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Abstract

Recent progress regarding the use of language
models (LMs) as knowledge bases (KBs) has
shown that language models can act as struc-
tured knowledge bases for storing relational
facts. However, most existing works only con-
sidered the LM-as-KB paradigm in a static
setting, which ignores the analysis of tempo-
ral dynamics of world knowledge. Further-
more, a basic function of KBs, i.e., the abil-
ity to store conflicting information (i.e., 1-N,
N-1 and N-M relations), is underexplored. In
this paper, we formulate two practical require-
ments for treating LMs as temporal KBs: (i)
the capacity to store temporally-scoped knowl-
edge that contains conflicting information and
(ii) the ability to use stored knowledge for
temporally-scoped knowledge queries. We in-
troduce a new dataset called LAMA-TK which
is aimed at probing temporally-scoped knowl-
edge, and investigate the two above require-
ments to explore the LM-as-KB paradigm in
the temporal domain. On the one hand, exper-
iments show that LMs can memorize millions
of temporally-scoped facts with relatively high
accuracy and transfer stored knowledge to tem-
poral knowledge queries, thereby expanding
the LM-as-KB paradigm to the temporal do-
main. On the other hand, we show that memo-
rizing conflicting information, which has been
neglected by previous works, is still challeng-
ing for LMs and hinders the memorization of
other unrelated one-to-one relationships.

1 Introduction

Recently, language models (LMs) such as BERT
(Devlin et al., 2019) and T5 (Raffel et al., 2020)
have been suggested as an alternative to world
knowledge bases (KBs) (Petroni et al., 2019). The
parameters of these models appear to store ex-
tensive real-world knowledge during training and
stored knowledge can be recalled by filling cloze
statements (e.g. "Dani Alves plays with [MASK].
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Figure 1: Expansion of the LM-as-KB paradigm to the
temporal domain. We introduce two requirements to
further explore the capability of LMs. (i) The capability
to store temporal knowledge and (ii) the ability to use
stored knowledge for temporal knowledge queries.

–> Barcelona"). As a result, recent works have con-
sidered LMs for tasks such as closed-book ques-
tion answering (Roberts et al., 2020), automated
fact-checking (Guo et al., 2021), and knowledge-
grounded dialogue systems (Liu et al., 2022).

Relational facts in world knowledge often
change with time. For example, "Michael Jor-
dan played for Washington Wizards." is true only
from 2001 to 2003. However, most existing works
only considered the LM-as-KB paradigm in a
"static" setting, ignoring the temporal dynamics
of world knowledge. However, this temporally-
scoped knowledge raises several potential chal-
lenges for the LM-as-KB paradigm.

Conflicting Information While training on the
large textual corpus, the model will inevitably
encounter conflicting information (i.e., 1-N, N-
1, N-M relations), e.g., "Giannis Antetokounmpo
played for Filathlitikos / Milwaukee Bucks". Dhin-
gra et al. (2022) limits the time period of facts
to reduce the amount of conflicting information.
However, conflicting information still exists, from
the players who played for a team to the politi-
cian who held multiple positions. These conflict-
ing facts will hinder the memorizing process and
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cause the model to have difficulty memorizing all
correct answers.

Correlation Between Temporal Scopes Tem-
poral facts usually contain temporal scopes (e.g.,
a start time and an end time), and a strong corre-
lation is present between these timestamps. For
example, "Shinzo Abe was the prime minister of
Japan from 2006 to 2007." and "Shinzo Abe was
the prime minister of Japan from 2012 to 2020."
are two temporally-scoped facts. These facts have
the same subject, object, and predicate but dif-
ferent temporal scopes. As temporal knowledge
bases, LMs need to memorize not only the times-
tamps associated with the facts but also the match-
ing relationships between temporal scopes.

Implicit Temporal Knowledge Temporally-
scoped facts usually contain implicit facts. For
example, "François Hollande served as president
of the French Republic from 2012 to 2017"
contains the following facts: "François Hollande
served as president of the French Republic in
2015" and "François Hollande was elected pres-
ident of the French Republic in 2012". These
implicit facts are not directly mentioned in
temporally-scoped facts.

Temporally-scoped knowledge widely exists in
real-world knowledge bases like Wikidata. How-
ever, existing QA datasets such as LAMA (Petroni
et al., 2019), Natural Questions (Kwiatkowski
et al., 2019) focus on probing static knowl-
edge, ignoring the temporal dynamics of world
knowledge. The temporal dataset TEMPLAMA
(Dhingra et al., 2022) focuses on querying fac-
tual objects with single timestamps, ignoring the
temporally-scoped information such as the start
and end times. Moreover, temporal facts often con-
tain extensive conflicting information, but previ-
ous works did not pay enough attention to these
conflicts. They explored LM-as-KB within 1-1
relations (e.g. born in) or discarded facts with
multiple objects. Therefore, we propose LAMA-
TK (short for LAnguage Model Analysis for
Temporal Knowledge), a new dataset for probing
LMs for temporally-scoped knowledge. LAMA-
TK queries temporal knowledge including entity
names and special timestamps, and reserves all
correct answers for each query.

Based on LAMA-TK, we introduce two prac-
tical questions for LMs as temporal KBs to ex-
plore the LM-as-KB paradigm in the temporal

Table 1: Examples from LAMA, TEMPLAMA, and
our proposed LAMA-TK. LAMA-TK is a novel dataset
of temporal knowledge statements, which takes into ac-
count entities, temporal scopes and multiple answers.

