
Findings of the Association for Computational Linguistics: ACL 2022, pages 637 - 647
May 22-27, 2022 c©2022 Association for Computational Linguistics

Inverse is Better! Fast and Accurate Prompt for Few-shot Slot Tagging

Yutai Hou∗, Cheng Chen∗, Xianzhen Luo, Bohan Li, Wanxiang Che†
Research Center for Social Computing and Information Retrieval,

Harbin Institute of Technology
{ythou, cchen, xzluo, bhli, car}@ir.hit.edu.cn

Abstract
Prompting methods recently achieve impres-
sive success in few-shot learning. These meth-
ods modify input samples with prompt sen-
tence pieces, and decode label tokens to map
samples to corresponding labels. However,
such a paradigm is very inefficient for the task
of slot tagging. Since slot tagging samples
are multiple consecutive words in a sentence,
the prompting methods have to enumerate all
n-grams token spans to find all the possible
slots, which greatly slows down the predic-
tion. To tackle this, we introduce an inverse
paradigm for prompting. Different from the
classic prompts mapping tokens to labels, we
reversely predict slot values given slot types.
Such inverse prompting only requires a one-
turn prediction for each slot type and greatly
speeds up the prediction. Besides, we propose a
novel Iterative Prediction Strategy, from which
the model learns to refine predictions by consid-
ering the relations between different slot types.
We find, somewhat surprisingly, the proposed
method not only predicts faster but also signif-
icantly improves the effect (improve over 6.1
F1-scores on 10-shot setting) and achieves new
state-of-the-art performance.

1 Introduction

Few-shot learning (FSL) aims at learning a model
from only a few examples and is regarded as one
of the key steps toward more human-like artificial
intelligence (Wang et al., 2020). Recently, prompt-
based methods achieve impressive results and show
promising prospects for few-shot learning of Natu-
ral Language Processing (NLP) (Liu et al., 2021a;
Zhao et al., 2021).

Prompt-based methods reformulate a target task
into the language modeling problem, which takes
advantages of the powerful pretrained Language
Models (LM) (Devlin et al., 2019; Liu et al., 2019;

*Equal contributions.
†Corresponding author.

G
P
T
2

none

beijing

none

tomorrow morning

G
P
T
2 new york

none

departure refers to“ Original Input ”

refers to“ Original Input ” arrival

time refers to“ Original Input ”

refers to“ Original Input ” price

tomorrow morning.“ Original Input ” time refers to .departure refers to beijing .refers toprice

Mapped LabelsOriginal Labels

To.Loc

Time

Price

From.Loc

time

price

departure

arrival

Original Input: book a flight from beijing to new york tomorrow morning

arrival.“ Original Input ” refers to tomorrow morning .departure refers to beijing .refers totime

1.

2.

主图

…
Query LM

× 55

[CLS] is a [MASK] entity . [SEP]Original Input book

[CLS] is a [MASK] entity . [SEP]Original Input book a

[CLS] is a [MASK] entity . [SEP]Original Input morning

Original Input: book a flight from beijing to new york tomorrow morning

timeprice departurearrivalnone

G
P
T
2

Query LM
× 4

refers to“ Original Input ” price

beijing

tomorrow morning

none

new yorkrefers to“ Original Input ” arrival

refers to“ Original Input ” departure

refers to“ Original Input ” time

To.LocTimePrice From.Loc

timeprice departurearrivalnone

O

Original Input: book a flight from beijing to new york tomorrow morning

(a)

(b)

Figure 1: An example of normal (a) and inverse
(b) prompting methods for slot tagging. For normal
prompts, identifying all slots in the query sentence re-
quires enumeration of all spans, while inverse prompt
only needs 1-time prediction for each label.

Lewis et al., 2020; Brown et al., 2020). For exam-
ple, when classifying the sentiment of the movie
review “no reason to watch”, prompting methods
insert a piece of text “It was”, i.e. prompts, to the
input example, getting “No reason to watch. It
was __”. It is natural to expect a higher probabil-
ity from the LM to fill the template with “terrible”
than “great”, and the original task is then converted
to a language modeling task. Such conversion re-
duces the gap between pretraining and target tasks,
which allows less dependency on target task data
and helps to achieve better performance in low data
scenarios (Gao et al., 2021).

