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Abstract
Multimodal fusion addresses the problem of
analyzing spoken words in the multimodal con-
text, including visual expressions and prosodic
cues. Even when multimodal models lead to
performance improvements, it is often unclear
whether bimodal and trimodal interactions are
learned or whether modalities are processed
independently of each other. We propose Mul-
timodal Residual Optimization (MRO)1 to sep-
arate unimodal, bimodal, and trimodal interac-
tions in a multimodal model. This improves
interpretability as the multimodal interaction
can be quantified. Inspired by Occam’s razor,
the main intuition of MRO is that (simpler) uni-
modal contributions should be learned before
learning (more complex) bimodal and trimodal
interactions. For example, bimodal predictions
should learn to correct the mistakes (residu-
als) of unimodal predictions, thereby letting
the bimodal predictions focus on the remaining
bimodal interactions. Empirically, we observe
that MRO successfully separates unimodal, bi-
modal, and trimodal interactions while not de-
grading predictive performance. We comple-
ment our empirical results with a human per-
ception study and observe that MRO learns
multimodal interactions that align with human
judgments.

1 Introduction

Multimodal fusion integrates information from
what we say, how we speak, and how we visually
express ourselves. While multimodal models have
led to performance improvements (Zadeh et al.,
2017; Tsai et al., 2019; Zellers et al., 2021), they
often have the downside of being difficult to inter-
pret: it is unclear whether interactions between two
modalities (bimodal) or three modalities (trimodal)
are learned, whether modalities are processed in-
dependently of each other, or whether these mod-
els focus on only one modality (Wu et al., 2021).

1Code available at https://github.com/twoertwein/
MultimodalResidualOptimization.
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Figure 1: The joint assessment of language and vision
(denoted as f(L, V )) is different from the sum of uni-
modal assessments (additive). This is an example for
valence from the IEMOCAP dataset (Busso et al., 2008).

Quantifying multimodal interactions is an essen-
tial building block for future research: in model
debugging as a step to better understand models
and improve their performance (Du et al., 2019)
as well as in AI applications as a step to be more
interpretable (Goodman and Flaxman, 2017).

Seminal work (Hessel and Lee, 2020) observed
that many multimodal models function like the sum
of unimodal models, so-called additive models. In
other words, these models might not be learning
as many non-additive (bimodal and trimodal) in-
teractions as expected. The non-additive interac-
tion example in Figure 1 exemplifies how humans
perceive the whole multimodal example as more
than the sum of the two modalities. While the
current approach of separating additive and non-
additive interactions highlighted the problem of
models primarily learning additive contributions, it
did not provide solutions to learn non-additive inter-
actions explicitly (Hessel and Lee, 2020). However,
many multimodal tasks, such as visual question
answering (Cadene et al., 2019), require learning
unimodal, bimodal, and trimodal interactions.

In this paper, we introduce Multimodal Residual
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Optimization (MRO) to explicitly learn and decom-
pose predictions into the sum of unimodal, bimodal,
and trimodal interactions. Inspired by Occam’s ra-
zor, to prefer simpler solutions, the main intuition
of MRO is that (simpler) unimodal contributions
should be learned before learning (more complex)
bimodal and trimodal interactions. For example,
the bimodal predictions should learn to correct the
mistakes (residuals) of the unimodal predictions,
thereby letting the bimodal predictions focus on
the remaining bimodal interactions. Similarly, tri-
modal predictions should learn what is not modeled
by unimodal and bimodal predictions.

We evaluate MRO on six multimodal language
datasets, including tasks for intent, sentiment, and
emotion recognition. MRO aims to separate mul-
timodal interactions (unimodal, bimodal, and tri-
modal) without degrading predictive performance.
As part of evaluating MRO, we propose a new
evaluation metric that extends prior work to three
modalities (Hessel and Lee, 2020). We comple-
ment our empirical results with a human percep-
tions study to evaluate whether MRO learns non-
additive interactions that align with human judg-
ment.

2 Related Work

We review previous research on four aspects re-
lated to multimodal interactions: the prevalence of
additive interactions, model-specific and model-
agnostic quantification of modality interactions,
and taxonomies of multimodal interactions.

Prevalence of Additive Interactions: Growing
empirical evidence (Hessel and Lee, 2020) and an-
notation studies (Provost et al., 2015; Kruk et al.,
2019; Wörtwein et al., 2021) highlight that addi-
tive interactions are prevalent especially on datasets
that are not carefully balanced, e.g., not having
the same image contextualized with different cap-
tions (Hessel and Lee, 2020). An empirical ap-
proach highlights that multimodal models can be
factorized into additive models without significant
loss in performance (Hessel and Lee, 2020), in-
dicating that the examined models primarily re-
lied on additive interactions. Similarly, multimodal
perception studies indicate the importance of ad-
ditive interactions: unimodal ratings of emotions
are predictive of multimodal ratings (Provost et al.,
2015). Further, annotations of the semiotic mode,
how the multimodal meaning emerges from indi-
vidual modalities (Bateman, 2014), of text-image

pairs found that modalities provide mostly the same
meaning (Kruk et al., 2019). Moreover, modality
importance annotations for affective states found
that a single modality often contains sufficient in-
formation to confirm an affective state (Wörtwein
et al., 2021). While additive interactions are suffi-
cient in many cases, non-additive interactions are
still needed, especially when datasets contain the
same unimodal representation in different multi-
modal contexts (Provost et al., 2015; Hessel and
Lee, 2020).

Model-specific quantification: Models can in-
dicate how much they rely on potentially non-
additive interactions (Zadeh et al., 2018; Tsai
et al., 2020). Multimodal routing (Tsai et al.,
2020) was recently proposed to interpret the rel-
ative importance of multimodal interactions. It
uses the routing-by-agreement algorithm (Sabour
et al., 2017) to focus more on modalities whose
embedding is similar to other modalities’ embed-
dings. The performance gains of the routing model
hint at modalities containing partially redundant
information (De Gelder and Bertelson, 2003) for
emotion and sentiment prediction. While most
model-specific approaches cannot rule out that a
multimodal model potentially uses only one modal-
ity (Wu et al., 2021), MRO encourages that a bi-
modal model focuses on bimodal interactions.

Model-agnostic quantification: Multimodal in-
teractions can be quantified after a model has been
trained (Hessel and Lee, 2020; Tsang et al., 2020;
Wang et al., 2021; Lyu et al., 2022). EMAP (Hessel
and Lee, 2020) is based on the idea of factorizing
any trained model into additive and non-additive
interactions. Unfortunately, this marginalizing is
very costly: with m modalities and a dataset of
N samples, it requires Nm forward passes. Com-
pared to EMAP, MRO learns a model that directly
separates multimodal interactions.

Taxonomy of Multimodal Interactions: Many
categorizations have been proposed to quantify the
relationship between modalities (Kloepfer, 1976;
Zhang et al., 2018; Wang et al., 2021). A recent
study (Kruk et al., 2019) uses Koepfer’s paral-
lel, amplifying, and divergent. Parallel signals
that only one modality is needed for prediction
as they all provide the same meaning. Amplifying
is sometimes also referred to as "additive" in a non-
mathematical sense: modalities provide similar in-
formation but their combined meaning is either
amplified or diminished. Finally, divergent indi-
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cates that modalities provide opposing information.
Figure 1 is an example of opposing information.

3 Quantifying Multimodal Interactions

To learn a multimodal model that separates uni-
modal, bimodal, and trimodal interactions, we first
define how to quantify these three types of mul-
timodal interactions. Further, the work presented
in this section extends prior work (Hessel and Lee,
2020), which defined evaluation metrics to quantify
multimodal interactions in the bimodal case.