Input Target(s)
LAMA

Dante was born in [MASK]. Florence
Bailey Peninsula is located in [MASK]. Antarctica

TEMPLAMA
year: 2013 text: Marina Silva is a member of the _X_. Brazilian Socialist Party
year: 2018 text: Marina Silva is a member of the _X_. Sustainability Network

LAMA-TK
Michael Jordan played for [MASK] from 1995 to 1998. Chicago Bulls
Michael Jordan played for [MASK] in 2002. Washington Wizard
Michael Jordan received NBA Most Valuable Player
Award in [MASK].

1988, 1991, 1992,
1996, 1998

domain. We examine LMs on two basic func-
tions of KBs: the storage capacity and the use of
stored temporal knowledge, and identify the chal-
lenges mentioned above during the experiments
(Section 4).

First question: What is the storage capacity
of LMs for storing temporal knowledge? Here,
we ask the models to memorize millions of tem-
poral facts and record the storage performance of
these LMs (Section 4.1). Results show that LMs
can memorize millions of temporal facts with rela-
tively high accuracy. However, we also show that
conflicting information poses a great challenge to
the storage capacity of LMs and hinders the mem-
orizing process of other unrelated facts.

Second question: Can LMs use stored tem-
poral knowledge for temporally-scoped knowl-
edge queries? Here, we design targeted queries
to recall stored temporal facts (Section 4.2) and
further explore the ability of LMs to recall im-
plicit temporal facts (Section 4.3). Results show
that pretrained LMs can transfer stored temporally-
scoped knowledge to new queries with similar se-
mantics even if the query templates are not ob-
served during training. Moreover, we show that
with prompts like "from ST to ET", LMs can un-
derstand the difference and continuity of tempo-
ral scopes. These results show that LMs can effi-
ciently handle temporal knowledge.

Contributions: (1) We introduce three chal-
lenges and two practical requirements for treating
LMs as temporal KBs, which expands the LM-as-
KB paradigm (Petroni et al., 2019) to the temporal
domain. (2) We offer LAMA-TK, a new dataset
for probing LMs for temporally-scoped knowl-
edge. (3) We propose a prompt-based temporal
scope modeling method to jointly model temporal
scopes and facts for adapting LMs to temporally-
scoped facts. (4) We conduct experiments to evalu-
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ate the capacity of LMs to store temporal facts and
examine the ability of LMs to use stored knowl-
edge for temporal queries. (5) We show the nega-
tive impact of conflicting information on the stor-
age capacity of LMs, which was neglected by pre-
vious works.

2 The LAMA-TK Probe

In this section, we detail the construction of
LAMA-TK1, our new temporally-scoped knowl-
edge probing dataset, including its data sources
and a set of natural language queries for probing
temporal knowledge, as well as the evaluation me-
tric we use.

2.1 Knowledge Sources

CronQuestions CronQuestions (Saxena et al.,
2021) is a KGQA2 dataset, including a knowledge
graph (KG) with associated timestamps and 350K
temporal questions. There are 323k facts, 125k en-
tities, and 203 relations in its KG. We selected the
top-5 most frequent temporally rich relations, re-
sulting in a KG with 226K facts, 96k entities, and
1322 timestamps.

Wikidata Wikidata3 is a public KB that stores
a massive amount of structured data. We use the
dump of the January 3rd, 2022 version and re-
trieve facts that have both start and end dates using
SPARQL queries. Following Dhingra et al. (2022),
we identify the factual knowledge that has more
than one object at the different time periods and
select 6 relations with the most such objects. This
results in a KG with 497K facts, 260k entities, and
1132 timestamps.

2.2 Temporal Knowledge Queries

According to the above knowledge sources, we fi-
nally construct a KG with 639k facts, 316k enti-
ties, 1539 timestamps, and 7 relations. Follow-
ing Jiang et al. (2020); Dhingra et al. (2022), we
write templates for these relations and convert tem-
poral knowledge to natural language statements.
For example, the temporal knowledge <Giannis
Antetokounmpo, Member of Sports Team, Filath-
litikos B.C., 2011, 2013> was converted into a
natural language statement "Giannis Antetokoun-
mpo played for Filathlitikos B.C. from 2011 to

1The LAMA-TK dataset is available at https://github.
com/CGCL-codes/LAMA-TK

2Question Answering over Knowledge Graph.
3www.wikidata.org

2013". Based on these statements, we design tar-
geted cloze-style queries and reserve the masked
entity as the training target. Templates, example
queries, and data pre-processing details have been
shown in Appendix A.

Real-world knowledge contains extensive con-
flicting information, from the players who played
for a team to a politician who held multiple posi-
tions. However, most previous works tend to ex-
plore the LM-as-KB paradigm within one-to-one
relationships (e.g. "born in") or only reserve one
of the correct answers as the target, without tak-
ing into account whether LMs have similar con-
fidences in other correct answers. Therefore, in
LAMA-TK, we do not discard conflicting infor-
mation and reserve all correct answers of each
masked statement as the answer list (see Table 9
for the different between masked entity and an-
swer list). Among the 2.48M masked factual state-
ments, there are 379K statements (15%) with mul-
tiple answers.

2.3 Evaluation Metric

As many queries have multiple answers, we use
the top-K accuracy (Acc@K) to measure how well
the model performs on these queries. The Acc@k
is "query-oriented". For each query, the top-K ac-
curacy is 1 if any of the correct answer is in the top
k predictions, and is 0 otherwise. In this work, we
use both Acc@1 and Acc@5.

However, Acc@K can only measure whether
the model can recall at least one correct answer,
but it ignores the memorization performance of
other correct answers of a multi-answer query4.
Therefore, we use Hit at top k (Hit@K) to take
into account all correct answers to each query. The
Hit@K is "answer-oriented". For each correct an-
swer to the query, if the correct answer is in the
top k predictions, Hit@K is 1, otherwise is 0. In
this work, we use Hit@5 and Hit@10.

