., 2021). Lubis et al. (2018a)
achieves it with a HRED (hierarchical recurrent
encoder-decoder) (Serban et al., 2016). Song et al.
(2019) equip a Sequence-to-Sequence (Seq2Seq)
(Sutskever et al., 2014) with lexicon-based atten-
tion and encourage the model to express emotion
implicitly. Shin et al. (2020) leads the positive
emotion in conversation via reinforcement learning.
ECM (emotional chatting machine) (Zhou et al.,
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2018) embeds the given emotion, models the emo-
tion expression, and generates emotional words
with external memory. Inspired by dual learning,
Shen and Feng (2020) enable two chatbots to learn
by chatting with each other under the specific emo-
tion. Jiang et al. (2021) lead a happy conversation
ending in multi-turn conversations. The conversa-
tion systems that explicitly consider the two direc-
tions mentioned above are underexplored, which is
the goal of this paper.

2.3 Variational Autoencoder
Kingma and Welling (2013) propose variational au-
toencoder (VAE) to reconstruct a sample x through
a latent variable z. VAE estimates the intractable
posterior P (z|x) with a recognition network. Sohn
et al. (2015) extend VAE to conditional VAE
(CVAE). CVAE estimates the latent z with a condi-
tion on the prior and posterior distribution. Zhao
et al. (2017) apply CVAE to conversation to diver-
sify the generated utterances, where queries act as
the conditions and responses act as the x. Gao et al.
(2019b) equip CVAE with interpretable latent vari-
ables. The differences between those methods and
our models are: 1) the estimation of our posterior
relies on the memory instead of the responses x
in CVAE. 2) our posterior follows the Gaussian
mixture to carry a mixture of potential responses.

3 Approach

3.1 Model Architecture
Our model understands the user’s query, determines
a responding strategy, and generates a response
conditioned on the strategy. Our model has five
modules (Fig. 2) as follows,

• Encoder represents the query q with a vector e.
• Emotion Detector (ED) detects the emotion of the

query q.
• Responding Strategy Generator (RSG), the core

module in this paper, generates a responding strat-
egy vector z to guide the generation. RSG contains
an emotion-specific query-response memory and a
strategy mixer to determine a suitable responding
strategy.

• Conditional Conversation Model (CCM) is a
transformer-based conversation model generating
a response for the given query q with the strategy
vector z.

• Pre-trained Sentiment Evaluator (PSE) evaluates
the sentiment of generated responses and provides
feedback to the above modules.

Our training procedure consists of two phases.
The first phase (pre-training phase) pre-trains ED,
CCM, and PSE separately. The second phase is to
learn Encoder and RSG while freezing PSE and
CCM. Encoder provides the query representation
for RSG, ED detects query emotion for RSG, and
then RSG generates a responding strategy vector to
guide CCM to generate responses. PSE and CCM
provide the feedback to supervise the training of
Encoder and RSG.

3.2 Encoder
To represent the user’s query, we employ a GRU-
based encoder to embed the query into a vector.
The Encoder consists of a word embedding layer,
a GRU (Cho et al., 2014) layer, and a multilayer
perceptron. The word embedding layer projects
each query’s word into a vector. Then, the GRU
receives the sequence of word embeddings and out-
puts its last hidden state. The multilayer perceptron
is composed of two fully connected layers with
a non-linear function; the multilayer perceptron
transfers the GRU’s last hidden state to another
vector, denoted as e. e is the output of Encoder
carrying the query’s information. Encoder is in-
volved in the two training phases. We introduce
more details about the training in Sec. 3.7.

3.3 Emotion Detector (ED)
To explicitly represent the emotions of the user’s
query, we pre-train an emotion detector ED to clas-
sify the query’s emotion. The output is an explicit
emotion category (e.g. happy). As the usage of con-
ventional text classification tasks in BERT (Devlin
et al., 2019), we initialize ED’s parameters with
a pre-trained BERT model, and then fine-tune ED
over an emotion classification dataset, which has
7 emotion categories. This module is only trained
in the first training phase and provides emotion
categories to RSG in the second phase.

3.4 Responding Strategy Generator (RSG)
Responding strategy generator (RSG) aims to
bridge the user’s query with the responding strate-
gies. Given the query vector e and query’s emo-
tion label, RSG generates a strategy vector z to
guide the chatbot to respond suitable considering
the user’s emotion and lead to positive emotions.

The RSG is only trained in the second train-
ing phase and has two sub-modules: 1. Emotion-
specific Query-Response Memory receives the
query representation e from Encoder and outputs
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Figure 2: Overview of our model. The solid arrows indicate the operations for both training and inference while
the dashed arrows mean the operations only for training. The left side shows the first and second training phases;
the right side shows our core module, Responding Strategy Generator, which works in the second phase. Colors
represent various groups of similar samples. q, r, r̂ denotes query, ground-truth response, and generated response.

several vectors v carrying information about poten-
tial responses; 2. Strategy Mixer mixes the memory
output v to obtain a strategy vector z for chatbots.

