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Abstract

Self-training methods have been explored in
recent years and have exhibited great perfor-
mance in improving semi-supervised learn-
ing. This work presents a Simple instance-
Adaptive self-Training method (SAT) for semi-
supervised text classification. SAT first gener-
ates two augmented views for each unlabeled
data and then trains a meta-learner to auto-
matically identify the relative strength of aug-
mentations based on the similarity between the
original view and the augmented views. The
weakly-augmented view is fed to the model
to produce a pseudo-label and the strongly-
augmented view is used to train the model to
predict the same pseudo-label. We conducted
extensive experiments and analyses on three
text classification datasets and found that with
varying sizes of labeled training data, SAT
consistently shows competitive performance
compared to existing semi-supervised learning
methods. Our code can be found at https:
//github.com/declare-lab/SAT.git.

1 Introduction

Pretrained language models have achieved ex-
tremely good performance in a wide range of nat-
ural language understanding tasks (Devlin et al.,
2019). However, such performance often has a
strong dependence on large-scale high-quality su-
pervision. Since labeled linguistic data needs large
amounts of time, money, and expertise to obtain,
improving models’ performance in few-shot sce-
narios (i.e., there are only a few training examples
per class) has become a challenging research topic.

Semi-supervised learning in NLP has received
increasing attention in improving performance in
few-shot scenarios, where both labeled data and
unlabeled data are utilized (Berthelot et al., 2019b;
Sohn et al., 2020; Li et al., 2021). Recently, sev-
eral self-training methods have been explored to
obtain task-specific information in unlabeled data.
UDA (Xie et al., 2020) applied data augmentations

to unlabeled data and proposed an unsupervised
consistency loss that minimizes the divergence be-
tween different unlabeled augmented views. To
give self-training more supervision, MixText (Chen
et al., 2020a; Berthelot et al., 2019b) employed
Mixup (Zhang et al., 2018; Chen et al., 2022) to
learn an intermediate representation of labeled and
unlabeled data. Both UDA and MixText utilized
consistency regularization and confirmed that such
regularization exhibits outstanding performance in
semi-supervised learning. To simplify the consis-
tency regularization process, FixMatch (Sohn et al.,
2020) classified two unlabeled augmented views
into a weak view and a strong view, and then mini-
mized the divergence between the probability dis-
tribution of the strong view and the pseudo label
of the weak view. However, in NLP, it is hard to
distinguish the relative strength of augmented text
by observation, and randomly assigning an aug-
mentation strength will limit the performance of
FixMatch on text.

To tackle this problem in FixMatch, our paper in-
troduces an instance-adaptive self-training method
SAT, where we propose two criteria based on a
classifier and a scorer to automatically identify the
relative strength of augmentations on text. Our
main contributions are:

• First, we apply popular data augmentation
techniques to generate different views of un-
labeled data and design two novel criteria to
calculate the similarity between the original
view and the augmented view of unlabeled
data in FixMatch, boosting its performance
on text.

• We then conduct empirical experiments and
analyses on three few-shot text classification
datasets. Experimental results confirm the
efficacy of our SAT method.
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2 Method

2.1 Problem Setting
In this work, we learn a model to map an input x ∈
X onto a label y ∈ Y in text classification tasks.
In semi-supervised learning, we use both labeled
examples and unlabeled examples during training.
Let X = {(xb, yb) : b ∈ (1, ..., B)} be a batch
of B labeled examples, where xb are the training
examples and yb are labels. Let U = {ub : b ∈
(1, ..., µB)} be a batch of µB unlabeled examples,
where µ is a hyperparameter which determines the
relative sizes of X and U .

2.2 SAT
The entire process of SAT is illustrated in Algo-
rithm 1. Similar to common semi-supervised learn-
ing methods, our approach consists of a supervised
part and an unsupervised part. Our supervised part
minimizes the cross-entropy loss between the la-
beled data and their targets. Our unsupervised part
first generates two unlabeled augmented views,
then applies an augmentation choice network to
determine the relative augmentation strength, and
finally calculates a consistency loss between the
probability distribution of the strongly-augmented
view and the pseudo label of the weakly-augmented
view. Since the relative augmentation strength in
our SAT method has no direct correlation to the aug-
mentation techniques, our semi-supervised learn-
ing process can be more adaptive to the training
data, compared to FixMatch.