However, while achieving great success in sentence
level tasks, prompting-based methods show incom-
patibility for sequence labeling tasks, such as slot
tagging. Firstly, the aforementioned prompting
paradigm is quite inefficient for slot tagging tasks.
Different from the sentence-level tasks that clas-
sify samples of whole sentences, slot tagging sam-

637

ples are multiple consecutive words in a sentence.
Therefore, as shown in Fig. 1, to find all the possi-
ble slots, prompt-based methods have to enumerate
all n-gram word spans, and then query LM for each
of them, which greatly slows down the prediction
(Cui et al., 2021). Further, as a structure prediction
problem, slot tagging benefits from taking the de-
pendencies between labels into account (Ma and
Hovy, 2016; Hou et al., 2020). For example in Fig.
1, where the arrival entity often appears after
a departure entity. Such label dependency is
hard to be captured by current prompting methods
since they predict labels one-by-one independently.

To tackle the above issues, we introduce an inverse
paradigm for prompting. Different from the classic
prompts mapping tokens to labels, we reversely
predict slot values given slot types. For the exam-
ple in Fig. 1, we use an inverse prompt to modify
the input as “book a flight from Beijing to New
York tomorrow morning. arrival refers to __”, and
then LM is able to decode multi-word span “New
York” at a time. Compared to the classic prompts
that require predictions for every n-gram word span
(55-times in Fig. 1), we only need to perform de-
coding for V -times, where V is the number of label
types (4-times in Fig. 1), which therefore greatly
speeds up the prediction. Surprisingly, experiments
show the proposed method not only predicts faster
but also significantly improves the performance,
indicating that prompting LM reversely is a better
fit for the slot tagging task. Besides, to further im-
prove the prediction accuracy, we propose a novel
Iterative Prediction Strategy, from which the model
learns to refine predictions by considering the rela-
tions between different slot types.

To summarize the contribution of this work:

(1) We introduce the idea of inverse prediction to
prompting methods for slot tagging tasks, which
greatly speeds up the prediction process.

(2) We propose an Iterative Prediction Strategy for
learning and prediction with slot tagging prompts,
which allows the prompting model to consider de-
pendency between different slot types and refine
prediction.

(3) We extensively evaluate the proposed method
in various few-shot settings, where the proposed
method brings significant improvements not only
in speed but also in accuracy.

The code and data are available at
https://github.com/AtmaHou/
PromptSlotTagging.

2 Background

In this section, we begin with a formal definition
of the few-shot slot tagging task (§2.1), and then
introduce the conventional sequence labeling ap-
proaches (§2.2) and recent prompts-based methods
(§2.3) for this task.

2.1 Few Shot Slot Tagging
Slot tagging aims at finding key slots within a sen-
tence, such as time or location entities. Given
an input sentence x = (x1, x2, . . . , xn) as a se-
quence of words, a slot tagging model extracts all
M slot label-values pairs y = {(li, si)}Mi=1 in the
sentence, where li is the ith label in the label set L
and skj = {xj , ..., xk} is a word span starting from
xj and ending with xk.

In few-shot settings, model are often evaluated on
multiple low-resource domains {D(1)

L , D
(2)
L , ...},

which is called target domain (Wang et al.,
2020). Each target domain D

(j)
L only contains

a few labeled instances called support set S =
{(x(i),y(i))}NS

i=1, which usually includes K exam-
ples (K-shot) for each of N labels (N-way). On
each target domain, given support set examples
as references, few-shot slot tagging models are re-
quired to make predictions for query set samples.
Optionally, some few-shot settings also include
a set of data-rich domains {D(1)

H , D
(2)
H , ...} called

source domains, which are used for pretraining of
few-shot models.

