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Abstract

Automatic morphological processing can aid
downstream natural language processing appli-
cations, especially for low-resource languages,
and assist language documentation efforts for
endangered languages. Having long been
multilingual, the field of computational mor-
phology is increasingly moving towards ap-
proaches suitable for languages with minimal
or no annotated resources. First, we survey re-
cent developments in computational morphol-
ogy with a focus on low-resource languages.
Second, we argue that the field is ready to
tackle the logical next challenge: understand-
ing a language’s morphology from raw text
alone. We perform an empirical study on
a truly unsupervised version of the paradigm
completion task and show that, while existing
state-of-the-art models bridged by two newly
proposed models we devise perform reason-
ably, there is still much room for improvement.
The stakes are high: solving this task will in-
crease the language coverage of morphologi-
cal resources by a number of magnitudes.

1 Introduction

Automatic morphological processing tools have
the potential to drastically speed up language docu-
mentation (Moeller et al., 2020) and thereby help
combat the language endangerment crisis (Austin
and Sallabank, 2011). Explicit morphological in-
formation also benefits myriad NLP tasks, such
as parsing (Hohensee and Bender, 2012; Seeker
and Çetinoğlu, 2015), language modeling (Blevins
and Zettlemoyer, 2019; Park et al., 2021; Hofmann
et al., 2021), and machine translation (Dyer et al.,
2008; Tamchyna et al., 2017).

For low-resource languages, valuable morpho-
logical resources are typically small or non-existent.
Of late, the field of computational morphology has
increased its efforts to extend the coverage of multi-
lingual morphological resources (Kirov et al., 2016,
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2018; McCarthy et al., 2020a; Metheniti and Neu-
mann, 2020). Simultaneously, there has been a
revival of minimally supervised and unsupervised
models for morphological tasks, such as segmenta-
tion (Eskander et al., 2019), inflection (Kann et al.,
2017b), and lemmatization (Bergmanis and Gold-
water, 2019). Given the speed of recent develop-
ments, it is important to reflect on where we are as
a field and what future challenges lie ahead.

To this end, we survey recent computational mor-
phology: we review existing multilingual resources
(§2) and tasks and systems (§3), with a focus on
low-resource languages. Given recent develop-
ments in unsupervised segmentation, low-resource
morphological inflection, and unsupervised mor-
phological paradigm completion (Jin et al., 2020;
Erdmann et al., 2020)—which we argue is not fully
unsupervised—we believe the community is poised
for the next logical step: inferring a language’s mor-
phology purely from raw text.

In §4, we formalize a new task: truly un-
supervised morphological paradigm completion
(tUMPC). We then introduce a pipeline with two
novel components (§4.3): one model for aligning
paradigm slots across lexemes and another for pre-
dicting the slots of observed forms. With these, we
assess several state-of-the-art models and the influ-
ence of different types of unlabeled corpora within
the framework of tUMPC. While existing methods
leave room for improvement, they perform reason-
ably enough to support our argument that inferring
a language’s morphology from raw text is within
reach and worthy of community efforts.

To summarize, we present the following con-
tributions: (i) a survey of tasks and systems in
computational morphology with a focus on low-
resource languages; (ii) models for the tasks of
paradigm slot alignment and slot prediction, (iii)
a formalization of the task of truly unsupervised
morphological paradigm completion and (iv) an
evaluation of state-of-the-art approaches and differ-
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ent corpora within the framework of this task. Our
code and data are publicly available.1

2 Morphological Resources

Manually created resources are necessary for devel-
oping and evaluating NLP systems. They also serve
as a basis for research questions in a multilingual
context (Pimentel et al., 2019; Wu et al., 2019).2

Below, we review the two largest active multilin-
gual resources for morphology and a number of
language-specific resources.

Background and Notation The canonical form
of a word is called its lemma, and the set of all
surface forms of a lemma is referred to as that
lemma’s paradigm. As is common, we formally
write the paradigm of a lemma ` as:

π(`) =
〈
f(`,~tγ)

〉
γ∈Γ(`)

, (1)

with f : Σ∗ × T → Σ∗ defining a mapping from a
tuple consisting of the lemma and a vector ~tγ ∈ T
of morphological features to the corresponding in-
flected form. Σ is an alphabet of discrete symbols:
the characters used in the language of lemma `.
Γ(`) is the set of slots in `’s paradigm.

UniMorph The UniMorph project (Sylak-
Glassman et al., 2015a,b; Kirov et al., 2016) is
a database of triples organized into paradigms,
where each triple represents a word as its lemma `,
morpho-syntactic description ~tγ , and surface form
f(`,~tγ). An English example triple is:

mutate mutates V;3;SG;PRS

This structure provides training data for inflec-
tion generation, lemmatization, or paradigm com-
pletion. The most recent version of UniMorph
(McCarthy et al., 2020a) includes 118 languages
and 14.8 million triples, with more languages un-
der development. As it is semi-automatically cre-
ated, issues have been noted—particularly, it is
a convenience sample across languages (Gorman
et al., 2019; Malouf et al., 2020). Still, related
efforts validate themselves using UniMorph, in-
cluding Metheniti and Neumann (2020)—another
Wiktionary-derived resource for morphology. Wik-
inflection captures segmentation information (§3.2)
from Wiktionary templates, though the authors note
some limits in the morphological tags that are ex-
tracted to accompany these.

