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Abstract

A standard measure of the influence of a re-
search paper is the number of times it is cited.
However, papers may be cited for many rea-
sons, and citation count offers limited infor-
mation about the extent to which a paper af-
fected the content of subsequent publications.
We therefore propose a novel method to quan-
tify linguistic influence in timestamped docu-
ment collections. There are two main steps:
first, identify lexical and semantic changes us-
ing contextual embeddings and word frequen-
cies; second, aggregate information about these
changes into per-document influence scores
by estimating a high-dimensional Hawkes pro-
cess with a low-rank parameter matrix. We
show that this measure of linguistic influence
is predictive of future citations: the estimate
of linguistic influence from the two years af-
ter a paper’s publication is correlated with and
predictive of its citation count in the follow-
ing three years. This is demonstrated using
an online evaluation with incremental temporal
training/test splits, in comparison with a strong
baseline that includes predictors for initial cita-
tion counts, topics, and lexical features.

1 Introduction

The citation count of a paper is a standard, eas-
ily measurable proxy for its influence (Cronin,
2005). Researchers have shown that citation count
is strongly correlated with the quality of scientific
work (e.g., Lawani, 1986), the recognition that a
paper or an author gets (e.g., Inhaber and Przed-
nowek, 1976), or in policy decisions such as as-
sessment of scientific performance (e.g., Cronin,
2005). Consequently, citation count is a ubiqui-
tously deployed and important measure of a paper
with whole subfields of research dedicated to its
analysis (Bornmann and Daniel, 2008).

However, papers may be cited (or not cited) for
many reasons, and citation count alone is insuffi-
cient to explain the emergence and the spread of
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Figure 1: Research papers that are more linguistically
influential within an initial time window tend to receive
more citations in the long term. The x-axis shows lex-
ical and semantic influence, binned into quantiles (see
§ 2); the y-axis shows the corresponding regression co-
efficients and standard errors, in units of Z-normalized
log future citations (see § 5.3). To give a sense of scale,
for papers published in 2012, being in the top decile of
semantic influence corresponds to an 14.5% increase
in long-term citations, as compared to control-matched
papers that received the same number of short-term cita-
tions and covered similar topics but were in the bottom
half by semantic influence.

research ideas and trends. For this reason, we turn
to content analysis: to what extent can the text
of a research paper be said to influence the trajec-
tory of the research community? In this paper, we
present a novel technique for estimating the influ-
ence of documents in a timestamped corpus. To
demonstrate the validity of the resulting measure
of linguistic influence, we show that it is predictive
of future citations. Specifically, we find that: (1)
papers that our metric judges as highly influential
in the short term tend to receive more citations in
the long term; (2) short-term linguistic influence
increases the ability to predict long-term citations
over strong baselines.

Our modeling approach focuses on semantic
changes, and treats the temporal usage of semantic
innovations as emissions from a parametric low-
rank Hawkes process (Hawkes, 1971). The pa-
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rameters of the Hawkes process correspond to the
linguistic influence of each paper, aggregated over
thousands of linguistic changes. The changes them-
selves are identified through analysis of contex-
tual embeddings, with the goal of finding words
whose meaning has shifted over time (Traugott and
Dasher, 2001). Though there are several compu-
tational methods to detect semantic changes (e.g.,
Kim et al., 2014; Hamilton et al., 2016; Rosenfeld
and Erk, 2018; Dubossarsky et al., 2019), including
methods based on contextual embeddings (e.g., Ku-
tuzov and Giulianelli, 2020), our proposed method
focuses on detecting smooth, non-bursty semantic
changes; we also go further than other methods by
distinguishing old and contemporary usages of an
identified semantic change.

We show through a multivariate regression that
our estimates of semantic influence of each paper
are positively correlated with their long-term cita-
tions, even after controlling for the initial citations,
the content of the paper in terms of topics, and the
lexical influence of the paper (see Figure 1). Fur-
ther, we formulate long-term citation prediction as
an online prediction task, constructing test sets for
successive years. The addition of semantic influ-
ence as features to a model once again improves the
predictive performance of the model over baselines.
In summary, our contributions are as follows:1

• We empirically demonstrate a link between
long-term citation count and short-term lin-
guistic influence, using both regression anal-
ysis (§ 5.3) and an online prediction task
(§ 5.4).

• We present a method to estimate semantic
influence using a parametric Hawkes process
(§ 2.1). To achieve this, we find semantic
changes and convert the usage of each change
into a cascade (§ 2.2). We also show that
the method can be applied to quantify lexical
influence.

• We present a method to identify monotonic se-
mantic changes from timestamped text using
contextual embeddings (see § 2.2.1).

2 Methodology

This section describes our method for estimating
the linguistic influence of each document in a times-

1The code and relevant data from our paper
can be found at http://github.com/sandeepsoni/
contextual-leadership

tamped collection. Our work builds on the theory
of point process models (Daley et al., 2003), in
which the basic unit of data is a set of marked
event timestamps. In our case, the events corre-
spond to the use of an innovative word or usage;
the mark corresponds to the document in which
word or usage appears. To estimate linguistic influ-
ence of individual documents, we fit a parametric
model in which per-document influence parameters
explain the density of events in subsequent docu-
ments. We first describe the modeling framework
in which these influence parameters are estimated
(§ 2.1) and then describe how event cascades are
constructed (§ 2.2) from semantic changes (§ 2.2.1)
and lexical innovations (§ 2.2.2).

