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Abstract

Automatic peer-review aspect score prediction
(PASP) of academic papers can be a helpful
assistant tool for both reviewers and authors.
Most existing works on PASP utilize super-
vised learning techniques. However, the lim-
ited number of peer-review data deteriorates
the performance of PASP. This paper presents a
novel semi-supervised learning (SSL) method
that incorporates the Transformer fine-tuning
into the Γ-model, a variant of the Ladder net-
work, to leverage contextual features from
unlabeled data. Backpropagation simultane-
ously minimizes the sum of supervised and
unsupervised cost functions, it can be easily
trained in an end-to-end fashion. The proposed
method is evaluated on the PeerRead bench-
mark. The experimental results demonstrate
that our model outperforms the supervised and
naive semi-supervised learning baselines. Our
source codes are available online1.

1 Introduction

Over the past few years, the number of submissions
for AI-related international conferences and jour-
nals has increased substantially, making the review
process more challenging. Automatic peer-review
aspect score prediction (PASP) scores academic pa-
pers on a numeric range of different qualities along
with aspects such as "clarity" and "originality". It
can be a helpful assistant tool for both reviewers
and authors. PeerRead is the first publicly avail-
able dataset of scientific peer reviews for research
purposes (Kang et al., 2018). It can be used in vari-
ous ways, such as paper acceptance classification
(Ghosal et al., 2019; Maillette de Buy Wenniger
et al., 2020; Fytas et al., 2021) and review aspect
score prediction (Li et al., 2020; Wang et al., 2020).
Alternatively, the dataset is modified for citation
recommendation (Jeong et al., 2019) and citation
count prediction (van Dongen et al., 2020).

1https://github.com/panitan-m/gamma_trans

Much of the previous work on PASP is based
on supervised learning (Kang et al., 2018; Li et al.,
2020). However, the dataset with annotated aspect
scores is relatively very small, which deteriorates
overall performance. To mitigate the drawback and
improve the performance of PASP, we propose a
semi-supervised learning (SSL) method that can
leverage contextual features from the larger unan-
notated dataset. SSL has been widely utilized in
many NLP tasks, such as classification (Miyato
et al., 2016; Li et al., 2021), sequence labeling (Ya-
sunaga et al., 2018; Chen et al., 2020), and parsing
(Zhang and Goldwasser, 2020; Lim et al., 2020). It
has shown to be effective for learning models by
leveraging a large amount of unlabeled data to com-
pensate for the lack of labeled data. SSL is also
beneficial for PASP because an enormous body
of publications is available online, and unlabeled
data, i.e., scholarly papers, can often be obtained
with minimal effort. Recently, transformer-based
pre-training language models (LM) such as BERT
(Devlin et al., 2019) and its variants have been very
successful as many NLP tasks which utilize these
LM attained unprecedented performances.

In this paper, we combine the strengths of both
techniques and propose a Transformer-based Γ-
model (Γ-Trans) that incorporates a pre-trained
transformer into the Γ-model (Rasmus et al., 2015),
a variant of ladder network (Valpola, 2014; Rasmus
et al., 2015), SSL autoencoder. The unsupervised
part of Γ-Trans utilizes a denoising autoencoder to
help focus on relevant features derived from super-
vised learning. The contributions of our work can
be summarized as follows:

• We propose Γ-Trans for PASP that incorpo-
rates a pre-trained transformer into SSL by
fine-tuning the model using labeled and unla-
beled data simultaneously.

• The experimental results show that Γ-Trans
outperforms the supervised learning baselines
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Figure 1: Γ-Trans architecture. The pre-trained trans-
former has two layers which are shown in a dotted frame.
The model is fine-tuned by supervised cost Cs and de-
noising cost Cd

and naive SSL methods with a small amount
of labeled training data.

• We compare several BERT variants and the
size of unlabeled to examine the effectiveness
of Γ-Trans for PASP.

