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Abstract

For vision-and-language (VL) reasoning tasks,
both fully connectionist, end-to-end methods
and hybrid, neuro-symbolic methods have
achieved high in-distribution performance. In
which out-of-distribution settings does each
paradigm excel? We investigate this ques-
tion on both single-image and multi-image vi-
sual question-answering through four types
of generalization tests: a novel segment-
combine test for multi-image queries, contrast
set, compositional generalization, and cross-
benchmark transfer. Vision-and-language end-
to-end (VLE2E) trained systems exhibit size-
able performance drops across all these tests.
Neuro-symbolic (NS) methods suffer even
more on cross-benchmark transfer from GQA
to VQA, but they show smaller accuracy drops
on the other generalization tests and their per-
formance quickly improves by few-shot train-
ing. Overall, our results demonstrate the com-
plementary benefits of these two paradigms,
and emphasize the importance of using a di-
verse suite of generalization tests to fully char-
acterize model robustness to distribution shift.

1 Introduction

Widely used multi-modal pretrained models (Chen
et al., 2020; Lu et al., 2019; Li et al., 2019)
have exhibited great performance when fine-tuned
on downstream vision-and-language tasks like
VQA (Antol et al., 2015) and GQA (Hudson and
Manning, 2019a). These models often generalize
poorly to out-of-distribution (OOD) data, suggest-
ing shortcomings in the VLE2E pipeline. Neuro-
symbolic methods (Wu et al., 2017; Yi et al., 2018)
try to address this issue by disentangling grounding
and reasoning mechanisms in multi-modal systems.
NS methods generate grounded visual representa-
tions, parse the language into executable programs
for reasoning, and execute the programs on the vi-
sual representations. Previous work (Hudson and

Train A: There is at least 1 image with 2 bottles.
Train B: Is the dark bottle on the table or not?

Compositional Generalization

Contrast: There is less than 1 image 
with exactly 2 dark bottles on the table.

Contrast Set
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Pred: Yes

Segment-Combine Test

OrAggregated Pred: No

Pred: No
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Figure 1: We build segment-combine tests, contrast sets
and compositional generalization splits for multi-image
question answering in the COVR dataset. The above
question requires counting both within and across im-
ages. Segment-Combine Test: the multi-image query
enables considering each image in isolation, pairing
them with random unrelated images and feeding to
the model, doing an OR operation of per-image an-
swers. Contrast Set: language perturbation by replac-
ing phrases in query with synonyms or antonyms. Com-
positional Generalization: the evaluated query is a
compositional variant of questions Train A and Train B,
involving reasoning on both counting and relations.

Manning, 2018; Mao et al., 2019) has shown the
effectiveness of neuro-symbolic methods for OOD
compositional generalization on single-image VL
reasoning tasks. However, we still lack a compre-
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hensive understanding of the generalization differ-
ences between these two paradigms under various
setups. Given recent work suggesting that OOD ac-
curacy often strongly correlates with in-distribution
accuracy (Miller et al., 2020, 2021), we might ex-
pect VLE2E and NS systems to often have similar
generalization abilities. But do they?

In this work, we conduct the first comprehensive
comparison of generalization behavior between
VLE2E and NS systems for VL reasoning tasks.
Our study spans single-image and multi-image set-
tings with natural images and includes four distinct
types of generalization tests, three of which are
shown in Figure 1. We introduce a novel segment-
combine test for multi-image settings that requires
models to make consistent predictions when some
input images are replaced with irrelevant ones. We
evaluate on contrast sets (Gardner et al., 2020),
including new contrast sets we construct for COVR
that test understanding of quantifiers. We also
measure compositional generalization as defined
by compositional splits from COVR (Bogin et al.,
2021) and cross-benchmark transfer between
VQA and GQA. We also develop improved NS
systems for GQA by handling mismatches between
program and scene graph object descriptors, and
for COVR by refining the original logical language.

Overall, we find that VLE2E and NS systems
exhibit distinct and complementary generalization
patterns. The NS systems are more robust than
the VLE2E systems in the first three testing sit-
uations. The VLE2E systems exhibit overstabil-
ity to meaning-altering perturbations, suggesting
they overfit to spurious correlations in the training
data and do not learn precise reasoning skills. We
further find that the semantic parsing module of
NS systems can quickly improve on generalization
tests given a few training examples, whereas VL
models do not adapt as quickly. On the other hand,
while VLE2E systems lose more than 10% in accu-
racy on transfer between VQA and GQA, the NS
methods perform even worse. Taken together, our
findings underscore the need for a diverse suite of
generalization tests to fully compare different mod-
eling paradigms. The different behavior of these
two systems could guide the community to design
more robust VL reasoning systems. We release our
code for generating test data, and we encourage
future VL models to be evaluated on these tests.1

1We release our code and test data at https://github.
com/Bill1235813/gendiff_vlsys

2 Related Work

We first survey related work on vision-language
reasoning models and OOD evaluation tests.

VL OOD Generalization. Many efforts have
been made to evaluate the generalization ability
of VLE2E systems and task-specific methods on
compositionality (Johnson et al., 2017; Thrush
et al., 2022a), language perturbations (Ribeiro et al.,
2019) and visual perturbations (Jimenez et al.,
2022). Li et al. (2020) showed VLE2E systems
exhibit better robustness than task-specific meth-
ods. We are the first to comprehensively compare
the generalization differences between VLE2E and
NS systems across different OOD tests.