2.1 Estimating document influence from
timestamped events

A marked cascade is a set of marked events
{e1, e2, . . . , eN}, in which each event ei = (ti, pi)
corresponds to a tuple of a timestamp ti and a mark
pi. Assume a set of marked cascades, indexed by
w ∈ W , with each mark belonging to a finite set
that is shared across all cascades. In our applica-
tion, each cascade corresponds to the appearances
of an individual word or word sense, and each mark
is the identity of the document in which the word
or word sense appears.

Point process models define probability distribu-
tions over cascades. In an inhomogeneous point
process, the distribution of the count of events be-
tween any two timestamps (t1, t2) is governed by
the integral of an intensity function λ(t, w). A
Hawkes process is a special case in which the in-
tensity function is the sum of terms associated with
previous events (Hawkes, 1971). We choose the
following special form,

λ(t, w) = cw +
∑

i:t
(w)
i <t

α
p
(w)
i

κ(t− t
(w)
i ), (1)

where κ is a time-decay kernel such as the expo-
nential kernel κ(∆t) = e−γ∆t and cw is a constant.
The parameter of interest is α, which quantifies the
influence exerted by the document p(w)

i on subse-
quent events.2

2In the more general multivariate Hawkes process, the
intensity function can depend on the identity of “receiver” of
influence. This enables the estimation of pairwise excitation
parameters αi,j , as in the work of Lukasik et al. (2016), to
give an example from the NLP literature. However, it would
be difficult to estimate pairwise excitation between thousands
of documents, as required by our setting.
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Our application focuses on research papers,
which historically have been published in a few
bursts — at conferences and in journals — rather
than continuously over time. For this reason we
simplify our setting further, discretizing the times-
tamps by year. The evidence to be explained is now
of the form n(t, w), the count of word or sense w
in year t. We model this count as a Poisson random
variable, and estimate the parameters cw and α by
maximum likelihood.

2.2 Building event cascades

To estimate the parameters in Equation 1, we re-
quire a set of timestamped events. Ideally these
events should correspond to evidence of linguistic
innovation. We consider two sources of events: se-
mantic innovations (here focusing on words whose
meaning changes over time) and lexical innova-
tions (words whose usage rate increases dramati-
cally over time).

We now introduce some notation used in the
remainder of this section. Let a document be a
sequence of discrete tokens from a finite vocab-
ulary V , so that document i is denoted Xi =

[x
(1)
i , x

(2)
i , . . . , x

(ni)
i ], with ni indicating the length

of document i. A corpus is similarly defined as
a set of N documents, X = {X1, X2, ..., XN},
with each document associated with a discrete time
ti ∈ T .

2.2.1 Using contextual embeddings to identify
semantic changes

We use contextual embeddings to identify words
whose meaning changes over time, following prior
work on computational historical linguistics (e.g.,
Kutuzov and Giulianelli, 2020, see § 6 for a more
comprehensive review). A contextual embedding
h
(k)
i ∈ RD is a vector representation of token k

in document i, computed from a model such as
BERT (Devlin et al., 2019). When the distribution
over h for a given word changes over time, this
is taken as evidence for a change in the word’s
meaning.

Let mt−,w and mt+,w be the count of the word

w up to and after time t, respectively. Specifically,

mt−,w =
∑

i:ti≤t

ni∑

k

1(x
(k)
i = w)

mt+,w =
∑

i:ti>t

ni∑

k

1(x
(k)
i = w)

Average representations of the word w up to and
after time t, respectively, are calculated as follows.

vt−,w =
1

mt−,w

∑

i:ti≤t

ni∑

k

h
(k)
i 1(x

(k)
i = w)

vt+,w =
1

mt+,w

∑

i:ti>t

ni∑

k

h
(k)
i 1(x

(k)
i = w)

Further, the variance in the contextual embed-
dings of the word w over the entire corpus is calcu-
lated by taking the variance of each component of
the embedding,

sw =
1

mw

∑

i,k:x
(k)
i =w

(
h
(k)
i − µw

)2
, (2)

with µw equal to the mean contextualized embed-
ding of word w.

A semantic change score for a word w for a time
t is then the variance-weighted squared norm of
the difference between its average pre-t and post-
t contextualized embeddings (also known as the
squared Mahalanobis distance):

r(w, t) = (vt−,w − vt+,w)
⊤S−1

w (vt−,w − vt+,w),
(3)

with Sw = Diag(sw).

Correction for frequency effects. Both the
mean and variance are estimated with larger sam-
ples for timestamps in the middle of T in com-
parison to the initial and final timestamps. Conse-
quently, the distance metric suffers from high sam-
ple variance for values of t near these endpoints.
The discrepancy is corrected by replacing the di-
agonal covariance Sw in Equation 3 with an alter-
native covariance S̃w that reflects that additional
uncertainty due to sample size. Specifically, we
approximate the standard error of the mean vt− as√
S/mt− , and analogously for vt+ . Then S̃w is
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defined as the product of these two approximate
standard errors,

S̃w =

√
Sw

mt−,w

√
Sw

mt+,w
=

Sw√
mt−,wmt+,w

.