1https://github.com/Adamits/tUMPC
2This approach has been criticized by Malouf et al. (2020)

due to incompleteness and quality of existing resources.

Universal Dependencies Whereas UniMorph
contains type-level annotations, the Universal De-
pendencies project (UD) is a resource of token-
level annotations. As of writing, the latest release
(v2.8; Zeman et al., 2021) spans 114 languages,
typically semi-automatically extracted from exist-
ing corpora, sometimes with less comprehensive
annotations (Malaviya et al., 2018). The structure
is useful for morphological tagging (§3.1) at the
sentence level (Goldman and Tsarfaty, 2021), and
several languages have parallel text, enabling eval-
uation of projection-based approaches for morphol-
ogy induction, parsing, and other tasks (Yarowsky
et al., 2001; Rasooli and Collins, 2017).

Mapping between UniMorph and Universal De-
pendencies The UD2 morphological annotations
borrow several features from UniMorph.3 Conse-
quently, there is great harmony between the two
schemas. A deterministic mapping (McCarthy
et al., 2018) has shown the synergy; for instance,
Bergmanis and Goldwater (2019) augment a con-
textual tagger with UniMorph inflection tables.

Language-Specific Resources Throughout the
years, many language-specific morphological re-
sources have been created. These include corpora
and treebanks like the morphologically annotated
corpus for Emirati Arabic by Khalifa et al. (2018).
Resources also come in the form of morphological
databases, such as CELEX for Dutch, English and
German (Baayen et al., 1996), or morphological
analyzers, such as the Paraguayan Guaranı́ analyzer
presented by Zueva et al. (2020).

Creation of morphological resources is an ongo-
ing effort which in recent years has increasingly
focused on low-resource languages. Several confer-
ences and workshops like LREC (Calzolari et al.,
2020), SIGMORPHON (Nicolai et al., 2021), Com-
putEL (Arppe et al., 2021), AmericasNLP (Mager
et al., 2021), PYLO (Klavans, 2018) and FSMNLP
(Maletti and Constant, 2011) have presented and
continue to present language-specific tools and
datasets for computational morphology.

3 Where We Are: Tasks and Systems

3.1 Morphological Tagging
Morphological tagging is a sequence-labeling task
similar to part-of-speech (POS) tagging. As a
token-level task, it considers words in context.

3http://universaldependencies.org/v2/
features.html#comparison-with-unimorph
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Given a sentence, it consists of assigning to
each word f(`,~tγ) a morphosyntactic description
(MSD), i.e., a tag representing the morphological
features ~tγ it expresses. For instance, in the sen-
tence The virus mutates, the word mutates would
be assigned the tag V;3;SG;PRS. Morphological
tagging was featured in the SIGMORPHON 2019
shared task (McCarthy et al., 2019).

Systems A leading non-neural morphological
tagger is MARMOT (Mueller et al., 2013), a higher-
order conditional random field (CRF; Lafferty
et al., 2001) tagger. Of late, LSTM (Hochreiter and
Schmidhuber, 1997) and Transformer (Vaswani
et al., 2017) models have been used for tagging
(Heigold et al., 2016, 2017; Nguyen et al., 2021).

For low-resource languages, both projection-
based approaches (Buys and Botha, 2016) and
cross-lingual transfer approaches via multitask
training (Cotterell and Heigold, 2017) have been
developed. 16 systems were submitted to the SIG-
MORPHON 2019 shared task4 (McCarthy et al.,
2019), which featured 66 languages. The winning
team (Kondratyuk, 2019) built a tagger based on
multilingual BERT (Devlin et al., 2019), thus em-
ploying cross-lingual transfer; for other systems,
we refer the reader to the shared task overview. The
largest multilingual morphological tagging effort
to date is that by Nicolai et al. (2020) who build
morphological analyzers for 1108 languages using
projection from a high-resource to a low-resource
language via the aligned text in the JHU Bible Cor-
pus (McCarthy et al., 2020b).

3.2 Morphological Segmentation

The goal of morphological segmentation (Gold-
smith, 2010) is to split words into their smallest
meaning-bearing units: morphemes. We discuss
both surface and canonical segmentation here.

3.2.1 Surface Segmentation
During surface segmentation, a word is split into
morphemes in a way such that the concatenation
of all parts exactly results in the original word. An
example (with “*” marking boundaries) is:

mutates→ mutate * s

Surface segmentation was the focus of the Morpho
Challenge from 2005 to 2010 (Kurimo et al., 2010).

4The task is concerned with joint lemmatization and tag-
ging, but systems can be used for separate tagging as well.

The competition featured datasets in Finnish, Turk-
ish, German, English, and Arabic. Additionally,
segmentation was a track (alongside morphologi-
cal analysis and generation) of LowResourceEval-
2019 (Klyachko et al., 2020), a shared task which
featured four low-resource languages from Rus-
sia. The shared task overview lists morphological
resources for other Russian languages.