VL Pretrained Models. Large-scale, VL pre-
trained models for question-answering can be
single-stream—encoding vision and language fea-
tures together with a single transformer—such as
VisualBERT (Li et al., 2019) and VinVL (Zhang
et al., 2021), or dual-stream—encoding vision and
language with separate transformers and apply-
ing cross-modal transformers later—such as ViL-
BERT (Lu et al., 2019) and LXMERT (Tan and
Bansal, 2019). We evaluate on both single- and
dual-stream VL pretrained models.

Neuro-Symbolic Methods. NS-VQA (Wu et al.,
2017) disentangled vision and language processing
for VL reasoning tasks on simulated images. How-
ever, it requires the datasets to include annotations
of logical forms to describe language. To reduce
the supervision signal from program annotations,
NS-CL (Mao et al., 2019) jointly learned concept
embeddings and latent programs, and extended
to natural images. NSM (Hudson and Manning,
2019b) learned graph-level reasoning and show-
cased the compositional reasoning abilities of NS
methods. To be applicable to both single- and multi-
image setups, we choose the same pipeline as in
the original NS-VQA. We use the scene graph as
the structural representation, and test on multiple
language models for semantic parsing.

Single- and Multi-Image VL Reasoning Tasks.
For VL reasoning, there are many datasets that fo-
cus on single images, such as CLEVR (Johnson
et al., 2017), VQA, and GQA, as well as many
other datasets that involve multi-image reasoning,
such as NLVR (Suhr et al., 2017), NLVR2 (Suhr
et al., 2019), COVR (Bogin et al., 2021), and
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Winoground (Thrush et al., 2022b). We experi-
ment with two single-image datasets, VQA and
GQA, and one multi-image dataset, COVR, all of
which use natural images.

3 Models

Next, we formally define the VL reasoning tasks
and VLE2E and NS methods we study. We also
discuss a new NS system for COVR and associated
changes to the original COVR logical forms.

3.1 Vision-Language Reasoning
In a VL reasoning task, each example consists of
a triple (q, I, y), where q is a natural language
query, I is a set of queried images and y is the
corresponding answer of the query. The number
of queried images is |I|, e.g., |I| = 1 for a single-
image query. Given query q and image set I, a VL
system f predicts an answer ŷ = f(q, I). Models
are trained on Dtrain and evaluated on Dtest.

3.2 Modified VLE2E System
For a VLE2E system, f is a single neural network
that is trained end-to-end. Since current VL pre-
trained models are trained to process single images,
we modify the VLE2E pipeline for multi-image
settings following Bogin et al. (2021). Given a
multi-image query (q, I) and a pretrained model,
for each image I ∈ I, we feed the pair (q, I) to
the pretrained model to get an image-text represen-
tation. We concatenate these |I| image-text repre-
sentations and prepend a [CLS] token to construct
a sequence of length |I| + 1. We then input this
generated sequence into a two-layer transformer,
and take the produced embedding of the [CLS] to-
ken as the representation of the entire multi-image
query. Finally, we feed the representation into an
MLP classifier to predict y. All modules includ-
ing the pretrained model are fine-tuned. We ex-
periment with 4 different VL pretrained models:
the single-stream VisualBERT and VinVL and the
dual-stream LXMERT and ViLBERT.

3.3 Modified NS System
A NS system separately processes vision and lan-
guage with two trainable modules ϕ and ψ. The
image set is represented as ϕ(I), and the query
semantics is represented as a functional program
ψ(q). A pre-defined executor executes ψ(q) on
ϕ(I) to predict the answer ŷ. To apply NS-VQA-
like pipelines to real-world images, we use scene
graphs as the structured representation ϕ(I).

Scene Graph Generation

Generated
Scene Graphs

Images

table

bottle

attr: glass, dark

on
cup

on

…

Question: There is at least 
1 image with exactly 2 
dark bottles on the table

Question

Program

OLF: find(table), find(bottle), 
filter(dark), with_relation(on), …, 
geq(1)

CLF: find(table), find(bottle), 
filter(attr; dark), filter(rel; on), …, 
compare(geq; 1)

Semantic Parsing Symbolic 
Execution

Pred: Yes

Pred

GenExec

Figure 2: The process of the multi-image query with the
modified neuro-symbolic methods. A language model
(blue) maps the question to a functional program in our
compositional logical forms (CLF) format; differences
with the original logical forms (OLF) are shown in bold.
A scene graph generator (purple) processes each image
into a separate scene graph; queried information shown
in bold. The program is executed on all the scene graphs
together to produce an answer (red).

We use a pre-trained scene graph generator that
can be fine-tuned on task-specific scene graph data,
depending on the dataset (see §5.1 for details). We
fine-tune large language models to map queries q
to functional programs ψ(q) (i.e., semantic pars-
ing). We experiment with 3 language models:
(1) T5 (Raffel et al., 2020), (2) BART (Lewis et al.,
2020) and (3) GPT-2 (Radford et al., 2019).

Now, we describe dataset-specific work needed
to build a full NS pipeline for GQA and COVR.
Both datasets provide logical forms for each ques-
tion, but these forms require modification to be
compatible with NS systems.

