
Quadapter: Adapter for GPT-2 Quantization

Minseop Park, Jaeseong You, Markus Nagel, Simyung Chang
Qualcomm AI Research∗

{minspark, jaeseong, markusn, simychan}@qti.qualcomm.com

Abstract

Transformer language models such as GPT-
2 are difficult to quantize because of outliers
in activations leading to a large quantization
error. To adapt to the error, one must use
quantization-aware training, which entails a
fine-tuning process based on the dataset and the
training pipeline identical to those for the orig-
inal model. Pretrained language models, how-
ever, often do not grant access to their datasets
and training pipelines, forcing us to rely on ar-
bitrary ones for fine-tuning. In that case, it is ob-
served that quantization-aware training overfits
the model to the fine-tuning data. For quantiza-
tion without overfitting, we introduce a quan-
tization adapter (Quadapter), a small set of pa-
rameters that are learned to make activations
quantization-friendly by scaling them channel-
wise. It keeps the model parameters unchanged.
By applying our method to the challenging task
of quantizing GPT-2, we demonstrate that it ef-
fectively prevents the overfitting and improves
the quantization performance.

1 Introduction

Quantizing a transformer model is not a simple
matter due to numerous channel-dependent outliers
in activations (Bondarenko et al., 2021). They lead
to a large quantization error (Zhao et al., 2019),
and we observe that the problem is worse in the
decoder-only transformers like GPT-2. One solu-
tion to the difficulty is quantization-aware training
(QAT), an approach that fine-tunes the model pa-
rameters in response to the numerical error aris-
ing from quantization. Post-training quantization
(PTQ) – a counterpart of QAT that performs quan-
tization without modifying model parameters – is
not powerful enough to cope with the outliers.

While QAT is effective, it requires the dataset
and the training pipeline, and the problem is that
they are often inaccessible when dealing with the

∗Qualcomm AI Research is an initiative of Qualcomm
Technologies, Inc.

Figure 1: Average perplexity (PPL) of the full-precision
(FP) model and the models quantized with PTQ and
QAT on 5 datasets (left). We use the PTB dataset as the
fine-tuning data (F-ID) for QAT. The FP model and the
QAT model are evaluated on the F-ID and the other 4
datasets (F-OOD) (right).

original pretrained model without any downstream
task. One then cannot but use arbitrary fine-tuning
data for QAT.

However, the fine-tuning returns worse accura-
cies for distributions unseen during training (out-
of-distribution with regard to fine-tuning; F-OOD)
despite improving for the training distribution (in-
distribution with regard to fine-tuning; F-ID) (Ku-
mar et al., 2022). This is consistent with our ob-
servation that QAT overfits the model to the fine-
tuning data as in Figure 1. The resulting quantized
model therefore has its generality impaired. This
violates the premise of a general-purpose language
model, which must operate well across various
texts of the target language.

Our hypothesis is that QAT incurs the overfit-
ting because it changes all the parameters of the
model. This difficulty is much like the research
topic of continual learning, where it is important
that a model should not forget its past capability
when transferring to a new task (Zhang et al., 2021).
Adapter is a strategy to adapt to a new distribution
by training only a small number of parameters. It is
a popular method to lessen the catastrophic forget-
ting. We borrow this concept to propose Quadapter,
a lightweight module to adapt to the quantization
error on behalf of the intact original model.

The contribution of this work is that we suc-

Figure 2: Quadapter performs a linear scaling and its inversion before and after Q, the quantizer for the target
activation (left). In the transformer block of GPT-2, Quadapters can be installed in two different locations (right).

cessfully quantize GPT-2, overcoming the large
inter-channel variance and the QAT overfitting is-
sue with Quadapter. To the best of our knowledge,
this is the first work to quantize both weights and
activations of GPT-2 without the complete training
pipeline.