3.4.1 Emotion-specific Query-Response
Memory

The module is designed to carry different implicit
responding strategies for different user’s emotions.
This module consists of several key-value mem-
ories and each memory corresponds to a specific
emotion. Each emotion-specific memory has K
slots, which is a key-value vector pair ⟨ki,vi⟩. The
key vector ki represents a group of similar queries;
the value vi carries the information of a group of
potential responses. The key-value slot memorizes
a mapping from queries to the information of how
to respond for the specific emotion and topic. The
memory module is constructed by memory write
and contributes to other modules by memory read.

• Memory Read: The input of memory read is the
user’s query representations e from Encoder and
the detected query emotion from ED. We first lo-
cate the emotion-specific memory according to the
detected emotion. Then, in the emotion-specific
memory, the read operation search for memory
slots by the similarity between query vector e and
every memorized key vector ki, in which we mea-
sure the similarity via dot-product.
Memory read fetches the value with two options:
Hard Read is to fetch the value vector whose key
vector is most similar to the query vector e, to
use the most suitable response information. Soft

Read fetches the several most similar value vectors
and their similarity scores, which means reading
several potentially useful information. The output
of memory read acts as the input of Strategy Mixer.

• Memory Write: It constructs the emotion-specific
memory by clustering over all the training samples
under the same emotion. We collect the query
emotion detected by ED for all training samples
and gather samples with the same emotion to the
same subset. For each subset, we construct an
emotion-specific memory: we collect the query
vector e of all samples and conduct K class K-
means clustering over the vectors e. The center
of i-th cluster serves as the key vector ki for i-th
memory slot.
The K-means clustering (determining the keys k)
and the training of other modules (including En-
coder, values v, and Strategy Mixer) are conducted
separately and iteratively. For each training epoch,
we first train our model except the keys k via gradi-
ent descent by freezing k. Once the training of this
epoch finishes, we conduct K-means clustering.
The cluster centers serve as the memory keys k for
the next training epoch. In this way, memory keys
and other modules are trained iteratively.
The memory values v are the learnable parameters
trained via gradient descent. After each clustering,
we randomly initialize v and then train v together
with other modules (Encoder and Strategy Mixer).

In this way, each key vector gathers similar
user’s queries and memorizes their representative
information (i.e. cluster centers). Each value vector

6367



vi learns to extract the common responding charac-
teristics for a group of users‚ the queries in a similar
topic and a same emotion. Hence, the ⟨ki,vi⟩ pair
memorizes the mapping from the user’s query to
the responding strategies for a specific emotion,
thus our model can generate suitable responses
catering to user’s specific emotion.

3.4.2 Strategy Mixer
To fully utilize the memory outputs and encourage
the diversity, inspired by CVAE, we propose to mix
responding strategies (i.e. memory outputs) with
the query and obtain the final strategy vector z by
sampling. Like our memory module, each emotion
has a strategy mixer. All the strategy mixers share
the same structure and have their own parameters.
For each sample, the model first locates the specific
strategy mixer according to the emotion from ED
and then uses the located mixer. In the following
parts, we introduce the usage of one strategy mixer.

The only difference between our model and the
vanilla CVAE is that 1. our posterior Qϕ(z|M, q)
accesses the memory M instead of r; 2. our mem-
ory may output one or multiple vectors instead of
only one input r in CVAE. The reasonability of
using memory M is that M carries the mapping
from the user’s queries to the potential responses
and the memory output is the information about re-
sponses, thus the model can infer the response r by
reading the memory. We use multiple vectors from
memory M by constraining the vectors to follow a
same class of distribution.

In Eq. 1, Qϕ(z|M, q) is the approximate poste-
rior to estimate the true posterior P (z|r, q) while
Pφ(z|q) acts as the prior. The query q acts as the
condition and the response r is the model output
(see the deductions in Appendix D).

LSM = Ez∼Qϕ(z|M,q)[logPθ(r|z, q)] (1)

−KL[Qϕ(z|M, q)||Pφ(z|q)] ≤ logP (r|q)

Recognition network and prior network model
the posterior Qϕ(z|M, q) and prior Pφ(z|q), re-
spectively. The decoder Pθ(r|z, q) is the CCM
to generate the responses (introduced in Sec. 3.5).
The actual input of strategy mixer is the query vec-
tor e and memory reading output while its output
is the final strategy vector z.