Consider three modalities T (text), V (vision),
and A (acoustic) with corresponding features xT ,
xV , xA. A bimodal function f is additive when
it can be factorized into the sum of two unimodal
functions, ∀xT , xV : f(xT , xV ) = g(xT )+h(xV ).
Further, f contains unimodal contributions when
parts of the prediction depend on only one modal-
ity: ∃xT : Ev f(xT , v) ̸= 0 (Lyu et al., 2022). This
equation is illustrated for the language modality
but has the same formulation for the vision modal-
ity. Prior work (Hessel and Lee, 2020) proposed
EMAP to quantify unimodal contributions (UC)
in the context of two modalities. In this paper, we
generalize UC to three modalities.

Claim 1. A trimodal function f contains unimodal
contributions when UC(f, xT , xV , xA) ̸= 0 with

UC(f, xT , xV , xA) =

E
v,a

f(xT , v, a) + E
t,a

f(t, xV , a)

+ E
t,v

f(t, v, xA)− 2 E
t,v,a

f(t, v, a) . (1)

The idea of UC is to evaluate the model with all
possible combinations of unimodal features (even
feature combinations that are not in a dataset) so
that the model cannot use non-additive interactions
between modalities. Similarly, we can formulate a
function BI to quantify bimodal interactions.

Claim 2. A trimodal function f contains bimodal
interactions (BI) when BI(f, xT , xV , xA) ̸= 0
with

BI(f, xT , xV , xA) =

E
t
[f(t, xV , xA)− UC(f, t, xV , xA)]

+ E
v
[f(xT , v, xA)− UC(f, xT , v, xA)]

+ E
a
[f(xT , xV , a)− UC(f, xT , xV , xa)] .

(2)

The remaining trimodal interactions (TI) are
then simply what is not covered by the unimodal
contributions and bimodal interactions:

TI(f, xT , xV , xA) = f(xT , xV , xA)

− UC(f, xT , xV , xA)−BI(f, xT , xV , xA) .
(3)

When computational feasible2, UC,BI and TI
are valuable tools to evaluate whether a trimodal
model contains unimodal, bimodal, and trimodal
interactions. We will use these metrics to evaluate
our proposed approaches.

4 Multimodal Residual Optimization

The main contribution of this paper is Multimodal
Residual Optimization (MRO) which has the goal
of learning and decomposing predictions into uni-
modal, bimodal and trimodal interactions to quan-
tify them. Inspired by Occam’s razor, the intuition
of MRO is that (simpler) unimodal interactions
should be prioritized before learning (more com-
plex) bimodal and trimodal interactions. MRO has
two components to separate modality interactions:
an architecture and loss-function component.

4.1 MRO Architecture

Instead of using a single trimodal function to make
a prediction ŷ = f(xT , xV , xA), the goal of MRO
is to make predictions as ŷ = UC(f, xT , xV , xA)+
BI(f, xT , xV , xA) + TI(f, xT , xV , xA) without
having to compute UC,BI and TI . Therefore,
MRO makes predictions ŷ based on three compo-
nents:

ŷ =ŷuni + ŷbi + ŷtri (4)

where ŷuni, ŷbi and ŷtri model the unimodal, bi-
modal, and trimodal interactions respectively. It is
important to note that ŷbi and ŷtri are intended to
model only non-additive interactions, while ŷuni is
designed to model only additive interactions. ŷuni
is defined as

ŷuni =fθT (xT ) + fθV (xV ) + fθA(xA) (5)

2UC, BI , and TI can computationally be demanding
given the expectation terms. While this is not as much of an
issue when used as evaluation metrics, the computational cost
prohibits us from using them as part of an iterative optimiza-
tion process, e.g., in the loss function of neural networks.
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where fθT , fθV and fθA are models, e.g., neural
networks that use only one modality as an input.
Each model has its own set of parameters (θT , θV ,
and θA). We parameterize the bimodal and trimodal
models in a similar manner:

ŷbi =fθTV
(xT , xV ) + fθTA

(xT , xA)

+ fθAV
(xA, xV ) (6)

ŷtri =fθTV A
(xT , xV , xA) (7)

where fθTV
, fθTA

and fθAV
are the bimodal mod-

els that take only two modalities as input, and
fθTV A

takes all three modalities as input. The
whole MRO model is parameterized with Θ =
(θT , θV , θA, θTV , θTA, θAV , θTV A).

This architecture already enforces that ŷuni can
only contain unimodal contributions. While ded-
icating unimodal, bimodal, and trimodal models
was explored in prior work (Zadeh et al., 2016,
2019; Tsai et al., 2020), they did not explicitly
encourage ŷbi and ŷtri not to contain unimodal con-
tributions and similarly ŷtri not to contain bimodal
interactions. The MRO loss function described in
the next section addresses this issue.

4.2 MRO Loss Function

We first explain MRO for two modalities (language
and vision) before presenting the more general for-
mulation for three and more modalities.

Bimodal case: To encourage ŷbi to not con-
tain unimodal contributions, MRO prioritizes ŷuni.
MRO defines the loss function as

L(y, ŷ) = L(y, ŷuni) + L(y, sg (ŷuni) + ŷbi) (8)

where sg refers to stop-gradient (Razavi et al.,
2019), which prevents back-propagation through
sg’s arguments. The first part of Equation 8 up-
dates θT and θV to predict y using only unimodal
contributions ŷuni = fθT (xT ) + fθV (xV ). The
second part of Equation 8 updates θTV so that
L(y, ŷuni + ŷbi) is smaller; i.e., ŷbi corrects mis-
takes that ŷuni makes. We do not backpropagate
again to θT and θV so that ŷbi does not influence
ŷuni; i.e., ŷuni is optimized independently of ŷbi.

Figure 2 summarizes MRO in the bimodal case.
m-modal case: In the case of m modalities, we

have m types of interactions: unimodal, bimodal,
trimodal, . . . , m-modal. Instead of separating just
additive from all non-additive interactions, we want
to separate these m types of interactions. MRO

xL xV

+
ŷuni

ŷL ŷV

xL, xV

ŷbi+
ŷ

Forward pass

Backward pass

L(y, ŷuni) + L(y, sg(ŷuni) + ŷbi)

fθL fθV fθLV

Figure 2: Overview of MRO: bimodal model learns
what cannot be predicted by the unimodal contributions.

defines the loss function as

L(y, ŷ) =
m∑

i=1

L


y, sg

( i−1∑

j=1

ŷj

)
+ ŷi


 (9)

where ŷi refers to the i-modal predictions, i.e.,
ŷ1 = ŷuni, ŷ2 = ŷbi, ŷ3 = ŷtri. For the trimodal
case, ŷuni, ŷbi, and ŷtri were defined in subsec-
tion 4.1. When m is large than three, the mod-
els can be defined following the same approach.
Similar to the bimodal case, ŷbi is optimized inde-
pendently of ŷtri as the gradient of ŷbi is stopped by
sg when optimizing ŷtri.

4.3 Sequential MRO
An alternative to MRO’s approach of simultane-
ously optimizing all prediction components (ŷuni,
ŷbi, ŷtri), the sequential MRO (sMRO) proposes to
optimize them sequentially.