2 Related Works

Adapters Extensive researches have been con-
ducted on how to steer a large pretrained model
with few adapter parameters. The concept of
adapter has proven its usefulness in language mod-
els for transfer learning (Houlsby et al., 2019),
multi-task learning (Stickland and Murray, 2019),
and domain adaptation (Zhang et al., 2021). Sev-
eral works apply adapters to the visual domain as
well (Li and Hoiem, 2016; Perez et al., 2018).
Transformer Quantization In comparison to GPT-
2, BERT is easier to quantize. It can be quantized
with PTQ under a limited performance drop (Shen
et al., 2020). QAT on BERT for a given down-
stream task recovers full-precision (FP) perfor-
mance even with ultra-low precision (Zafrir et al.,
2019; Bondarenko et al., 2021), or with integer-
only operations for non-linear layers (Kim et al.,
2021). On the other hand, quantization studies on
autoregressive transformers are relatively limited in
their scope, using weight-only quantization (Chung
et al., 2020) or requiring full-fledged training (Prato
et al., 2020; Tao et al., 2022). Please note that these
works focus on quantizing GPT-2 that is finetuned
on a downstream task whereas ours quantizes the
original pretrained GPT-2.
Quantization techniques Directly relevant to our
work are cross-layer-equalization (CLE) (Nagel
et al., 2019) and adaptive rounding (AdaRound)
(Nagel et al., 2020). Similarly to CLE, Qudapter
rescales associated model weights to lessen the
quantization burden. AdaRound and our proposed
method are alike in training foldable helper param-
eters to minimize the block-wise quantization error.
In addition, learned step size (LSQ) (Esser et al.,

2020) and its extension (LSQ+) (Bhalgat et al.,
2020) train the quantization-related parameters dur-
ing QAT, to which Quadapter bears similarity.

3 Methods

Quadapter is simply a set of learnable parameters.
On the other hand, the Quadapter block represents
the actual working mechanism of Quadapter, in-
volving two consecutive layers of linear relations,
their quantizers, and their associated Quadapter in-
stance. The effectiveness of Quadapter comes from
the interaction amongst the involved components,
and from the two-phase training procedure.

3.1 Quadapter Design

Quadatper linearly scales the input channels and
reverts after quantization. This ensures the identity
relation if not for quantizers, making it possible to
keep the model parameters intact (Figure 2 left).

The scaling and the inverse-scaling of an activa-
tion are, in practice, folded to the weight and the
bias of the preceding layer and to the weight of the
following layer. For example, given a forward pass
of two linear layers:

y = W2(W1x+ b1) + b2, (1)

the Quadapter block output ŷ is as follows:

ŷ = Qθ2
(W2A

−1)Qθa
(Qθ1

(AW1)x

+Ab1) + b2 (2)

= Qθ2
(W′

2)Qθa
(Qθ1

(W′
1)x+ b′

1) + b2. (3)

Here, A = diag(α) is a diagonal matrix with
Aii = αi, where α ∈ Rd is the learnable Quadapter
parameter with the intermediate activation dimen-
sion d. Qθ1

and Qθ2
are the weight quantizers, and

Qθa
is the activation quantizer. Each quantizer Qθ

quantizes its input values based on the quantiza-
tion parameter θ = (θmin, θmax) (Krishnamoorthi,
2018). Quadapter α is trained during training and
fused at the inference time (Equation 3).

GPT-2 DistilGPT-2
Data Method Wikitext2 PTB LAMBADA CBT_CN CBT_NE Wikitext2 PTB LAMBADA CBT_CN CBT_NE
- FP32 29.27 41.31 48.39 27.29 30.53 44.36 59.73 74.94 42.54 47.09

Calib. data

PTQ 915.58 751.23 827.06 655.31 759.83 87.52 114.42 205.35 93.16 104.94
AdaRound 507.07 478.29 685.98 319.74 309.11 84.94 104.94 164.98 107.89 92.59
CLE 40.28 59.33 74.61 38.92 43.69 69.81 86.66 144.06 68.78 76.80
Quadapter BC 34.53 50.65 63.51 32.47 36.46 52.79 70.43 102.75 51.97 57.81

Wikitext2
QAT 32.51 100.75 125.40 54.94 63.94 35.04 109.40 129.19 67.03 76.55
Quadapter BC+QAT 21.61 57.06 63.65 33.80 38.40 28.50 80.52 86.57 50.64 57.05
Quadapter (ours) 29.34 47.30 57.28 30.37 34.05 43.05 66.28 85.42 47.66 52.49

PTB
QAT 331.61 33.94 330.10 212.12 252.03 347.25 37.44 308.22 214.14 257.44
Quadapter BC+QAT 79.74 24.10 106.32 59.90 69.79 121.62 29.65 146.48 91.73 106.31
Quadapter (ours) 33.69 39.46 55.68 31.45 35.16 50.73 56.63 87.02 49.43 54.35