• Recognition Network models the posterior
Qϕ(z|M, q) that generates z by accessing the

memory output and the query vector e. Since vec-
tor z is hard to model from the memory directly,
we construct a mixture of Gaussian over the mem-
ory. As each memory slot covers several similar
samples, we assume each memory slot corresponds
to a specific Gaussian distribution and all samples
vectors in this slot follow that Gaussian distribu-
tion. Like the idea of Gaussian mixture, each query
e may be similar to multiple slots and its corre-
sponding vector z may come from a mixture of
memory slots. Hence, z’s posterior Pθ(z|M, q)
approximately follows a mixture of Gaussian.
Particularly, there are K Gaussian distributions
and each Gaussian corresponds to a memory slot.
For the i-th slot, the value vector vi acts as the
mean of i-th Gaussian distributions. The variance
of the Gaussian is a learnable scalar λi that times
an identity vector I as used in (Yang et al., 2019).
Each Gaussian is denoted as N (vi, λiI).
The posterior Qϕ(z|M, q) describes memory read-
ing output with a mixture of c Gaussian distribu-
tions, which is weighted by the probability of the
sample belonging to each Gaussian πi. Notice that
the memory has K slots in total, and memory read-
ing only fetches c (c ≪ N ) at each time. The
probability πi is the normalized similarity between
key ki and e.

Qϕ(z|M, q) =
c∑

i

πiN (vi, λiI), (2)

πi = softmax(ki · e)
where c is the number of slots read from the mem-
ory. The hard read (c = 1) fetches a single slot
(distribution); the soft read (c > 1) leads to a trade-
off between quality and emotional effect.

• Prior Network models the prior Pφ(z|q) that gen-
erates z from query vector e without accessing
memory M . As the usage in CVAE, we assume
the prior follows Gaussian distribution. We em-
ploy two fully connected layers Wµ,Wσ to trans-
fer the query vector e to the mean and variance of
the prior distribution Pφ(z|q) = N (Wµe,Wσe).
The motivation for estimating z without accessing
the memory is that generating z from the memory
cannot be learned by gradient descent since the
memory read is not differentiable.

z =

c∑

i

πiv + λiIϵ, ϵ ∼ N (0,1), posterior (3)

z = Wµe+Wσeϵ, ϵ ∼ N (0,1), prior (4)
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We apply the reparameterization trick (Kingma
and Welling, 2013) on the recognition (Eq. 3) and
prior network (Eq. 4). We optimize the learnable
parameters ϕ and φ. ϕ consists of v, λ, and En-
coder’s parameters; φ consists of the Wµ,Wσ, and
Encoder’s parameters.

3.5 Conditional Conversation Model (CCM)

Conditional conversation model (CCM) is to gen-
erate a response for a given query constrained by
a specific condition. We first build a conventional
conversation model with transformer (Vaswani
et al., 2017) that transfers queries to responses.
Based on the transformer, we incorporate a con-
dition vector by appending the vector in front of
the sequence of the transformer‚ the input word em-
beddings. CCM is trained only in the first training
phase. In the second phase, CCM’s parameters are
frozen while CCM and PSE act as the feedback to
supervise RSG’s training.

3.6 Pre-trained Sentiment Evaluator (PSE)

Pre-trained sentiment evaluator (PSE) evaluates the
sentiment of the responses generated by CCM and
provides the feedback to CCM. PSE is a BERT-
based sentiment classifier. Based on the initial
parameters from a pre-trained BERT (Devlin et al.,
2019), we fine-tune PSE over a sentiment classi-
fication dataset. PSE is trained in the first phase
(pre-training phase) and its training does not in-
volve other modules. After the training, we freeze
its parameters and employ PSE to provide feedback
in the second phase.

3.7 Model Training and Inference

Our training consists of two phases. The first phase,
pre-training phase, aims to pre-train ED, PSE, and
CCM. ED and PSE are trained alone on their own
datasets. The left branch in Fig. 2 shows CCM’s
pre-training. We pre-train CCM assisted by En-
coder, where Encoder’s output vector e acts as
CCM’s input condition. The output vectors cover a
variety of conditions since the vectors come from
various utterances.

The second training phase (middle branch in
Fig. 2) trains Encoder and RSG while freezing ED,
PSE, and CCM, since ED, PSE, and CCM is well
trained in the first phase. Encoder encodes the
query and feeds its output e to RSG. Then, RSG
learns to generate the responding strategy vector
z. CCM takes z, instead of e in the first phase

1, as its input condition. CCM generates the final
response r̂. PSE evaluates the sentiment of r̂ and
feedbacks to its other modules to optimize Encoder
and RSG. CCM are not optimized by PSE’s feed-
back to avoid the complicated back-propagation
through CCM’s every time steps. The loss func-
tion in this phase is a combination of the strategy
mixer’s loss LSM (Eq. 1) and loss of sentiment
score from PSE Lsent. LSM leads to appropriate
and diverse responses since it imitates the emotion-
specific query-responses from the training samples.
Lsent encourages the positive conversation.

L = LSM + αLsent (5)

= LSM − αP (PSE(r̂) = positive)

where α denotes the weight balancing two losses
and PSE’s sentiment score is identical to the proba-
bility of the generated response being positive.

The inference phase is the same as the second
training phase except that the inference omits the
recognition network. Solid arrows in Fig. 2 show
the inference phase.