First, sMRO optimizes the parameters of ŷuni us-
ing the loss L(y, ŷuni) until convergence and then
freezes its parameters θL, θV , and θA before op-
timizing ŷbi and ŷtri. Next, sMRO optimizes the
parameters of ŷbi using the loss L(y, ŷuni + ŷbi)
until convergence and then freeze the bimodal pa-
rameters θLV , θLA and θV A. The trimodal ŷtri
can then be optimized using the loss L(y, ŷuni +
ŷbi + ŷtri). For cases with more than three modali-
ties, sMRO can optimize the parameters of ŷm for
L(y,

∑m
i=1 ŷi) until convergence and then freeze

the parameters of ŷm.
sMRO has similarities with gradient boosting

(GB) (Friedman, 2001) when GB has, in the tri-
modal case, three learners that correspond to the
prediction components ŷuni, ŷbi, and ŷtri. Unlike
sMRO, GB is not suitable for some loss functions,
such as the mean absolute error (MAE; its gradient
is not proportional to the residual), as each learner
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in GB estimates the gradient of the errors from the
previous learners. In the case of MAE, learners
will predict −1 or 1, which leads to a poor fit with
only three learners.

5 Experimental Methodology

We evaluate whether we can train a model that sepa-
rates unimodal, bimodal, and trimodal interactions
while not degrading predictive performance.

Datasets: We focus on five sentiment- and
emotion-annotated datasets for which prior work
used multimodal models, see Table 1. We also in-
clude a sixth Instagram dataset (Kruk et al., 2019)
as it has modality interaction annotations (semiotic
modes), which we can use to evaluate MRO.

We use the same features across all senti-
ment and emotion datasets: RoBERTa (Liu et al.,
2020) as a representation of transcribed utterances;
OpenFace 2.0 (Baltrusaitis et al., 2018) to sum-
marize face-related features, and openSMILE’s
eGeMAPS (Eyben et al., 2015) to summarize
acoustic features. For the Instagram dataset, we
use the author-provided ResNet features (He et al.,
2016) to summarize the image content and use
RoBERTa to represent captions.

Evaluation: We want that the prediction
components ŷuni, ŷbi and ŷtri correspond to
UC(ŷ), BI(ŷ), and TI(ŷ) so that the prediction
components represent only unimodal, only bi-
modal, and only trimodal interactions. To test
this, we use |UC(ŷbi + ŷtri)| to evaluate whether
the bimodal and trimodal predictions contain uni-
modal contributions and |BI(ŷtri)| whether the tri-
modal prediction contains bimodal contributions.
Given the MRO-architecture, ŷuni cannot include
bimodal and trimodal interactions and ŷbi can-
not include trimodal interactions. This means, if
|UC(ŷbi + ŷtri)| + |BI(ŷtri)| is 0, the model per-
fectly separates unimodal, bimodal, and trimodal
interactions, i.e., ŷuni = UC(ŷ), ŷbi = BI(ŷ), and
ŷtri = TI(ŷ). We use 5-fold test setup for all
datasets.

Models: We compare the MRO-architecture
when optimized in different manners: with
L(y, ŷuni + ŷbi + ŷtri) (referred to as Joint), sMRO,
and MRO. For performance comparison, we in-
clude the routing model (Tsai et al., 2020) (referred
to as Routing), a recently proposed model with
the goal of modality interpretability. Lastly, we
compare the performance against a single trimodal
model ŷ = fθTV A

(xT , xV , xA) (referred to as Tri)

to evaluate whether the larger MRO-architecture
has two many parameters for smaller datasets.

Implementation Details: The functions f of
Equation 4 are instantiated as multi-layer percep-
trons. For each multimodal model, e.g., fθTV

, we
implement two popular types of fusion: early fu-
sion (concatenating the modalities) and tensor fu-
sion (Zadeh et al., 2017) (outer product between
modalities after learning unimodal embeddings).
The type of fusion is a hyper-parameter together
with the number of layers, their width, learning rate,
learning rate decay, L2 weight decay, dropout, and
with/without prior feature selection. As a loss func-
tion, we use the mean absolute error for regression
tasks and the cross-entropy loss for classification
tasks.

6 Multimodal Perception Study

We conduct a multimodal perception study to eval-
uate whether MRO learns non-additive interactions,
when humans also require non-additive interactions.
We choose arousal and valence on the IEMOCAP
dataset for this study as arousal and valence are
two fundamental dimensions to describe emotional
states (Munezero et al., 2014).

Study Design: Crowd workers3 are asked to rate
arousal and valence of video segments when being
exposed to only a subset of modalities. The four
subsets are: 1) the transcript of what the person
says (T); 2) the muted video (V); 3) the low-pass
filtered audio (A), and 4) the transcripts, the video,
and the original audio (TVAO). IEMOCAP has
ten speakers. We randomly select ten segments for
each speaker, i.e. 100 segments.

Audio Processing: It is challenging to disentan-
gle speech content and how we speak (Bhargava
and Başkent, 2012). Similar to previous work, we
low-pass filter the audio signal (Yang et al., 2012).
Instead of using 850 Hz as a cut-off (Yang et al.,
2012), we use a lower cut-off frequency, as we
could understand spoken words at 850 Hz. We
choose 660 Hz4 as it is the mean of the maximum
pitch in an empirical study (Li and Yiu, 2006) and
it also closely coincides with the maximum pitch of
contralto singers (E5 at 659.25 Hz). We choose this
pitch-focused definition as we believe that prosodic

3We recruited 40 US-based crowed works from the plat-
form prolific https://www.prolific.co/ whose first lan-
guage is English.

4We use ffmpeg for low-pass filtering with the follow-
ing filter configuration: firequalizer=gain=’if(lt(f,660), 0, -
INF)’:min_phase=1
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Original Paper Tasks Abbreviation Samples Modalities

(Zadeh et al., 2016) Sentiment (regression) MOSI 2.2k 3
(Zadeh et al., 2018) Sentiment, Polarity, Happiness (re-

gression)
MOSEI 22.9k 3

(Busso et al., 2008) Arousal and Valence (regression) IEMOCAP 4.8k 3
(Valstar et al., 2016) Arousal and Valence (regression) SEWA 1.9k 3
(Nelson et al., 2021) Affect categories (4-way classifica-

tion)
TPOT 17.3k 3

(Kruk et al., 2019) Intent of Instagram posts (7-way clas-
sification)

Instagram 1.3k 2

Table 1: Dataset overview.

information will predict arousal and valence.

Avoiding learning effects: Raters might be able
to infer the missing multi-modal context after hav-
ing rated some of the unimodal subsets for a spe-
cific segment. We therefore use two mechanisms
to address learning effects across the modalities.
First, each of the raters annotates only 20 randomly
selected segments for each modality subset (we
have eight raters per segment and modality sub-
set). Second, we structurally randomize the order
of the modality subsets by first presenting all uni-
modal subsets in a random order and in the end the
trimodal segments.

Ratings and reliability: Following the anno-
tation setup from IEMOCAP, we use the ordinal
arousal and valence manikins scale consisting of
five levels (Bradley and Lang, 1994) to rate the
two emotional dimensions. The effective reliabil-
ity (Rosenthal, 2005) over k raters as measured by
the Intra-class Correlation Coefficient ICC(2, k-1)
is excellent (above 0.9) (Koo and Li, 2016) for all
modality subsets. Further, our new trimodal ratings
(TVAO) correlate highly with the existing annota-
tions on IEMOCAP r(98) = 0.88, p < 0.001 for
arousal and r(98) = 0.92, p < 0.001 for valence,
indicating that we can use our new annotations to
inspect models trained on the original annotations.

Evaluation: To evaluate when humans require
non-additive interactions, we train a linear regres-
sion model (an additive model) that predicts TVAO

given T, V, and A. We refer to this model as ŷhuman
uni .