Single-Image Queries. In GQA, functional pro-
grams align with objects in scene graphs via object
IDs. For example, a program may refer to object

“bird(775)”, while the corresponding node for object
775 in the scene graph could have the name parrot.
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Since object IDs are not predictable by a seman-
tic parsing model given q, we remove them from
the annotated programs. Thus, we need to ground
object references like “bird” to likely coreferents
like the parrot node. We construct a dictionary
that maps each object type mentioned in a program
in Dtrain (e.g., “bird”) to the set of all scene graph
object types that such a mention matched to (e.g.,
parrot). We use this dictionary to match objects
between programs and scene graphs when execut-
ing programs at test time. Mismatches between
object names in the program and scene graph oc-
cur in 9.5% of validation examples, but using this
dictionary resolves 99.6% of the mismatches.

Multi-Image Queries. Like GQA, multi-image
queries in COVR are annotated with executable
programs and ground truth scene graphs of images.
The program annotation incorporates quantifier op-
erations, which enables NS execution of the multi-
image queries without changing the pipeline of the
NS-VQA methods (Yi et al., 2018). Figure 2 pro-
vides an overview of our multi-image NS pipeline.

In the compositional splits for COVR, models
must generalize to some unseen compounds (e.g.,
phrases) consisting of seen tokens (e.g., words).
For example, models could be tested on “Is the
child sitting on a branch or a swing?” after see-
ing “What is the child sitting on?”, “Is the child
sitting on a swing?” and “Is the child sitting on a
branch?” at training time. However, the annotated
logical forms in COVR for the above test query in-
clude an unseen unit operation choose_name (used
to choose either “branch” or “swing”), which is not
possible to generate as it was not seen at training
time. To at least make compositional generalization
possible, we design a set of compositional logical
forms as an intermediate representation (Herzig
et al., 2021) based on the existing programs in
COVR. For the operation choose_name(branch,
swing), we take the prefix “choose” as the oper-
ation name and leave the postfix “name” as an argu-
ment, the new operation is choose(name, branch,
swing). By doing so, it becomes possible to gen-
erate this operation once we see a choose(attr,
·) and a query(name, ·) operation. We try to keep
a minimum set of operations by redesigning non-
composable operations and eliminating redundant
operators. By doing so, we reduce the size of the
operation set from 33 to 17. We cover the details
of the modified programs in Appendix A. We de-
note the new logical forms as compositional logi-

cal forms (CLF) in contrast to the original logical
forms (OLF), and evaluate the NS system based on
these programs for the generalization tests.

Evaluation Metrics. We use 3 different evalua-
tion metrics for the NS system. Our main evalu-
ation metric is GENEXEC, the accuracy with the
program execution on the generated scene graphs.
To measure the effect of errors during scene graph
generation errors, we also measure GTEXEC, the
accuracy with the program execution on the ground
truth scene graphs. Finally, we also measure EX-
ACT, the exact match accuracy of the programs
generated by semantic parsing; this penalizes “spu-
riously correct” parses that execute to the right
answer but compute the wrong function.

4 Evaluation Methods

We evaluate VLE2E and NS systems on four gener-
alization tests. We create a new multi-image pertur-
bation test called the Segment-Combine Test, and
create new contrast sets for COVR by perturbing
quantifiers. We also test models on compositional
generalization and cross-benchmark transfer.

Segment-Combine Test. We introduce the
segment-combine test to test model generalization
on multi-image perturbations. For a multi-image
query (q, I) where I = (I1, ..., I|I|), we first per-
form a segmentation phase. We make |I| queries,
where the k-th query uses the original question q
and an image set formed by the union of the origi-
nal image Ik plus |I|− 1 random images unrelated
to q. We feed these to the model to get |I| predic-
tions. Next, in the combination phase, we apply an
aggregation function (e.g., SUM or OR) based on the
question type to fuse these predictions (Figure 1).
A robust model should return the same answer on
the segment-combine test and the original example.

We run the segment-combine test on COVR,
sampling random images from all images in the
COVR validation set. To confirm that we only sam-
ple images unrelated to the original image set (i.e.,
will not change the answer after fusion), we exe-
cute ground truth programs on ground truth scene
graphs for each query in the segmentation phase,
and find that the accuracy is 100%.

We focus on two templates in COVR for which
there is an appropriate fusion function. For the
template COUNTGROUPBY (e.g., “How many im-
ages have 2 bottles?”), the fusion function is SUM.
That is to say, the answer on the original input
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Template Transfer Setting VLE2E NS

VisualBERT ViLBERT CLF w/ BART CLF w/ GPT-2 CLF w/ T5

COUNTGROUPBY
Original Query 55.8 52.4 48.8 [99.0] 49.0 [99.7] 49.0 [99.9]
Segment-Combine 44.6 40.1 48.7 [98.9] 48.9 [99.6] 49.0 [99.7]

VERIFYCOUNTGROUPBY
Original Query 72.1 73.6 70.7 [99.5] 70.8 [99.6] 70.9 [99.7]
Segment-Combine 52.5 55.7 70.7 [99.3] 70.8 [99.6] 70.8 [99.7]

Table 1: Segment-Combine Test results on COVR. VLE2E models fail on both counting questions
(COUNTGROUPBY) and binary questions (VERIFYCOUNTGROUPBY), while all NS models are robust. Ora-
cle GTEXEC results for NS models are in brackets.

should be equal to the sum of the |I| answers from
the segmentation phase. For the template VERIFY-
COUNTGROUPBY, the fusion function is logical
OR, as shown in Figure 1.