2.2 Conventional Sequence Labeling
Approaches

Conventional approaches often formulate slot tag-
ging as a sequence labeling problem, where each
word in input is associated with a sequence la-
bel. Given sentence x = (x1, x2, . . . , xn) as input,
these method predicts the best-match sequence la-
bels y = (y1, y2, ..., yn). To predict slots with mul-
tiple words, sequence labeling approaches adopt a
“BIO” labeling strategy, which uses “B” to mark the
begin word of a slot, “I” to mark the inner words of
a slot and “O” to mark non-slot words. For the ex-
ample in the Fig. 2, B-time is tagged to the first
word in a time slot, I-time is tagged to a non-
begin word within a time slot, and O label refers to
non-slot words. As shown in Fig. 2(a), few-shot

638

https://github.com/AtmaHou/PromptSlotTagging
https://github.com/AtmaHou/PromptSlotTagging

morningbook a flight from … tomorrow

Pre-trained Language Model Encoder

Linear Layer

I-timeO O O O … B-time

morningbook a flight from … tomorrow <s> morning is time

tomorrow morning is time entity

Pre-trained Language Model Encoder Decoder

(a) (b)

tomorrow

Figure 2: Illustration of conventional sequence labeling method (a) and classic prompting methods (b).

sequence labeling model is usually formulated as:

h1:n = Encoder(x1:n),

p(yi|x, S) = Softmax(Decoder(hi)),

(i ∈ [1, 2, ..., n]),

y∗ = (y1, y2, ..., yn) = argmax
y

p(y|x, S),

where S is a K-shot support set, Encoder is usually
a pretrained language model such as BERT (Devlin
et al., 2019), h1:n is the hidden state of the encoder
with a dimension dh, and Decoder can either be a
linear layer, a CRF layer or any other parametric or
non-parametric classifier.

2.3 Sequence Labeling with Prompts
Prompt-based methods have been proven effective
in many NLU tasks, especially in few-shot settings,
but things become complicated when it comes to
slot tagging tasks. To identify the slot label for
a word span sji = {xi, ..., xj} in sentence x, pre-
vious works construct templates, e.g., “[x] [sji]
is a [z] entity”, and prompt a pretrained language
model with such templates to predict label-related
words [z] (Cui et al., 2021). For example in the Fig.
2(b), predicting the time slot can be achieved as
“book a flight from Beijing to New York tomorrow
morning. tomorrow morning is a time entity.” How-
ever, to find all possible slots, these methods need
to traverse all the n-gram spans sji , i, j ∈ [1, n] in
a sentence, which is quite expensive in time and
computation.

3 Method

To remedy the high cost of prompt prediction men-
tioned in the previous section, we introduce a novel
inverse paradigm for prompting of slot tagging task,
which significantly improves the speed of predic-
tion by transforming the past fill-in-the-blank prob-
lem into a generative task. Specifically, we first
introduce the construction of our inverse prompts
templates (§3.1), and then describe how to use in-
verse prompts during training and inference (§3.2).

Further, we propose an Iterative Prediction Strat-
egy to refine prediction by considering the relation
between different slot types (§3.3). The overview
of proposed method is shown in Fig. 3.

3.1 Prompt Creation
In this section, we introduce the creation of the
proposed inverse prompts, which includes three
main components: the label mapping, the inverse
template and the control tokens.

Label Mapping Before prompt construction, we
first need to convert each label into a word form
that can be easily understood by the pre-trained lan-
guage model. We employ a label mapping process
to achieve this, which use a one-to-one mapping
function to convert the label set L = {l1, . . . , l|L|}
to a natural language word set L̂ = {l̂1, . . . , ˆl|L|}.
For example, in Fig. 3, we convert the label set
L = {from.Loc, to.Loc, Time, Price} to
a natural language label set L̂ = { departure,
arrival, time, price}.