The model fit of ŷhuman
uni shows how important the

missing non-additive interactions are (Provost et al.,
2015). Further, the absolute error |TVAO − ŷhuman

uni |
measures how important the missing non-additive
interactions are to humans for each segment. We
use |TVAO − ŷhuman

uni | to answer the question: does

Arousal Valence

Min. age 19 21
Mean age 36 37
Max. age 79 62

Female 20 19
Male 20 21

Table 2: Basic demographic information about the an-
notators.

MRO learn more non-additive interactions when
|TVAO − ŷhuman

uni | is larger, i.e., when humans re-
quire non-additive interactions?

7 Results and Discussion

Sanity Check: Before evaluating MRO on more
complex datasets, we conduct a sanity check on two
simpler datasets: xT + xV + xA which requires
only unimodal contributions (we refer to it as San-
ity Check Unimodal) and xTxV +xTxA+xV xA
which requires only bimodal interactions (we refer
to it as Sanity Check Bimodal). Figure 3 shows
that the joint and the routing model do not sepa-
rate unimodal, bimodal, and trimodal interactions
well as |UC(ŷbi + ŷtri)| + |BI(ŷtri)| is high. As
expected, sMRO and MRO separate the interacts
almost perfectly as |UC(ŷbi + ŷtri)|+ |BI(ŷtri)| is
very close to 0.

To test how many epochs are needed to mini-
mize |UC(ŷbi + ŷtri)| + |BI(ŷtri)|, we evaluate it
after each epoch. The results in Figure 4 show
that the separation during the first epochs becomes
worse as ŷuni has not yet learned much, meaning
ŷbi and ŷtri try to predict unimodal contributions
which increases |UC(ŷbi + ŷtri)|. However, after
a few epochs the separation becomes better and
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Figure 3: Average |UC(ŷbi + ŷtri)|+ |BI(ŷtri)| for all models and datasets. Lower values indicate a better separation
of unimodal, bimodal, and trimodal contributions.

|UC(ŷbi + ŷtri)|+ |BI(ŷtri)| reaches 0. The same
can be observed for the bimodal sanity check in
Figure 4.

MRO significantly reduces |UC(ŷbi + ŷtri)|+
|BI(ŷtri)|. Similar to the sanity check on simpler
dataset, we want that |UC(ŷbi + ŷtri)|+ |BI(ŷtri)|
is as small as possible. For easier comparison
across datasets, we normalize |UC(ŷbi + ŷtri)| +
|BI(ŷtri)| by the standard deviation of the ground
truth from the training set. Figure 3 shows that
sMRO and MRO significantly reduce |UC(ŷbi +
ŷtri)| + |BI(ŷtri)| compared to models optimized
with L(y, ŷuni + ŷbi + ŷtri) (Joint) and the routing
model.

As it is computationally very expensive to evalu-
ate |UC(ŷbi + ŷtri)|+ |BI(ŷtri)| after each epoch,
we plot it only for arousal and valence on IEMO-
CAP in Figure 4. We focus on IEMOCAP as we
also conduct the perception study on it, see sec-
tion 6. While the plot for arousal in Figure 4 is a
bit noisy, MRO quickly reduces |UC(ŷbi + tri)|+
|BI(ŷtri)|. The same can be observed for valence
in Figure 4.

MRO does not degrade performance. The sec-
ondary goal of MRO is not degrading performance.
Table 3 lists the models’ performance. Models opti-
mized with MRO are in no case significantly worse
than any other model. However, they are statisti-
cally significantly better than the joint model for
valence on SEWA and happiness on MOSEI.

MRO might generalizes slightly better because,
similar to structural risk minimization (Vapnik,
1999), it prioritizes simpler models and relies
on more complex multimodal models only when
needed. Another reason is that MRO has simi-
lar effects as having auxiliary unimodal loss func-
tions which seems beneficial for multimodal mod-
els (Wang et al., 2020; Zeng et al., 2021).

Ablating ŷbi + ŷtri decreases performance.
We quantify the average performance impact of
post-hoc removing ŷbi + ŷtri across datasets, i.e.,
ŷ = ŷuni. When comparing Table 4 with Table 3,
we observe that removing ŷbi+ŷtri (the non-additive

Tri Routing Joint sMRO MRO

MOSI (Pearson’s r)
Sentiment 0.662 0.658 0.657 0.656 0.661

MOSEI (Pearson’s r)
Sentiment 0.723 0.727 0.727 0.726 0.727
Polarity 0.599 0.597 0.606 0.593 0.605
Happiness 0.637 0.642 0.637 0.630 0.641

IEMOCAP (Concordance Correlation Coefficient)
Arousal 0.588 0.613 0.622 0.624 0.611
Valence 0.647 0.655 0.624 0.603 0.634

SEWA (Concordance Correlation Coefficient)
Arousal 0.317 0.263 0.293 0.292 0.304
Valence 0.268 0.335 0.268 0.310 0.337

TPOT (Accuracy)
Constructs 0.565 0.554 0.566 0.566 0.574

Instagram (macro ROC AUC)
Intent 0.876 0.731 0.891 0.888 0.891

Mean 0.588 0.595 0.589 0.589 0.599

Table 3: Average performance over the test folds.
Higher is better.

sMRO MRO

Mean 0.577 0.587

Table 4: Average performance when post-hoc removing
ŷbi + ŷtri, i.e., ŷ = ŷuni.

predictions), hurts performance. While additive
contributions are very important, non-additive in-
teractions are needed for best performance.

MRO learns more non-additive interactions
when two modalities are informative. The TPOT
dataset has human judgments for how important
modalities are to confirm the current affective
state (Wörtwein et al., 2021). Three importance
levels were annotated: 1) a modality is sufficient
to confirm the affective state (while ignoring other
modalities), 2) a modality contains relevant infor-
mation for the affective state (information from
a second modality is needed), and 3) a modality
contains no information for the current affective
state.

We hypothesize that MRO uses more non-
additive interactions (ŷbi + ŷtri) for samples with
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Figure 4: |UC(ŷbi + ŷtri)|+ |BI(ŷtri)| for the same model optimized with either L(y, ŷuni + ŷbi + ŷtri) (Joint, in blue)
or with MRO (in red). Lower values indicate a better separation of unimodal, bimodal, and trimodal interactions.

at least two informative modalities (relevant or suf-
ficient) compared to samples with only one in-
formative modality. To measure whether ŷbi +
ŷtri are used more, we calculate how much
the softmax probabilities (TPOT is a classifica-
tion task) change when removing ŷbi + ŷtri, i.e.,∑4

k=1 |softmax(ŷ)(k) − softmax(ŷuni)
(k)| where k

indexes the probability vector for the four classes.
The means of samples with two informative modal-
ities (0.299) and only one informative modality
(0.264) are significantly different according to an
independent t-test, t(2671) = 5.059, p < 0.001.
This suggests that MRO not only mathematically
separates unimodal, bimodal, and trimodal inter-
actions but that its separation also correlates with
human assessments. Further, this observation pro-
vides evidence that models are more likely to learn
non-additive interactions when several modalities
are themselves informative.