Systems Many approaches to this task are un-
supervised. Harris (1970) identifies morpheme
boundaries in English based on the frequency of
characters at the end of a word. LINGUISTICA
(Goldsmith, 2001) finds sets of stems and suffixes
that represent the minimum description length of
the data. MORFESSOR (Creutz and Lagus, 2002)
introduces a family of probabilistic models for iden-
tifying morphemes, which have seen wide use, in-
cluding variations of the original model (Virpioja
et al., 2009; Smit et al., 2014). Lignos et al. (2009)
learn rewrite rules that can explain many types
in the corpus. Poon et al. (2009) apply a CRF
to unsupervised segmentation by learning parame-
ters with contrastive estimation (Smith and Eisner,
2005). Incorporating semantic similarity between
related words that form ”chains” has also been
shown to be effective (Narasimhan et al., 2015).
Monson et al. (2007) propose a segmentation al-
gorithm that exposes the properties of partial mor-
phological paradigms in order to learn segments.
Xu et al. (2018) iteratively refine segments accord-
ing to their distribution across paradigms. They
filter unreliable paradigms with statistically reli-
able ones, and induce segments with the proposed
partial paradigms. Both systems can only model
suffix concatenation. Xu et al. (2020) follow a
similar strategy, but incorporate language typol-
ogy, expanding beyond suffixes, and outperform
Xu et al. (2018). MorphAGram (Eskander et al.,
2020) is a publicly available tool for unsupervised
segmentation based on adaptor grammars (Johnson
et al., 2007).

Supervised (Creutz and Lagus, 2005; Ruoko-
lainen et al., 2013; Cotterell et al., 2015) and semi-
supervised systems (Ruokolainen et al., 2014) also
exist. Non-neural systems are often based on CRFs.
Ruokolainen et al. (2013) focus explicitly on low-
resource settings and perform experiments on Ara-
bic, English, Hebrew, Finnish, and Turkish with
training set sizes as small as 100 instances.

Neural models have also been applied to surface
segmentation: Wang et al. (2016) obtain strong re-
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sults with window LSTM neural networks in the
high-resource setting, Seker and Tsarfaty (2020)
introduce a pointer network (Vinyals et al., 2015)
for segmentation and tagging, and Micher (2017)
propose a segmental RNN (Kong et al., 2015)
for segmentation and tagging of Inuktitut. Kann
et al. (2018b) explore LSTM-based sequence-to-
sequence (seq2seq) models for segmentation in
combination with data augmentation, multitask and
multilingual training; they evaluate on datasets they
introduce for four low-resource Mexican languages.
Eskander et al. (2019) apply an unsupervised ap-
proach based on adaptor grammars to the same
languages; it outperforms supervised methods in
some cases. Sorokin (2019) show that CNNs out-
perform RNN-based models on that data as well as
on North Sámi (Grönroos et al., 2019).

Additional contributions have been made by
Yarowsky and Wicentowski (2000), Schone and Ju-
rafsky (2001), and Clark (2001). Linguistically in-
formed approaches show demonstrable value com-
pared to approaches like BPE; see Church (2020)
and Hofmann et al. (2021). Still, not all morpholog-
ical phenomena are suited for a segmentation-based
analysis, as in fusional morphology that sometimes
leaves ambiguity as to where a morpheme bound-
ary lies; indeed in some cases there is no consensus
among linguists as to the proper segmentation of a
word. Therefore, (especially surface) segmentation
is not necessarily meaningful for all languages.

3.2.2 Canonical Segmentation
Canonical segmentation is more complex: its aim is
to jointly split a word into morphemes and to undo
the orthographic changes which have occurred dur-
ing word formation. As a result, each word is seg-
mented into its canonical morphemes. While often
not being modeled this way in practice, the task
can be seen as the following two-step process:

manic→ maniaic→ mania * ic

Systems The state-of-the-art pre-neural system
is the CRF-based model by Cotterell et al. (2016c),
which is jointly trained on segmentation and
restoration of orthographic changes. The unsuper-
vised system of Bergmanis and Goldwater (2017)
builds upon MorphoChains (Narasimhan et al.,
2015). Neural models are typically based on
seq2seq architectures: Kann et al. (2016) use a
seq2seq GRU and a feature-based reranker. Like
Cotterell et al. (2016c), they evaluate on German,
English, and Indonesian. Ruzsics and Samardžić

(2017) use a similar system, but add a language
model over canonical segments and do not require
external resources. In addition to German, English,
and Indonesian, they evaluate on Chintang, a truly
low-resource language spoken in Nepal. Wang et al.
(2019) use a character-level seq2seq model for (sur-
face and) canonical segmentation in Mongolian.
Mager et al. (2020) show the benefit of copy mech-
anisms and introduce datasets for two low-resource
Mexican languages. Moeng et al. (2021) show that
Transformers outperform RNNs for canonical seg-
mentation in four Nguni languages.

3.3 Lemmatization, Inflection, Reinflection

Inflection and reinflection have recently gained
popularity in computational morphology by being
featured in yearly SIGMORPHON shared tasks
(Cotterell et al., 2016b). They are concerned with
generating inflected forms f(`,~tγ) of a lemma `;
the target inflected form can be specified in dif-
ferent ways, depending on the exact task formu-
lation. While the terms inflection and reinflection
are sometimes used synonymously in the literature,
inflection refers to generating a word form from a
given lemma, while reinflection refers to genera-
tion from an arbitrary given form in the paradigm.
Lemmatization is a special case of reinflection: in-
stead of generating an indicated inflected form, a
lemma is produced. As the target form is implicitly
determined by the task definition, lemmatization
generally does not require tags to indicate which
form to generate.

3.3.1 Type-level Versions
Most commonly, lemmatization, inflection and re-
inflection are type-level tasks. The input consists of
an input form together with the target MSD (which
can be omitted for lemmatization). The output is
the corresponding inflected form, for instance:

mutated V;3;SG;PRS→ mutates

The version of reinflection featured in the SIG-
MORPHON 2016 shared task also provides the
MSD of the source form, but performance improve-
ments are usually minor (Cotterell et al., 2016a).