Inverse Template Prompt template is a piece
of sentence with blanks, which is used to modify
the original inputs and get prompting inputs for
a pretrained language model. To achieve inverse
prompting, our template fills in an original sentence
and a label as prefixes and subsequently leaves
blanks for the LM to generate the corresponding
slot values. Specifically, given an input sentence
s and a set of mapped labels L̂, for each mapped
label l̂i ∈ L̂, the inverse template is defined as:

“x” l̂i refers to __

For instance, in Fig. 3, we fill the input “book a
flight from beijing to new york tomorrow morning”
and each label in L̂ into the template to get four
prompted inputs p:

“book a flight from beijing to new york tomorrow
morning” departure refers to __

“book a flight from beijing to new york tomorrow
morning” arrival refers to __

639

G
P
T
2

none

beijing

none

tomorrow morning

G
P
T
2 new york

none

departure refers to“ Original Input ”

refers to“ Original Input ” arrival

time refers to“ Original Input ”

refers to“ Original Input ” price

tomorrow morning.“ Original Input ” time refers to .departure refers to beijing .refers toprice

Mapped LabelsOriginal Labels

To.Loc

Time

Price

From.Loc

time

price

departure

arrival

Original Input: book a flight from beijing to new york tomorrow morning

departure：Beijing
arrival：newyork
time： tomorrow morning
price: None

arrival.“ Original Input ” refers to tomorrow morning .departure refers to beijing .refers totime

1.

2.

主图

Figure 3: Overview of the proposed method with Inverse Prediction and Iterative Prediction Strategy. We first
embed the input sentence with inverse prompts and directly decode slot values given slot types. Then we iteratively
refine predictions by reinforcing the prompts with predicted slot-value pairs.

“book a flight from beijing to new york tomorrow
morning” time refers to __

“book a flight from beijing to new york tomorrow
morning” price refers to __

Control tokens Additionally, we introduce con-
trol tokens C to complete the prompts function for
the slot tagging task. In order to recognize the case
that there’s no corresponding entity of the queried
slot type, we introduce <NONE> token to pad the
output, and in practice, we use “none” as <NONE>
token to make the model output more natural. In
order to tag more than one entity of the same slot
type, we introduce “;” as <SEP> to divide more
than one entity of the same slot type. And we also
use “.” as <END> token to indicate the end of a
single generation.

3.2 Training and Inference with Inverse
Prompts

Till now, we have presented the construction of
the inverse prompt. This section will show how to
perform training and inference with the prompts.

Training At the training time, we pre-construct
the prompt with answers such as “book a flight
from beijing to new york tomorrow morning” de-
parture refers to new york . Then we finetune
a pre-trained language model with the answered
prompts, and we only calculate loss on the answer
tokens (i.e. new york) instead of the loss on the
whole sentence.

L =
∑
i>|p|

CE(ŷi, yi)

where |p| is the length of the prompted input, ŷi
denotes the model predictions, and yi is the pre-
constructed answer.

Inference At the inference time, we feed the
prompted inputs into the fine-tuned pre-trained lan-
guage model and let LM generate the appeared slot
values. During generation, we restrict LM to gen-
erate only words that appear in the original input
sentence or predefined control words. For each
prompted input p, the next token tk ∈ x ∪ C is
determined by language model probability:

tk = argmax
tk∈s∪C

pLM(tk|p; t1:k−1)

Note that restricting the scope of output tokens is
crucial to the performance.

3.3 Iterative Prediction Strategy
In the previous section, different slot types are pre-
dicted separately. To consider the relations between
different slot types, we introduce the Iterative Pre-
diction Strategy, which also provides the model a
second chance to revise those unrecognized entities.
We assume that different labels are interactive, so
the predicted slots could be used as a hint to help
predict the missed slots. For example in Fig. 3, it
is often easier to generate the “arrival” slot given
the results of “departure” and “time”. Motivated by
this, as shown in the Fig. 3, we construct another
template that concatenates those filled prompts as
additional generation condition and use them to
revise the slot values that are “none” in the first
round of prediction. Below we describe the details
of this strategy during training and testing.

Training At the training time, we simulate the
cases where the slots are not recognized to enable
the model to revise the none slot values. We do this
by randomly constructing none slot value exam-
ples. For example, at training time, suppose there

640

are four training prompts filled with true answers:
“book a flight from beijing to new york tomorrow
morning” departure refers to beijing .