MRO learns more non-additive interactions
when modalities amplify each other. We included
the Instagram dataset (Kruk et al., 2019) because
it has modality interaction annotations (semiotic
modes) that are inspired by Kloepfer (Kloepfer,
1976). To test whether ŷbi (this dataset has only
two modalities) contributes more depending on
the semiotic mode (parallel, amplifying, and di-
vergent), we conduct a one-way ANOVA on the
probability changes when removing ŷbi. The means
between the semiotic modes are significantly differ-
ent, F (2, 1296) = 5.059, p = 0.006, with the high-
est absolute average change for amplifying (0.317),
followed by parallel (0.272), and then divergent
(0.256). The means between amplifying and paral-
lel are significantly different t(1297) = 2.432, p =
0.015 as well as between amplifying and divergent
t(1297) = 2.874, p = 0.004. Similar to the re-
sults on TPOT, it is confirming that MRO learned
significantly larger non-additive contributions (ŷbi)
for amplifying than for parallel. A possible expla-

nation why diverging seems to require the least
non-additive interactions is that the definition of
diverging requires that only the meaning of the
modalities is opposing but it does not specify how
the combined meaning is formed. Even if the com-
bined meaning of Figure 1 was neutral (additive),
the semiotic mode is still divergent.

MRO learns non-additive interaction when
humans need non-additive interactions. The ad-
ditive model ŷhuman

uni of predicting the mutlimodal
ratings TVAO given the uni-modal ratings, fits
very well (r2 = 0.85 for arousal and r2 = 0.85
for valence) which is inline with similar prior
work (Provost et al., 2015). Even though our multi-
modal model is not on par with ŷhuman

uni (r2 = 0.68
for arousal and r2 = 0.66 for valence), we observe
a significant correlation of r(98) = 0.202, p =
0.043 for valence between |TVAO − ŷhuman

uni | (the
missing non-additive interactions) and |ŷbi + ŷtri|
(non-additive contributions). This indicates that
ŷbi + ŷtri learned non-additive interactions that can-
not be explained by ŷhuman

uni . For arousal, we do
not observe a significant correlation, potentially be-
cause the optimization seems far nosier for arousal
then for valence, see Figure 4.

8 Conclusion

We proposed MRO to explicitly learn and separate
unimodal, bimodal, and trimodal interactions in a
multimodal model. This separation is essential for
quantifying how much a model uses multimodal in-
teractions and is a step towards more interpretable
models. Based on prior work (Hessel and Lee,
2020) we proposed a new evaluation metrics to
quantify whether a trimodal models uses unimodal,
bimodal, and trimodal interactions. Empirically,
we observed that MRO successfully separated uni-
modal, bimodal, and trimodal interactions while
not degrading predictive performance. Beyond the
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empirical evaluation, MRO learns non-additive in-
teractions in accordance with human judgments on
three datasets.

Limitations

We evaluated MRO in the context of language, vi-
sion, and acoustic modalities. Future work could
explore MRO’s performance on different modal-
ities. Exploring MRO beyond three modalities
will also be interesting. To address a potentially
growing number of parameters for models with
more than three modalities, sharing modality repre-
sentation could be explored: the bi-modal models
could be given access to intermediate representa-
tions from uni-modal models for modalities they
have in common. Sharing representations could
reduce the overall model size.

While we evaluated MRO on many sentiment
and emotion annotated datasets, these datasets are
primarily in English, and one is in German (SEWA).
More research is needed to work with a more di-
verse set of languages.

It will also be interesting to study MRO in tasks
that require multimodal fusion and translation: gen-
erating a modality given a set of different modali-
ties.

Ethics Statement

Emotional states can provide insights into men-
tal health, especially into mood disorders like de-
pression. While emotion recognition systems can
be part of medical pre-screening tools to facilitate
care (DeVault et al., 2014), the same technology
can be part of job interview tools (Naim et al., 2016)
potentially leading to discrimination against people
with mood disorders. More work on visualizing
and interpreting model predictions are tools to high-
light potential biases and help better understand the
internal decision process of multimodal models.
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of low-pass filtering on intelligibility of periodically
interrupted speech. The Journal of the Acoustical
Society of America, 131(2):EL87–EL92.

Margaret M Bradley and Peter J Lang. 1994. Measur-
ing emotion: the self-assessment manikin and the
semantic differential. Journal of behavior therapy
and experimental psychiatry, 25(1):49–59.

Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe
Kazemzadeh, Emily Mower, Samuel Kim, Jean-
nette N Chang, Sungbok Lee, and Shrikanth S
Narayanan. 2008. Iemocap: Interactive emotional
dyadic motion capture database. Language resources
and evaluation, 42(4):335–359.

Remi Cadene, Corentin Dancette, Matthieu Cord, Devi
Parikh, et al. 2019. Rubi: Reducing unimodal biases
for visual question answering. Advances in neural
information processing systems, 32.

Beatrice De Gelder and Paul Bertelson. 2003. Multisen-
sory integration, perception and ecological validity.
Trends in cognitive sciences, 7(10):460–467.

David DeVault, Ron Artstein, Grace Benn, Teresa
Dey, Ed Fast, Alesia Gainer, Kallirroi Georgila, Jon
Gratch, Arno Hartholt, Margaux Lhommet, et al.
2014. Simsensei kiosk: A virtual human interviewer
for healthcare decision support. In Proceedings of
the 2014 international conference on Autonomous
agents and multi-agent systems, pages 1061–1068.

Mengnan Du, Ninghao Liu, and Xia Hu. 2019. Tech-
niques for interpretable machine learning. Communi-
cations of the ACM, 63(1):68–77.

Paul Ekman. 1982. Methods for measuring facial ac-
tion. Handbook of methods in nonverbal behavior
research, pages 45–90.

Florian Eyben, Klaus R Scherer, Björn W Schuller,
Johan Sundberg, Elisabeth André, Carlos Busso,
Laurence Y Devillers, Julien Epps, Petri Laukka,
Shrikanth S Narayanan, et al. 2015. The geneva min-
imalistic acoustic parameter set (gemaps) for voice
research and affective computing. IEEE transactions
on affective computing, 7(2):190–202.

4689



Jerome H Friedman. 2001. Greedy function approx-
imation: a gradient boosting machine. Annals of
statistics, pages 1189–1232.

Bryce Goodman and Seth Flaxman. 2017. European
union regulations on algorithmic decision-making
and a “right to explanation”. AI magazine, 38(3):50–
57.

Michael Grimm and Kristian Kroschel. 2005. Eval-
uation of natural emotions using self assessment
manikins. In IEEE Workshop on Automatic Speech
Recognition and Understanding, 2005., pages 381–
385. IEEE.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Jack Hessel and Lillian Lee. 2020. Does my multimodal
model learn cross-modal interactions? it’s harder to
tell than you might think! In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing.

Clayton Hutto and Eric Gilbert. 2014. Vader: A parsi-
monious rule-based model for sentiment analysis of
social media text. In Proceedings of the international
AAAI conference on web and social media, volume 8,
pages 216–225.

Rolf Kloepfer. 1976. Komplementarität von sprache
und bild am beispiel von comic, karikatur und
reklame. Sprache in Technischen Zeitalter Stuttgart.

Terry K Koo and Mae Y Li. 2016. A guideline of
selecting and reporting intraclass correlation coeffi-
cients for reliability research. Journal of chiropractic
medicine, 15(2):155–163.

Julia Kruk, Jonah Lubin, Karan Sikka, Xiao Lin, Dan
Jurafsky, and Ajay Divakaran. 2019. Integrating text
and image: Determining multimodal document intent
in instagram posts. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing.

Nicole YK Li and Edwin M-L Yiu. 2006. Acoustic and
perceptual analysis of modal and falsetto registers
in females with dysphonia. Clinical linguistics &
phonetics, 20(6):463–481.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
RoBERTa: A robustly optimized BERT pretrain-
ing approach. https://openreview.net/forum?id=
SyxS0T4tvS.