(4)
Finally, t∗ = argmaxt r(w, t) is selected as the

transition point for the change in meaning of w.
The changes are identified by sorting the words
by max r(w, t) and applying a set of basic filters
explained in § 4. To give some intuition:

• If w changes in meaning at time t, then the
difference in its representation up to t and after
t should be high. The metric in Equation 3
captures this precisely by calculating the term
vt−,w − vt+,w.

• Difference in average embeddings can be high
for seasonal or bursty changes seen in words
such as turkey which is referred to the bird
more frequently at the time of American hol-
idays (Shoemark et al., 2019). Rescaling the
difference by the inverse variance encourages
detection of monotonic changes.

• For rare words, the mean embeddings will be
less reliable. The

√
m terms in S̃ have the

effect of emphasizing high-frequency words
for which changes in the mean embedding are
likely to be significant.

Distinguishing old and new usages. The previ-
ous step yields semantic innovations and their tran-
sition time. Simply identifying semantic changes
is insufficient, since at any given time a word could
be used in its old or new sense with respect to its
time of transition. To categorize every usage of a
semantic innovation w, the contextual embeddings
are passed through a logistic regression classifier
that predicts whether the usage is before or after
the transition time. At the end of this step a se-
quence of embeddings for any semantic innovation
is converted to a sequence of binary labels denot-
ing their usage. For each word w, the cascade
(e

(w)
1 , e

(w)
2 , . . . e

(w)
Nw

) is formed by filtering the us-
ages to those that are classified as corresponding to
the newer sense, with each event e(w)

i containing
a timestamp t

(w)
i and a document identifier p(w)

i .
These cascades are the evidence from which we es-
timate the per-document semantic influence scores
αs, as described in § 2.1.

Why contextual embeddings? Embeddings pro-
vide a powerful tool for understanding language
change, offering more linguistic granularity than
measures of change in the strength or composition
of latent topics (e.g., Griffiths and Steyvers, 2004;
Gerow et al., 2018). Prior work has employed di-
achronic non-contextual embeddings (e.g., Soni
et al., 2021b). Such methods require each word
to have a single shared embedding in each time
period. During periods in which a word is used
in multiple senses, the non-contextual embedding
must average across these senses, making it harder
to detect changes in progress.

2.2.2 Identifying lexical changes

Unlike semantic changes, whose identification re-
quires representations such as contextual embed-
dings, lexical changes are identified simply by com-
paring frequency changes. Specifically, for every
word in a vocabulary we vary the segmentation
year, say t, for the word and calculate the rela-
tive frequency up to and after t. We then take the
best relative frequency ratio across the years as the
score of lexical change for that word and aggregate
to form a list of changes by sorting on this score.
In contrast to semantic changes, all the usages of
lexical changes are used to form cascades. These
cascades are the evidence from which we estimate
the per-document lexical influence scores αℓ, again
using the methods in § 2.1.

2.3 Overview

To summarize the method for computing semantic
influence:

1. Compute the score r(w, t) for each word w
and time t as described in Equation 3 (with
the adjusted covariance term from Equation 4),
and threshold to identify semantic changes.

2. For each word selected in the previous step,
classify each usage as either “old” or “new”,
and build a cascade from the timestamps of
the new usages.

3. Aggregating over all the cascades, estimate
the influence parameters αi for each document
in the collection.

A visual summary of the entire methodological
pipeline is given in Figure 2.
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Figure 2: Methodological pipeline. The steps in our method can be summarized as follows for an example word
attention. (A) depicts a collection of research papers that mention attention; (B) is a collection of contextual
embeddings for attention across the entire corpus; (C) uses the contextual embeddings to find the transition point
and the magnitude of the change; (D) uses the contextual embeddings to classify usages as old (marked with red
crosses) or new (marked with green ticks) with respect to the transition time; (E) is a depiction of the event cascades
comprising of timestamp and paper_id (pi) pairs.

3 Data

To construct a collection of research papers, we fo-
cus on papers that are included in the ACL anthol-
ogy. We collected the ACL anthology bibliography
file3 and converted the bib entries from the file as
JSON objects; we retained the title of the paper, the
year in which it was published, and the venue.

We then stripped all whitespace and special char-
acters from the title of the paper. These stripped
titles and the year of publication are matched with
papers in s2orc corpus (Lo et al., 2020)4. Matched
papers that have a valid pdf parse (i.e full text of
the paper) are retained. Though the s2orc dataset
contains papers from as far back as 1965, the cov-
erage in the early years is sparse with few or no
papers in many of the early years. As a result,
the data is further filtered to retain only the papers
that appear from 1990 to 2019 (T = [1990, 2019]).
Descriptive statistics of the curated corpus is given
in Table 1.

3Downloaded from https://aclanthology.org/ on
12/9/2021

420200705v1 version

Number of papers 36645
Years 1990–2019
Mean (median) cites per paper 6.68 (1)
Mean (median) words per paper 3291 (3248)

Table 1: Dataset summary. Descriptive summary of
the curated ACL corpus from s2orc dataset.

4 Experimental Setup

For this study, multilingual BERT is used as
the contextualizing model even though our
data is English papers. This is to handle
even those English language papers that have
foreign language tokens. Specifically, the
bert-base-multilingual-uncased model from
the Hugging face (Wolf et al., 2020) library is
used.5 The size of the contextualized embeddings
is 3144 dimensions after concatenating the final
four layers.