4 Experiments

4.1 Experimental Setting

Following (Shang et al., 2015), we use the conver-
sation dataset from weibo.com with 1.25M sam-
ples. We show the details about hyper-parameters,
codes, and datasets in Appendix. We conduct the
experiments on the following methods.

• Emotion Independent Models. Seq2Seq (S2S)
(Shang et al., 2015) and Transformer (Trs)
(Vaswani et al., 2017) are conventional conver-
sation models without considering the emotions.

• Emotional Conversation Models. To encourage
the conversation to be positive, S2S+ECM fol-
lows Seq2Seq-based ECM (Zhou et al., 2018) that
learns to generate a response with a given emo-
tion label. We train the ECM on a corpus with
emotion labels (positive and negative) and feed
the positive label to the conversation model in
inference. As transformer is more powerful than
Seq2Seq, we implement a transformer-based ECM
(Zhou et al., 2018) Trs+ECM. Trs+Dual (Shen
and Feng, 2020) applies dual learning to control-
lable response generation. Trs+RL (Shin et al.,

1As the phase 1 is only the pre-training, z and e need not
to have an identical distribution, but they are similar.
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Appropriateness Diversity Emotion
Bleu1 Bleu2 Bleu3 Bleu4 Nist3 Nist4 Qual Dist1 Dist2 Dist3 Dist4 Ent Div Sent Posi% Emo

S2S 6.494 2.483 1.026 0.509 0.333 0.334 1.89 0.002 0.011 0.027 0.049 3.170 1.64 0.648 75.2% 1.70
S2S+ECM 4.971 2.264 1.305 0.902 0.322 0.324 1.76 0.009 0.051 0.110 0.170 4.354 1.37 0.722 78.4% 1.76

Trs 17.799 11.866 9.484 8.259 2.026 2.064 2.73 0.014 0.207 0.433 0.590 5.767 2.80 0.680 71.4% 2.45
Trs+ECM 17.278 10.904 8.487 7.279 1.869 1.910 2.85 0.012 0.159 0.350 0.506 5.565 2.76 0.730 78.4% 2.73
Trs+Dual 18.321 12.083 9.484 8.142 1.973 2.005 3.02 0.012 0.195 0.430 0.594 5.543 2.79 0.739 78.6% 2.64
Trs+RL 17.245 10.594 8.058 6.818 1.830 1.860 2.69 0.011 0.169 0.408 0.603 5.567 2.56 0.701 75.1% 2.78

Ours (hard) 19.715 13.026 10.287 8.859 2.122 2.155 3.41 0.014 0.206 0.451 0.608 5.884 2.96 0.764 81.3% 2.93
Ours (soft) 19.324 12.755 10.131 8.736 2.083 2.121 3.28 0.013 0.201 0.426 0.587 5.793 2.92 0.779 83.1% 3.18

Table 1: The performance of comparing methods on automatic metrics and human evaluation. The first six rows
indicate the performance of baselines. Ours (hard) and Ours (soft) denote our model with hard memory reading
and soft memory reading respectively. In automatic metrics, the underline results indicate that our improvements
compared with baselines are statistically significant under t-test (p < 0.05). For human evaluation, the Fleiss’ kappa
(Fleiss, 1971) among different annotators is 0.42, which shows a moderate agreement among annotators.

Appropriateness Diversity Emotion
Bleu1 Bleu2 Bleu3 Bleu4 Nist3 Nist4 Dist1 Dist2 Dist3 Dist4 Ent Sent Posi%

Ours (hard) 19.715 13.026 10.287 8.859 2.122 2.155 0.014 0.206 0.451 0.608 5.884 0.764 81.3%
Ours − SM 19.576 12.714 10.041 8.627 2.081 2.114 0.012 0.169 0.419 0.576 5.603 0.720 76.9%

Ours − CCM fixing 18.230 12.429 9.945 8.679 2.022 2.091 0.014 0.202 0.438 0.591 5.778 0.749 80.3%
Ours −Lsent 19.352 12.586 9.941 8.532 2.055 2.076 0.013 0.196 0.431 0.597 5.743 0.684 75.9%

Ours − Gaussian 19.512 12.481 10.087 8.596 2.084 2.094 0.012 0.198 0.436 0.594 5.739 0.731 79.5%
Ours − EmoMemory 19.543 12.486 10.085 8.693 2.054 2.089 0.013 0.202 0.435 0.596 5.741 0.741 80.1%

Table 2: The performance over our different variants. Ours − SM, Ours −Lsent, and Ours − CCM fixing indicates
our variants without the strategy mixer (SM), the loss of sentiment Lsent, fixing the CCM’s parameters in the second
training phase, Gaussian distribution in SM, and emotion-specific memory.

2020) uses RL to encourage a transformer to out-
put positive responses.

• Ours. Ours (Hard) and Ours (Soft) denote our
proposed model with hard read (c = 1 in the
recognition network) and soft read (c = 10).