2 Γ-Transformer

The existing works applying ladder networks to
the NLP task, e.g., information extraction (Nagesh
and Surdeanu, 2018) and sentiment analysis (Pan
et al., 2020; Zheng et al., 2021). The latter uti-
lizes the encoder of the ladder network (Rasmus
et al., 2015) to extract the features from the pre-
trained LM without fine-tuning it. By freezing the
features from the LM, the model only utilizes the
fully connected layers from the encoder of the net-
work without exploiting the transformer layer of
the LM. To mitigate the issue, we fine-tune the LM
along with training the Γ-model as well as acquir-
ing the sequence embedding from the pre-trained
LM. The model can be plugged into any feedfor-
ward network without decoder implementation, i.e.,
the denoising cost is only on the top layer of the
model.

Figure 1 illustrates the Γ-Trans network. Let x
be the input and y be the output with targets t. The
labeled training data of size N consists of pairs
{x(n), t(n)}, where 1 ≤ n ≤ N . The unlabeled
data of size M has only input x without the targets
t, an x(n), where N+1 ≤ n ≤ N+M . As shown
in Figure 1, the network consists of two forward

Aspect #Pos (Neg)
Clarity (Clr) 40
Originality (Ori) 59
Impact (Imp) 22
Meaningful Comparison (Com) 52
Soundness/Correctness (Cor) 54
Substance (Sub) 66
Overall Recommendation (Ova) 60

Table 1: Statistics of the ACL Dataset. #Pos (Neg)
refers to the equal number of papers for each class.

passes, the clean path and the corrupted pass. The
former is illustrated in a dotted frame on the right-
hand side in Figure 1 and produces clean z and y,
which are given by:

z = f(h(L)) = NB(Wh(L))

y = ϕ(γ(z+ β))

h(0) = e

h(l) = Tr(l)(h(l−1)),
(1)

where e denotes the input embedding of x with
positional encoding, Tr(l) refers to the transformer
block at layer l in the L-layer pre-trained LM (e.g.,
BERT), and NB indicates a batch normalization.
W shows the weight matrix of the linear transfor-
mation f . ϕ refers to an activation function, where
β and γ are trainable scaling and bias parameters,
respectively.

The clean path shares the mappings Tr(l) and
f with the corrupted path. The corrupted z̃ and ỹ
are produced by adding Gaussian noise n in the
corrupted path (left-hand side of Figure 1):

z̃ = f(h̃(L)) + n

ỹ = ϕ(γ(z̃+ β))

h̃(0) = ẽ+ n

h̃(l) = Tr(l)(h̃(l−1)) + n.

(2)

A supervised cost Cs is the average negative
log-probability of the noisy output ỹ matching the
target tn given the input xn:

Cs = − 1

N

N∑

n=1

logP (ỹ = tn|xn), (3)
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Metric Aspect Supervised Learning Methods Semi-supervised Learning Methods
BERT PR RR Muti VAT Γ-model Ladder Γ-Trans

Acc.

Clr 0.613 0.600 0.541 0.713 0.613 0.675 0.688 0.763
Ori 0.508 0.593 0.659 0.525 0.593 0.559 0.610 0.661
Imp 0.591 0.705 0.606 0.708 0.750 0.750 0.841 0.818
Com 0.538 0.625 0.621 0.673 0.615 0.577 0.673 0.692
Cor 0.546 0.639 0.529 0.509 0.556 0.648 0.657 0.713
Sub 0.538 0.644 - 0.585 0.667 0.644 0.621 0.667
Ova 0.575 0.625 0.535 0.698 0.658 0.558 0.683 0.683
Avg. 0.559 0.633 0.582 0.630 0.636 0.630 0.682 0.714

F1

Clr 0.632 0.658 0.671 0.706 0.674 0.739 0.721 0.790
Ori 0.605 0.652 0.651 0.675 0.529 0.606 0.642 0.743
Imp 0.627 0.740 0.717 0.746 0.718 0.797 0.864 0.848
Com 0.597 0.672 0.626 0.655 0.623 0.674 0.723 0.729
Cor 0.606 0.655 0.588 0.615 0.529 0.687 0.698 0.763
Sub 0.601 0.696 - 0.627 0.639 0.701 0.718 0.747
Ova 0.608 0.693 0.520 0.682 0.637 0.663 0.732 0.749
Avg. 0.611 0.681 0.629 0.672 0.621 0.695 0.728 0.767