“book a flight from beijing to new york tomorrow
morning” arrival refers to new york .

“book a flight from beijing to new york tomorrow
morning” time refers to tomorrow morning .

“book a flight from beijing to new york tomorrow
morning” price refers to none .
We randomly select some occurred labels (e.g., “ar-
rival”) pretending it was not predicted, and con-
struct a second round prompt:

“book a flight from beijing to new york tomorrow
morning” departure refers to beijing . time refers
to tomorrow morning . price refers to none . ar-
rival refers to __.
By using these second round prompts for model
training, we encourage the language model to find
those unrecognized slots in the first round predic-
tion and allow the model to consider relationships
between labels.

Inference During the inference time, we con-
struct the second-round prompts and revise the slots
that are not recognized in the first round. For ex-
ample in the Fig. 3, the model predict none value
for “price” and “arrival” slot in the first round. We
then construct another iteration of the prompted
inputs that query the unrecognized slots, given all
the labels and slot values that have been predicted:

“book a flight from beijing to new york tomorrow
morning” departure refers to beijing . time refers
to tomorrow morning . arrival refers to __.

“book a flight from beijing to new york tomorrow
morning” departure refers to beijing . time refers
to tomorrow morning . price refers to __ .

The model is expected to predict the first-round
missed slots during the second iteration, consider-
ing relations between labels.

4 Experiment

We evaluate the performance of the proposed
method on two classic few-shot scenarios: (1) Set-
ting with Only In-domain data, where all training
data are only a few labeled support data. (2) Set-
ting with Meta Source Tasks, where some addi-
tional data-rich source domains are available for
pretraining.

Evaluation To use same evaluation criteria as
conventional sequence labeling methods, we need
to label tokens reversely and get output in same

format. After generation, we first separate outputs
into slot values. For each slot value, we label tokens
in the source sentence with three principles: (1)
Slot value is complete: only if the whole slot value
matches a span in the source sentence, we label
it with the corresponding label. (2) Choose the
first overlap predicted slot span: if any token in the
source sentence has been labeled, we do not relabel
this token even when it matches another slot value.
(3) Use BIO labels: add “B-” to the beginning token
of the slot span, add “I-” to the non-begin token
of the slot span, and label non-slot tokens with
“O”. After labeling tokens reversely, we evaluate F1
scores within each few-shot episode.1

4.1 Setting with Only In-domain data
Datasets For few-shot setting without source do-
main transfer, we conduct experiments on three
few-shot datasets with only in-domain data: MIT-
Restaurant Review (Liu et al., 2013), MIT-Movie
Review (Liu et al., 2013) and MIT-Movie-Hard
Review.2 We conduct experiments with K ∈
{10, 20, 50, 100, 200, 500} shots settings to fully
evaluate the performance of our method in all three
datasets. To overcome the randomness associated
with support set selection, we sample 10 different
support set for each K-shot setting and report av-
eraged results. All models are trained and tested
with the same data.

Implements Our model employs the smallest
GPT2 (Radford et al., 2019) pre-trained model as
the base model for fine-tuning, and no new param-
eters are introduced. Besides, we set the learning
rate as 6.25e− 5 and batch size as 2 for few-shot
training. For all our experiments, we finetune the
model only on few-shot support set for 2 epochs (4
on 10/20 shots settings) with the AdamW optimizer
and linear decaying scheduler. Since there is no
development set, all hyperparameters are roughly
set based on experience without tuning. Data and
code used are public available.

Baselines In our experiments, we compare with
competitive baselines including both conventional
sequence labeling methods and recent prompt-
based methods.

1For each episode, we calculate the F1 score on
query samples with conlleval script: https:
//www.clips.uantwerpen.be/conll2000/
chunking/conlleval.txt

2MIT-Movie Review has two datasets: a simple one and a
complex one. We denote the simple one as MIT-Movie and
combine both as MIT-Movie-Hard.