3 Models

Following Heinzerling and Inui (2021), we use
RoBERTa (Liu et al., 2019), the bidirectional LM,
as the knowledge base. Moreover, we adopt sev-
eral approaches to adapt the original RoBERTa to
temporally-scoped knowledge and prepare three
different RoBERTa models for examination.

4See Appendix C for more details.
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3.1 Adaptations

Prompt-based Temporal Scope Modeling To
jointly model temporal scopes and texts, we manu-
ally write prompt templates for temporal facts and
directly encode temporal scopes in training pro-
cess. Given a factual sequence of tokens X =
[x1, x2, .., xn] and its associating temporal scope
<ST, ET> . We use prompt template "from ST to
ET" to convert temporal scope to natural language
text and incorporate this text into the factual se-
quence. In this case, the final factual sequence
X ′ = [x1, x2..., xn, from, ST, to, ET ]. See Ap-
pendix B for further analysis.

Symbolic Representation However, the pre-
trained masked language model can only handle
entities whose names are in its vocabulary (e.g.,
entities like "English" and "Florida"). This results
in its inability to predict entities with multiple to-
kens (e.g., entities like "Barack Obama"). In this
work, we follow Heinzerling and Inui (2021) to
store entities by symbolic representation, i.e., aug-
menting the vocabulary of LM and representing all
the entities as entries in the vocabulary. The LM
will project the final hidden state of the [MASK]
token onto the vocabulary and take a softmax over
all entities (Heinzerling and Inui, 2021). Although
symbolic representation is computationally expen-
sive, it can memorize entities with high accuracy
and will not be affected by the length of the entity
name.

Memorizing Facts via MLM In this work, we
train the model to memorize factual knowledge
via Masked Language Modeling (MLM) (Devlin
et al., 2019). We use an entity-level MLM to al-
low LMs to memorize entities mentioned in fac-
tual statements. For example, given an input se-
quence of tokens X = [x1, x2, ..., xi, xi+1, ..., xn]
and a two-token entity e = [xi, xi+1]. We con-
vert the whole tokens of the entity to one mask
token. In this case, the masked sequence of tokens
X ′ = [x1, x2, ..., xi−1, [MASK], xi+2, ..., xn].
Since we use symbolic representation, the masked
entity is in the vocabulary of the LM.

3.2 Employed Models

RoBERTa(12L) We prepare a RoBERTa model
with 12 layers as the temporal knowledge base.
The RoBERTa(12L) is initialized from RoBERTa-
base (Liu et al., 2019).

RoBERTa(6L) We prepare a 6-layer RoBERTa
model, initialized from DistilRoBERTa-base
(Sanh et al., 2019), to investigate how knowledge
base capability scales with model size5.

RoBERTa-randinit(12L) Heinzerling and Inui
(2021) shows that LMs without pre-training can
memorize more factual statements than pretrained
models. However, it only focuses on memorizing
static and one-to-one relationships. In this work,
we also prepare a 12-layer RoBERTa with ran-
domly initialized parameters to further explore the
effect of pre-training in a more practical condition.

4 Experiments

Storage and the use of stored knowledge are two
basic functions of KBs. To explore the LM-as-KB
paradigm in the temporal domain, we design sev-
eral experiments to answer the two questions of
LMs as temporal KBs (Section 1).

First, we conduct a reciting experiment to eval-
uate the storage capacity of LMs for storing tem-
poral facts and explore the impact of conflicting
information (Section 4.1). Next, we construct tar-
geted queries to recall stored temporal knowledge
in terms of temporal boundaries (Section 4.2) and
implicit temporal knowledge (Section 4.3) to ex-
plore the ability of LMs to use stored knowledge.

4.1 Storage Capacity

Storage is the foundation of KB applications.
Here, we conduct a reciting experiment to inves-
tigate how much temporal knowledge LMs can
memorize (the first question). Firstly, we train
prepared RoBERTa models to memorize temporal
knowledge in LAMA-TK. For each fact in LAMA-
TK, we mask the subject, object, start time, and
end time, and generate four masked statements.
These masked statements then serve as the train-
ing data for LMs to memorize. For example, given
the masked statement "Michael Jordan played for
[MASK] from 1995 to 1998.", the model should
predict the masked entity "Chicago Bulls". We
call this process as Feeding Temporal Knowl-
edge into LMs. Then, we test the models to eval-
uate how many factual statements in training data
have been memorized and record the Acc@K and
Hit@K (see Section 2.3). We call this process as
Reciting.

5DistilRoBERTa-base is the distilled version of
RoBERTa-base, with 6 layers. Details of the models
are in Appendix D.
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Figure 2: Overall results of statement memorization. We report Acc@1, Acc@5, Hit@5, and Hit@10 of each
model. The green lines show the performances of models trained on LAMA-TK without conflicting information,
while the red lines show the performances of models trained on LAMA-TK with conflicting information.

Table 2: Results of single-answer and multi-answer
statement memorization of RoBERTa(12L) trained on
2.48M masked statements with conflicting information.

#Answer Acc@1 Acc@5 Hit@5 Hit@10
single 0.8441 0.9550 0.9550 0.9623
multiple 0.7876 0.9358 0.4748 0.5527

Different from previous works, we examine the
capacity of LMs to memorize temporally-scoped
facts which often change with time. For ex-
ample, "Michael Jordan played for Birmingham
Barons" is only true from 1994 to 1995. In
1995, Michael Jordan left Birmingham Barons and
joined Chicago Bulls. Therefore, to correctly re-
call the sports team Michael Jordan played for,
LMs should additionally take into account the tem-
poral scopes of facts.