Contrast Sets. For VL reasoning, we define a
contrast set (Gardner et al., 2020) of an example
(q, I, y) ∈ Dtest to be a set of similar examples
(q′, I, y′), where q′ is similar to q and y′ may or
may not be the same as y, depending on q′. q′

could be constructed by replacing specific words or
phrases in q with synonyms or antonyms, or by sub-
stituting objects with other objects. Given n con-
trast set examples (q′1, I, y′1), . . . , (q′n, I, y′n), we
primarily evaluate models on the average accuracy
on these n examples. We also measure the average
local coherency as 1

n

∑n
i=1(ŷi = ŷ′i), which mea-

sures how much the model ignores perturbations.
We use the single-image contrast sets created by

Bitton et al. (2021) for GQA. Their contrast sets
involve object substitutions from scene graphs and
mainly test the robustness of VLE2E systems for
grounding objects.

For multi-image COVR, we design new contrast
sets that target perturbations involving cross-image
reasoning for multi-image queries. We replace
quantifiers in the testing data with phrases of the
equivalent and opposite meanings and change the
labels accordingly. We focus on examples gen-
erated by 4 templates, where quantifiers (e.g., at
least, all) play the role of introducing cross-image
reasoning: one counting question template COUNT-
GROUPBY, and three binary question templates,
VERIFYCOUNTGROUPBY, VERIFYCOUNT (e.g.,

“At least 2 bottles on the table?”) and QUANTI-
FIER (e.g., “No bottles are on the table?”). We
test meaning-preserving perturbations such as re-
placing at least with no less than on counting and
binary questions. We also test meaning-altering
perturbations such as replacing no with some on bi-
nary questions and flipping the answer. We do not

apply meaning-altering perturbations to counting
questions as it is non-trivial to determine what the
new answer y′ should be.

Compositional Generalization. In this setting,
Dtrain and Dtest are from the same benchmark, but
the queries in Dtest are compositional variants of
those in Dtrain. For example, Dtest examples may
contain two phrases that were seen independently
in Dtrain but never together. We test on the compo-
sitional generalization splits as defined in COVR,
which are constructed by holding out a question
template or holding out the examples where multi-
ple query properties co-occur during training.

Cross-Benchmark Transfer. In this setting,
Dtrain and Dtest are from different benchmarks. We
choose one of VQA and GQA as Dtrain and the
other as Dtest.

5 Experiments

We present our experimental setup and results on
four types of generalization tests below. The results
indicate the complementary robustness of VLE2E
and NS systems in OOD settings.

5.1 Experimental Setup

We use VQA (Antol et al., 2015) and GQA (Hud-
son and Manning, 2019a) as our single-image QA
dataset and COVR (Bogin et al., 2021) as our multi-
image QA dataset. VQA has three types of ques-
tions: binary, (yes/no), counting (answer is a num-
ber) and open-ended (answer can be any term from
a vocabulary).

For the cross-benchmark transfer between VQA
and GQA, as VQA and GQA have different sets of
labels, we filter both validation sets to only include
labels that appear in both datasets. Note that VQA
has no program and scene graph annotations, so we
can only train the NS methods on GQA.
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Eval data VLE2E NS

LXMERT ViLBERT VinVL w/ BART w/ GPT-2 w/ T5

GQA-Val 83.9 83.5 89.1 65.6 [78.1] 71.8 [80.4] 74.3 [85.1]
GQA-Val-Contrast 66.5 68.2 73.3 64.8 [78.8] 71.9 [82.3] 74.1 [85.0]

Table 2: Contrast Set results on GQA. VLE2E shows ∼15% of performance drop even if the contrast set is an easy
object substitution, while NS models are highly robust. Note that GQA-Val is a subset of the validation set of GQA
used to create the contrast set GQA-Val-Contrast. Oracle GTEXEC results for NS models are in brackets.

For model training, we use the fine-tuning setups
described in the respective papers for each model.
We give further details about hyperparameter selec-
tion in Appendix B. For NS methods, we generate
scene graphs with the unbiased scene graph gen-
eration method Causal-TDE (Tang et al., 2020),
which uses Faster R-CNN (Ren et al., 2015) as the
backbone for object detection.

5.2 Segment-Combine Test

We test VLE2E and NS systems with segment-
combine test and list their accuracy in Table 1.

VLE2E models fail on the segment-combine
test. Both VisualBERT and ViLBERT fail on
the segment-combine test, but NS models achieve
accuracy close to the original query. The perfor-
mance drop of VLE2E models is 11-12% on count-
ing questions (VERIFYCOUNTGROUPBY) and 18-
20% on binary questions (COUNTGROUPBY), as
shown in Table 1. Though NS models with gen-
erated scene graphs show 1-7% lower accuracy
than VLE2E models on the original multi-image
queries, they achieve 4-18% higher accuracy on the
segment-combine evaluation data.