Continued pretraining Previous work has
shown that the quality of the contextual embed-

5https://huggingface.co/
bert-base-multilingual-uncased
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dings improves when the pretrained BERT is fur-
ther trained on domain-specific text (e.g., Gururan-
gan et al., 2020). For this study, we continued to
pretrain BERT model for 3 epochs to optimize the
masked language modeling objective. The proba-
bility of masking is set to 15 %.

Wordpiece aggregation Since BERT learns sub-
word embeddings by breaking tokens into word-
pieces, the embeddings of the wordpieces need to
be aggregated to get a representation of a token.
This aggregation is done by taking the average of
the wordpiece embeddings.6

Data preprocessing Non-English papers in the
corpus are ignored from the analysis by identifying
the language of the papers using langid (Lui and
Baldwin, 2012). The vocabulary V is constructed
by retaining words that appear at least 10 times
in the abstracts and do not appear in more than
90 % abstracts. Each paper is first segmented by
whitespace and then broken into chunks of 200
tokens. Only alphabetic tokens are retained.

Classifying individual usages of semantic inno-
vations The off-the-shelf logistic regression clas-
sifier from scikit-learn is used to mark every
individual instance of a semantic innovation as new
or old. To avoid overfitting, we use l2 regular-
ization; all other inputs to the classifier are set to
default. 4-fold cross-validation is performed to get
the final assignment of labels from the classifier.

Word filters We keep words in our vocabulary
if they are composed only of alphabetic characters,
occur in at most 90% of the papers, and occur a
minimum of 30 times in the entire corpus. We also
eliminate words whose length is less than or equal
to 2 characters.

Estimation To estimate the parameters of the
Hawkes process, we use scipy.optimize, which
internally uses the L-BFGS solver.

5 Results

5.1 Semantic changes

We identified 2910 semantic changes that capture
several technical concepts in language research.
The top changes and the period in which their mean-
ings shift are shown in Table 2.

6Elementwise max as an alternative strategy of aggrega-
tion was also tried and performed similar in detecting changes.

The evolution of language research, from the
earlier focus on syntax and sequence processing us-
ing latent variable models to the current paradigm
of using deep learning, is neatly summarized by
the semantic innovations that the method identifies.
Changes such as tokenization and transducers from
the late nineties are indicative of the then-structural
approach to core NLP research.

The earlier part of the 2000s saw changes in
terms such as plan (see Table 5 for context in
which the term appears), whose narrow usage in
messaging applications broadened to other applica-
tions. The next decade also saw changes in terms
such as kernel and probabilistic. These indicate
the methodological changes that were underway
during this period, with NLP research being dom-
inated by a mix of kernel and bayesian methods
during this decade (e.g., Moschitti, 2004; Blei et al.,
2003). Methodological innovations such as con-
ditional random fields (Lafferty et al., 2001) and
the rise of domain adaptation (e.g., Chelba and
Acero, 2004; Daumé III, 2007) are also evidenced
by terms such as conditional and adaptation.

With the rise of neural approaches, words such
as representations, network, and decoder under-
went semantic changes between the years 2013 to
2017. Another prominent example of this shift is
the term attention, shown in Figure 3, which shifts
from its standard, broad usage to the more technical
and focused usage with respect to neural networks
around 2015.

5.2 Lexical changes

We selected the top 3000 lexical innovations to
approximately match the number of semantic in-
novations. The lexical changes capture the intro-
duction and rise in popularity of terms in language
research. Unlike semantic changes, lexical changes
are identified only by their change in frequency.

Among the top changes are terms such as bert,
lstm, adam, and mturk which are examples of new
models, algorithms, tools, and technology intro-
duced in language research. On the other hand,
example changes such as factuality (e.g., Saurí and
Pustejovsky, 2012; de Marneffe et al., 2012; Soni
et al., 2014) and sarcasm (Riloff et al., 2013; Ptáček
et al., 2014) indicate the rise in popularity of these
concepts during specific years.

Abbreviations such as sts and mt, and names of
languages such as de and indonesian are two cate-
gories of changes that prominently feature among
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Period Semantic Changes

2000-2002 system, data, plan, language, sen-
tence

2003-2005 state, task, relation, development,
shared

2006-2008 event, topic, comments, points, side

2009-2011 media, user, social, users, neural

2012-2014 network, hidden, embedding, layer,
representations

2015-2017 attention, representation, sequence,
mechanism, decoder

2018-2020 self, heads, glue, contextualized, at-
tacks

Table 2: Examples of semantic changes. We show
a few handpicked examples amongst the top semantic
changes in different periods. More context is shown in
Table 5.

top lexical changes. While the former indicates
the necessity of naming technical concepts with
memorable shortform, the latter is indicative of the
rise in multilingual language research.

5.3 Regression analysis

Our objective is to test whether the linguistic influ-
ence of a paper is positively correlated with its rate
of future citations. However, many factors can con-
found our analysis including, but not limited to, the
early citations a paper gets and the content of the
paper. To control for these confounds and test our
hypothesis, we frame the problem as a multivariate
regression where features that proxy linguistic in-
fluence are incorporated alongside proxy features
of other factors to predict the future citations. For
our analysis in this section and § 5.4, we consider
papers published in or after the year 2000, since the
density of innovations appearing in these years is
higher. The total number of papers in this interval
is 19153.