Moreover, we reserve 1-N, N-1, and N-M rela-
tions in LAMA-TK. During training, the model
will see conflicting information (the first chal-
lenge), such as the politician who held multiple
positions at once and the scientist who received
multiple prizes in a year. We call these statements
as multi-answer statements. Previous works
discarded facts with multiple objects and consid-
ered the LM-as-KB paradigm within 1-1 relations,
which made this task lightweight, but less practi-
cal. However, storing conflicting information is a
basic function that a KB should have.

Result The red lines in Fig 2 show the ac-
curacies of statements memorization accuracies
achieved with different RoBERTa models. The
randomly initialized RoBERTa model has the high-
est recall accuracy for storing temporal knowledge,
correctly answering 86 percent of 2.48 million
masked statements; RoBERTa(6L) has the lowest
recall accuracy, with 0.76 Acc@1. As the amount
of training data increases, the storage accuracy of
all the models gradually decreases. Compared to
the RoBERTa(12L), RoBERTa(6L) has more diffi-

Table 3: single-answer statement (1-1 relation) mem-
orization results of RoBERTa(12L) trained on 2.48M
statements with and without conflicting information.

Train Data 1-1 relations
Acc@1 Acc@5 Hit@5 Hit@10

non-conflict 0.9700 0.9910 0.9910 0.9930
conflict 0.8441 0.9550 0.9550 0.9623

culty storing millions of masked statements. This
result indicates that LMs with more parameters
show better storage capacity. Moreover, we show
that the randomly initialized LM exhibits better
storage capacity than the pretrained LM. This re-
sult is the same as previous work (Heinzerling and
Inui, 2021). The knowledge stored during pretrain-
ing affects the memorization of new knowledge.

Table 2 shows the memorization results of state-
ments with single and multiple answers. Results
show that RoBERTa(12L) can memorize single-
answer statements with high Acc@K and Hit@K.
However, memorizing multi-answer statements is
still challenging, which shows high Acc@K but
low Hit@K. This result shows that LMs can only
memorize one of the correct answers, but do not
have similar confidence in other correct answers.

Influence of Conflicting Information To ex-
plore the influence of conflicting information on
the storage capacity of LMs, we compare mod-
els trained on LAMA-TK with and without con-
flicting information. For the version of LAMA-
TK without conflicting information (non-conflict),
we remove all masked statements with multiple
answers. Then, we examine RoBERTa(6L) and
RoBERTa(12L) on LAMA-TK without conflicting
information.

The green lines in Fig 2 show the statement
memorization performances achieved without con-
flicting information. All models can memorize
2.48M statements with over 0.95 Acc@1, which
is much better than memorizing statements with
conflicting information. The accuracy drop indi-

2028



Table 4: Performances of RoBERTa models with and without dynamic time masking on 200k time queries in
zero-shot settings. The models above the midline use original masking, while the ones below the midline use
dynamic time masking. The green numbers in brackets show the improvement dynamic time masking brings over
RoBERTa(12L) with original masking. The highest and second-highest scores among all models are boldfaced
and underlined respectively. Scores with asterisks are the highest among the models with original masking.

Model Acc@1 Acc@5 Hit@5 Hit@10
RoBERTa(6L) 0.1890∗ 0.4510∗ 0.3849∗ 0.4944∗

RoBERTa-rand(12L) 0.1280 0.3260 0.2614 0.3590
RoBERTa(12L) 0.1226 0.3240 0.2689 0.3596
RoBERTa(12L) dynamic mask 10% 0.3774(+0.2658) 0.7042(+0.3802) 0.6628(+0.3939) 0.7740(+0.4144)
RoBERTa(12L) dynamic mask 100% 0.4879(+0.3653) 0.8367(+0.5127) 0.7611(+0.4922) 0.8838(+0.5242)

cates that the storage capacity of LMs is greatly
affected by conflicting information. The accu-
racy drop yielded by RoBERTa(6L) is greater than
RoBERTa(12L), showing that models with fewer
parameters are more susceptible to conflicting in-
formation.

Moreover, Table 3 shows the influence of con-
flicting information on memorizing other one-to-
one relationships. The performance drops indicate
that conflicting information hinders the memoriz-
ing process of other unrelated 1-1 relations.

4.2 Temporal Boundary Query

In the first experiment, we observe that it is possi-
ble for LMs to recite millions of temporal knowl-
edge. We now turn to investigate whether LMs
can use stored knowledge for temporal knowl-
edge queries or merely recite facts learned by
rote (the second question). Firstly, we test
whether LMs can differentiate between stored
timestamps. For example, if an LM has memo-
rized "Barack Obama held the position of pres-
ident of United States from 2009 to 2017", the
model should recall the start time "2009" with the
query "Barack Obama was elected president of the
United States in [MASK]" or recall the end time
"2017" with the query "Barack Obama resigned
from president of the United States in [MASK]".

To ensure that the LMs can memorize all re-
quired knowledge, we first sample 100k fact state-
ments with the predicate "position held" from
LAMA-TK and mask their start and end times.
This results in 200k masked factual statements.
Then we train the RoBERTa models to fully mem-
orize all these statements, with 0.99Acc@1.

Next, we write cloze-style templates to query
the start and end times mentioned in stored facts,
such as "S was elected O in [MASK]" and "S re-
signed from O in [MASK]". We use these queries
to test the capability of the model to understand
the difference between temporal scopes. We con-

RoBERTa

Barack Obama held the position of 

president of United States from 2009 to 2017.

Original Masking Dynamic Time Masking

90%

10%

train

query

Barack Obama was elected

president of United States in [MASK].