We evaluate all methods with both automatic
and human evaluations. The automatic evaluations
consist of three aspects. First, we evaluate Appro-
priateness in Bleu-N (Papineni et al., 2002) and
Nist-N (Doddington, 2002). Second, we measure
Diversity with Dist-N (Li et al., 2016) and Entropy
(Ent) (Mou et al., 2016). Third, we measure how
positive the generated responses are (Emotion).
Sent is the average sentiment scores of the gener-
ated responses evaluated by a sentiment classifier,
which marks the sentiment of a sentence ranging
from 0 (negative) to 1 (positive). Posi% denotes
the percentage of the responses being recognized
as positive by the sentiment classifier.

The human evaluations involve: quality Qual,
diversity Div, and the emotion reflected from the
generated responses Emo. Emo score covers: 1.
whether the response is emotionally positive; 2.
whether the response is empathetic (cottoned with
query’s emotion). We hire five annotators and each
annotator evaluates 250 randomly selected test sam-
ples. The annotation scores range from 1 to 5 (See
details about the setting in Appendix C).

4.2 Overall Performance

Table 1 shows the performances of our models and
baselines in automatic evaluations. In our applica-
tions, the transformer framework is much more suit-
able than Seq2Seq according to the comparisons
among row 1 ∼ 4, so we implement our model and
most baselines based on the transformer framework
for a fair comparison.

Row 2 and Row 4 to 6 of Table 1 show the
baselines considering the emotion. ECM models
(Zhou et al., 2018) (S2S+ECM and Trs+ECM) are
more skilled at generating positive responses rather
than emotion-independent models (S2S and Trs).
Trs+RL (Shin et al., 2020) outperforms Trs but
slightly underperforms Trs+ECM in Emotion. The
reason is RL encourages positive utterances but
it’s hard to train due to the differentiation difficulty
on generation model (Yu et al., 2017). In terms
of appropriateness and diversity, we observe slight
performance drops on S2S+ECM, Trs+ECM, and
Trs+RL compared to their emotion-independent
variants, and the similar phenomenon can be found
in their original paper (Shin et al., 2020). Trs+Dual
(Shen and Feng, 2020), the strongest baseline, fur-
ther enhances the performance on all aspects.

Our proposed models surpass all the baselines
at most metrics. Our models make clear improve-
ments in Appropriateness and Emotion. Even if
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Appropriateness Diversity Emotion
Bleu1 Bleu2 Bleu3 Bleu4 Nist3 Nist4 Dist1 Dist2 Dist3 Dist4 Ent Sent Posi%

c = N 17.749 10.967 9.282 8.073 1.969 2.035 0.015 0.227 0.486 0.689 5.926 0.702 73.4%
c = 500 18.357 12.121 9.856 8.571 1.971 2.013 0.015 0.252 0.533 0.714 6.073 0.693 72.6%
c = 100 19.094 12.449 9.937 8.603 2.045 2.098 0.013 0.213 0.475 0.659 5.924 0.732 78.9%

c = 10 (Ours (soft)) 19.324 12.755 10.131 8.736 2.083 2.121 0.013 0.201 0.426 0.587 5.793 0.779 83.1%
c = 1 (Ours (hard)) 19.715 13.026 10.287 8.859 2.122 2.155 0.014 0.206 0.451 0.608 5.884 0.764 81.3%

Table 3: The results of our models with different c in memory read. c = N shows the model reads all the memory
slots, where K is the number of slots. c = 10 and c = 1 are our model with soft and hard read shown in Table 1.

improving Diversity is not our purpose and our con-
straints on the emotion and responding strategies
naturally limit the diversity, our model still works
well on diversity owing to Strategy Mixer. Ours
(soft) does better in Emotion and Ours (hard) ob-
tains a better performance in Appropriateness and
Diversity. We further analyze it in Sec. 4.4. Our
two variants exceed the baselines on human evalu-
ations. Note that Emo considers not only positive
emotion but also empathy (correlated to query’s
emotion) in responses. Ours (soft) outperforming
Ours (hard) in Emo indicates a mixture of emo-
tions is better than a single one.

4.3 Ablation Study

Table 2 shows the ablation study on our proposed
components. Ours − SM denotes our model’s
variant without a strategy mixer, where the model
directly feeds the memory outputs to CCM. This
variant underperforms our model (Ours (hard))
verifying the effectiveness of the strategy mixer pro-
posed in Sec. 3.4. The reason is our strategy mixer
learns to mix the strategies via gradient descent
while the strategy vector z of Ours − SM is from
the memory directly which is non-differentiable for
end-to-end training.

Ours − fixing CCM means CCM’s (Sec. 3.5)
parameters are not frozen in the second training
phase. It optimizes the transformer by treating it
as a policy model and regarding text generation
as a sequence of actions. The strategy inevitably
faces large action space and complicated back-
propagation through the transformer, thus Ours −
fixing CCM results remain suboptimal. As Ours
− fixing CCM’s training strategy is similar to our
baseline Trs+RL (Shin et al., 2020), the results
confirm that Trs+RL’s strategy is not so effective.