Our unit in the multivariate regression is a re-
search paper and the dependent variable is the Z-
normalized logarithm of its future citations. The
Z-normalization uses a unique mean and variance
for each year of publication, which helps to account
for secular trends in the overall rate of citation over
time. By “future citations” we mean the difference
between the number of citations a paper gets five
years after its publication (hereon referred as “long-

term citations”) and the number of citations a paper
gets two years after its publication (hereon referred
as “short-term citations”). For example, for a paper
published in 2012, the short-term citations are from
the period 2012− 2014 and the long-term citations
are the citations accrued between 2015− 2017.

To test the impact of semantic influence, we in-
clude three baseline regression models. In the first
baseline, M1, we include the Z-normalized short-
term citations and a constant term as our only co-
variates. M2, our second baseline, consists of all
covariates in M1 and the topic distribution of a pa-
per learned from an LDA model (Blei et al., 2003).
The topic distribution is taken as a coarse represen-
tation of the content of the paper. Our final baseline
is M3 which contains all the covariates from M2 in
addition to categorical covariates corresponding to
quantiles of the Z-normalized lexical influence, αl,
of each paper. We consider four quantiles: < 50th

percentile, ≥ 50th and < 75th percentile, ≥ 75th

percentile and < 90th percentile, and ≥ 90th per-
centile. Finally, our experimental model, M4, has
all the covariates from M3 and additional categor-
ical covariates corresponding to the quantiles of
the Z-normalized semantic influence, αs, of each
paper. The quantiles are divided in the same way
as lexical influence.

The experimental model can be compared with
the baseline models by their goodness-of-fit, mea-
sured by the log-likelihood of the data; analogously,
the null hypothesis is that the goodness-of-fit of the
experimental model is no better than that of the
baseline models. Statistically, the likelihood ratio,
our test statistic, follows a χ2 distribution with the
excess number of parameters in the experimental
model as the degrees of freedom. The null hypoth-
esis can be rejected if the observed test statistic is
determined to be unlikely under this distribution.

The regression coefficients are shown in Ta-
ble 3.7 Not surprisingly, short term citations are
the strongest predictor of long-term citations, as
seen by the strength of the regression coefficient.
The regressions further reveal a strong relation-
ship between semantic influence and long-term cita-
tions: M4 obtains a significantly improved fit over
M3, our strongest baseline (χ2(3) = 91, p ≈ 0.0).
Without additional controls, the average rate of
long-term citations for the top quantile of semantic
influence is 3 times the long-term citation rate for

7Due to space limitations we omit the topic coefficients
from the table. The topics and their coefficients for M4 are
shown in the appendix in Table 6.
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Predictors M1 M2 M3 M4

Constant -0.000 -0.080 -0.106 -0.116
(0.005) (0.036) (0.036) (0.036)

Initial Citations 0.763 0.740 0.727 0.718
(0.005) (0.005) (0.005) (0.005)

Lex. Inf. Q2 0.079 0.067
(0.012) (0.012)

Lex. Inf. Q3 0.086 0.064
(0.014) (0.014)

Lex. Inf. Q4 0.181 0.145
(0.017) (0.018)

Sem. Inf. Q2 0.028
(0.012)

Sem. Inf. Q3 0.091
(0.015)

Sem. Inf. Q4 0.157
(0.018)

Log Lik. -18828 -18681 -18615 -18569

Table 3: Regression analysis. We show the results of long-term citations for various ablations. Each column
indicates a model, each row indicates a predictor, and each cell contains the coefficient and, in parentheses, its
standard error. Topics are included as controls in models M2-4, but for clarity their coefficients are reserved for
the supplementary material. Results for the best bandwidth parameter (γ=100), selected by the best heldout log-
likelihood, are produced here whereas the regression results for other bandwidth settings are in the supplementary
material.

the bottom quantile. With additional controls, the
top quantile of semantic influence amounts to an
increase in the expected citations by a factor of 1.2,
in comparison to the papers in the bottom quantile.

5.4 Predicting future citations

We now turn to predicting the long-term citations
from semantic influence and the other predictors
described in § 5.3. To more closely match the sce-
nario of true future prediction, we formulate this
as an online prediction task, in which the model
is trained on past data to make predictions about
future events (Karimi et al., 2015; Søgaard et al.,
2021). Formally, to make predictions about papers
published in year t, we use information from the
interval [t, t+ 2] to compute the predictors: short-
term citations, lexical influence, and semantic in-
fluence. We then make predictions about citations
in years [t+ 3, t+ 5]. To estimate the weights of
these predictors, we assume access to training data
up to year t + 2. We then increment t and make
predictions about the papers published in the next
year. In this way, all papers published in the period
2001-2014 appear in one of the test folds.

The rest of the setup is similar to § 5.3 ex-
cept one important difference. For the predic-
tion task, we plug in estimates of lexical and

semantic influence for all the values of γ =
{0.001, 0.01, 0.1, 1.0, 10.0, 100.0} as predictors in
the model. The results of the online prediction of
long-term citations are shown in Table 4. The per-
formance is measured using mean squared error
(MSE) between the predicted and ground-truth val-
ues. The model M4, which includes our measure of
semantic influence, achieves the lowest error in 13
of 14 years, and it gives a more accurate prediction
than M3 for 57.8% of the 18554 papers in this slice
of the dataset.