Barack Obama resigned from

president of United States in [MASK].

Barack Obama held the position of 

president of United States from [MASK] to 2017.

Barack Obama held the position of 

president of United States from 2009 to [MASK].

Barack Obama held the position of 

president of United States from [MASK] to 2017.

Barack Obama held the position of 

president of United States from 2009 to [MASK].

2009 2017

Figure 3: Examples of two types of masking and the
process used by LMs for temporal boundary queries.
The remaining timestamps are underlined. The predi-
cates written in red are new query templates.

duct this experiment in a zero-shot setting; i.e.,
the target query templates are not observed during
training. The zero-shot setting can better show the
capability of LMs to understand natural language
queries and transfer knowledge to targeted queries.

Result The results are shown in the first three
rows of Table 4. In the case where the model has
fully memorized all required temporal knowledge,
the model with fewer parameters performs better.
The performance of RoBERTa(12L) is similar to
that of RoBERTa-randinit(12L), but both are lower
than that of RoBERTa(6L).

Dynamic Time Masking Through the above ex-
periment, we find that the model’s capability to
query temporal boundaries is not satisfactory (low
Acc@1). We speculate that this result may be
due to the strong correlation between temporal
scopes (the second challenge). Original mask-
ing makes the model relies too much on the re-
maining timestamp and makes it difficult to query
the masked timestamp separately. For example,
we use "Barack Obama held the position of pres-
ident of United State from [MASK] to 2017" to
train the LMs, which makes the prediction for the
masked timestamp "2009" excessively rely on the
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Table 5: Results on 20k queries with original query templates and new query templates (original query templates:
"S held the position of O in T", new query templates: "S served as O in T"). We report Acc@1/Acc@5 and
Hit@5/Hit@10 of each model on two template types.

Model Parameters
Acc@1 / Acc@5 Hit@5 / Hit@10
Template Type Template Type

Original New Original New
RoBERTa(6L) 82M 0.4114 / 0.6521 0.2242 / 0.4115 0.6192 / 0.6993 0.3798 / 0.4540
RoBERTa-rand(12L) 125M 0.4147 / 0.6868 0.0131 / 0.0562 0.6457 / 0.7215 0.0757 / 0.0518
RoBERTa(12L) 125M 0.3440 / 0.5666 0.3113 / 0.5020 0.5281 / 0.6028 0.4698 / 0.5480

remaining timestamp "2017". This makes it diffi-
cult for LMs to transfer stored timestamps to tem-
poral boundary queries and results in answering
these queries with low accuracy.

Inspired by the dynamic masking of RoBERTa
(Liu et al., 2019), we design a dynamic time mask-
ing method to verify this conjecture. As shown in
Figure 3, while constructing masked factual state-
ments, we only mask the specific timestamp 1-k%
of time, and for the other k% of time we mask the
specific timestamp and delete the other time infor-
mation. To avoid using the same time mask in ev-
ery epoch, we duplicate the training data 10 times
so that each statement is masked in 10 different
ways over 50 epochs of training. Therefore, the
model will see 10 variations of each statement.

Dynamic time masking reduces the strong cor-
relation between temporal scopes by adding per-
turbation to the other temporal information dur-
ing training. In this experiment, we evaluate
RoBERTa(12L) with 10% and 100% dynamic
time masking. Table 4 shows the performance of
these models. By adding 10% perturbation, the ac-
curacy of RoBERTa(12L) significantly increases
to 0.3774 Acc@1, 0.7042 Acc@5. The Hit@K of
RoBERTa(12L) also increases significantly. More-
over, we evaluate RoBERTa with 100% dynamic
time masking which completely ignores the corre-
lation between the start and end times. RoBERTa
with 100% dynamic time masking performs the
best (both Acc@K and Hit@K). However, 100%
dynamic time masking causes the model to be un-
able to associate the start time and the end time
and to handle facts such as a politician who held
one position several times. These results show
that dynamic time masking efficiently reduces the
strong correlation between temporal scopes and
helps LMs recall the stored timestamps.

4.3 Implicit Temporal Knowledge Query

Prompt-based temporal scope modeling allows
LMs to memorize temporal facts with their as-
sociated temporal scopes. (e.g., "Michael Jor-

dan played for Chicago Bulls from 1995 to
1998"). Compared with jointly modeling text and
a single timestamp (e.g., "Michael Jordan played
for Chicago Bulls in 1995/1996/1997/1998."),
prompt-based temporal scope modeling intro-
duces fewer factual statements and less conflicting
information, but more implicit temporal knowl-
edge (the third challenge). However, can LMs
use stored knowledge for implicit temporal
knowledge queries (the second question)? For
example, if an LM has memorized "François Hol-
lande held the position of president of the French
Republic from 2012 to 2017", can the LM under-
stand that François Hollande was the president of
the French Republic for each year between 2012
and 2017? Moreover, can LMs answer the query
"François Hollande served as [MASK] in 2015"
even if the template "S served as O in T" is not
seen during training?