The variant without loss of sentiment score
(Ours −Lsent) behaves similarly to our full model
except in Emotion. It shows that the supervision
from PSE (Sec. 3.6) is necessary to lead to positive
conversations and does not affect the appropriate-
ness and diversity so much. Ours − Gaussian and

Ours − EmoMemory show the importance of us-
ing Gaussian distribution and the emotion-specific
memory module in SM.

4.4 Analysis about the Memory Reading

We can control the way of reading the query-
response memory by varying the number of c. Ta-
ble 3 shows the model performances with differ-
ent c. c = 1 and c = 10 is identical to Ours
(hard) and Ours (soft). c = N indicates an ex-
treme setting that our model reads all memory slots,
where K = 1000 in our experiments. In general,
the larger c tends to result in high diversity, since
the model reads information from more various
resources (more memory slots). The smaller c
leads to higher performance on Appropriateness
and Emotion, because they leverage information
from a few relevant memory slots.

For the extreme settings, the variant with c = N
reads the whole memory and it leads to overwhelm-
ing the important information from the memory.
The result on c = 1 shows that the responding
strategy with a mixture of emotions instead of a
single one harms the overall quality but helps the
emotional generation.

4.5 Case Study

We conduct the case study on two cases (cases and
detailed analyses in Appendix E). Our model gets
visible improvements over the baselines. Ours’s
generated responses show empathy by agreeing
with users and guiding positive conversations.

5 Conclusion

In this paper, we propose an emotional chatbot with
the ability to make empathetic and emotionally pos-
itive responses. We construct an emotion-specific
query-response memory to abstract and memorize
the correlation between users’ queries and the po-
tential responses. The model fuses the memory
outputs into a latent distribution and samples an
implicit responding strategy from the distribution.
The above operations are supervised by a sentiment
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evaluator to encourage positive emotions. Our ex-
periments show our model’s strengths in appropri-
ateness, diversity, and generation of positive re-
sponses. In the future, we will extend our model to
multi-turn conversation scenarios.

6 Ethical Considerations

The target of this paper is to build an empathetic
and emotionally positive dialogue system. There
are several concerns about applying this paper to
real use, which may lead to ethical issues. First,
we should carefully choose the applications of this
paper. Our model is designed to behave as a chat-
bot instead of a therapeutic system. Our systems
can not replace psychologists to conduct any treat-
ment. We want to remind the users who may use
our model that a patient with psychological illness
should see a psychologist instead of regarding our
model as a treatment.

Second, the training of a conversation model
may lead to privacy disclosure because the con-
versation samples are sometimes from personal
conversations. In this work, we try to avoid the
issues mentioned above. The data source used in
this paper comes from a published dataset and does
not involve privacy issues for the data collection.
We want to emphasize that other researchers, who
want to follow and re-implementation our model,
should carefully choose the training data to take
care of the privacy concerns.

Third, our work validates the proposed method
and baseline models on human evaluation which
involves manual labor. We hire five annotators to
score the generated sentences, and the hourly pay
is set to 15 US$ per person, which is higher than
the local statutory minimum wage.
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A Information about the Datasets

A.1 Conversation Dataset
Following (Shang et al., 2015), we use the conversa-
tion dataset from weibo.com with 1.25M samples.
The validation set and testing test take 5k and 1.5k
samples respectively. Particularly, we crawl the
pairs of a post and a reply from Weibo 2, a Chi-
nese social media site. Then, we clean the dataset
by following steps. First, we clean the conversa-
tion samples by removing the kaomoji, specific
symbols, and repeated punctuation in responses.
Second, we tokenized the sentences into Chinese
characters and built a vocabulary consisting of the
top 12K Chinese characters and covering 99.9%
characters in the corpus. All the out-of-vocabulary
words are replaced with a special character UNK.
Then, we filter conversation samples with empty
utterances (query or response) and set the maximal
length of utterances as 80. Finally, we detect the ab-
normal speakers (e.g. advertising robots) according
to their conversations.

A.2 Sentiment Classification Dataset
We train our PSE on a public sentiment classifi-
cation dataset 3, which consists of 10K labeled
samples collected from Weibo. After training, PSE
can obtain an accuracy of 99%, indicating PSE is
qualified to evaluate generated utterances.

A.3 Emotion Detection Dataset
To train the emotion detector ED, we use a Chi-
nese emotion classification dataset, NLPCC-2014,
from 4. This dataset is also collected from Weibo.
There are eight emotion categories (Anger, Dis-
gust, Fear, Happiness, Like, Sadness, Surprise, and
None (Neutral)) in total. The dataset consists of
48K labeled samples.