Yiwei Lyu, Paul Pu Liang, Zihao Deng, Ruslan
Salakhutdinov, and Louis-Philippe Morency. 2022.
Dime: Fine-grained interpretations of multimodal
models via disentangled local explanations. arXiv
preprint arXiv:2203.02013.

Myriam Munezero, Calkin Suero Montero, Erkki Su-
tinen, and John Pajunen. 2014. Are they different?
affect, feeling, emotion, sentiment, and opinion de-
tection in text. IEEE transactions on affective com-
puting, 5(2):101–111.

Iftekhar Naim, Md Iftekhar Tanveer, Daniel Gildea,
and Mohammed Ehsan Hoque. 2016. Automated
analysis and prediction of job interview performance.
IEEE Transactions on Affective Computing, 9(2):191–
204.

Benjamin W Nelson, Lisa Sheeber, Jennifer Pfeifer, and
Nicholas B Allen. 2021. Psychobiological markers of
allostatic load in depressed and nondepressed moth-
ers and their adolescent offspring. Journal of Child
Psychology and Psychiatry, 62(2):199–211.

Emily Mower Provost, Yuan Shangguan, and Carlos
Busso. 2015. Umeme: University of michigan emo-
tional mcgurk effect data set. IEEE Transactions on
Affective Computing, 6(4):395–409.

Ali Razavi, Aaron van den Oord, and Oriol Vinyals.
2019. Generating diverse high-fidelity images with
vq-vae-2. In Advances in neural information process-
ing systems, pages 14866–14876.

Robert Rosenthal. 2005. Conducting judgment studies:
Some methodological issues. The new handbook
of methods in nonverbal behavior research, pages
199–234.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton.
2017. Dynamic routing between capsules. In Ad-
vances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Process-
ing Systems 2017.

Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang,
J Zico Kolter, Louis-Philippe Morency, and Ruslan
Salakhutdinov. 2019. Multimodal transformer for
unaligned multimodal language sequences. In Pro-
ceedings of the conference. Association for Computa-
tional Linguistics. Meeting.

Yao-Hung Hubert Tsai, Martin Q Ma, Muqiao Yang,
Ruslan Salakhutdinov, and Louis-Philippe Morency.
2020. Multimodal routing: Improving local and
global interpretability of multimodal language analy-
sis. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing. Confer-
ence on Empirical Methods in Natural Language
Processing.

Michael Tsang, Dehua Cheng, Hanpeng Liu, Xue
Feng, Eric Zhou, and Yan Liu. 2020. Feature in-
teraction interpretability: A case for explaining ad-
recommendation systems via neural interaction de-
tection. arXiv preprint arXiv:2006.10966.

Aman Tyagi, Anjalie Field, Priyank Lathwal, Yulia
Tsvetkov, and Kathleen M Carley. 2020. A computa-
tional analysis of polarization on indian and pakistani
social media. In International Conference on Social
Informatics, pages 364–379. Springer.

4690

https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS


Michel Valstar, Jonathan Gratch, Björn Schuller, Fabien
Ringeval, Denis Lalanne, Mercedes Torres Torres,
Stefan Scherer, Giota Stratou, Roddy Cowie, and
Maja Pantic. 2016. Avec 2016: Depression, mood,
and emotion recognition workshop and challenge. In
Proceedings of the 6th international workshop on
audio/visual emotion challenge, pages 3–10.

Vladimir N Vapnik. 1999. An overview of statistical
learning theory. IEEE transactions on neural net-
works, 10(5):988–999.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Weiyao Wang, Du Tran, and Matt Feiszli. 2020. What
makes training multi-modal classification networks
hard? In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
12695–12705.

Xingbo Wang, Jianben He, Zhihua Jin, Muqiao Yang,
Yong Wang, and Huamin Qu. 2021. M2lens: Visu-
alizing and explaining multimodal models for senti-
ment analysis. IEEE Transactions on Visualization
and Computer Graphics, 28(1):802–812.

Torsten Wörtwein, Lisa B Sheeber, Nicholas Allen,
Jeffrey F Cohn, and Louis-Philippe Morency. 2021.
Human-guided modality informativeness for affec-
tive states. In Proceedings of the 2021 International
Conference on Multimodal Interaction, pages 728–
734.

Zhiyong Wu, Lingpeng Kong, Wei Bi, Xiang Li, and
Ben Kao. 2021. Good for misconceived reasons: An
empirical revisiting on the need for visual context
in multimodal machine translation. In "Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
pages 6153–6166.

Ying Yang, Catherine Fairbairn, and Jeffrey F Cohn.
2012. Detecting depression severity from vocal
prosody. IEEE transactions on affective computing,
4(2):142–150.

Amir Zadeh, Minghai Chen, Soujanya Poria, Erik Cam-
bria, and Louis-Philippe Morency. 2017. Tensor fu-
sion network for multimodal sentiment analysis. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing.

Amir Zadeh, Chengfeng Mao, Kelly Shi, Yiwei Zhang,
Paul Pu Liang, Soujanya Poria, and Louis-Philippe
Morency. 2019. Factorized multimodal transformer
for multimodal sequential learning. In Elsevier Infor-
mation Fusion Journal (IF 11.21).

Amir Zadeh, Rowan Zellers, Eli Pincus, and Louis-
Philippe Morency. 2016. Mosi: multimodal corpus
of sentiment intensity and subjectivity analysis in

online opinion videos. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics.

AmirAli Bagher Zadeh, Paul Pu Liang, Soujanya Poria,
Erik Cambria, and Louis-Philippe Morency. 2018.
Multimodal language analysis in the wild: Cmu-
mosei dataset and interpretable dynamic fusion graph.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics, pages 2236–
2246.

Rowan Zellers, Ximing Lu, Jack Hessel, Youngjae Yu,
Jae Sung Park, Jize Cao, Ali Farhadi, and Yejin Choi.
2021. Merlot: Multimodal neural script knowledge
models. In Advances in Neural Information Process-
ing Systems 34.

Ying Zeng, Sijie Mai, and Haifeng Hu. 2021. Which
is making the contribution: Modulating unimodal
and cross-modal dynamics for multimodal sentiment
analysis. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 1262–1274.
Association for Computational Linguistics.

Mingda Zhang, Rebecca Hwa, and Adriana Kovashka.
2018. Equal but not the same: Understanding the
implicit relationship between persuasive images and
text. In Proceedings of the British Machine Vision
Conference (BMVC).

A Experimental Details

A.1 IEMOCAP

IEMOCAP has multiple recording conditions of
two speakers interacting: acted interactions, im-
provised interactions, and spontaneous interac-
tions (Busso et al., 2008). In this paper, we use
the improvised interactions as they cover a diverse
range of emotional expressions and are not tied to
a set of fixed utterances as is the case of the acted
interactions.

A.2 MOSEI

Polarity is an established dimension in ethics re-
search (Tyagi et al., 2020) and is typically de-
fined as the absolute value of the sentiment inten-
sity (Hutto and Gilbert, 2014). We use this defini-
tion and apply it to MOSEI’s sentiment ratings.

A.3 SEWA

Instead of using SEWA’s time continuous ratings
of valence and arousal, we take the average of the
ratings for each utterance to make SEWA similar
to the other datasets.
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A.4 Features
We use the openSMILe configuration eGeMAPS
v0.1b (Eyben et al., 2015) which extracts instan-
taneous low-level descriptors and summaries over
a moving window. For the low-level descriptors,
we calculate the median and interquartile range for
each segment. For the summary features, we take
the median over each segment.