VLE2E models learn multi-image spurious cor-
relations. We notice VisualBERT’s performance
on the segment-combine test for binary questions
(52.5%) is close to random guessing. Thus, we
extract the prediction from VisualBERT on the
segment-combine test. For binary questions, 93%
of the prediction are no. For counting questions
with 6 labels, 38% of the predictions are 0. As
COVR queries are created by sampling related and
distracting images, VLE2E models tend to predict
no or 0 for queries with more irrelevant images,
which is a spurious correlation between queried
images learned during fine-tuning. By contrast,
semantic parsing produces the right program to ex-
ecute with EXACT score above 98.5% for all NS
models, not just spuriously correct programs which
are accidentally correct during execution.

5.3 Contrast Sets

We test on the augmented GQA contrast set
from Bitton et al. (2021) for single-image queries,
and compare the performance on the correspond-
ing portion of GQA validation data. We also test
VLE2E and NS systems on our generated contrast
set on COVR involving cross-image reasoning.

VLE2E models show weak object grounding.
For perturbations that only involve object substi-
tution, LXMERT, ViLBERT, and VinVL show a
performance drop of 15-17%, as shown in Table 2.
This drop implies the VLE2E training is not robust
even on object grounding. Although the NS meth-
ods are worse than VLE2E systems on in-domain
test data, they are highly robust on language-side
object substitutions. Our NS pipeline with T5 out-
performs the best VLE2E method by 0.8 points on
the contrast set, despite being 14.8 points worse on
the in-domain test data. This finding indicates the
benefits on robustness of having a separate object
grounding module.

VLE2E suffers on meaning-altering perturba-
tions. For perturbations involving cross-image
reasoning, both VisualBERT and ViLBERT per-
form worse on meaning-altering perturbations than
meaning-preserving perturbations, as shown in Ta-
ble 3. For meaning-preserving perturbations, we
observe no major accuracy drop on the counting
questions, and a performance drop of 10-20% on
the binary questions. On meaning-altering pertur-
bations, replacing at least and all causes a more
drastic performance drop of 40-65% for both Visu-
alBERT and ViLBERT, while exchanging no and
some only leads to 10% drop. Our hypothesis is
VLE2E systems cannot generalize well to logical
operations that are rare in the fine-tuning data: the
opposites of at least and all rarely or never ap-
pear in the training data, whereas the opposites
of no and some (i.e., some and no, respectively)
are common. The local coherency is 96.3% for at
least→less than and 80.2% for all→either none
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Template Transfer Setups OOD FL VLE2E NS

VisualBERT ViLBERT CLF w/ BART CLF w/ GPT-2 CLF w/ T5

COUNTGROUPBY
at least → at least 53.3 53.0 48.9 [99.0] 49.0 [100.0] 49.0 [100.0]
at least → no less than ✓ 54.0 52.9 23.7 [43.6] 21.7 [38.8] 21.5 [39.4]

VERIFYCOUNT
at least → at least 87.6 84.3 75.1 [99.1] 75.6 [100.0] 75.6 [100.0]
at least → no less than ✓ 68.3 67.0 49.9 [69.8] 48.2 [67.4] 48.4 [67.8]
at least → less than ✓ ✓ 21.1 24.5 52.3 [64.0] 53.0 [65.5] 52.9 [65.6]

VERIFYCOUNT-
GROUPBY

at least → at least 74.8 70.5 71.4 [99.3] 71.6 [99.5] 71.4 [99.5]
at least → no less than ✓ 65.8 63.2 56.2 [77.5] 55.0 [76.0] 55.6 [76.2]
at least → less than ✓ ✓ 28.5 32.1 50.8 [51.8] 49.9 [50.4] 51.1 [50.6]

QUANTIFIER

no → no, some → some 86.5 90.2 75.2 [97.4] 75.5 [97.9] 75.5 [97.8]
no ↔ some ✓ ✓ 74.9 80.6 75.1 [97.3] 75.7 [97.9] 75.6 [97.8]

no → no 94.4 92.1 77.3 [96.7] 77.6 [97.0] 77.4 [96.9]
no → at least one ✓ ✓ 83.9 78.6 53.7 [61.2] 54.5 [61.4] 53.9 [61.1]

some → some 80.3 88.7 75.4 [98.3] 75.6 [98.7] 75.6 [98.6]
some → none of the ✓ ✓ 67.8 68.2 71.9 [92.1] 75.3 [97.3] 75.5 [97.8]

all → all 80.2 79.9 77.0 [98.2] 78.0 [98.9] 78.1 [99.1]
all → either none or only some ✓ ✓ 36.2 39.2 54.0 [66.4] 55.1 [67.6] 57.5 [69.8]

Table 3: Contrast Set results on COVR. OOD: OOD test; FL: Flip labels. VLE2E has drastic performance drops
on some of the meaning-altering perturbations, while NS shows equally performance drops regardless of meaning
changes. Oracle GTEXEC results for the NS models are in brackets.
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Figure 3: Few Shot Training on the COVR Contrast Set. The NS model with T5 as the semantic parsing module
quickly improves performance with 5 new training examples. VisualBERT does not improve as much.

or only some, which implies the VLE2E systems
do not pay enough attention to quantifiers whose
opposites were not seen during fine-tuning.