6 Related Work

6.1 Linguistic change and influence

Several computational methods have been devel-
oped to identify changes in language (Eisenstein,
2019). Of particular interest are techniques for de-
tecting semantic changes in a text corpus. Such
techniques are based on a range of representations,
including frequency statistics (e.g., Bybee, 2007),
static, type-level word embeddings (e.g., Sagi et al.,
2009; Wijaya and Yeniterzi, 2011; Kulkarni et al.,
2015; Hamilton et al., 2016), and contextual word
embeddings (e.g., Kutuzov and Giulianelli, 2020;
Giulianelli et al., 2020; Montariol et al., 2021).
Here, we use contextual embeddings which are,
in principle, advantageous over static embeddings
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Publication Year M1 M2 M3 M4

2001 0.739 0.737 0.732 0.731
2002 0.759 0.757 0.755 0.754
2003 0.681 0.679 0.673 0.674
2004 0.623 0.622 0.613 0.606
2005 0.57 0.568 0.554 0.54
2006 0.583 0.581 0.565 0.548
2007 0.504 0.501 0.501 0.486
2008 0.517 0.515 0.506 0.491
2009 0.481 0.479 0.475 0.473
2010 0.516 0.516 0.508 0.497
2011 0.49 0.489 0.482 0.476
2012 0.525 0.524 0.519 0.511
2013 0.511 0.51 0.505 0.498
2014 0.445 0.444 0.431 0.423

All Years 0.529 0.528 0.52 0.511

Table 4: Online predictive analysis We show the per-
formance in terms of MSE for the ablated models on
the online citation prediction task. The first column
indicates the publication year, the subsequent columns
are the various ablations as seen in Table 3, and each
cell shows the MSE. The last row is the micro-averaged
MSE over all the examples. Note that smaller values
indicate better predictive performance.

as they can distinguish the dynamics of co-existing
senses.

Although there are many methods to detect
changes, only a few computational studies find
leaders or followers of these changes, which is im-
portant in order to understand who carries influence.
By modeling lexical changes as cascades on a net-
work, researchers have inferred that they propagate
because of influence from strong ties (e.g., Goel
et al., 2016). Other researchers have identified lead-
ers and followers of individual semantic changes
and aggregated them to induce a leadership net-
work between the sources (Soni et al., 2021a). Our
work shares similarities with these prior studies
but is distinct: We use similar cascade modeling
techniques but for semantic changes, which are
considerably harder to construct.

Most relevant to our current work is that of Soni
et al. (2021b) who find that semantically progres-
sive scientific research papers get more citations.
Semantic progressiveness — a measure of linguis-
tic novelty — is calculated by comparing the old
meaning of semantic innovations with their con-
temporary meaning in the context of the document.
Our current work is different from this prior work
in a key aspect: We estimate and establish a link

between citation influence and semantic influence,
instead of semantic novelty.

6.2 Citation influence

Citation count has historically been used as a proxy
for the influence of a scientific article (Fortunato
et al., 2018), of researchers (Börner et al., 2004),
and is shown to be strongly correlated with sci-
entific prestige (Cole and Cole, 1968).Relevant to
our work are studies that establish a link between
citation influence to different measures of linguis-
tic progressiveness. Kelly et al. (2018) find that
progressiveness as measured in terms of difference
in textual similarity between old and new patents
is predictive of future citations of a patent. Simi-
larly, Soni et al. (2021b) find that progressiveness
measured as the early adoption of words of with
newer meanings is predictive of citations of a paper.
In contrast, in this paper, we find a link between
linguistic influence in the short term to the future
citations of the paper.

7 Conclusion

We have presented a new technique for quantify-
ing semantic influence in time-stamped documents.
Quantitative analysis demonstrates that this mea-
sure of semantic influence is strongly correlated
with long-term citations a paper receives, and leads
to improvement in the prediction of future cita-
tions. Our tool offers additional granularity in
terms of linguistic influence, which can supple-
ment structural measures of influence based on
citation counts. Though we present quantitative
analyses for scholarly documents in computational
linguistics, our tool could be applied to scholarly
documents in other research areas or to documents
such as patents or court opinions where citation
counts are considered structural measures of influ-
ence. We plan to focus on these applications in the
future.

8 Limitations

A simplifying assumption in this paper is there
exists one dominant sense of a change before and
after the transition point. This assumption may
not hold for every change, in general, but helps
in developing computational methods to identify
a large array of changes. In future work, we plan
to extend the ability of our method to identify co-
evolving senses.
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A fundamental limitation of the Hawkes Process
is the closed-world assumption that all events are at-
tributable to other observed events. This limitation
is particularly relevant to our setting, where we ob-
serve only papers published in the ACL anthology,
but those papers influence and are influenced by
a much wider discourse, which includes not only
other academic research papers but also software
artifacts, books, and social media. In practice, this
means that our method might wrongly assign credit
to “fast follower” papers that are the first to adopt
ideas published outside the ACL universe. Simi-
larly, we make no attempt to measure the extent to
which ACL anthology papers influence writing that
is published elsewhere.

More generally, we cannot show whether the
relationship between linguistic influence and cita-
tions is causal. The temporal asymmetry ensures
that the future citations are not themselves causes
of linguistic influence, but we cannot exclude the
possibility that there is a common cause for both
phenomena. For example, it seems likely that fac-
tors such as the overall quality of the research and
the fame of the authors both contribute to the extent
to which a paper drives the adoption of linguistic
features in the short term, and to the number of
citations it receives in the long term. Our regres-
sion analysis includes control variables for some
potential common causes, such as topics, but it is
not possible to control for all other potential con-
founders. Hence, our analysis should be considered
correlational and not causal. Future work could
focus on establishing and quantifying a causal link
between linguistic influence and citations.