641

https://www.clips.uantwerpen.be/conll2000/chunking/conlleval.txt
https://www.clips.uantwerpen.be/conll2000/chunking/conlleval.txt
https://www.clips.uantwerpen.be/conll2000/chunking/conlleval.txt

Model MIT-Restaurant

10 20 50 100 200 500

Wiseman and Stratos (2019) + PT 4.1 3.6 4.0 4.6 5.5 8.1
Ziyadi et al. (2020) + PT 27.6 29.5 31.2 33.7 34.5 34.6
Huang et al. (2020) + PT 46.1 48.2 49.6 50.0 50.1 -

Sequence Labeling BART + PT 8.8 11.1 42.7 45.3 47.8 58.2
Sequence Labeling BERT + PT 27.2 40.9 56.3 57.4 58.6 75.3
Template-based BART + PT 53.1 60.3 64.1 67.3 72.2 75.7
Sequence Labeling BERT 21.8 39.4 52.7 53.5 57.4 61.3
Template-based BART 46.0 57.1 58.7 60.1 62.8 65.0
Ours 49.35 60.48 65.34 70.41 73.69 76.13
Ours + Iterative 52.10 61.49 66.83 70.98 73.97 76.37

Model MIT-Movie-Hard

10 20 50 100 200 500

Wiseman and Stratos (2019) + PT 3.1 4.5 4.1 5.3 5.4 8.6
Ziyadi et al. (2020) + PT 40.1 39.5 40.2 40.0 40.0 39.5
Huang et al. (2020) + PT 36.4 36.8 38.0 38.2 35.4 38.3

Sequence Labeling BART + PT 13.6 30.4 47.8 49.1 55.8 66.9
Sequence Labeling BERT + PT 28.3 45.2 50.0 52.4 60.7 76.8
Template-based BART + PT 42.4 54.2 59.6 65.3 69.6 80.3
Sequence Labeling BERT 25.2 42.2 49.64 50.7 59.3 74.4
Template-based BART 37.3 48.5 52.2 56.3 62.0 74.9
Ours 52.07 59.11 65.63 69.35 72.36 75.03
Ours + Iterative 53.31 60.19 66.13 69.63 72.45 74.83

Model MIT-Movie

10 20 50 100 200 500

Sequence Labeling BERT 50.60 59.34 71.33 - - -
NNShot 50.47 58.94 71.17 - - -
StructShot 53.19 61.42 72.07 - - -
Template-based BART 49.30 59.09 65.13 - - -
EntLM 57.31 62.36 71.93 - - -
Ours 57.04 67.86 76.81 80.28 82.43 84.55
Ours + Iterative 59.74 70.09 77.60 80.63 82.64 84.51

Table 1: F1 scores of few-shot slot tagging task on three different datasets.10 indicates 10 instances for each entity type. +PT
denotes the model is pre-trained on additional datasets. +Iterative denotes enhance model with Iterative Prediction Strategy.

• Sequence Labeling BERT (Devlin et al., 2019)
can be seen as a BERT-based sequence labeling
baseline which fine-tunes the BERT model with a
token-level linear classifier head.

• Template-based BART (Cui et al., 2021) is a
prompt-based method that query BART-based LM
(Lewis et al., 2020) every possible span in sentence
if it belong to a certain category and therefore also
need to enumerate all label for inference.

• NNShot and StructShot (Yang and Katiyar,
2020) are two metric-based few-shot learning ap-
proaches for slot tagging and NER. NNShot is an
instance-level nearest neighbor classifier for few-
shot prediction, and StructShot promotes NNShot
with a Viterbi algorithm during decoding.

• EntLM (Ma et al., 2021b) is a prompt-based
method that leverage substitution between words
of the same type to achieve one pass prediction.

Results Table 1 shows the results of the proposed
method only finetuned on few-shot in-domain data.
Among these results, we can observe that:

(1) Our proposed method performs consistently
better than all the baseline methods on all three
datasets. It outperforms the strongest baseline
Template-based BART which uses BART-large by
average F1 scores on three datasets of 11.96 in 10-
shot setting even with a much smaller pre-trained
language model (the smallest GPT2).

(2) Our proposed method is even comparable or
outperforms those baselines with data-rich domain
pre-training.