A controlled experiment is designed for these
questions. We choose one predicate "position
held" and sample all statements generated by the
template "S held the position of O from ST to ET".
Inspired by Heinzerling and Inui (2021), we add
distractors to recognize whether LMs answer these
queries by using stored knowledge or simple by
generic association. For a fact <S, P, O, ST, ET>,
we add its distractor <S, P, O’, ST’, ET’> which
involves the same subject S and predicate P, but a
different Object O’. Moreover, we add its distrac-
tor <S, P’, O’, ST”, ET”> which involves the same
subject S but a different predicate P’ and object O’.
For example, distractors for <Barack Obama, Posi-
tion Held, President of United States, 2009, 2017>
are <Barack Obama, Position Held, United States
senator, 2007, 2008> and <Barack Obama, award
received, Nobel Peace Prize, 2009, 2009>. To cor-
rectly answer the query "Barack Obama held the
position of [MASK] in 2012.", the model needs
to consider both the predicate and the temporal
scopes since there are three distinct entities associ-
ated with "Barack Obama". Every fact has at least
one distractor. This results in 20k statements.
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Next, we train the RoBERTa models to mem-
orize all these fact statements and construct elabo-
rate queries. For each fact, we randomly select one
year between the start and end years as the times-
tamp of the associated query. We do not consider
the start and end years because these boundary
timestamps can bring prompts to the query. Then
we use two types of templates to generate queries.
First, we use the Original Template "S held the po-
sition of O in T" which is also used to generate
fact statements for training. Then, we use a New
Template "S served as O in T". This template has
similar semantics to the original template, but it
is not seen during training. We use the New Tem-
plate to evaluate the robustness of LMs to distinct
templates.

Result Results are shown in Table 5. For
Original Template, RoBERTa-Randinit(12L) has
the highest Acc@K and Hit@K. Compared with
RoBERTa(12L), RoBERTa(6L) with fewer param-
eters performs slightly better. This result is similar
to that of the previous experiment, which shows
that LMs with fewer parameters have a better ca-
pability to use stored temporal knowledge.

However, the performance achieved on the New
Template shows a distinct result. In the case where
the query template is not observed during training,
the performance of RoBERTa-randinit(12L) sig-
nificantly declines, with only 0.0131Acc@1 and
0.0518Hit@10. Conversely, the performance of
pretrained RoBERTa(12L) drops slightly and re-
mains at a high level. This result shows that
pretrained LMs contain natural language knowl-
edge and have strong robustness to new templates.
Compared to RoBERTa(12L), RoBERTa(6L) has
lower performance with a more severe drop, show-
ing that LM with more parameters is less affected
by unseen templates and shows stronger robust-
ness.

5 Related Work

Recent research has shown that pretrained lan-
guage models (PLMs) such as BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), GPT (Rad-
ford et al., 2018), and T5 (Raffel et al., 2020) can
learn extensive world knowledge during pretrain-
ing and store these relational facts in their param-
eters. Petroni et al. (2019) constructs LAMA, a
set of cloze-style queries (e.g., "Marcello Abbado
was born in [MASK]. –> Milan"), to recall the fac-
tual knowledge contained in pretrained LMs such

as ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2019). Their results show that a PLM con-
tains relational knowledge and can recall stored
facts without fine-tuning. Talmor et al. (2020) pro-
poses eight cloze-style reasoning tasks to test dif-
ferent types of knowledge in BERT and RoBERTa.
Heinzerling and Inui (2021) conduct experiments
on RoBERTa to evaluate its ability to store mil-
lions of facts involving millions of entities and its
ability to query stored facts. Its results provide
a proof-of-concept for LM-as-KB. While these
works focus on probing LM in the general do-
main, Sung et al. (2021) constructs the BioLAMA,
a biomedical factual knowledge dataset for prob-
ing biomedical LMs, and further explores the ca-
pability of LM to act as a specific-domain KB.
Moreover, Wang et al. (2019a); Zhou et al. (2020)
examine PLMs on commonsense reasoning tasks,
showing that PLM contains commonsense knowl-
edge. To improve the performance on knowl-
edge intensive tasks, Wang et al. (2019b) uses a
Transformer encoder to obtain contextualized en-
tity and relation embeddings. Yao et al. (2019)
treats relational knowledge as textual sequences
and finetunes BERT to model these knowledge.
To improve the performance of recalling knowl-
edge, Petroni et al. (2020) augments PLM with
retrieved relevant context and improved the perfor-
mance of cloze-style QA. Jiang et al. (2020) pro-
poses mining-based and paraphrasing-based meth-
ods to generate high-quality prompts, which sig-
nificantly improves the performance achieved on
LAMA.

Within the current paradigm of the use of
masked LMs as KBs, research has focused more
on using generative LMs as KBs. As generative
LMs can generate text sequences of any length,
they are not limited by the length of the given
knowledge. Roberts et al. (2020) fine-tunes the
pretrained T5 model to three QA datasets Web-
Questions (Berant et al., 2013), TriviaQA (Joshi
et al., 2017), and NaturalQuestions (Kwiatkowski
et al., 2019) without any access to external knowl-
edge to test how much knowledge contained in
the LM. The results show that fine-tuned T5 per-
forms competitively with retrieval-based systems,
and indicate that large pretrained LMs contain vast
world knowledge. Lewis et al. (2021) argues that
LMs can complete the closed-book QA tasks well,
mostly due to high test-train overlaps. Wang et al.
(2021) designs a knowledge memory task and a
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question-answering task on datasets with low test-
train overlaps to evaluate the capability of BART
(Lewis et al., 2020) to serve as a KB for closed-
book QA. The results show that closed-book QA is
still challenging for BART, both in terms of mem-
orizing the knowledge and answering the ques-
tions. Dhingra et al. (2022) proposes a time-aware
T5 model which jointly models the text with its
timestamp, and constructs a new dataset called
TEMPLAMA for probing LMs for temporal facts.
Apart from closed-book QA, Dai et al. (2022) ex-
amines cloze tasks for BERT to identify the neu-
rons that store specific facts. The results demon-
strate the provenance of specific knowledge in the
parameters of an LM. Zhu et al. (2020); Cao et al.
(2021) focus on editing stored knowledge without
affecting other facts. These works further explore
the ability of LMs and expand their functions as
KBs.