Systems Pre-neural systems for the task include
those by Durrett and DeNero (2013) and Nicolai
et al. (2015). These systems align lemmas and in-
flections before extracting character-level transduc-
tions for training CRF-inspired models. Faruqui
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et al. (2016) propose the first neural model for mor-
phological inflection, an RNN seq2seq model, but
fail to outperform prior approaches on some of
the datasets they evaluate on. The breakthrough
for neural models was the SIGMORPHON 2016
shared task (Cotterell et al., 2016a), with about
one third of the systems being neural: the winning
system (Kann and Schütze, 2016a,b) used multi-
task training by encoding MSDs together with the
character sequence of the source word. This ap-
proach has now become the standard for the task,
and while a multilingual version of the model by
Kann and Schütze (2016a) was submitted to the
SIGMORPHON 2021 shared task (Pimentel et al.,
2021; Szolnok et al., 2021), the same multitask
approach has since been used with other seq2seq
models such as Transformers (Wu et al., 2021).
Ensembles have been shown to improve perfor-
mance for inflection (Kann and Schütze, 2016a)
and have been systematically studied for the task
by Kylliäinen and Silfverberg (2019).

The SIGMORPHON shared tasks on morpho-
logical inflection have focused increasingly on
low-resource settings. Seq2seq models with hard
monotonic attention (Aharoni and Goldberg, 2017),
a copy mechanism (Sharma et al., 2018; Singer
and Kann, 2020), or both (Makarov et al., 2017;
Makarov and Clematide, 2018a,b) obtain great re-
sults for training sets as small as 100 examples.
Cross-lingual transfer via multitask training was
proposed by Kann et al. (2017b) for GRU seq2seq
models and has later been used with other architec-
tures, e.g., in the SIGMORPHON 2019 shared task
on cross-lingual transfer (McCarthy et al., 2019).

Another approach suitable for low-resource lan-
guages is data augmentation. For morphologi-
cal inflection, this was suggested by several con-
temporaneous works (Kann and Schütze, 2017;
Bergmanis et al., 2017; Silfverberg et al., 2017). In
the following years, other augmentation strategies
have been developed (Anastasopoulos and Neubig,
2019). The success of data augmentation is mixed,
as it is largely dependent on the architecture (Does
it have to learn how to copy or is there a copy
mechanism?) as well as on the quality of the origi-
nal data, which influences the quality of artificially
generated examples.

3.3.2 Token-level Versions
The token-level version of the task is often referred
to as lemmatization or inflection in context. Here
the information about which form to generate is

explicitly given via a sentence context in which the
target word should be embedded, e.g.:

mutate – The virus [MASK].→ mutates

A drawback of this formulation is that typically
many different inflected forms are possible within
the same context: in the given example, mutates
is the gold solution, but mutated would be equally
grammatical. To overcome this, multiple gold so-
lutions can be provided (Cotterell et al., 2018). It
might be impossible to unambiguously define the
target form for some languages if the speaker’s
intention is unknown.

Systems Lemmatization in context is arguably
easier than inflection or reinflection, as the target
form for generation is implicitly defined. Neu-
ral models for inflection are seq2seq architectures:
Bergmanis and Goldwater (2018) propose Lematus,
a character-level LSTM, which they later extend to
the low-resource setting by training on labeled data
in combination with raw text (Bergmanis and Gold-
water, 2019). They explore data settings as small
as 1k types each from UD and UniMorph. Zal-
mout and Habash (2020) use a similar architecture
to Lematus but add subword features. Malaviya
et al. (2019) present a joint model for tagging and
lemmatization and show that joint training benefits
low-resource languages. They evaluate on 20 lan-
guages, using data from UD. The best lemmatizer
in the SIGMORPHON 2019 shared task (McCarthy
et al., 2019), UDPipe (Straka et al., 2019), is based
on BERT (Devlin et al., 2019).

Inflection in context can be tackled by neural
seq2seq models too. Models typically either see a
context window around the target word (Makarov
and Clematide, 2018c; Kann et al., 2018a; Ács,
2018) and then are optionally trained via multitask
training (Kementchedjhieva et al., 2018) or predict
the MSD of the form to generate as a first step (Liu
et al., 2018). Kementchedjhieva et al. (2018) show
that a multilingual model can aid low-resource lan-
guages via cross-lingual transfer.

3.4 Paradigm Completion
The paradigm cell filling problem (Ackerman et al.,
2009) – also called supervised paradigm comple-
tion (Cotterell et al., 2017a) – is yet another inflec-
tion task, but differs from the above ones in that
the inflected forms for all slots Γ(`) of lemma `’s
paradigm need to be generated and that the input
can consist of one or more forms.

992



Systems Many approaches for the paradigm cell
filling problem are effectively systems for mor-
phological reinflection and generate all forms of
a paradigm individually and from a single input
form, e.g., Silfverberg et al. (2017); Silfverberg
and Hulden (2018); Moeller et al. (2020). Kann
et al. (2017a) propose a model for multi-source in-
flection, showing that multiple available forms per
paradigm can be beneficial for generation, but do
not evaluate on paradigm completion. Two notable
exceptions which design approaches explicitly for
the paradigm cell filling problem are Cotterell et al.
(2017b) and Kann and Schütze (2018). Cotterell
et al. (2017b) rely on the notion of principal parts
(Finkel and Stump, 2007) to jointly generate all
forms in the paradigm. Kann and Schütze (2018)
use a transductive training approach, fine-tuning on
a paradigm’s input forms before generating missing
target forms. The latter shows good performance
for training sets with as few as 10 paradigms.