Table 2: Experimental results. Best result is in bold and 2nd best is underlined.

where N denotes the number of labeled data. Given
the corrupted z̃ and prior information ỹ, the denois-
ing function g reconstructs the denoised ẑ:

ẑ = g(z̃,u)

u = NB(ỹ),
(4)

where g is identical to the one of Rasmus et al.’s
(2015) consisting of its own learnable parameters.
The unsupervised denoising cost function is given
by:

Cd =
1

N +M

N+M∑

n=1

λ

d
∥zn −NB(ẑn)∥, (5)

where M indicates the number of unlabeled data, λ
is a coefficient for unsupervised cost, and d refers
to the width of the output layer. The final cost C is
given by:

C = Cs + Cd

3 Experiments

3.1 Experimental Settings
We performed the experiments on the ACL dataset
with the score of review aspects that are included in
the PeerRead Dataset (Kang et al., 2018). We used
the mean score of multiple reviews and classified
them ranging from 1 to 5 into two classes: ≥ 4

(Positive) and < 4 (Negative). We balanced the
data, i.e., the same size of two classes, by randomly
downsampling the majority class. Table 1 shows
the statistics of the dataset. Although the PeerRead
dataset contains both paper and review texts, we
only used the papers to predict the aspect scores.
We utilized the first 512 tokens of the paper accord-
ing to the maximum length of the most common
pre-trained LM, BERT (Devlin et al., 2019). For
the unlabeled data, we also used the ACL papers
obtained from ScisummNet Corpus 2 (Yasunaga
et al., 2019), which provides 1,000 papers in the
ACL anthology.

We used 5-fold cross-validation to evaluate all
systems with an 80/20 split for the train and test
sets. We selected the best model based on the per-
formance of the test set. The final result is calcu-
lated from the average of the five folds. As the
evaluation metric, we used accuracy and F1-score.

3.2 Baselines and Implementation Details

We compare Γ-Trans with supervised learning and
semi-supervised learning baselines.

Supervised Learning

• BERT-base (Devlin et al., 2019) - A pre-
trained LM. We fine-tuned the model on the
PASP task.

2https://cs.stanford.edu/~myasu/projects/
scisumm_net/
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Model Ladder Γ-Trans
BERT 0.732 0.749
RoBERTa 0.694 0.712
SciBERT 0.744 0.774
Longformer 0.686 0.756

Table 3: F1 on Overall recommendation score predic-
tion. Comparison between Ladder and Γ-Trans on dif-
ferent transformer-based pre-trained LMs.

• PeerRead (PR) - Similar to Kang et al.’s
(2018), we implemented a GRU (Gated Re-
current Unit) model (Cho et al., 2014) using
GloVe 3 embeddings (Pennington et al., 2014)
as input word representations without tuning.

• ReviewRobot (RR) (Wang et al., 2020) - This
method extracts evidence by comparing the
knowledge graph of the target paper and a
large collection of background papers and
uses the evidence to predict scores.

• Multi-task (Li et al., 2020) - A multi-task ap-
proach that automatically selects shared net-
work structures and other review aspects as
auxiliary resources. The model is based on
CNN text classification model.

Semi-Supervised Learning
• VAT (Miyato et al., 2016) - This method ex-

ploits information from unlabeled data by ap-
plying perturbations to the word embeddings
in a neural network.

• Γ-model (Rasmus et al., 2015) - It is a variant
of ladder networks in which a denoising cost
is only on the top layer and means that most
of the decoder can be omitted.

• Ladder - A deep denoising autoencoder with
skip connections and reconstruction targets in
the intermediate layers (Rasmus et al., 2015).

The Γ-model and Ladder employ a ladder net-
work on top of frozen BERT-base representations.
Each baseline and the implementation details are
shown in Appendix A Implementation details.

3.3 Results and Discussion
Table 2 shows the results. We can see from Ta-
ble 2 that the SSL methods, Ladder and Γ-Trans,
outperform all supervised learning baselines, and

3Common Crawl (840B tokens, 2.2M vocab, 300d vectors)
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Figure 2: F1 score against the number of unlabeled data
on Overall recommendation score prediction.

the results by Γ-Trans are the best among other
SSL methods on average. This shows that our as-
sumption, incorporating fine-tuning the pre-trained
LM into the ladder network, helps improve the
performance significantly. BERT has the worst
performance and even performs worse than other
supervised learning baselines that utilize a common
neural network layer, GRU or CNN. It is probably
because the number of supervised data alone is in-
sufficient to tune millions of parameters of BERT.