The augmentation choice network is trained by
the labeled data and we design two criteria to train
it where (1) one is based on a classifier and (2) the
other is based on a scorer. Line 2 to Line 7 in Al-
gorithm 1 shows how we train the augmentation
choice network. For each labeled data, we first cal-
culate the similarity between the original data and
its augmented variants, respectively, and then rank
the augmented samples according to the similarity
scores. In our classifier-based criterion, we employ
a cross-entropy loss to measure the distance, while
in our scorer-based criterion, we calculate the co-
sine similarity. Afterward, we define the one with
a higher similarity score as the weakly-augmented
sample and use it to train the augmentation choice
network. For our classifier-based method, we ap-
ply a cross-entropy loss as the training objective.
For our scorer-based method, we use a contrastive
loss (Chen et al., 2020b) to update the network.
Finally, the trained augmentation choice network

is used to automatically identify the augmentation
strength in unlabeled data.

Algorithm 1: SAT: Simple Instance-
Adaptive Self-Training

Input: Dtrain = {X ,U} where
X = {(xb, yb) : b ∈ (1, ..., B)} and
U = {ub : b ∈ (1, ..., µB)};
augmentation methods α1, α2; main
network f(; θ) with parameters θ
and its probability distribution p;
augmentation choice network
G(; θG) with parameters θG; criteria
C, Γ; cross-entropy loss H;
unlabeled loss weight λu;
confidence threshold τ ; learning
rates β, η

Output: Updated network weights θ
// Calculate supervised loss

1 ls =
1
B

∑B
b=1H(yb, p(y|xb))

2 for (xb, yb) ∈ X do
3 ib1, i

b
2 =

C(α1(xb), xb, yb), C(α2(xb), xb, yb)
4 ibw, i

b
s = Descending(ib1, i

b
2)

5 end
// Update the augmentation choice

network
6 laug_choice =

1
B

∑B
b=1 Γ(xb, α1(xb), α2(xb), i

b
w)

7 θG = θG − β∇laug_choice
8 for each ub ∈ U do
9 îbw, î

b
s = G(ub, α1(ub), α2(ub); θG)

10 end
// Calculate unsupervised loss

11 lu = 1
µB

∑µB
b=1 1{max(p(y|αîbw

(ub))) >

τ}H(argmax(p(y|αîbw
(ub))), p(y|αîbs

(ub)))

// Total loss: add up supervised
loss and unsupervised loss

12 ltotal = ls + λulu
// Update the main network

13 θ = θ − η∇ltotal

3 Experimental Setup

We conducted empirical experiments to compare
our approach with a couple of existing semi-
supervised learning methods on a variety of text
classification benchmark datasets.
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Methods AG News (c = 4) Yahoo! (c = 10) IMDB (c = 2)
Acc.(%) F1.(%) Acc.(%) F1.(%) Acc.(%) F1.(%) Average ∆

BERT (Devlin et al., 2019) 69.183.7 68.273.5 58.111.6 57.381.9 63.161.4 62.931.6 63.17 -
UDA (Xie et al., 2020) 76.693.2 76.513.0 59.322.0 58.472.3 64.881.7 64.571.5 66.74 +3.57
MixText (Chen et al., 2020a) 78.072.8 77.233.5 59.931.9 59.241.8 65.221.1 65.781.2 67.58 +4.41
FixMatch (Sohn et al., 2020) 80.222.4 79.982.1 60.171.7 59.861.5 64.521.6 64.311.4 68.18 +5.01

SAT: classifier-based (Ours) 86.382.0 86.292.3 61.511.8 61.091.6 65.431.2 64.281.4 70.83 +7.66
SAT: scorer-based (Ours) 85.431.2 85.301.5 61.331.5 60.961.4 68.961.7 68.921.6 71.82 +8.65

Table 1: Accuracy (%) and Macro F1 (%) on three diverse text classification tasks for BERT, UDA, MixText,
FixMatch, and our SAT method. c: number of classes; ∆: improvement compared with BERT.