OpenFace 2.0 extracts many face-related fea-
tures. We summarize OpenFace’s facial action
units (Ekman, 1982), head pose, and eye gaze fea-
tures with the mean and standard deviation.

B UC and BI for trimodal Models

Any trimodal function f can be expressed as fT +
fV + fA + fTV + fTA + fV A + fTV A such that
UC(f) = fT+fV +fA and BI(f) = fTV +fTA+
fV A where the bimodal functions do not contains
unimodal contributions: ∀xT : Ev[fTV (xT , v)] =
0 and similar for xV and xA. Further, the trimodal
function should not contains unimodal and bimodal
interactions: ∀xT , xV : Ea[fTV A(xT , xV , a) = 0
and similar for the pairs (xT , xA) and (xV , xA).

Proof. As any trimodal function can be expressed
as the above function, we show that the definition
of UC returns exactly the unimodal contributions
fT + fV + fA.

UC(f) (10)

= E
v,a

f(xT , v, a) + E
t,a

f(t, xV , a)

+ E
t,v

f(t, v, xA)− 2 E
t,v,a

f(t, v, a) (11)

=
(
fT (xT ) + E

v
fV (v) + E

a
fA(a)

+ E
v
fTV (xT , v) + E

a
fTA(xT , a)

+ E
v,a

fV A(v, a) + E
v,a
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)

+
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E
t
fT (t) + fV (xV ) + E
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a
fV A(xV , a) + E

t,a
fTV A(t, xV , a)

)
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+ E
tv
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t
fTA(t, xA)

+ E
v
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fTV A(t, v, xA)

)

− 2
(
E
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a
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+ E
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fTV (t, v) + E
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+ E
v,a
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E
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=fT (xT ) + fV (xV ) + fA(xA) (14)

Compared to BI in the bimodal case, we need
to also remove trimodal interactions for BI in the
trimodal context.

Claim 3. BI is defined for three modalities as

BI(f)

=E
t
[f(t, xV , xA)− UC(f, t, xV , xA)]

+ E
v
[f(xT , v, xA)− UC(f, xT , v, xA)]

+ E
a
[f(xT , xV , a)− UC(f, xT , xV , a)] (15)

=E
t
f(t, xV , xA) + E

v
f(xT , v, xA)

+ E
a
f(xT , xV , a)− 2 E

t,v
f(t, v, xA)

− 2 E
t,a

f(t, xV , a)− 2 E
v,a

f(xT , v, a)

+ 3 E
t,v,a

f(t, v, a) (16)

=fTV (xT , xV ) + fTA(xT , xA) + fV A(xV , xA)

The omitted steps are to apply the definition of
UC and cancelling terms to get to Equation 16.
From there on, we write f as fT + fV + fA +
fTV +fTA+fV A+fTV A and use their properties
(expected values of the bi/trimodal function are 0).

C Study Details

In addition to the three unimodal and the trimodal
combinations we explored bimodal combinations:
1) the muted video with the transcript (TV); 2) the
muted video with the low-pass filtered audio (VA);
3) the transcript with the low-pass filtered audio
(TA); 4) for comparison the original audio with the
transcript (TAO).

C.1 Reliability
We report two types reliabilities: the averaged
pairwise reliability between two random raters
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Combination Avg. ICC(2, 1) ICC(2, k-1)

Arousal Valence Arousal Valence

T 0.36 0.55 0.96 0.98
V 0.52 0.64 0.98 0.99
A 0.57 0.38 0.98 0.96

TV 0.48 0.62 0.97 0.98
VA 0.56 0.61 0.98 0.98
TA 0.60 0.54 0.98 0.98
TAO 0.55 0.62 0.98 0.98

TVAO 0.56 0.64 0.98 0.99

Table 5: Pairwise and effective reliability across the
eight combinations. ICC is calculated with the R pack-
age psych.

(ICC(2,1)) and the effective reliability of the mean
over k=8 raters (ICC(2, k-1)). Pairwise and effec-
tive reliability address different purposes: pairwise
is needed to determine how many raters are needed
to achieve a targeted effective reliability (Rosen-
thal, 2005). Averaging over raters is important as
emotional dimensions are subjective and difficult to
annotate (especially when modalities are missing).
The effective reliability describes how reliable the
mean over the raters is, i.e., if we were to draw a
new set of ratings and were to average them, how
similar is this new mean to our current mean.

Except for transcripts-only (T) on arousal and
acoustic-only (A) on valence, all pairwise reliabil-
ities are moderate (between 0.5 and 0.75) (Koo
and Li, 2016), see Table 5. The effective reliabil-
ity (Rosenthal, 2005) of the mean over k raters as
measured by ICC(2, k-1) is excellent (above 0.9)
for all combinations. Instead of directly taking
the mean over the raters, we apply, as common
in affective computing, a z-normalization for each
rater (Valstar et al., 2016; Busso et al., 2008) and
take a weighted mean (Grimm and Kroschel, 2005)
over the raters.

C.2 Compensation

All raters are paid the same fixed amount, leading
to an average hourly rate of 11.14 USD/h.

D Additional Experiments

MRO reaches |UC(ŷbi + ŷtri)| + |BI(ŷtri)| = 0
when trained long enough. As we have seen in
Figure 4, a model might need to be optimized long
enough to minimize |UC(ŷbi + ŷtri)|+ |BI(ŷtri)|.
We therefore also investigate |UC(ŷbi + ŷtri)| +
|BI(ŷtri)| when models are trained without early

Joint sMRO MRO

SEWA
Arousal [0.81, 0.87] [0.00, 0.00] [0.00, 0.01]
Valence [0.29, 0.31] [0.00, 0.00] [0.02, 0.03]

IEMOCAP
Arousal [0.41, 0.42] [0.00, 0.00] [0.03, 0.03]
Valence [0.20, 0.21] [0.00, 0.00] [0.05, 0.06]

MOSI
Sentiment [0.14, 0.15] [0.00, 0.00] [0.00, 0.00]

MOSEI
Sentiment [0.41, 0.42] [0.00, 0.00] [0.00, 0.00]
Polarity [0.44, 0.45] [0.04, 0.04] [0.00, 0.00]
Happiness [0.44, 0.45] [0.15, 0.15] [0.01, 0.01]

TPOT
Constructs [0.29, 0.29] [0.01, 0.01] [0.04,0.04]

Instagram
Intent [0.12, 0.13] [0.00, 0.01] [0.02, 0.02]

Table 6: Bootstrapped average of normalized |UC(ŷbi +
ŷtri)|+ |BI(ŷtri)| on the test folds (1.0 corresponds to a
magnitude of one standard deviation) when models are
trained without early stopping. Lower is better (ideally
0.0).

stopping. While such models are more likely
to have poor generalization performance this al-
lows us to test how much we could minimize
|UC(ŷbi + ŷtri)|+ |BI(ŷtri)| with MRO and sMRO.
As can be seen in Table 6, MRO and sMRO are
numerically very close to 0.0 demonstrating that
such optimized models almost perfectly separate
unimoda, bimodal, and trimodal interactions.

Removing stop-gradient leads to a worse sepa-
ration: Theoretically, we should be able to remove
stop-gradient (sg) from Equation 9 as they have the
same global minima. In practice, we observe that
doing so leads to worse separation of interactions,
see Table 7.

MRO applies to transformers as well: When
choosing transformers (Vaswani et al., 2017) as a
base model instead of multilayer perceptrons, we
observe the same trend that a model trained without
MRO does not separate the multimodal interactions,
whereas when trained with MRO the interactions
are far better separated, see Table 8.