3.5 Paradigm Clustering

Paradigm clustering can be seen as a first step to-
wards the unsupervised analysis of a language’s
morphology and is typically part of pipelines for
unsupervised paradigm completion (§3.6). The
goal of paradigm clustering is to group all types
in a corpus into (partial) morphological paradigms.
For example, the input The, virus, mutates, after, it,
has, mutated should result in the paradigm cluster
(mutates, mutated) and 5 singleton clusters. Sys-
tems for the task can be evaluated using best-match
F1 (BMF1; Wiemerslage et al., 2021).

Systems Perhaps the seminal work in
distributionally-based paradigm clustering is
the work of Yarowsky and Wicentowski (2000).
Their work predates embedding-based approaches
while leveraging both distributional features of
context and relative frequency, along with early
statistical models of inflection-to-lemma string
transduction. For instance, the work succeeds
in identifying that the past tense of ‘sing’ is not
‘singed’ but ‘sang’, based on both the distributional
signatures of music vs. fire terms in context, as
well as the distribution of observed tense frequency
ratios, where the regular sing:singed pairing can
also be rejected given its frequency ratio is several
standard deviations off of expectation, while the
irregular sing:sang pairing occurs at nearly exactly
the ratio expected. While contextual information
has been incorporated in follow-up works (Schone

and Jurafsky, 2001) and in recent approaches by
means of word embeddings, we do not see much
follow-on use of the frequency ratio features,
which remain ripe for disambiguation of paradigm
members.

Segmentation approaches like Goldsmith (2001),
developed to segment words into stems and af-
fixes, can also be used to induce paradigm clus-
ters. Chan (2006) formalizes the notion of a prob-
abilistic paradigm — modeling conditional proba-
bilities of suffixes given paradigms and paradigms
given stems. However, they that a segmentation
is given, and only model regular morphology for
unambiguous words, or those with a known POS.
Some segmentation algorithms induce paradigms
as a byproduct, as in Monson et al. (2007), Xu et al.
(2018) and Xu et al. (2020). These can also be
employed as paradigm clustering systems.

Several systems have been proposed for the SIG-
MORPHON 2021 shared task (Wiemerslage et al.,
2021). The best performing system (McCurdy
et al., 2021) segments input types with MorphA-
Gram (Eskander et al., 2020), then groups the re-
sulting stems into paradigm clusters. Yang et al.
(2021) learn frequent transformation rules and clus-
ter types together that result from rule application.

3.6 Unsupervised Paradigm Completion

Due to the recent progress on supervised morpho-
logical tasks, unsupervised paradigm completion
(UMPC; or the paradigm discovery problem (El-
sner et al., 2019)) has recently (re)emerged as a
promising way to automatically extend morpho-
logical resources such as UniMorph to more low-
resource languages. Similar to the supervised ver-
sion of the task, the goal is to generate the inflected
forms corresponding to all slots Γ(`) of lemma `’s
paradigm. However, no morphological annotations
are given during training. Two independent works
propose similar unsupervised paradigm completion
setups. In Jin et al. (2020), the basis of the SIG-
MORPHON 2020 shared task (Kann et al., 2020),
the input consists of 1) a corpus in a low-resource
language and 2) a list of lemmas from one POS in
that language. In Erdmann et al. (2020), the inputs
are 1) a corpus and 2) a list of word forms belong-
ing to a single POS. For both, the expected output
is the paradigms for the words in the provided list.

As systems are trained without supervision, they
cannot output human-readable MSDs and, instead,
assign uninterpretable slot identifiers to generated
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forms. Thus, evaluation against gold standard data
from UniMorph is non-trivial. Jin et al. (2020) pro-
pose to evaluate systems via best-match accuracy
(BMAcc): the best accuracy among all mappings
from pseudo tags to paradigm slots.

Systems State-of-the-art systems for paradigm
completion follow a pipeline approach similar to
that by Jin et al. (2020): 1) based on the given
input forms, they detect transformations which
happen during inflection (and sometimes new lem-
mas), 2) the paradigm structure is detected based on
the transformations, and 3) an inflection model is
trained to generate missing surface forms. Jin et al.
(2020) employ the inflection model by Makarov
and Clematide (2018a), while Mager and Kann
(2020) use the LSTM pointer-generator model from
Sharma et al. (2018), and Singer and Kann (2020)
implement a Transformer-based pointer-generator
model. The performance across languages is mixed
(Kann et al., 2020).

Is the Task Truly Unsupervised? Existing ver-
sions of the unsupervised paradigm completion
task make small concessions to supervision re-
quirements by providing lists of lemmas or surface
forms from a single POS. This simplifies a diffi-
cult task, but also makes it less realistic. From the
point of view of data availability, this method is not
language-agnostic, as many languages do not have
the required documentation: many of the world’s
languages have fuzzy POS definitions, and no an-
notated POS corpora. From a language learning
perspective, existing methods are closer to L2 than
to L1 learning.

Under this framing, UMPC requires only dis-
covering the set of inflection slots for a single
paradigm, of a single POS that must be known a
priori. The presence of a word list also allows sys-
tems to anchor to a privileged form and simplifies
paradigm clustering to a retrieval task.