3.1 Datasets and Metrics

We considered three diverse few-shot text classi-
fication scenarios in our experiments: AG News
which categorizes more than 1 million news articles
into 4 categories — World, Sports, Business, and
Sci/Tech (Zhang et al., 2015), and Yahoo! Answers
which classifies question-answer pairs into 10 clus-
ters where all question-answer pairs in a cluster
ask about the same thing (Zhang et al., 2015), and
IMDB which predicts sentiment of movie reviews
to be positive or negative (Maas et al., 2011).

We used the original test set as our test set and
randomly sampled from the training set to construct
the training unlabeled set and development set. To
balance the class distribution in the experiments,
we randomly sampled Nc samples per class to be
used for training. In AG News and IMDB, Nc =
10. In the Yahoo! dataset, we set Nc as 20 to
ensure consistent results. For all experiments, we
used accuracy (%) and macro F1 score (%) as the
evaluation metrics.

3.2 Baselines

To test the effectiveness of our approach, we com-
pared it with several popular self-training meth-
ods: UDA (Xie et al., 2020), MixText (Chen et al.,
2020a), FixMatch (Sohn et al., 2020). To ensure
fair comparisons, we used the same augmentation
techniques1, i.e., back-translation (Sennrich et al.,
2016b) and synonym replacement (Wei and Zou,
2019), in all baselines. For back-translation aug-
mentation, we used German as the middle language.
For synonym replacement augmentation, the substi-
tution percentage is 30%. Also, we used the same
BERT-based-uncased model, unlabeled data size,
and batch size in all methods.

1The implementation is based on https://github.com/
makcedward/nlpaug.

4 Results

4.1 Main Results

This section compares our SAT method with BERT,
UDA, MixText, and FixMatch on three text clas-
sification datasets. Our main results are shown
in Table 1. Results are averaged over five different
runs.

We observed that BERT achieves a mean score
across our three datasets of 63.17%, and UDA im-
proves performance noticeably by +3.57%. Mix-
Text and FixMatch show better performance in
improving the BERT baseline, where the mean
score increases are +4.41% and +5.01%, respec-
tively. Our classifier-based SAT method, which
applies a cross-entropy loss to measure the simi-
larity between the original data and its augmented
variants, achieves a mean score of 70.83%, outper-
forming FixMatch by +2.65%. The scorer-based
SAT, which employs cosine distance to measure
the similarity further improves about 1% over the
classifier-based SAT.

From these results, we obtained the following
findings. Firstly, strategically selecting the strongly
and weakly augmented samples in self-training can
effectively boost performance. Compared to Fix-
Match, we improved the performance by adding a
lightweight meta-learner to automatically identify
augmentation strengths, without sacrificing much
training time. Secondly, when tackling datasets
with few training examples, using cosine distance
to measure the similarity between two examples
and using contrastive loss to train the meta-learner
shows better and more robust performance.

4.2 Ablation: Size of Labeled Data

This ablation investigates how our semi-supervised
learning method performs for different sizes of la-
beled data. Fig. 1 compares the average scores of
accuracy and macro F1 of FixMatch and our meth-
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ods. First, we observed that our methods can con-
sistently outperform FixMatch with varying data
sizes. This indicates that strategically selecting
the strongly and weakly augmented samples con-
tributes to the final performance in self-training.
Second, when Nc increases from 3 to 10, the scores
of the three methods increase accordingly. When
Nc becomes 20, the performance of FixMatch and
the classifier-based SAT drops, which is consistent
with prior findings on the diminished effect of data
augmentation for larger datasets (Xie et al., 2020;
Andreas, 2020). However, the scorer-based SAT
does not show an obvious performance decrease,
showing that in few-shot datasets, the scorer-based
method is more robust than the classifier-based
method.