9 Ethics Statement

This paper offers a new tool for understanding sci-
entific communication. Because this tool quantifies
the linguistic impact of research papers, there is the
possibility that it could be used for consequential
decisions such as hiring, promotion, and funding.
This implies a “leaderboard” approach to schol-
arship that would overvalue the most fashionable
mainstream research topics, while penalizing re-
search that has a deep impact in a relatively small
community. Similar concerns have been raised
about other measures of academic impact: Jorge
Hirsch, the inventor of the H-index, noted that
his metric could have “severe unintended negative
consequences,” and urged evaluators to go beyond
any single index to consider the broader context

when considering an individual’s scientific con-
tributions (Conroy, 2020). The same applies to
semantic influence metric defined in this paper.
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Figure 3: Visual depiction of change in top example.
Semantic change in the term attention in s2orc’s ACL
anthology subset. The blue line indicates the transition
year for meaning change. The transition year for the
term attention coincides with early papers that described
the attention mechanism in neural networks (Bahdanau
et al., 2015) that later became the bedrock of transform-
ers architecture (Vaswani et al., 2017)

Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

A Examples of Semantic Changes

We show more statistical details for some of the
semantic changes and the context in which these
changes occur in Table 5. We also show an illustra-
tive example of a change for the word attention and
how it transitions according to our metric in Fig-
ure 3.

B Topic Coefficients

To control for the content of the paper, we use
a coarse-grained representation of the content by
learning an LDA model and estimating the proba-
bility distribution of a research paper in terms of
the topics. The probabilities are used as features in
the regression and online prediction tasks. The re-
gression coefficients of the topics in the full model,
M4, are shown in Table 6.

C Regression Results for Different
Bandwidths

Different lexical and semantic influence esti-
mates were learned by varying the bandwidth
(γ). The bandwidth is a decay factor for the

influence: higher bandwidth value corresponds
to faster decay in influence and a lower band-
width means a slower decay. The regressions
were run for different values of the bandwidth set-
ting {.001, .01, .1, 1.0, 10.0, 100.0} and the opti-
mal bandwidth was selected based on the goodness
of fit on a 10% heldout sample. The regression
results for all the bandwidths are presented in Ta-
ble 7, Table 8, Table 9, Table 10 and Table 11.
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Term Year Score Relative
count
pre-
transition

Relative
count
post-
transition

Earlier usages Later usages

attention 2015 2.38 126 1670 increased attention
over the past several
years

parallelizable atten-
tion networks

need to be paid atten-
tion

vector of attention
weights

plan 2001 1.52 381 158 plan such a message plan recognition
problems

embedded in the plan
library

plan for tag genera-
tion

network 2013 1.19 240 1000 semantic network
path schemata

deep learning net-
work configurations

network of seman-
tically related noun
senses

network parameters
to tune

focus 2006 0.99 451 521 tracking local focus main focus of our
work

focus of attention in
discourse

the focus particle

representations 2013 0.94 257 1018 grammatical repre-
sentations

learning distributed
representations

logical semantic rep-
resentations

learned representa-
tions across views

deep 2014 0.94 114 417 deep cognitive under-
standing

deep learning

deep syntactic fea-
tures

deep architectures

Table 5: Semantic change examples. Top examples of semantic changes identified from the curated ACL corpus
from the s2orc dataset. The relative counts are counts per million tokens. Terms such as attention get a new sense
increasingly used later; terms such as plan shows semantic widening moving from strong association with dialogue
to other NLP tasks; terms such as network and deep show semantic narrowing moving from disperse associations to
a more narrower sense associated with neural networks.
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Topic Regression
coeffi-
cients

Top words by probability

5 −0.217 user(0.017), users(0.007), speech(0.005), knowledge(0.005), generation(0.004)
6 −0.230 query(0.016), similarity(0.015), term(0.014), documents(0.012), candidate(0.011)
13 −0.064 dialogue(0.030), domain(0.022), utterance(0.013), dialog(0.012), utter-

ances(0.012)
15 −0.064 image(0.024), visual(0.020), object(0.017), objects(0.016), spatial(0.013)
14 −0.043 translation(0.057), source (0.028), target(0.022), alignment(0.018), paral-

lel(0.013)
12 −0.065 speech(0.015), chinese(0.015), character(0.013), languages(0.013), segmenta-

tion(0.009)
10 −0.005 lexical(0.010), syntactic(0.010), verbs(0.008), noun(0.007), argument(0.007)
20 0 tree(0.021), node(0.018), nodes(0.013), rule(0.011), rules (0.011)
2 0.011 classification(0.021), classifier (0.020), class(0.013), discourse(0.011), accu-

racy(0.010)
17 0.122 dependency(0.033), parsing (0.027), parser(0.023), syntactic(0.019), parse(0.015)
3 0.085 event(0.041), annotation(0.031), events(0.020), coreference(0.018), men-

tions(0.013)
9 0.117 morphological(0.018), pos(0.017), tag(0.012), tags(0.011), languages(0.009)
11 0.106 question(0.029), answer(0.024), questions(0.019), attention(0.013),