Table 1: Performance evaluation of the quantized GPT-2 and DistilGPT-2 on various datasets. The metric is PPL
(lower is better). In the case of Quadapter BC+QAT, QAT initiates after the block-wise calibration of Quadapter. For
Quadapter (ours), both the training phases are completed. Underline indicates the results on F-ID

As in Equation 2, the forward scaling and the in-
verse scaling correspond across three nested quan-
tizers that are strongly nonlinear operations. There-
fore α should be learned rather than set analytically
as in (Nagel et al., 2019); a single analytical so-
lution is not sufficient to balance the quantization
burden between the two layers.

3.2 Quadapter Training
The learning of Quadapter is comprised of two
phases: the block-wise calibration and the end-to-
end fine-tuning.
Phase 1: Block-wise Calibration Each of
the Quadapter instances is initialized to 1⃗ and
trained with the calibration data, independently per
Quadpter block. The local objective for each block
is L2 loss:

argmin
α

||y − ŷ||22, (4)

which (Nagel et al., 2020) shows to be effectively
complementary to the task loss.

ŷ is computed in the dynamic quantization mode
(Zafrir et al., 2019), where the statistics are ob-
tained per batch. Quadapter resulting from the cali-
bration phase is a PTQ method that is independent
of the fine-tuning process. We therefore denote
such Quadapter by Quadapter BC.
Phase 2: End-to-end Fine-tuning The subsequent
fine-tuning starts with more accommodating quanti-
zation parameters (i.e. the min/max statistics) since
they have moved to moderate values from extreme
outliers during the first phase. The fine-tuning there-
fore converges much more quickly.

In the second phase, the statistics for quantiza-
tion are computed in the fashion of static quan-
tization (Zafrir et al., 2019), based on the same
calibration data as in the first phase. Quadapter is
then trained to minimize the end-to-end task loss.

During the course, the quantization parameters are
jointly learned as in (Bhalgat et al., 2020) while the
model parameters stay fixed. Algorithm 1 details
the full flow of the Quadatper training.

Algorithm 1: Quadapter training
input :pretrained model M , Quadapter blocks,

calibration data D1, fine-tuning data D2,
learning rates η1, η2.

output : Learned Quadapter parameters
{α1, α2, ...} and quantization parameters
θ∗ = {θ1,θ2, ...}.

/* Phase 1 */
foreach i-th Quadapter block do

Initialize αi = 1⃗
From M and D1, gather block input xi and

output yi

while not converged do
ŷi ← Eq. 2
αi ← αi − η1∇αi ||ŷi − yi||22

end
end
/* Phase 2 */
Apply learned Quadapters to M
Initialize θ∗ with D1 to make quantized model MQ

while not converged do
for x,y ∈ D2 do

compute Ltask(MQ(x),y)
foreach i-th Quadapter block do

αi ← αi − η2∇αiLtask

end
update θ∗ with LSQ+

end
end

4 Experiments

Models We quantize GPT-2 (Radford et al., 2019)
and DistilGPT-2 (Sanh et al., 2019) based on their
huggingface pretrained models1. Our quantization
configuration follows (Siddegowda et al., 2022),
doing uniform asymmetric 8-bit quantization for
both activations and weights. All the weights and

1huggingface.co/gpt2, huggingface.co/distilgpt2

Figure 3: GPT-2 quantization performance when fine-
tuned on F-ID of varying sizes. Both axes are logarith-
mic.