B Hyper-parameters and Codes

For the baselines involving Seq2Seq (S2S and
S2S+ECM), we follow the setting of (Zhou et al.,
2018) and its repository 5, where its encoder and de-
coder are 2-layer GRUs with the hidden dimension
of 512. The word embedding dimension is 300.
The models use SGD with a learning rate of 0.5
and a batch size of 128. For the methods involving

2weibo.com
3github.com/SophonPlus/ChineseNlpCorpus
4"Emotion Analysis in Chinese Weibo Texts" in

tcci.ccf.org.cn/conference/2014/pages/page04_dg.html
5github.com/1YCxZ/ECM-seq2seq
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transformer (including ours), we implement and
follow the setting of “transformer base” (Vaswani
et al., 2017) in the original paper. The model di-
mension and embedding dimension are 512, the
stacked-layer number is 6, and the head number
is 8. We use Adam optimizer (Kingma and Ba,
2015) with β1 = 0.9, β2 = 0.98, and ϵ = 10−9.
The maximum length of queries and responses is
limited to 80 for all the methods. We do not ex-
plicitly restrict the priority of the empathetic and
positive emotions and the weight α in loss function
is 0.9. The batch size is 64. The memory size K is
1000, and the c for memory soft reading is 10. The
dimension of the z, key, and values in the memory
is 512. We infer responses with topK sampling
with the size of 20. The PSE and ED utilize the pre-
trained BERT in the Chinese version 6. We train the
models on GPU (V100) with 32GB memory. The
runnning time of the our model ranges from 1.5
to 3 days. For the hyper-parameters, we tuned the
memory size K by trying K = 1, 10, 100, 500, N .
For the topK sample size, we tried 10, 20, and 40.
For the weight alpha of the loss function, we tried
0.5, 0.7, 0.9, 1, 1.2, 1.5, and 5.

C Details about the Human Evaluation

Following the previous papers (Gao et al., 2019b,a;
Tian et al., 2019), we hired five annotators from a
language labeling company, which are professional
in annotations for both industry and academia. The
company assigned us some annotators specialized
in evaluating samples considering linguistics and
psychology. Each annotator evaluates 250 ran-
domly selected samples. The number of the annota-
tors and the quantity of the samples are in the same
range as the related papers (Gao et al., 2019b,a;
Tian et al., 2019; Song et al., 2020). Different mod-
els’ outputs for each sample are shuffled among
models and the model names are not accessible to
the annotators. The annotators are required to view
all information about the current sample, including
the input query and the ground-truth output. We
note that our experiment setting is based on single-
turn conversation, so the contexts from the previous
turns are not available in both the automatic evalu-
ation and the human evaluation.

When we conduct the human annotation, we ask
the annotators to obey the following instructions.

• “Qual” score: A response coherent to the con-
versational contexts and appropriate to the cur-

6huggingface.co/bert-base-chinese

rent topic without typos should be marked as 5
points. A valid response that only satisfies the
user’s query should be marked as 3 points. An
irrelevant response should be scored as 1. An in-
complete response that the annotators cannot get
the speaker’s meaning should also be assigned as
1. Points 2 and 4 are for decision dilemmas.

• “Div” score: 5 points stand for an output re-
sponse with at least two clauses from different
topics, where the topic may be transferred from
the current conversation to another scenario (For
example, the query is “How’s the weather?”; and
response “It’s fine today, let’s play basketball”
transfers the weather topic to sports. Such a case
should be scored as 5 points). A normal response
of a single clause or a single topic should be
marked as 3 points. 1 point is for the universal re-
ply (i.e., “I do think so ¡’) or the response contain-
ing no more than three unique words (i.e., “That
is OK‘’) should be assigned to point 1. Points 2
and 4 are for decision dilemmas.

• “Emo” score: An output response that satisfies
the two aspects (empathetic and emotionally pos-
itive) should be assigned as a full mark (5 points).
A response that satisfies only one aspect should
be scored as 3 points. A response that cannot sat-
isfy any one aspect should be scored as 1 point.
Points 2 and 4 are for decision dilemmas. For
example, when the input query is “Kobe Bryant
had a plane crash. We lost him, so sad”. 5 points
are for the response of “Sorry to hear that crash.
He’s a legend and will be my idol forever. Hope
his family and fans can recover soon”. 3 points
are for the response of “Yes, we lost him. I’m
extremely heartbroken these days”. 2 points are
for the response of “Come on, cheer up. We still
love NBA”.