Among the prediction of aspects, Impact aspect
is the best score in both metrics. We investigated
the distribution of each aspect score from the data
and found that more than 60% of the papers whose
impact score is ≥ 4 also have a score of ≥ 4 in
other aspects, while other aspects are not. This
indicates that the Impact aspect has relatively dis-
tinctive features compared with other aspects. In
contrast, Meaningful Comparison score prediction
has the worst performance.One possible reason is
the limited length of the input sequence, i.e., the
first 512 tokens. This data length includes abstract
and introduction sections, but does not include re-
lated work section which deteriorates the perfor-
mance of Meaningful Comparison score.

We recall that Γ-Trans fine-tunes the LM through
training the ladder network. To examine how the
LM affects the overall performance on PASP, we
tested several pre-trained LMs. Table 3 shows the
Overall recommendation score prediction by F1 ob-
tained from several transformer-based pre-trained
LMs with Γ-Trans and the second best method,
Ladder. Our approach can generate better results
in all models. We can see that SciBERT (Belt-
agy et al., 2019), a BERT model pre-trained on a
large corpus of scientific publications, improves
the performance, while RoBERTa (Liu et al., 2019)
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Figure 3: Ratio between the number of negative predic-
tions and positive predictions of each aspect.

does not, compared to BERT. Table 3 also shows
that Longformer4 performs better than BERT on Γ-
Trans, but not Ladder. This indicates that a longer
sequence of textual information helps improve the
performance of PASP. In contrast, Ladder does not
work well with Longformer. One reason is that
Ladder can not utilize the attention mechanism of
Longformer for the different domains of ACL pa-
pers as it only employs the sequence embeddings
obtained from the Longformer.

We also examined how the number of unlabeled
data for training affects overall performance. Fig-
ure 2 shows the F1-score of the SSL methods
against the number of unlabeled data obtained by
5-fold cross-validation. Overall, the graph shows
that more unlabeled data helps improve the perfor-
mance in every SSL method except VAT, whose per-
formance drops at 1,000 unlabeled data. Γ-Trans
consistently outperformed other SSL methods, and
especially the result with 100 unlabeled data out-
performed other methods with 700 unlabeled data.

3.4 Error Analysis
We analyzed the prediction probability on the Over-
all Recommendation aspect test data. The average
probability of the selected class is 50.26% which is
relatively low. The close probability of two classes
indicates that the extracted features between the
two classes are not much different from each other.
The average probabilities of the correct and incor-
rect predictions are 50.30% and 50.13%, respec-
tively, showing no significant difference.

4We used the first 1,000 tokens of each paper in the experi-
ment.

Aspect Neg Precision
Clarity 0.839
Originality 0.913
Impact 0.938
Meaningful Comparison 0.833
Soundness Correctness 0.870
Substance 0.923
Overall Recommendation 0.867

Table 4: Precision of negative samples

Figure 3 shows the ratio of the predictions be-
tween negative and positive. Our model tends to
bias toward positive prediction in every aspect. The
most biased prediction is Meaningful Comparison,
with 84.31% on positive. One reason is that several
reviewers are assigned to one paper. Assume that a
sample labeled negative has a score of 3, 3, and 4.
(The sample is labeled negative because the aver-
age of these scores is less than 4.) Such a sample
has some positive features to trigger the model to
predict it as positive. In contrast, there was no such
case for positive samples.

We further investigated more on the negative pre-
dictions. Table 4 shows the precision of negative
samples. Although our model predicts a positive
outcome more than a negative one, the precision
on the negative is very high. The highest precision
is 0.938 on the Impact aspect and the lowest one is
higher than 0.8. High precision on negative sam-
ples means a high measure of quality that indicates
that our model is suitable for the first screen to filter
out poor-quality works. Moreover, it is also helpful
to authors for their first draft.