activations are quantized, except for biases, non-
linear opererations, and additions (Zafrir et al.,
2019; Kim et al., 2021). For every transformer
block, the Quadapter instances are installed in be-
tween the first layer norm and the linear projection
for key/query/value as well as between the second
layer norm and the first feed-forward network (Fig-
ure 2 right). One additional instance is applied to
between the final layer norm and the logit projec-
tion.
Baseline methods Our implementation of LSQ+
follows the original proposition (Bhalgat et al.,
2020), except for updating the min/max parameters
for stability of training (Siddegowda et al., 2022).
It is applied for all the QAT experiments. We use
AI Model Efficiency Toolkit2 to obtain AdaRound
performance. The CLE metrics are computed with
an untrained Quadapter, initialized analytically as
in (Nagel et al., 2019).
Datasets We employ WikiText-2 (Merity et al.,
2016), the English Penn Treebank (PTB) corpus
(Marcus et al., 1993), the LAMBADA dataset (Pa-
perno et al., 2016), and the named-entity subset
(CBT_NE) as well as the common-noun subset
(CBT_CN) of Children’s Book Test (Hill et al.,
2016). We follow the datasets’ default divisions as
to training/validation/test splits.
Experiment design To test the overfitting re-
siliency, GPT-2 and DistilGPT-2 are quantized with
various PTQ and QAT methods on one of the five
datasets. The resulting quantized model is eval-
uated on its F-ID and on the other four datasets
(F-OOD). In addition, we expose the models to
varying amounts of fine-tuning data during quanti-
zation to compare the changing behaviors of QAT
and Quadapter.
Results In Table 1, Quadapter outperforms the

2https://github.com/quic/aimet

Figure 4: Visualization of the per-channel (x-axis)
min/max (y-axis) values of the final layer norm out-
put activation in GPT-2. The solid/dotted lines represent
per-channel/total min and max.

baseline methods on the F-OOD in both GPT-2
and DistilGPT-2. This observation evinces the gen-
eral capability of Quadapter to reduce overfitting
across different models. The comparison between
Quadapter (ours) and Quadapter BC+QAT is the ab-
lation of the end-to-end finetuning, and the reusult
proves its importance.

Noteworthy is that Quadapter is a powerful
stand-alone PTQ technique. Even without QAT
fine-tuning, the F-OOD metrics are better than
those of the QAT baselines. In addition, the ef-
fectiveness of the calibration phase is shown by the
comparison between CLE and Quadapter BC.

Another advantage of Quadapter is that it is a
viable quantization option in data-scarce situations.
As shown in Figure 3, Quadapter outperforms QAT
throughout different amounts of fine-tuning data,
and the gap is most evident when only a small
amount of data is available.

Aside from the convincing metrics reported
above, we further explore if Quadapter does the in-
tended job of transforming an activation into a more
uniform distribution. Figure 4 describes the per-
channel statistics before and after the Quadapter
training. Values in most activation dimensions ex-
cept for few have small magnitudes around 0, and
such dimensions lose precision when quantized
because of the large magnitudes of total min/max
before applying Quadpater. The illustration verifies
that the effect of Quadapter indeed aligns with our
expectation, reducing the ranges of outlier-ridden
channels while enlarging the ranges of the others.

5 Limitations

One limitation of Quadapter is that it requires
two consecutive layers of linear relations. In other
words, it can be a mediator only for convolution
layers, linear layers, or normalization layers (when

followed by a linear or convolution layer), but not
if residual connections or nonlinear activation func-
tions intervene.

6 Conclusions

We identify two challenges in quantizing autore-
gressive transformer language models: the overfit-
ting issue of QAT and the inter-channel variance in
activations. Through experiments, we demonstrate
that Quadapter not only mitigates the two problems
but also serves as an effective PTQ technique.

References
Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen

Blankevoort, and Nojun Kwak. 2020. Lsq+: Improv-
ing low-bit quantization through learnable offsets and
better initialization. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops
(CVPRW).

Yelysei Bondarenko, Markus Nagel, and Tijmen
Blankevoort. 2021. Understanding and overcoming
the challenges of efficient transformer quantization.
In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, (EMNLP).

Insoo Chung, Byeongwook Kim, Yoonjung Choi,
Se Jung Kwon, Yongkweon Jeon, Baeseong Park,
Sangha Kim, and Dongsoo Lee. 2020. Extremely
low bit transformer quantization for on-device neu-
ral machine translation. In Findings of the Associ-
ation for Computational Linguistics (EMNLP), vol-
ume abs/2009.07453.

Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani,
Rathinakumar Appuswamy, and Dharmendra S.
Modha. 2020. Learned step size quantization. In
8th International Conference on Learning Represen-
tations (ICLR).

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2016. The goldilocks principle: Reading
children’s books with explicit memory representa-
tions.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Pro-
ceedings of the 36th International Conference on
Machine Learning (ICML).

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W.
Mahoney, and Kurt Keutzer. 2021. I-BERT: integer-
only BERT quantization. In Proceedings of the
38th International Conference on Machine Learning,
(ICML).