NS performance has no correlation with mean-
ing change. The NS methods, instead, show
similar performance drop for both the meaning-
preserving and the meaning-altering perturbations.
The accuracy is higher than VLE2E models on
most meaning-altering perturbations, but lower on
the meaning-preserving ones, especially on count-
ing questions. In some meaning-altering cases,
the oracle accuracy is even close to 100%, which
shows that the semantic parser is very robust in
those situations.

NS recovers quickly with few-shot training.
We add 1 to 5 examples from a contrast set to the
full training dataset and re-train the model for few-
shot learning. Figure 3 shows NS methods learn

quickly and adapt to the new example types, while
VisualBERT learns slowly under few-shot training.
With gold scene graphs, the NS accuracy increases
even more quickly, suggesting that some improve-
ments are hidden by the fact that our generated
scene graphs are imperfect. Note that for the NS
systems, we only adapt the language modeling part,
as the contrast sets only affect language. Thus,
we can also conclude language-only models adapt
faster than VL neural models.

5.4 Compositional Generalization

We test VLE2E and NS systems with COVR com-
positional generalization sets and list their accuracy
in Table 1. For the NS systems, we compare our
compositional logical forms (CLF) to the original
logical forms (OLF) from COVR.

CLF improves generalization. Comparing the
last two columns in Table 4, it is clear that the
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Split Random Guess In-distribution Compositional Generalization

Text only VLE2E NS VLE2E NS

VisualBERT CLF w/ T5 VisualBERT CLF w/ T5 OLF w/ T5

TPL-CHOOSEOBJECT 52.0 62.6 62.0 1.6 46.2 [50.9] 0.0 [0.0]
TPL-VERIFYQUANTATTR 50.4 76.9 70.5 71.2 44.8 [48.4] 0.0 [0.0]
TPL-VERIFYATTR 49.6 75.4 67.6 0.0 24.9 [34.4] 0.0 [0.0]

HAS-COUNT & HAS-ATTR 41.2 62.6 72.4 58.7 70.9 [99.1] 68.1 [93.4]
HAS-COUNT & RM/V/C 40.5 82.2 76.1 74.1 76.1 [100.0] 75.0 [98.4]
HAS-SAMEATTR-COLOR 49.8 71.2 67.7 66.0 67.7 [100.0] 67.7 [100.0]

Table 4: Compositional Generalization on COVR. The upper panel shows splits with held-out templates. The
lower panel shows splits with held-out property combinations. In-domain random guessing accuracy is from a
VisualBERT text only model. CLF improves the accuracy of NS on compositional generalization, and outperforms
VisualBERT on most of the tests. Oracle GTEXEC results for the NS models are in brackets.

new CLF logical forms improve generalization to
new combinations of query properties compared to
original logical forms, and make generalization to
new templates possible.

NS has lower in-domain but higher composi-
tional generalization performance. In Table 4,
the in-domain accuracies of the NS system are al-
ways lower than those of the VLE2E systems. How-
ever, on most of the compositional splits, the perfor-
mance of VisualBERT is worse than the NS method.
The only exception is VERIFYQUANTATTR, where
there is a complex operation comparing whether
two lists of objects have some same attributes. Fol-
lowing our hypothesis of VLE2E is better at ques-
tions with phrases occurring frequently in training,
we compute the cosine similarity of the text embed-
ding in ViLBERT, and find examples in the tem-
plate VERIFYQUANTATTR are semantically close
to examples in the template SPECIFICSAMEATTR.
Examples for templates VERIFYQUANTATTR and
SPECIFICSAMEATTR are “Do all cats that are on
a floor have the same color?” and “Does the dog
that is in grass and the dog that is in water have the
same color?”, respectively. However, these two
templates have different logical forms in both CLF
and OLF, making it easier for VLE2E systems to
generalize but harder for NS systems.

5.5 Cross-Benchmark Transfer

The cross-benchmark test aims to explore trans-
ferability between benchmarks of the same visual
question-answering task. We evaluate the transfer
between GQA and VQA because they share similar
types of queries.

VLE2E is more transferable than NS. In Ta-
ble 5, LXMERT has an 8-15% accuracy drop for

transfer from each dataset to the other. However,
the NS method with T5 as the semantic parser has
even worse performance on transfer. Using the
scene graph generator and semantic parser trained
on GQA, the accuracy of the NS method drops by
over 70% on open questions.

Failure of NS is mainly due to scene graph gen-
eration error To understand the reasons for the
failures of the NS system, we conduct manual anal-
ysis on 40 VQA examples. We observe that more
than 75% of the VQA programs are correctly gen-
erated with the semantic parser trained on GQA.
However, they often do not execute to the correct
answer because (1) semantically similar objects
have different node names in the generated scene
graphs; (2) some objects are harder to detect due
to visual domain shift. For example, for a gen-
erated program like [“operation”: “select”,
“argument”: “mattress”], we may not find an
object named “mattress” in the generated scene
graph, where it could be named “bed”. To quantify
this issue, we compute the missing object ratio, the
percentage of programs that throw errors during ex-
ecution because objects mentioned in the program
are not found in the scene graph. The high miss-
ing object ratio in Table 5 suggests that the scene
graph generation module trained on GQA cannot
correctly match objects mentioned in the programs
for VQA images.