6 Conclusion

Temporal knowledge widely exists in real-world
KBs. In this work, we extend the LM-as-KB
paradigm to the temporal domain and argue that
pretrained LMs have fairly good capability to
serve as temporal knowledge bases in terms of
their capacity to store temporal knowledge and
their ability to use stored temporal knowledge.
However, our analysis also shows that conflicting
information poses great challenges to the LM-as-
KB paradigm, such as the drop in storage accuracy
and the difficulty in memorizing multiple answers.

Limitations

Our proposed dataset (LAMA-TK) takes the tem-
poral scopes of temporal facts and N-M relations
into account. However, LAMA-TK does not con-
tain questions that require complex temporal rea-
soning, such as "First-Last: [MASK] was the first
president of the United States." and "Before-After:
[MASK] was the president of United States af-
ter Barack Obama.". (Saxena et al., 2021) eval-
uated BERT, RoBERTa, KnowBERT, and T5 on
CronQuestions, which contains 232k such com-
plex questions, but the results showed that these
large pretrained language models perform very
poorly (lower than 0.01 Hit@1 values).

In this work, we propose utilizing the masked
LM RoBERTa as a temporal KB. Compared to
T5-cbqa (Roberts et al., 2020) (737 million pa-
rameters), RoBERTa with 12 layers only has 120

million parameters. This makes our experiments
lightweight. Moreover, we train RoBERTa to
memorize temporal facts via MLM (Devlin et al.,
2019). It is possible that incorporating factual
knowledge into PLMs (Sun et al., 2019, 2020) or
augmented LMs with memory banks (Févry et al.,
2020; Verga et al., 2020) would allow these LMs
to memorize factual knowledge more efficiently.

Finally, to explore the capability of an LM to
memorize conflicting information (1-N, N-1, N-M
relations), we additionally use Hit@K as the evalu-
ation metric to evaluate how many correct answers
are contained in the top k predictions. However,
we do not consider how to distinguish correct an-
swers from the predictions of LMs and how many
correct answers should be recalled for a query.
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A Details of LAMA-TK

Knowledge Sources The knowledge sources of
LAMA-TK are from CronQuestions(Saxena et al.,
2021) and Wikidata. We extracted all facts with
both a start date and an end date. Following (Dhin-
gra et al., 2022), we reserved the top 7 most fre-
quent temporally rich relations from our collected
temporal knowledge, namely
• position held
• member of sports team
• employer
• award received
• country of citizenship
• spouse

This results in 639k temporally-scoped facts,
with 316k entities. Statistics of entities in LAMA-
TK have been shown in Table 6.

Fact to Text For each fact, we write a template
to convert it to natural language statements. For
example, for the fact <Giannis Antetokounmpo,
Member of Sports Team, Filathlitikos B.C., 2011,
2013>, we use the template "[X] held the position
of [Y]" to convert the fact triple <Giannis Ante-
tokounmpo, Member of Sports Team, Filathlitikos
B.C.> to text "Giannis Antetokounmpo played for
Filathlitikos B.C.". Templates are shown in Ta-
ble 8.

For most relations, we use the prompt template
"from ST to ET" to convert temporal scopes to nat-
ural language texts. However, "award received" is
an exception. It is not a durative relation, the start
time of the facts is always equal to the end time.
Therefore, we use a new prompt template "in T" to
convert these temporal scopes to texts.

Finally, we concatenate the factual text and tem-
poral text, and we get the factual statements.

Constructing Queries Table 9 shows the mask-
ing process. For each factual statement, we mask
the subject, object, start time, and end time, re-
sulting in four masked statements. We reserve the
masked entity and collect all correct answers to the
masked statements as the answer list. We train the
LMs to predict the masked entity, and use both the
masked entity and the answer list for evaluation
purposes. If the masked entity is in the top k an-
swers of the model, Hit@K is 1. If any of the top k
answers of the model is in the answer list, Acc@K
is 1.

Note that previous works tended to mask the
object of each factual statement only because

Table 6: Number of entities in LAMA-TK across dif-
ferent types. Please refer to Appendix A.

Person Position Sport Team Company
248463 42006 10953 6768
Prize Institution Country Time
3399 3696 152 1539

Table 7: Examples of Time-aware T5, TempoBERT
and our proposed prompt-based temporal scope mod-
eling. Our proposed pompt-based temporal scope mod-
eling jointly model text and temporal scopes, which is
more suitable for handling temporally-scoped knowl-
edge.

Time-aware T5 (Dhingra et al., 2022)
year 1995: Michael Jordan plays for Chicago Bulls.

TempoBERT (Rosin et al., 2022)
<1995> Michael Jordan plays for Chicago Bulls.

Prompt-based Temporal Scope Modeling(ours)
Michael Jordan played for Chicago Bulls from 1995 to
1998.

masking the subject would introduce multi-answer
statements. For example, "[MASK] played for
Chicago Bulls from 1995 to 1998" has more cor-
rect answers than "Michael Jordan played for
[MASK] from 1995 to 1998".

B Further Analysis on Prompt-based
Temporal Scope Modeling

Some works have focused on jointly modeling
time and text. Time-aware T5(Dhingra et al.,
2022) adds a time prefix to each text to jointly
model time and text (e.g., "year:2016 Eden Hazard
plays for Chelsea F.C"). TempoBERT(Rosin et al.,
2022) adds a time token to the top of the input se-
quence and designs time masking to encode time
into the models (e.g., "<2022> Joe Biden serves
as the president of the United States"). Examples
have been shown in Table 7.