4 What’s Next: Truly Unsupervised
Paradigm Completion

4.1 Motivation

We introduce a version of UMPC that more strictly
removes human intervention. By removing the
input lexicon and evaluating more than one POS,
we minimize any prior human involvement with
the data and better evaluate a system’s ability to
generalize. This means that our only input is a raw
text corpus, and it introduces two challenges. 1) We

must model the entire training corpus, rather than
a filtered set of words. 2) We must predict which
slots to generate at test time. We design test sets
to evaluate these problems, ensuring they include
paradigms from at least two POS, and prompt for
input forms in context, half of which are unseen in
the training corpora, so systems can infer the input
word POS. We refer to this version of the task as
truly unsupervised paradigm completion (tUMPC).

4.2 Data and Languages

Languages We select three development lan-
guages (English, Finnish, and Swedish) and four
test languages (German, Greek, Icelandic, and
Russian). We select our test languages to maxi-
mize orthographic and typological diversity, given
three constraints: (1) a large number of available
paradigms in UniMorph, (2) two or more POS in
UniMorph, and (3) no known issues with the Uni-
Morph data such as large numbers of missing forms.
(We exclude all paradigms containing multiword
forms.) We note that this yields a set of test lan-
guages that are all Indo-European, though it spans
three different orthographies.

Raw Text Corpora We experiment on two cor-
pora: the JHU Bible Corpus (McCarthy et al.,
2020b) and a child-directed corpus we create by
digitizing children’s books. While many stud-
ies in computational morphology focus on tran-
scripts of child-directed speech from databases like
CHILDES (MacWhinney, 2014), child-directed
books are part of parent’s child-directed talk, and
are thus an important source of language for many
children (Montag et al., 2015). We translate the
child-directed corpus into all of our languages from
English using the Google Translate API following
Dou and Neubig (2021). We tokenize with spaCy.5

Details are given in Table A.1.

Test Data Our test data consists of words in con-
text from two different corpora – Wikipedia (Ginter
et al., 2017) and JW300 (Agić and Vulić, 2019) –,
plus their gold paradigms from UniMorph. A de-
tailed description of the preparation of the test data
can be found in Appendix C.2.

4.3 Models

To use existing state-of-the-art approaches and to
evaluate them within the framework of tUMPC,

5https://spacy.io
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we tackle the task with a pipeline approach, con-
ducting 4 steps: 1) paradigm clustering, 2) slot
alignment, 3) slot prediction, and 4) inflection gen-
eration. State-of-the-art models exist for Steps 1
and 4, and we propose systems for Steps 2 and 3
here, together with descriptions of those subtasks.
Hyperparameters for all models are in Appendix B.

Paradigm Clustering The first step for tUMPC
is clustering words into paradigms. We compare
3 paradigm clustering algorithms: McCurdy et al.
(2021, McC), Xu et al. (2018, Xu), and the baseline
from Wiemerslage et al. (2021, SIG). We modify
SIG so it does not predict clusters which are sub-
sets of other clusters, which improves precision.
For reference, we provide those systems’ paradigm
clustering results in Table A.2. In some clustering
systems, each type appears in only one paradigm,
which confounds our task for types that can instan-
tiate more than one POS, and thus more than one
inflectional paradigm, depending on the context.

Slot Alignment Slot alignment is concerned
with identifying which words across paradigms
express the same inflectional information.

The system we propose for the task first re-
moves all singleton paradigm clusters from the
input, as they contain no inflection pairs to learn
from, and converts all remaining clusters into ab-
stract paradigms ci ∈ C (Hulden et al., 2014) by
computing the longest common substring (LCS)
for each cluster. For example, the LCS of the
(true) paradigm of walk is walk, and the abstract
paradigm is X0, X0+ed, X0+ing, X0+s. We filter
abstract forms that appear less than β = 50 times.

Next, we assign a POS tag to each cluster. With
a set of latent tags Z, we define a Bayesian model:

P (k, ci) = P (k)
∏
fj∈ci

P (fj | k) (2)

P (ci) =
∑
k∈Z

P (ci, k) (3)

We then maximize the likelihood of the paradigm
clusters ci ∈ C with an expectation maximization
algorithm (Dempster et al., 1977). The POS assign-
ment for each ci is thus argmaxk(P (k, ci)), and
|Z| is a hyperparameter which we set to 3.

We now have sets Ck. We assign a slot to each
form in an abstract paradigm, considering one Ck

at a time. To this end, we compute a fastText (Bo-
janowski et al., 2017) embedding for each type in

the corpus and compute the embedding for an ab-
stract form a as the average fastText embedding of
all types whose abstract form is a. We define the
similarity of two abstract forms a and a′ as

sim(a, a′) = cos(a, a′)× (1− J(a, a′)), (4)

where cos(a, a′) is the cosine similarity, J is the
Jaccard similarity

J(a, a′) =
|Ca ∩ Ca′ |
|Ca ∪ Ca′ |

, (5)

and Ca is the set of abstract paradigms containing
a. Finally, we apply agglomerative clustering over
the abstract forms with (4) as our similarity metric
and a distance threshold of 0.15.