Raghuraman Krishnamoorthi. 2018. Quantizing deep
convolutional networks for efficient inference: A
whitepaper. arXiv preprint, abs/1806.08342.

Ananya Kumar, Aditi Raghunathan, Robbie Jones,
Tengyu Ma, and Percy Liang. 2022. Fine-tuning
can distort pretrained features and underperform out-
of-distribution. Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR).

Zhizhong Li and Derek Hoiem. 2016. Learning without
forgetting. In European Conference on Computer
Vision (ECCV).

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank. Comput. Lin-
guistics, 19(2):313–330.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els.

Markus Nagel, Rana Ali Amjad, Mart van Baalen, Chris-
tos Louizos, and Tijmen Blankevoort. 2020. Up or
down? adaptive rounding for post-training quantiza-
tion. In Proceedings of the 37th International Con-
ference on Machine Learning, (ICML).

Markus Nagel, Mart Van Baalen, Tijmen Blankevoort,
and Max Welling. 2019. Data-free quantization
through weight equalization and bias correction. In
IEEE/CVF International Conference on Computer
Vision (ICCV).

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In
Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics, ACL.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Du-
moulin, and Aaron C. Courville. 2018. Film: Visual
reasoning with a general conditioning layer. In Pro-
ceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence.

Gabriele Prato, Ella Charlaix, and Mehdi Reza-
gholizadeh. 2020. Fully quantized transformer for
machine translation. In Findings of the Association
for Computational Linguistics (EMNLP).

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. In NeurIPS
EMC2 Workshop.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W. Mahoney, and Kurt
Keutzer. 2020. Q-BERT: hessian based ultra low pre-
cision quantization of BERT. In The Thirty-Fourth
Conference on Artificial Intelligence (AAAI).

https://doi.org/10.1109/CVPRW50498.2020.00356
https://doi.org/10.1109/CVPRW50498.2020.00356
https://doi.org/10.1109/CVPRW50498.2020.00356
https://doi.org/10.18653/v1/2021.emnlp-main.627
https://doi.org/10.18653/v1/2021.emnlp-main.627
http://arxiv.org/abs/2009.07453
http://arxiv.org/abs/2009.07453
http://arxiv.org/abs/2009.07453
https://openreview.net/forum?id=rkgO66VKDS
http://arxiv.org/abs/1511.02301
http://arxiv.org/abs/1511.02301
http://arxiv.org/abs/1511.02301
https://proceedings.mlr.press/v97/houlsby19a.html
http://proceedings.mlr.press/v139/kim21d.html
http://proceedings.mlr.press/v139/kim21d.html
http://arxiv.org/abs/1806.08342
http://arxiv.org/abs/1806.08342
http://arxiv.org/abs/1806.08342
https://arxiv.org/abs/2202.10054
https://arxiv.org/abs/2202.10054
https://arxiv.org/abs/2202.10054
https://doi.org/10.1007/978-3-319-46493-0_37
https://doi.org/10.1007/978-3-319-46493-0_37
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843
http://proceedings.mlr.press/v119/nagel20a.html
http://proceedings.mlr.press/v119/nagel20a.html
http://proceedings.mlr.press/v119/nagel20a.html
https://doi.org/10.1109/ICCV.2019.00141
https://doi.org/10.1109/ICCV.2019.00141
https://doi.org/10.18653/v1/p16-1144
https://doi.org/10.18653/v1/p16-1144
http://arxiv.org/abs/1910.10485
http://arxiv.org/abs/1910.10485
https://ojs.aaai.org/index.php/AAAI/article/view/6409
https://ojs.aaai.org/index.php/AAAI/article/view/6409

Sangeetha Siddegowda, Marios Fournarakis, Markus
Nagel, Tijmen Blankevoort, Chirag Patel, and Ab-
hijit Khobare. 2022. Neural network quantization
with AI model efficiency toolkit (AIMET). arXiv,
abs/2201.08442.

Asa Cooper Stickland and Iain Murray. 2019. BERT
and pals: Projected attention layers for efficient adap-
tation in multi-task learning. In Proceedings of the
36th International Conference on Machine Learning
(ICML).