NS occasionally requires new primitives. An-
other possible reason for the NS system’s cross-
benchmark failure from GQA to VQA would be
that some question types in VQA require new prim-
itive operations. In our manual analysis, less than
10% of the VQA programs require the addition of
new primitive operations, demonstrating that this
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Transfer Setups VLE2E NS

LXMERT w/ T5

VQA→VQA Binary 97.4 -
Open 90.0 -

GQA→VQA Binary 86.4 52.0 (78.4)
Open 78.7 8.3 (80.2)

GQA→GQA Binary 90.6 78.6 (3.8)
Open 81.8 60.1 (5.3)

VQA→GQA Binary 82.5 -
Open 66.2 -

Table 5: The accuracy of LXMERT versus our NS
method trained on X and deployed on the validation
set of Y (X → Y ) for VQA and GQA. NS methods
are not able to train on VQA due to lack of scene graph
and program annotations (marked with dashes). NS
methods show bad transfer performance, especially on
the open-ended questions, mainly due to the high ratio
of programs that cannot find the queried objects from
the generated scene graphs (marked in parentheses).
VLE2E has less accuracy drop compared to NS.

is not the primary reason for NS struggles. Most of
these questions involve commonsense reasoning,
such as asking why some event happens in the im-
age (e.g., “Why is the man on the street?” where
the answer is “homeless”). We also note that we
only evaluate on the binary and open questions of
VQA but exclude the counting questions, which are
about 13% of the dataset. GQA has no counting
questions, so the semantic parser trained on GQA
cannot generate counting operations.

How much manual adaption is required to
transfer NS systems to a new benchmark? NS
systems require manual adaptation for different
datasets. From the transfer between GQA and
VQA, we show little manual adaption is required
on the language side of NS systems to transfer be-
tween benchmarks of the same task. With some
entity matching mechanism between semantically
similar objects and a stronger scene graph genera-
tion module that generalizes well between datasets,
NS might be possible to transfer well.

6 Discussion and Conclusion

In conclusion, VLE2E training systems do not
learn precise reasoning, which inhibits their gen-
eralization ability under small perturbations to ei-
ther language or vision. Though the in-domain
results of NS systems are usually slightly worse
than VLE2E systems, the NS methods are more
robust on most of the generalization tests we de-

velop here. Even when the performance of NS
methods drops on some OOD data, they can still
quickly recover by few-shot training. Nonetheless,
VLE2E systems still achieve better performance
on cross-benchmark transfer, while NS methods
struggle when test questions require novel program
constructs or scene graph object types.

Our work highlights the importance of eval-
uating on a diverse set of metrics besides in-
distribution accuracy, in line with recent work on
improving leaderboards (Ethayarajh and Jurafsky,
2020; Ma et al., 2021). Our analysis suggests that
we should not expect in-domain and out-of-domain
accuracies to be strongly correlated when evaluat-
ing very different types of models, such as VLE2E
and NS models, in contrast with Miller et al. (2020,
2021). Finally, we hope our observation that end-
to-end and neuro-symbolic systems have comple-
mentary generalization advantages will inspire the
community to design more robust VL reasoning
systems that share the benefits of both approaches.
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Limitations

Most of our experiments focus on datasets with
synthetic language annotations. In particular, GQA
and COVR both use synthetic language, while
VQA has human-written questions. Existing VL
reasoning datasets with natural language questions
do not have annotated functional programs and
scene graphs. Since we use NS systems must be
trained on annotated programs, we cannot easily
extend our work to these other datasets. One possi-
ble solution would be to adapt other single-image
NS methods (e.g., NSM (Hudson and Manning,
2019b)) that do not require program and scene
graphs annotation to the multi-image setup.

Our evaluation requires a custom modification of
the semantic parsing language on GQA and COVR.
To apply similar evaluations to other datasets, if
their program annotations are not directly applica-
ble to our NS system, practitioners might need to
make similar task-specific modifications.

Finally, all of our experiments are on English-
only data, which requires limited morphological
reasoning reasonable semantic parsing. The results
and conclusions might not be applicable to other
language with richer morphology.
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A Compositional Logical Forms

We create compositional logical forms as an in-
termediate representation of the original logical
forms. We explain how to design new operations
and default value grammar checker below.

A.1 Operation Modifications

As shown in Table 7, we refactor the quantifier
operations to a map operation with logical or or
logical and as arguments. To compositionally rep-
resent the original none operation, we introduce a
new operation logic_not, which takes a boolean
variable and outputs the negation. This enables the
negation of the original operation all, and also
enables the contrast set creation from all → either
none or only some.

We refactor and create choose, query,
verify, filter, keeep_if_values_count
and compare operations following the same
pattern. We merge the redundant operation
relation_between_nouns with the choose
operation and replace two sanity check operations
as unique and assert_unique with an automatic
grammar checker. For the rest of operations, we
keep them in CLF as the original version.

A.2 Default Value Grammar Checker

The default value grammar checker takes the san-
ity check responsibility from the original unique
operation. However, unlike the original unique,
which raises an error when the queried object is not
unique, the grammar checker automatically fixes
the error by taking the first object as the queried
object. For example, for a query “Is the boy wear-
ing a hat?”, if the find operation returns multiple

“boy” nodes, the grammar checker automatically
choose the first “boy” node and records an error.
Otherwise, if the find operation returns zero “boy”
nodes, the grammar checker will raise an “object
not found” error, same as the missing object error
in Table 5.