Interactions needed for amplifiers, ambigu-
ity, and rare behaviors. Table 9 summarizes
the five segments with the largest absolute errors
|TVAO− ŷhuman

uni | separately for arousal and valence
(we refer to these segments with A1 to A5 and V1 to
V5). Qualitatively, three groups emerge: amplifiers,
ambiguities, and rare behaviors.

Unimodal amplifiers: Amplifiers are essential
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Performance |UC(ŷbi + ŷtri)|+ |BI(ŷtri)|
SEWA

Arousal 0.599 [0.05, 0.06]
Valence 0.638 [0.13, 0.14]

IEMOCAP
Arousal 0.316 [0.27, 0.29]
Valence 0.297 [0.30, 0.32]

MOSI
Sentiment 0.660 [0.03, 0.03]

MOSEI
Sentiment 0.724 [0.06, 0.06]
Polarity 0.605 [0.17, 0.19]
Happiness 0.644 [0.16, 0.16]

TPOT
Constructs 0.569 [0.13, 0.13]

Instagram
Intent 0.890 [0.04, 0.04]

Table 7: Average performance and bootstrapped average
of normalized |UC(ŷbi + ŷtri)|+ |BI(ŷtri)| on the test
folds (1.0 corresponds to a magnitude of one standard
deviation) when models are trained without early stop-
ping.

Joint MRO

MOSEI
Sentiment [0.64, 0.67] [0.01, 0.01]

Table 8: Average of normalized |UC(ŷbi + ŷtri)| +
|BI(ŷtri)| on the test folds (1.0 corresponds to a magni-
tude of one standard deviation) when using transformers
as a base model instead of multilayer perceptrons.

for valence and sentiment as an intense expres-
sion can be very negative or positive. A modality
might contain a strong amplifier (language in case
of example V3 and V4) but the modality might not
provide strong evidence for the directionality. In
such cases, non-additive interactions are needed to
combine the directionality from one modality with
the amplifier from another modality.

Ambiguities: When a modality might not pro-
vide information in either direction (language in
case V1, V2, V5, A1, A2), more contextual infor-
mation in form of bimodal interactions is needed.

Rare behaviors: When a typically important
modality is "missing" (language in case of A2 and
vision in case of A3) or a typically less important
modality contains an important behavior (acoustic
in case of V2) it changes the relative importance of
the remaining modalities. Unlike the routing model,
additive models have no mechanism to re-weight
how important modalities are. When a modality
is unexpectedly very (un)important, a bimodal or
trimodal model becomes necessary.

E Reproducibility

Computing Resources: All model are imple-
mented in PyTorch and were optimized on servers
with consumer-level graphic cards.

Model Information: The validation perfor-
mance, the training time, and the number of pa-
rameters for the best models as chosen based on
the validation performance, are listed in Table 10.

Hyperparameter Search: All models and
datasets have the same exhaustive hyperparameter
search, see Table 11. The gridsearch determined
in most cases the same hyperparameter across the
different optimization strategies (Joint, sMRO, and
MRO), we therefore only highlight the best hyper-
parameters for MRO in Table 11. The performance
metrics reported in Table 3 are also used to selected
the best validation model.

Datasplits: MOSI and MOSEI have an estab-
lished hold-out test set, we use it for testing. SEWA
has a private test set: we use the public develop-
ment set for testing. IEMOCAP and Instagram
have an established 5-fold test setup which we use.
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Transcript Non-verbal behav-
iors

T V A TVAO ŷhuman
uni

Arousal

A1 I’m gonna forget him. gaze aversion, al-
most whining

-0.57 0.04 0.32 1.16 0.05

A2 What? not attentive, quiet -0.62 -0.83 -1.67 -2.1 -1.17
A3 Do you know how long it’s gonna

take me to start all over and fill out
the new form?

little movement,
loud

1.11 -0.36 0.1 0.98 0.1

A4 That’s right. That’s right. I mean
he would want us to, you know, cel-
ebrate the life that he- that he lived
and, you know, enjoy the rest of ours
as much as we can.

gaze aversion,
quiet

-0.23 -1.11 -1.14 -0.17 -0.99

A5 Well, I need–I need you to be able
to do this for me ’cause I can’t do
anything about it.

gaze aversion, al-
most whining

0.47 -0.43 0.29 0.73 0.03

Valence

V1 I mean, it’s just as hard for me, but–I
know that we can do it, you know

eye-gaze aversion,
fidgeting, quiet

0.25 -0.82 -0.08 -1.51 -0.41

V2 I did exactly what they told me to do. loud, determined -0.02 0.30 -1.45 -1.06 -0.06
V3 Oh, wow. You got in? smile,

loud/staccato-
like voice

1.08 1.49 -0.86 2.04 1.08

V4 Oh, my God. That’s so dramatic. smile, slight laugh-
ter, pitch jumps

-0.70 1.70 -0.12 1.68 0.74

V5 How can you lose my luggage like
from like, in –

looking up, hand
gestures

-1.39 0.88 -0.37 -0.89 -0.01

Table 9: The five segments with the largest absolute errors when predicting TVAO with T, V, A.
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Tri Routing Joint sMRO MRO

perf sec params perf sec params perf sec params perf sec params perf sec params

MOSI
Sentiment 0.73 20.3 138263 0.741 68.2 556168 0.724 29.7 138263 0.735 50.8 111623 0.732 32.7 111623

MOSEI
Sentiment 0.71 97.6 141163 0.71 201.9 567768 0.713 189.9 503347 0.715 254.9 441187 0.71 171.4 114523
Polarity 0.611 99.1 441187 0.613 295.9 567768 0.617 181.8 441187 0.614 247.3 86647 0.617 290.9 441187
Happiness 0.636 87.4 441187 0.642 358.3 823208 0.638 252.6 441187 0.644 372.3 21317 0.642 380.0 503347

IEMOCAP
Arousal 0.64 41.6 111623 0.644 301.2 811608 0.643 60.3 84327 0.662 165.8 491747 0.65 69.6 4303
Valence 0.67 35.5 138263 0.66 118.8 811608 0.658 27.3 138263 0.642 64.8 22683 0.651 41.4 138263

SEWA
Arousal 0.367 174.7 22683 0.372 691.9 78518 0.388 266.3 41467 0.396 466.6 43077 0.384 484.1 43077
Valence 0.424 190.3 20283 0.427 527.3 200408 0.424 147.0 20283 0.425 461.5 11693 0.428 144.1 22683

TPOT
Constructs 0.569 105.2 80038 0.557 359.7 56036 0.568 143.4 180710 0.565 251.7 14298 0.576 243.5 14298

Instagram
Intent 0.888 9.0 12098 0.757 75.7 13427 0.9 24.7 12098 0.89 24.9 12098 0.896 18.0 12098

Table 10: Validation performance (perf), training time in seconds (sec), and the number of parameters of the best
validation model (params).

Learning rate {0.055, 0.011, 0.0052,6,10, 0.0017,8, 0.00013,4, 0.000019}
L2 weight decay {0.1, 0.011,3,4,5,6,7,8,9,10, 0.0012, 0.0}
Hidden layers {(5,), (10,)10, (20, 10)5,8,9, (10, 20)7, (100, 20, 10)1,2,3, (100, 100, 10)4,6}
Feature Selection {yes5,10, no1,2,3,4,6,7,8,9}
Fusion {concatenation3,4,7,10, tensor fusion1,2,5,6,8,9}

Table 11: Parameter search. Parameters that were determined to be best for MRO and task x are indicated by x in
the superscript. We enumerate tasks in the same order as they are presented in Table 3.
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