Chaofan Tao, Lu Hou, Wei Zhang, Lifeng Shang, Xin
Jiang, Qun Liu, Ping Luo, and Ngai Wong. 2022.
Compression of generative pre-trained language mod-
els via quantization. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics, ACL.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8BERT: quantized 8bit
BERT. In Fifth Workshop on Energy Effi-
cient Machine Learning and Cognitive Computing
(EMC2@NeurIPS).

Rongsheng Zhang, Yinhe Zheng, Xiaoxi Mao, and Min-
lie Huang. 2021. Unsupervised domain adaptation
with adapter. In 35th Conference on Neural Informa-
tion Processing Systems (NeurIPS),.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De
Sa, and Zhiru Zhang. 2019. Improving neural net-
work quantization without retraining using outlier
channel splitting. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, (ICML).

http://arxiv.org/abs/2201.08442
http://arxiv.org/abs/2201.08442
http://arxiv.org/abs/1902.02671
http://arxiv.org/abs/1902.02671
http://arxiv.org/abs/1902.02671
https://aclanthology.org/2022.acl-long.331.pdf
https://aclanthology.org/2022.acl-long.331.pdf
https://doi.org/10.1109/EMC2-NIPS53020.2019.00016
https://doi.org/10.1109/EMC2-NIPS53020.2019.00016
http://arxiv.org/abs/2111.00667
http://arxiv.org/abs/2111.00667
http://proceedings.mlr.press/v97/zhao19c.html
http://proceedings.mlr.press/v97/zhao19c.html
http://proceedings.mlr.press/v97/zhao19c.html

Appendix

A Additional Experiments

F-ID Expansion In Table 1, we limit the F-ID to
one amongst the five available datasets. Here, we
perform an additional experiment by expanding
the F-ID to include four of them, limiting the F-
OOD to the one remaining dataset. The results are
in Table 2. Comparing the metrics on WikiText2
when the QAT model is fine-tuned on PTB (Table 1)
and when fine-tuned on all but WikiText2 (Table 2),
we can observe the improvement of Quadapter’s
F-OOD performance. On the other hand, QAT still
suffers from overfitting despite the expanded fine-
tuning data.
Ablation of LSQ+ In (Bhalgat et al., 2020), LSQ+
is a composite method that includes initialization
of weight quantizer, model parameter training, and
quantization parameter (θ) training. However, in
our work, we isolate the quantization parameter
training and denote it by LSQ+. In Table 1, QAT
is accompanied by LSQ+, thus training both the
model parameters and the quantization parameters.
We ablate LSQ+ in Table 3. The results show that
LSQ+ tends to improve the quantization perfor-
mance in general, particularly in conjunction with
our proposed method.
Quadapter BC effectiveness on QAT As dis-
cussed in the main text, QAT makes the model over-
fit to F-ID and perform poorly on F-OOD. However,
when employed with Quadapter BC (i.e. Quadapter
BC+QAT), the QAT training process is stabilized,
and so the quantized model reaches near the upper
bound of the fine-tuned FP model (Figure 5). This
shows that Quadapter fosters QAT.

B Hyperparameter Details

Block-wise Calibration We use 10 calibration data
with the max time length (block size) of 512, yield-
ing 5120 text tokens in total. The same calibration
data is used for all the PTQ and QAT experiments.
The initial learning rate is 0.1, and it decays at
the rate of 0.2 every 100 steps. The training takes
place for 500 steps with the Adam optimizer. Fig-
ure 6 shows the convergence of training in two of
the GPT-2 Quadapter blocks: the very first layer
norm and the final layer norm. The total block-wise
calibration phase takes approximately 2 minutes
with RTX 2080 Ti, when training all the Quadatper
blocks in GPT-2 sequentially from bottom to top.
End-to-end Fine-tuning We use the initial learn-

Figure 5: Comparison of the fine-tuned FP model (FP
finetuned) with other methods. PTB is the F-ID, and the
other 4 datasets are the F-OOD.

Figure 6: Block-wise calibration learning curves of the
two selected Quadapter blocks in GPT-2.

ing rates 1e-5, 1e-3, and 1e-3 for model parame-
ters, Quadapter α, and quantization parameters θ,
respectively. The learning rate linearly decreases
to 0 over 10,000 training steps. The batch size is
set to 4 with the max time length of 512. All the
QAT methods follow this training scheme. After
the completion of training, PPL is measured with
the max time length of 1024. All of the PPL metrics
reported in this work share this configuration.