(3) Our proposed method performs much better
than baselines in fewer labeled samples settings, es-
pecially in 10 and 20 shot settings, which indicates
our method can leverage information from limited
labeled data more efficiently.

642

Model 5-shot Slot Tagging

We Mu Pl Bo Se Re Cr Ave.

Bi-LSTM 25.44 39.69 45.36 73.58 55.03 40.30 40.49 45.70
SimBERT 53.46 54.13 42.81 75.54 57.10 55.30 32.38 52.96
TransferBERT 56.01 43.85 50.65 14.19 23.89 36.99 14.29 34.27
MN 38.80 37.98 51.97 70.61 37.24 34.29 72.34 49.03
WPZ+BERT 69.06 57.97 44.44 71.97 74.62 51.01 69.22 62.61
TapNet+CDT 67.83 68.72 73.74 86.94 72.12 69.19 66.54 72.15
L-WPZ+CDT 78.23 62.36 59.74 76.19 83.66 69.69 71.51 71.62
L-TapNet+CDT 69.58 64.09 74.93 85.37 83.76 69.89 73.80 74.49
ConVEx* 71.5 77.6 79.0 84.5 84.0 73.8 67.4 76.8

Ours 70.44 71.63 78.67 87.37 81.38 71.77 74.42 76.53
Ours + Iterative 70.63 71.97 78.73 87.34 81.95 72.07 74.44 76.73

Table 2: F1 score results on 5-shot Snips. * denotes using additional Reddit data for pretraining. Our methods achieve the best
performance among those using same training data.

(4) Our method significantly outperformed Se-
quence Labeling BERT whose performance is quite
poor on 10 and 20 shot settings, which indicates
that the number of labeled data is too scarce for con-
ventional sequence labeling tasks, and proves that
the prompt-based method is effective in few-shot
slot tagging tasks.

(5) The proposed Iterative Prediction Strategy con-
sistently improves the slot tagging performance.
The improvements become greater with fewer
learning shots and the averaged improvement in
10 and 20 shot setting on three datasets are 2.23
and 1.44. This shows that when there is less data,
the iterative revising mechanism is more important.

4.2 Setting with Meta Source Tasks

Datasets We also evaluate the model ability of
transferring from data-rich domains to unseen
few-shot domains and conduct experiments on
SNIPS (Coucke et al., 2018) dataset. Following
the data split provided by Hou et al. (2020), we
construct 5-shot SNIPS datasets from the origi-
nal SNIPS datasets. The few-shot SNIPS dataset
consists of 7 domains with different label sets:
GetWeather (We), Music (Mu), PlayList (Pl), Rate-
Book (Bo), SearchScreenEvent (Se), BookRestau-
rant (Re), and SearchCreativeWork (Cr). Each do-
main contains 100 few-shot episodes, and each
episode consists of a support set and a query.

Implements Following Henderson and Vulic
(2021), we conduct our cross-domain experiments
with 5-shot few-shot settings to evaluate the ability
of our model to transfer from rich-data domains
to unseen few-shot domains. For our proposed
method, same as in-domain settings, we use the

smallest GPT2 as the base model, and no new pa-
rameters are introduced. We pretrain the model in
source domains and fine-tune it on the target few-
shot domain. We set learning rate as 6.25e− 5 and
batch size as 16 for pretraining and batch size as
2 for 5-shot finetuning. During finetuning, we use
the same AdamW optimizer and linear decaying
scheduler. The hyper-parameters are decided ac-
cording to performance on the dev set. Data and
code used are public available.

Baselines We provided competitive strong base-
lines, including traditional finetune-based methods
and advanced few-shot learning methods.

• Bi-LSTM (Schuster and Paliwal, 1997) uses
GLoVe (Pennington et al., 2014) embedding for
slot tagging and is trained on the support sets.

• SimBERT is a metric-based method using co-
sine similarity of BERT-based embedding to label
tokens with the most similar token’s label.

• Matching Network (MN) (Vinyals et al., 2016)
is a few-shot sequence labeling model based on the
matching network and uses BERT embedding.