To make sure the program is executable, the de-
fault value grammar checker also assigns a default
value for the arguments for each operation. The
default value is 0 for the integer type and False
for the boolean type. For example, if a compare
operation has only one argument, the value will
directly compare to 0.

B Experiment Details

B.1 Dataset Statistics
The image data of COVR consists of GQA and
imSitu (Yatskar et al., 2016). There are about 275k
images in total. VQA has human annotated queries,
and the language annotation of GQA and COVR
is generated by template. VQA has 440k training
questions, 214k validation questions and 448k test-
ing questions. GQA has 943k training questions,
132k validation questions and 95k testing questions.
For COVR, each example contains 1 to 5 query
images, and there are 248k training questions, 7k
validation questions and 7k testing questions.

For datasets with scene graph annotations, GQA
and COVR, before generating scene graphs for the
images in each dataset’s validation set, both the
object detection and the relation prediction mod-
ules in the scene graph generator are tuned on the
training set. For datasets without scene graph an-
notations, VQA, we directly apply the scene graph
generator trained on GQA to generate scene graphs,
and apply the constructed dictionary on GQA to
map objects.

Model # Params Running time per experiment

COVR GQA VQA

T5 220M 15 15 -
GPT-2 117M 15 15 -
BART 110M 16 16 -

VinVL - - 0 -
ViLBERT - 17 0 -

VisualBERT - 17 0 -
LXMERT - - 4 8

Table 6: GPU hours are computed at 1 Quadro RTX
6000 GPU. 0 indicates the model is downloaded without
further training.

B.2 Hyperparameters
The model parameters and GPU hours are listed
in Table 6. We search hyperparameters manually,
one per trial. For all language models, we choose
a batch size of 256, train 30000 iterations at maxi-
mum, with an early-stopping with patience 3. We
save the model each 500 iterations. For T5, we
use an Adam optimizer with a learning rate 1e-4.
For GPT-2, The learning rate is 5e-5 for GPT-2 and
2e-5 for BART.

For all vision models on COVR, we choose a
batch size of 12, train 8 epochs with no early-
stopping and save the best model from the eval-
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uation after each epoch. We use the AdamW op-
timizer with a learning rate of 1e-6 and a weight
decay of 1e-3 for VisualBERT and ViLBERT. Vi-
sualBERT and ViLBERT take a batch size of 32 on
GQA with the same AdamW optimizer and learn-
ing rate. LXMERT takes a batch size of 32 on GQA
and VQA with the Adam optimizer and a learning
rate of 1e-5.

B.3 Few-shot Training
Corresponding to Figure 3, the whole few-shot
training table is Table 8.
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Original operation Compositional operation Additional arguments Additional comments

some map or
all map and
none map or add logic_not in front of it

choose_name choose name
choose_attr choose attr

choose_relation choose rel
query_name query name
query_attr query attr
verify_attr verify attr
with_relation filter rel

with_relation_object filter rel, other
filter filter attr

relation_between_nouns merged with choose_relation
find find
count count
keys keys

unique_images unique_images
group_by_images group_by_images

scene scene
exists exists

logic_or logic_or
logic_and logic_and

logic_not new operation
keep_if_values_count_eq keep_if_values_count eq
keep_if_values_count_geq keep_if_values_count geq
keep_if_values_count_leq keep_if_values_count leq

eq compare eq
geq compare geq
leq compare leq
lt compare lt
gt compare gt

unique replaced with grammar checker
assert_unique replaced with grammar checker

Table 7: CLF Creation. Refine 33 original operations into 18 compositional operations with additional arguments.
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Template Transfer Setting K-shot VLE2E NS

VisualBERT CLF w/ T5

COUNTGROUPBY at least → no less than
0 54.0 21.5 [39.4]
1 53.3 28.8 [47.5]
5 56.3 39.2 [70.3]

VERIFYCOUNT

at least → no less than
0 68.3 48.4 [67.8]
1 68.8 55.1 [77.9]
5 78.7 69.8 [91.1]

at least → less than
0 21.1 52.9 [65.6]
1 20.1 58.0 [73.3]
5 45.5 70.7 [91.5]

VERIFYCOUNTGROUPBY

At least → No less than
0 65.8 55.6 [76.2]
1 66.2 59.5 [82.3]
5 68.3 65.2 [92.0]

at least → less than
0 28.5 51.1 [50.6]
1 29.4 58.0 [70.5]
5 51.9 66.5 [86.9]

QUANTIFIER

no ↔ some
0 74.9 75.6 [97.8]
1 73.5 76.1 [99.5]
5 75.4 76.1 [99.5]

no → at least one
0 83.9 53.9 [61.1]
1 84.5 61.2 [80.2]
5 84.6 71.3 [95.1]

some → none of the
0 67.8 75.5 [97.8]
1 67.3 75.8 [98.6]
5 66.3 75.9 [99.5]

all → either none or only some
0 36.2 57.5 [69.8]
1 52.5 69.2 [89.0]
5 56.0 73.9 [97.9]

Table 8: Few-shot Contrast Set on COVR: Comparison of VisualBERT and the NS method on language contrast
sets of four templates on COVR. NS performance quickly improve from 1-shot training, VLE2E instead, needs
more examples to learn, except for 1 unnatural perturbation, all→either none or only some.
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