C Implementation Details

Quantization Implementation The quantizer
function Qθ is defined as follows:

Qθ(x) = s · (clip(
⌊x
s
+ o

⌉
, 0, 2b − 1)− o), (5)

s =
θmax − θmin

2b − 1
, o =

⌊
−θmin

s

⌉
, (6)

where s and o are the scale and offset, and b is the
target bit depth (8-bit in our case). ⌊·⌉ is a rounding
function, and clip(x, n, p) clamps all the values
between n and p from the input x.

In the first calibration phase, θmin and θmax are
obtained from the batch statistics at each inference
step (i.e. dynamic quantization). In the second fine-
tuning phase, the parameters are initially set based

Wikitext2 PTB LAMBADA CBT_CN CBT_NE F-ID F-OOD
FP 29.28 41.31 48.39 27.29 30.53 36.88 29.28
QAT 61.57 31.95 39.60 22.67 24.83 29.76 61.57
Quadapter BC+QAT 41.13 25.37 34.05 19.79 21.56 25.19 41.13
Quadapter (ours) 31.71 44.83 45.79 27.23 30.07 36.98 31.71

Table 2: PPL measurements of GPT-2 for expanded F-ID. Wikitext2 is the F-OOD, and the other 4 datasets are the
F-ID. The average PPL is reported in the columns, F-ID and F-OOD.

Data Method Wikitext2 PTB LAMBADA CBT_CN CBT_NE

Wikitext2
QAT 36.28 (3.77) 101.81 (1.07) 134.80 (9.40) 58.77 (3.83) 68.67 (4.73)
Quadapter BC+QAT 21.63 (0.02) 57.40 (0.34) 61.72 (-1.93) 33.48 (-0.32) 38.02 (-0.38)
Qudapter (ours) 32.69 (3.35) 49.01 (1.71) 59.59 (2.31) 31.44 (1.07) 35.27 (1.22)

PTB
QAT 275.80 (-55.81) 37.87 (3.93) 284.61 (-45.49) 165.75 (-46.37) 194.71 (-57.32)
Quadapter BC+QAT 80.00 (0.26) 23.93 (-0.17) 101.61 (-4.71) 59.95 (0.05) 69.78 (-0.01)
Quadapter (ours) 33.79 (0.10) 46.98 (7.52) 59.46 (3.78) 31.54 (0.09) 35.37 (0.21)

Table 3: PPL measurements of GPT-2 trained without LSQ+. The differences from the counterparts with LSQ+ in
Table 1 are noted in the parenthesis (a positive value indicates LSQ+’s performance gain).

on the calibration data (i.e. static quantization), and
trained afterwards. When θ is trained, the gradi-
ents are passed through the rounding function via
straight-through-estimation.
Quadapter Implementation The details of the
actual application of Quadapter to GPT-2 is slightly
different from the general form of Quadapter block
in Equation 2. In the transformer block of GPT-
2, W1 denotes only the affine transformation, but
not the preceding normalization of the layer norm
operation. For example, we can define the layer
norm operation as follows:

yl =
xl − µ(xl)

σ(xl)
⊙ γ + β, (7)

then W1 = γ,b1 = β, and the input of Quadapter
block is (xl − µ(xl))/σ(xl). The fused weight is
computed as W′

1 = α⊙ γ with element-wise mul-
tiplication ⊙.

D Constraint of Two Linear Layers

While stating that Quadapter is applicable only to
two consecutive layers of linear nature in Section
5, the main text omits the discussion of piece-wise
linear activation function for brevity. For an oper-
ation f that meets the following scaling-invariant
condition:

f(sx) = sf(x), (8)

the identity relation between the scaling and the
inverse-scaling of Quadapter still holds. Therefore,

it is possible to install Quadapter through piece-
wise linear functions (e.g. ReLU, leaky ReLU,
PReLU, etc.) as well.

Our future goal is to further expand the
Quadapter applicability. We thus plan to investi-
gate if Quadapter would be applicable even with
an intervening nonlinear activation function (e.g.
GeLU, tanh, etc.) by enhancing expressivity (i.e.
setting up additional learnable scalar variables for
the inverse scaling). In addition, by scaling all the
tensors involved in a residual connection, we ex-
pect to apply Quadapter even in the presence of
a residual connection in between the two target
layers.