Figure 1: Average scores of accuracy and macro F1
from FixMatch and our method for different sizes of
labeled data on the AG News dataset.

4.3 Ablation: Various Augmentation
Techniques

To evaluate the effect of various augmentation
techniques in our method, we performed experi-
ments using different text augmentation technique
combinations in our method. These augmenta-
tion techniques are widely-used: (1) Synonym
Replacement (SR) substitutes words with Word-
Net synonyms (Wei and Zou, 2019); (2) Perva-
sive Dropout (PD) applies a word-level dropout
with a probability of 0.1 on text (Sennrich et al.,
2016a); (3) Random Insertion (RI) randomly in-
serts words in a sentence (Wei and Zou, 2019);
(4) Back-translation (BT) translates text into an-
other language and then back into the original lan-
guage (Sennrich et al., 2016b).

Fig. 2 compares average scores of accuracy and
macro F1 from different augmentation techniques

in our method on the AG News dataset. The com-
bination of back-translation and synonym replace-
ment improves performance the best, perhaps be-
cause they maintain a good balance between inject-
ing proper perturbation noise and preserving the
original meaning of the text.

Figure 2: Average scores of accuracy and macro F1
from different augmentation technique combinations in
our method on the AG News dataset, where Nc = 10.

5 Related Work

Our work combines data augmentation and con-
sistency regularization to improve semi-supervised
learning and is inspired by prior work in these areas.
Recently, several papers have proposed reinforce-
ment learning policies (Cubuk et al., 2019; Ho et al.,
2019) and curriculum learning strategies (Wei et al.,
2021; Zhang et al., 2021) to automatically aug-
ment data. Also, a couple of consistency regu-
larization methods are introduced to simplify the
semi-supervised learning process (Berthelot et al.,
2019a; Sohn et al., 2020) as well as to boost perfor-
mance in domain adaptation scenarios (Berthelot
et al., 2021) to improve semi-supervised learning.
As far as we know, our work is the first to apply
a meta-learner to automatically determine the aug-
mentation strength in consistency regularization in
semi-supervised text classification.

6 Conclusion

In closing, this paper has proposed an instance-
adaptive self-training method SAT to boost perfor-
mance in semi-supervised text classification. In-
spired by FixMatch, SAT combines data augmen-
tation and consistency regularization and designs
a novel meta-learner to automatically determine
the relative strength of augmentations. Empirical
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experiments and ablation studies confirm SAT is
simple yet effective in improving semi-supervised
learning.

Limitations

Our proposed method has two limitations. First,
in our experiments, we found the semi-supervised
process is easy to be influenced by unlabeled data
size. During training, we adjusted the size of unla-
beled data in each batch by adjusting the µ value,
as mentioned in Section 2.1. It will be a future
direction that we design some strategies to auto-
matically learn the µ value. Second, this work only
considered the situation where there are only two
augmentations in consistency regularization. As
our SAT method can automatically rank the aug-
mentation strengths, our future work is to extend
SAT to regularize more than two augmentations.

Ethical Considerations

Augmentation techniques discussed in Section 4.3
should be used with care since they might generate
data that do not align with the original meaning.
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A Dataset Statistics

The dataset statistics and split information are pre-
sented in Table 2.

B Implementation Details

We performed a grid search for hyperparameters:
ηmain ∈ {5e−5, 1e−3}, ηbert ∈ {1e−5, 5e−5},
β is fixed at 1e−4, µ ∈ {3, 4, 5, 8, 10, 20}, τ ∈
{0.90, 0.95, 0.99}, and batch size is fixed at 32.
We tuned our model on a single NVIDIA RTX
8000 GPU. We ran each experiment for 50 epochs
with a patience of 15 or 10 for early stopping.

Datasets # Unlabeled # Dev # Test

AG News 5000 2000 1900
Yahoo! 5000 2000 6000
IMDB 5000 1000 12500

Table 2: Dataset statistics and data splits. The number
of unlabeled data, dev data and test data in the table
means the number of data per class.
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