Slot Prediction Given a test form f(`,~tγ), the
goal of slot prediction is to predict the source slot
~tγ and target slots Γ(`). We treat this as a simplified
POS tagging task and use a character-level Trans-
former seq2seq model to predict a word’s POS tag
and source slot. The model is trained on the results
of the slot alignment step. For every word from the
raw-text corpus that was assigned a slot, we sample
up to 5 unique contexts. A given target word is in-
put with its left and right neighbors; context words
that occur fewer than α = 50 times in the training
data are replaced with OOV. The outputs are the
POS tag and the source slot generated by slot align-
ment. We train our model in FAIRSEQ (Ott et al.,
2019); hyperparameters are in Appendix B.

At test time, the model predicts f(`,~tγ) and the
(pseudo) POS tag. Because the slot alignment step
associates each POS tag with a unique set of slots,
we can perform a simple lookup to find the slots
that f(`,~tγ) inflects for.

Morphological Inflection To generate missing
forms, we train state-of-the-art inflection models
on the results of the slot alignment step and gener-
ate surface forms according to the slot prediction.
We experiment with the following three models:
Makarov and Clematide (2018a, M&C), Wu et al.
(2021, Wu), and Kann and Schütze (2016b, K&S).

4.4 Non-neural Baseline
We compare against a rule-based system
(baseline) that heuristically predicts the same set
of slots for all words, and inflects by applying edit
trees to input words. A detailed description is in
Appendix D, together with a comparison between
baseline and our proposed POS-based system
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jw300 wiki

Figure 1: BMAcc for each paradigm clustering system for the POS-based slot aligner; averaged over inflectors.

jw300 wiki

Figure 2: BMAcc for each inflector for the POS-based slot aligner; averaged over paradigm clusters.

for slot alignment and slot prediction. As the
POS-based system clearly outperforms baseline,
we focus the remainder of this paper on the former.

4.5 Results and Discussion
We present results from all experiments in terms of
BMAcc (Jin et al., 2020). Overall, tUMPC is dif-
ficult, though the variance in results over different
components of our pipeline implies that there is a
great deal of room for the community to innovate.
We see the lowest scores for our Greek and Ice-
landic corpora. These have far fewer tokens than
German and Russian, plus higher type–token ratios,
which likely makes the task more challenging.

Impact of the Clustering System Figure 1
shows that the choice of paradigm clustering strat-
egy strongly affects our pipeline’s downstream per-
formance. McC, the best performing clustering sys-
tem on the paradigm clustering task, frequently
outperforms the other two strategies. The excep-
tion to this is Russian, where Xu gives the best
results—by a large margin when learning from the
child-directed training corpora.

Impact of the Inflection System From Figure 2
it is obvious that the choice of inflection model
does not have a large effect on downstream results.
All three systems we compare are known to be
extremely competitive on the supervised inflection
task, so it is reasonable to assume that they fit the
generated training data relatively similarly. Future

work can assess how inflection generation can best
account for the noisy nature of the data in this task,
akin to Michel and Neubig (2018).

Impact of the Corpus The consilience of our re-
sults suggests that the child-directed corpus leads
to slightly better downstream performance, except
in German. Notably, the German Bible contains
far more tokens and far fewer types than the corre-
sponding child-directed corpus (Table A.1), which
may significantly simplify the learning task.

5 Conclusion

Thanks to strong systems for inflection, segmen-
tation, and paradigm completion, computational
morphology is ripe to contribute to the large num-
ber of the world’s languages with very few digital
resources. We explore this through the novel task
tUMPC—which presents several challenges. We
believe that truly unsupervised morphology is an
important direction, and it can have a large impact
on language technology for thousands of languages.
With the goal of preserving endangered languages,
we note that more than half the world’s languages
have no writing system (Harmon, 1995). A frontier
for this task would process speech as a strategy for
language documentation in unwritten languages.
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Slovenia. European Language Resources Associa-
tion (ELRA).

Judith L. Klavans, editor. 2018. Proceedings of the
Workshop on Computational Modeling of Polysyn-
thetic Languages. Association for Computational
Linguistics, Santa Fe, New Mexico, USA.

Elena Klyachko, Alexey Sorokin, Natalia
Krizhanovskaya, Andrew Krizhanovsky, and
Galina Ryazanskaya. 2020. LowResourceEval-
2019: a shared task on morphological analysis
for low-resource languages. arXiv preprint
arXiv:2001.11285.

Dan Kondratyuk. 2019. Cross-lingual lemmatization
and morphology tagging with two-stage multilin-
gual BERT fine-tuning. In Proceedings of the 16th
Workshop on Computational Research in Phonetics,
Phonology, and Morphology, pages 12–18, Florence,
Italy. Association for Computational Linguistics.

Lingpeng Kong, Chris Dyer, and Noah A Smith.
2015. Segmental recurrent neural networks. arXiv
preprint arXiv:1511.06018.

Mikko Kurimo, Sami Virpioja, Ville Turunen, and
Krista Lagus. 2010. Morpho challenge 2005-2010:
Evaluations and results. In Proceedings of the
11th Meeting of the ACL Special Interest Group on
Computational Morphology and Phonology, pages
87–95, Uppsala, Sweden. Association for Computa-
tional Linguistics.
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A Remaining Results from Main Text

The statistics of the data used in our experiments
is given in Table A.1. Paradigm clustering BMF1
is given in Table A.2. Additionally, BMAcc on the
two test corpora is given in Figure A.1.