dataset(0.012)
18 0.143 sentiment(0.027), tweets(0.013), negative(0.011), positive(0.011), opinion(0.011)
16 0.149 sense(0.023), similarity(0.015), wordnet(0.012), senses(0.011), target (0.009)
19 0.122 topic(0.032), document(0.026), summary(0.014), documents(0.014), topics(0.013)
7 0.167 human(0.006), texts(0.005), study(0.005), had(0.004), linguistic(0.004)
4 0.174 relation(0.036), entity(0.033), relations(0.025), entities(0.021), knowledge(0.016)
1 0.226 probability(0.016), algorithm (0.010), distribution(0.009), parameters (0.007),

function(0.006)
8 0.334 neural(0.017), embeddings(0.016), vector(0.013), network(0.012), embed-

ding(0.012)

Table 6: Topic coefficients and top words We show the coefficients of the topic in the experimental model M4
alongwith the top words by probability in a given topic.
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Predictors M1 M2 M3 M4

Constant -0.000 -0.080 -0.090 -0.097
(0.005) (0.036) (0.036) (0.037)

Initial Citations 0.763 0.740 0.737 0.731
(0.005) (0.005) (0.005) (0.005)

Lex. Inf. Q2 0.006 0.004
(0.011) (0.011)

Lex. Inf. Q3 0.020 0.015
(0.014) (0.014)

Lex. Inf. Q4 0.066 0.054
(0.016) (0.016)

Sem. Inf. Q2 -0.007
(0.011)

Sem. Inf. Q3 0.018
(0.014)

Sem. Inf. Q4 0.135
(0.017)

Log Lik. -18828 -18681 -18672 -18638

Table 7: Regression analysis. We show the results of
long-term citations for various ablations when the band-
width was set to 0.001. The interpretation of columns
and rows is similar to Table 3.

Predictors M1 M2 M3 M4

Constant -0.000 -0.080 -0.095 -0.102
(0.005) (0.036) (0.036) (0.037)

Initial Citations 0.763 0.740 0.737 0.731
(0.005) (0.005) (0.005) (0.005)

Lex. Inf. Q2 0.010 0.008
(0.011) (0.011)

Lex. Inf. Q3 0.040 0.036
(0.014) (0.014)

Lex. Inf. Q4 0.060 0.048
(0.016) (0.016)

Sem. Inf. Q2 -0.009
(0.011)

Sem. Inf. Q3 0.021
(0.014)

Sem. Inf. Q4 0.133
(0.017)

Log Lik. -18828 -18681 -18672 -18638

Table 8: Regression analysis. We show the results of
long-term citations for various ablations when the band-
width was set to 0.01. The interpretation of columns
and rows is similar to Table 3.

Predictors M1 M2 M3 M4

Constant -0.000 -0.080 -0.103 -0.115
(0.005) (0.036) (0.036) (0.037)

Initial Citations 0.763 0.740 0.736 0.729
(0.005) (0.005) (0.005) (0.005)

Lex. Inf. Q2 0.026 0.022
(0.011) (0.011)

Lex. Inf. Q3 0.036 0.028
(0.014) (0.014)

Lex. Inf. Q4 0.094 0.078
(0.016) (0.016)

Sem. Inf. Q2 0.008
(0.011)

Sem. Inf. Q3 0.036
(0.014)

Sem. Inf. Q4 0.148
(0.017)

Log Lik. -18828 -18681 -18663 -18625

Table 9: Regression analysis. We show the results
of long-term citations for various ablations when the
bandwidth was set to 0.1. The interpretation of columns
and rows is similar to Table 3.

Predictors M1 M2 M3 M4

Constant -0.000 -0.080 -0.085 -0.106
(0.005) (0.036) (0.036) (0.036)

Initial Citations 0.763 0.740 0.736 0.723
(0.005) (0.005) (0.005) (0.005)

Lex. Inf. Q2 0.032 0.021
(0.012) (0.012)

Lex. Inf. Q3 0.047 0.029
(0.014) (0.014)

Lex. Inf. Q4 0.092 0.063
(0.017) (0.017)

Sem. Inf. Q2 0.049
(0.012)

Sem. Inf. Q3 0.097
(0.015)

Sem. Inf. Q4 0.188
(0.018)

Log Lik. -18828 -18681 -18664 -18603

Table 10: Regression analysis. We show the results
of long-term citations for various ablations when the
bandwidth was set to 1.0. The interpretation of columns
and rows is similar to Table 3.
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Predictors M1 M2 M3 M4

Constant -0.000 -0.080 -0.108 -0.117
(0.005) (0.036) (0.036) (0.036)

Initial Citations 0.763 0.740 0.727 0.718
(0.005) (0.005) (0.005) (0.005)

Lex. Inf. Q2 0.079 0.067
(0.012) (0.012)

Lex. Inf. Q3 0.097 0.075
(0.014) (0.014)

Lex. Inf. Q4 0.177 0.141
(0.017) (0.018)

Sem. Inf. Q2 0.025
(0.012)

Sem. Inf. Q3 0.092
(0.015)

Sem. Inf. Q4 0.157
(0.018)

Log Lik. -18828 -18681 -18615 -18569

Table 11: Regression analysis. We show the results of
long-term citations for various ablations when the band-
width was set to 10.0. The interpretation of columns
and rows is similar to Table 3.
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