D Deduction for the Loss in Strategy
Mixer

The detailed deduction of the LSM loss mentioned
in the Strategy Mixer section is as follows. The
LSM is the evidence lower bound (ELBO) of the
maximum log-likelihood of P (r|q), where q de-
notes the query, r denotes the response, M denotes
the memory to estimate the r, and z is the latent
variable.
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Method Case1 Emotion
Query Oh, how boring the sport is! I am watching! (哦，多么无聊的运动！我在看.) Disappointed
S2S Yes! We, we are together! (是的！我们是一起的！) Submissive
S2S+ECM Yes! Thanks! （是的！谢谢！） Submissive
Trs I do think so, my friends and I are surprising! （我觉得也是，我的朋友和我都很惊讶！） Submissive

Trs+ECM
Thank you for your appreciation, our players are so happy, our players are excellent.
（相信你的赞赏，我们运动员很开心，很优秀。）

Positive

Trs+Dual
Thank you, my sister, you give me a better future, come on. Thanks for your caring.
（谢谢你，姐姐，你给我一个好的未来，加油，谢谢你的关心。）

Positive

Trs+RL
Yes! I do not go there, you said you went there last year, let’s went there at leisure.
（是的！我不会去，你说过你去年要去，我们一起去度假吧。）

Plain

Ours (hard) Yes! Our players are really hardworking. They are the best! （是的！我们的运动员真的很努力。他们是最棒的！） Submissive, Positive
Ours (soft) Yes, such a boring sport! Make sure to enjoy yourself! (是的，这运动真无聊！你一定要玩的开心呀！) Empathetic, Positive

Method Case2 Emotion

Query
The two guys are blowing! I really want to say they will lose the game! I don’t believe that they can
lose less than 10 points today.（这俩人在吹牛！我真想说他们会输！我不信他们能输低于10分）

Angry

S2S Ours, that’s ours. （我们的，那是我们的） Plain
S2S+ECM Yes, I agree. （是的，我同意） Submissive

Trs
I also want to play, I do not know, I am not saying losing the match.
（我也想打比赛，我不知道，我不是在说要输掉比赛）

Plain

Trs+ECM That thing is possible, really possible. Do not like playing basketball.（那是可能的，真的可能。不喜欢打篮球。） Plain

Trs+Dual
Thanks, thank you, we are family, I always think so since we should cheer for them.
（谢谢你，我们是一家人，我觉得应该为他们加油。）

Positive

Trs+RL Does reply to the two guys can make the are several people play better?（重复那俩人说的话可以让他们打的更好吗） Ironic

Ours (hard)
How much do we want to scold! It’s funny! So do you, so do we. No need to say that. Let’s cheer for them.
（我们是有多想责骂他们呀！很有趣，你也想，我也想。没必要说这些，让我们为他们加油吧。）

Empathetic
Positive

Ours (soft)
The two guys are saying “Let’s cheer for them and play together.” The players are hardworking.
（这俩人在说：“我们为他们加油，与他们一起打比赛吧”。这些运动员真的很努力）

Empathetic
Positive

Figure 3: Two cases of the comparing methods. Colored texts indicate the emotional phrase in utterances and
its corresponding emotion category, where we mark the emotion categories of the sentences analyzing the cases.
The first row is the user’s query and the other rows display responses generated by those methods. The original
utterances are in Chinese and we translate them into English.

logPθ(r|q)
= Ez∼Qϕ(z|M,q)[logPθ(r|q)]

= Ez∼Qϕ(z|M,q)[log
Pθ(r|z, q)Pθ(z|q)

Pθ(z|r, q)
]

= Ez∼Qϕ(z|M,q)[log (6)

Pθ(r|z, q)Pθ(z|q)
Pθ(z|r, q)

Qϕ(z|M, q)

Qϕ(z|M, q)
]

= Ez∼Qϕ(z|M,q)[logPθ(r|z, q)]

−Ez∼Qϕ(z|M,q)[log
Qϕ(z|M, q)

Pθ(z|q)
]

+Ez∼Qϕ(z|M,q)[log
Qϕ(z|M, q)

Pθ(z|r, q)
]

= Ez∼Qϕ(z|M,q)[logPθ(r|z, q)]
−KL[Qϕ(z|M, q)||Pθ(z|q)]
+KL[Qϕ(z|M, q)||Pθ(z|r, q)]

≥ Ez∼Qϕ(z|M,q)[logPθ(r|z, q)]
−KL[Qϕ(z|M, q)||Pθ(z|q)]

= LSM

In Eq.1, to make the equation more clear, we
rename the parameters of the decoder is θ and re-

name the parameters of the prior as φ. Hence, we
obtain the Eq.1 as follows,

LSM = Ez∼Qϕ(z|M,q)[logPθ(r|z, q)]
− KL[Qϕ(z|M, q)||Pφ(z|q)]
≤ logP (r|q)

E Case Study

Fig. 3 shows two cases mentioned in Section 4.5,
which compares the performance of all the methods.
In the two queries, users express the emotion of
disappointed and angry respectively. S2S and Trs
offer general responses that simply submissively
follow the user’s queries. S2S+ECM, Trs+ECM,
and Trs+Dual incorporate the positive emotion into
the responses but sacrifice the consistency between
queries and responses. Interestingly, Trs+RL gen-
erates an ironic response, indicating the explicit
feedback makes a big impact on the emotion of
the response. Our methods achieve the best per-
formance among all the methods, especially Ours
(Soft). The generated responses agree with the
user’s points and show empathy with the user by
continuing their topic. Then, responses also guide
the conversation to be positive.
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