These approaches focus on modeling text with
a single timestamp. However, the temporal knowl-
edge stored in knowledge bases usually contains
temporal scopes (start and end times). Although
we can split temporal scopes into years and jointly
model the years and texts, this splitting process
will lead to a massive increase in factual state-
ments that the model needs to memorize, and in-
troduce a large amount of conflicting information
(e.g., "Michael Jordan played for Chicago Bulls
from 1995/1996/1997/1998"). Section 4.1 has
shown that conflicting information can lead to a
decrease in the storage capacity of an LM. There-
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Table 8: Templates used for converting temporally-scoped knowledge to natural language statements.

Wikidata ID Relation Name # Temporal Knowledge Template

P54 member of sport team 276633 [X] played for [Y] from [T] to [T]

P39 position held 227487 [X] held the position of [Y] from [T] to [T]

P108 employer 25154 [X] worked for [Y] from [T] to [T]

P166 award received 75027 [X] received [Y] in [T]

P69 educated at 17842 [X] studied at [Y] from [T] to [T]

P26 spouse 14645 [X] and [Y] were spouses from [T] to [T]

P27 country of citizenship 2145 [X] was a citizen of [Y] from [T] to [T]

Table 9: Example queries for different relations from LAMA-TK. Different from previous work, we mask not only
the object, but also the subject and timestamps. Moreover, we reserve all correct answers for each query. [X], [Y],
[T] refers to the masked subject, object, timestamp respectively. The underlined entities are unmasked entities.

Relation Name Example Query Masked Entity Answer List

educated at [X] studied at University of Freiburg from 1928 to 1929 Philip Showalter Hench Philip Showalter Hench, Bernhard Neumann

position held Murray Hill held the position of [Y] from 1968 to 1970 Minister for Transport Minister for Transport, Minister of Roads

employer Emiliano Aguirre worked for University of Granada from [T] to 1974 1971 1971

member of sport team Michael Jordan played for Chicago Bulls from 1984 to [T] 1993 1993

award received John Bardeen received Nobel Prize in Physics in [T] 1956 1956, 1972

spouse [X] and Rita Gam were spouses from 1949 to 1955 Sidney Lumet Sidney Lumet

country of citizenship Pasquale Brignoli was a citizen of [Y] from 1861 to 1884 Kingdom of Italy Kingdom of Italy

fore, we need to find a joint modeling method that
can preserve the semantic information of temporal
scopes and reduce the introduction of conflicting
information.

To this end, we design a prompt-based tem-
poral scope modeling method. We use prompt
templates such as "from ST to ET" and "in T"
to jointly model the temporal scopes and fac-
tual texts. These prepositions in the prompt tem-
plates augment the semantic information of times-
tamps. Section 4.2 shows RoBERTa with prompt-
based temporal scope modeling method preserves
the temporal boundary of factual knowledge, and
Section 4.3 shows that with prompt-based tempo-
ral scope modeling method, RoBERTa can under-
stand the continuity of temporal scopes without
finetuning. These results provide a proof of con-
cept that prompt-based template scope modeling
can indeed model temporally-scoped knowledge
well.

C Limitations of Top-K Accuracy for
LM-as-KB Tasks

The top-K accuracy metric indicates whether the
top k predictions contain correct answers. For ex-
ample, for the query "John Bardeen received No-
bel Prize in Physics in [MASK]", we assume that
the model recalls one correct answer "1956" in the
top 1 and recalls another answer "1972" in the top
100. Even if the model cannot effectively recall
the correct answer "1972", the Acc@1 and Acc@5

to this query are still 1. Therefore, for LM-as-
KB tasks, Acc@K can only indicate whether LMs
can correctly answer a query but cannot indicate
whether LMs have memorized all correct answers
to the query.

In this paper, we use Hit at top k (Hit@K) to
evaluate whether LMs have high confidence in all
correct answers. For the above example query, the
model recalls one correct answer "1956" at the top
1 so that Hit@10 for the query "John Bardeenn
received Nobel Prize in Physics in [MASK]. –>
1956" is 1. However, the model recalls another cor-
rect answer "1972" at the top 100 so that Hit@10
for the query "John Bardeen received Nobel Prize
in Physics in [MASK]. –> 1972" is 0. Hit@K pro-
vides a more comprehensive result for queries with
multiple answers.

D Details of Models

RoBERTa(12L) RoBERTa(12L) has 12 layers,
768 dimensions, 12 heads, and 125M parameters.
Its parameters are initialized from huggingface
RoBERTa-base6.

RoBERTa(6L) RoBERTa(6L) has 6 layers, 768
dimensions, 12 heads, and 89M parameters. How-
ever, Liu et al. (2019) only provides a 12-layer pre-
trained RoBERTa model (RoBERTa-base) and a
24-layer pretrained RoBERTa model (RoBERTa-
large). Therefore, we initialize RoBERTa(6L)

6https://huggingface.co/roberta-base
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with huggingface DistilRoBERTa-base7, the dis-
tilled version of RoBERTa-base. Although
RoBERTa(6L) is initialized from the distilled ver-
sion of RoBERTa-base, we do not focus on factual
knowledge acquired during pre-training. Follow-
ing (Heinzerling and Inui, 2021), we further train
LMs on LAMA-TK and only take into account
temporal knowledge which is contained in training
data.

RoBERTa-randinit(12L) RoBERTa-
randinit(12L) is a randomly initialized 12-layer
Transformers model, with the same architecture
as RoBERTa(12L).

E Reasons for Not Masking Predicate

In LAMA-TK, we do not mask the predicate be-
cause, for most temporal facts, there is a close as-
sociation between the predicate and the object. For
example, given the object "Nobel Prize in Litera-
ture", the model will directly predict the masked
relation to be "award received", since the predic-
tion for these relations is hardly affected by enti-
ties other than the object.

7https://huggingface.co/distilroberta-base
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