B Hyperparameters

B.1 Morphological Inflection
Training We train all inflection models on the
(word, source slot, target slot) triples produced by
the slot alignment. Each inflection system consid-
ers the word as an input form, and the slots as the
tags. We take the hyperparameters from (Makarov
and Clematide, 2018a), and (Wu et al., 2021) ex-
actly for each language. For the LSTM, we train
a single layer bidirectional encoder with embed-
ding size 100, and LSTM hidden size of 100. The
decoder is also a single layer LSTM with hidden
size 100. We employ a soft-attention mechanism
(Bahdanau et al., 2015), and optimize with Adam
(Kingma and Ba, 2014) with a learning rate of
0.001, and a gradient clip of 1.0. We train for up
to 30 epochs, and a batch size of 16. We employ a
soft attention mechanism (Bahdanau et al., 2015).

B.2 Slot Prediction
The slot prediction model is a character-level Trans-
former encoder-decoder, where both the encoder
and decoder have 3 layers and 4 attention heads.
We optimize with Adam with a learning rate of
0.0001, and a clip norm of 0.2 for up to 5 epochs.

C Additional Details Regarding our
Datasets

C.1 Statistics of Our Raw-text Corpora
We give dataset statistics in Table A.1, including
type–token ratios. Bible sizes vary depending on
whether or not the Old Testament is included. In the
case of smaller Bibles, we down-sample the child-
directed corpus to have a roughly equal number of
tokens.

C.2 Test Set Creation
We use lemmas and POS tag annotations to match
words from the test corpora with UniMorph entries.
We sample sentences from the annotated Wikipedia
corpora (Ginter et al., 2017) from the ConLL 2017
shared task on Multilingual Parsing (Hajič and Ze-
man, 2017). For Icelandic, which is not included
in this dataset, we use wikiextractor (Attardi, 2015)

to get the raw Wikipedia text, and acquire lemma
and POS annotations with Stanza (Qi et al., 2020).
We hypothesize that systems trained on the Bible
corpus may not generalize well to the modern lan-
guage in Wikipedia. We thus additionally sample
test sentences from the JW300 corpus, which is
more likely to include religious language that re-
sembles that of the bible. For JW300 we rely on
the tokenization provided by the authors, but we
again use Stanza for lemma and POS annotations.

For a given language and test corpus, we group
gold paradigms by POS, and whether at least one
form from the paradigm is attested in both train-
ing corpora. This means we have two categories
for each POS: seen, wherein at least one form is at-
tested in both training corpora, and unseen, wherein
no forms are attested in either training corpus. We
sample up to 200 paradigms from each category,
ensuring that each category contributes an equal
number of paradigms to the gold set. Then one
surface form for each gold paradigm is sampled at
random, in context, from the test corpus to serve as
input to the systems at test time.

D Non-Neural Baseline for tUMPC

Given the set of word form clusters c1, ..., ck,
where each cluster ci = {f1, ..., fn} is a collec-
tion of forms fj . We start by extracting all edit
trees t = EditTree(f, f ′) (Chrupała, 2008), where
f and f ′ belong to the same cluster. Let Count(t)
be the count of tree t across the entire training
set. Further, let MLen(t) be the total number of
characters which have to match in the input string,
when we apply edit tree t. For example, for an
edit tree t which maps walking to walks, a suf-
fix ing must match, so MLen(t) = 3. Finally, let
MStr(t) = u be the string consisting of all inser-
tions performed by the edit tree. For the given
example t, MStr(t) = s

When generating outputs for a given form f ,
we first form the set of all edit trees which can
be applied to f . We then order them in the fol-
lowing way: t > t′ if MLen(t) > MLen(t′), or
if the precondition lengths are equal, Count(t) >
Count(t′). We then apply the top-N trees to f
to generate all remaining forms in the inflectional
paradigm of f . We set N to the 95th percentile
of paradigm sizes in our input cluster data, not
counting singleton paradigms. Each slot labed is
assigned based on t as MStr(t). Note that this will
typically not generate a slot label for the input form
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Corpus Language Lines Tokens Types Type–Token Ratio

Bible German 31102 813317 20644 0.025
Greek 7914 194135 15541 0.080
Icelandic 7860 185995 13050 0.070
Russian 31102 714828 43542 0.061

Child Directed German 26592 633229 31384 0.050
Greek 8513 196344 18424 0.090
Icelandic 8380 181687 17767 0.101
Russian 26592 586274 44823 0.077

Table A.1: Statistics for raw text corpora used for morphology learning

Bible Child-Directed

System DEU ELL ISL RUS Average DEU ELL ISL RUS Average

McC 79.19 81.91 81.66 82.01 81.19 87.72 73.68 84.65 86.28 83.08
Xu 63.90 65.14 67.81 52.80 63.91 70.02 46.14 55.22 63.48 58.72
SIG 46.04 57.22 47.24 45.10 48.90 45.69 47.04 43.08 47.80 45.90

Table A.2: Paradigm clustering BMF1 scores for a sample of clusters attested in UniMorph.

jw300 wiki

Figure A.1: BMAcc for both slot alignment systems on each test corpus, averaged over results for all input clusters.
The POS-based system is also averaged over each inflection system.

f . We, therefore, find the maximal edit tree t (in
the sense that it has maximal precondition length
and count) which translates one of the generated
forms f ′ back into the original input form f . The
slot label for form f is then MStr(t).

A comparison between baseline and our pro-
posed POS-based system is shown in Figure A.1.
The latter outperforms baseline in the majority
of settings, often by a large margin.
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