4 Conclusion

In this paper, we focused on the PASP task and
proposed a method, Γ-Trans, that incorporates
the Transformer fine-tuning technique into the Γ-
model of the Ladder networks. The experimental
results showed the effectiveness of our model as
our model attained the best accuracy and F1 on av-
erage. Through the experiments, we found that our
method helps improve the performance of all pre-
trained LMs including SciBERT and Longformer.
Future work will include (i) extending the method
for imbalanced aspect score datasets, (ii) exploiting
the related information between aspects, and (iii)
generating knowledgeable and explainable review
comments.
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Limitations

We should be able to obtain further advantages
in efficacy in our pre-trained LM. We utilized the
first 512 word tokens in the input paper and 768-
dimensions of the hidden layer as most of the pre-
trained LM restricts text length and embedding size
which may lead to a lack of contextual information
about aspects. Furthermore, in our experiment,
fine-tuning Longformer by freezing the first ten
layers on 1,000 tokens required around 50GB of
GPU memory. We would improve our Γ-Trans
model so that we can process papers consisting of
long token sequences.
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A Implementation details

A.1 Fine-tuning BERT
We used Huggingface’s Transformers package to
fine-tune BERT. We fine-tuned the model with
learning rate = 1e-6 until convergence with a batch
size of 8, maximal sequence length of 512. Opti-
mization was done using Adam with warm-up =
0.1 and weight decay of 0.01.

A.2 PeerRead model
We used a simple MLP with a single hidden layer
of 100 neurons with the last recurrent state of a
single GRU layer of 100 units. We trained the
MLP until convergence, using Adam optimizer, a
learning rate of 1e-4 with a batch size of 8 and an
L2 penalty of 1.

A.3 VAT
A.3.1 Recurrent LM Pre-training
We used a unidirectional single-layer LSTM with
1,024 hidden units. The dimension of word em-
bedding was 256. For the optimization, we used
the Adam optimizer with a batch size of 32, an
initial learning rate of 0.001, and a 0.9999 learning
rate decay factor. We trained for 50 epochs. We
applied gradient clipping with norm set to 5.0. We
used dropout on the word embedding layer and an
output layer with a 0.5 dropout rate.

A.3.2 Model Training
We added a hidden layer between the softmax layer
for the target and the final output of the LSTM.
The dimension is set to 30. For optimization, we
also used the Adam optimizer, with a 0.001 initial
learning rate and 0.9998 exponential decay. Batch
sizes are set to 32 and 96 for calculating the loss
of virtual adversarial training. We trained for 30
epochs. applied gradient clipping with the norm as
5.0.

A.4 Multi-task
We modified the model from performing a regres-
sion task to a classification task by changing the
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output layer. We used CNN with 64 filters and
filter width of 2. We used fastText as initial word
embeddings. The hidden dimension was 1024. We
trained the model using Adam optimizer with learn-
ing rate 0.001 and batch size of 8. We trained all
of the candidate multi-task models for one and two
auxiliary tasks to find the best one.

A.5 Γ-model and Ladder
We used the layer sizes of the ladder network to
be 768-100-500-250-250-250-2, according to the
BERT’s representation dimension and the number
of output classes. We set the denoising cost multi-
pliers λ to [1000, 10, 0.1, 0.1, 0.1, 0.1, 0.1] from
the input layer to the output layer for the Ladder,
and [0, 0, 0, 0, 0, 0, 1] for the Γ-model. The std of
the Gaussian corruption noise n is set to 0.3. We
trained the model with a learning rate of 3e-3 until
convergence with a batch size of 8 for each labeled
and unlabeled data, 16 in total. Optimization was
done using Adam with weight decay of 0.01.

A.6 Γ-Trans
We used Huggingface’s Transformers package to
fine-tune transformer-based pre-trained LMs. The
denoising cost multipliers λ is set to 1. We set the
std of the Gaussian corruption noise n to 0.3 in both
Γ-model and Ladder. For optimization, we used
the Adam optimizer, with a 1e-4 initial learning
rate, 0.01 weight decay, and 0.1 warm-up. Batch
size is set to 8 for both labeled and unlabeled data,
16 in total.
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