• TransferBERT is a domain transfer-based con-
ventional NER model using BERT, which is first
pre-trained on source domains and then fine-tuned
on the target domain support set.

• WPZ (Fritzler et al., 2019) is a metric-based
few-shot slot tagging method similar to MN, but
is based on the prototypical network (Snell et al.,
2017).

• TapNet+CDT, L-TapNet+CDT, L-WPZ+CDT
(Hou et al., 2020) are metric-based few-shot learn-
ing methods designed for slot tagging, which in-

643

troduces a CRF-based framework to consider the
relation between different slots.

• ConVEx (Henderson and Vulic, 2021) is a fine-
tuning-based method that models slot tagging as
a cloze task and is first pre-trained on Reddit data
then fine-tuned on few-shot slot tagging data. Note
that the Reddit data is not used by our method and
other baselines during the experiments.

Results Table 2 shows the results of the cross-
domain few-shot setting, from which we can ob-
serve that:

(1) Our proposed method outperforms all the base-
lines except ConVEx which uses extra Reddit data
in the cross-domain 5-shot setting. Despite using
less training data, our model still achieves compa-
rable results with Covex, proving its superiority.

(2) We outperform TransferBERT by 42.36 F1
scores which strongly proved that the prompt-based
method can transfer more knowledge from the
source domain and is more data-efficient than con-
ventional methods.

(3) Our method outperforms metric-based few-shot
learning baselines, for example, 2.24 F1 scores
higher than L-TapNet+CDT, which proves its com-
petitiveness compared to classical few-shot learn-
ing methods.

(4) Our Iterative Prediction Strategy improved Our
method by about 0.5 F1 scores, demonstrating that
the revising ability is likely to be transferable and
is effective under cross-domain scenarios.

4.3 Analysis

Effects of Iterative Prediction Strategy As
shown in Table 1, the proposed Iterative Predic-
tion Learning brings consistent improvement, espe-
cially in low-resource settings. It works by revising
predictions with a second-round query to recognize
those missing slots, which can bring an increase in
recall score. To confirm that, we make a detailed
analysis with precision score (P), recall score (R)
and F1 score (F) in Table 3.

When Iterative Revise Strategy is added, we can get
a rise in recall score about 4 points in 10-shot, 2~4
points in 20 shot and more than 1 points in other
shot settings in exchange for a slight precision drop,
resulting in a rise in overall F1 score by about 2
points in 10 and 20 shots.

Model MIT-Restaurant MIT-Movie

P R F P R F

10
Ours 67.7 42.4 52.1 84.0 46.4 59.7
w/o Iter 69.4 38.3 49.4 85.9 42.7 57.0
w/o Joint 68.8 38.9 49.7 85.6 43.0 57.2

20
Ours 70.1 54.7 61.5 83.5 60.4 70.1
w/o Iter 71.6 52.3 60.5 86.3 55.9 67.9
w/o Joint 70.92 53.45 61.0 85.6 56.9 68.3

50 Ours 73.6 61.2 66.8 83.6 72.4 77.6
w/o Iter 75.4 57.6 65.3 85.9 69.5 76.8
w/o Joint 74.3 59.2 65.7 84.7 70.8 77.1

100
Ours 76.1 66.5 71.0 84.4 77.2 80.6
w/o Iter 78.0 64.2 70.4 86.3 75.0 80.3
w/o Joint 76.7 66.0 71.0 85.0 76.5 80.5

200
Ours 77.8 70.5 74.0 85.4 80.0 82.6
w/o Iter 79.5 68.7 73.7 87.1 78.2 82.4
w/o Joint 78.0 70.1 73.8 85.1 79.9 82.4

500
Ours 79.4 73.5 76.4 86.3 82.8 84.5
w/o Iter 81.0 71.8 76.1 87.9 81.4 84.6
w/o Joint 79.6 73.4 76.4 86.6 82.1 84.3

Table 3: Ablation analysis Iterative Prediction Strategy w/o
Iter denotes removing iterative strategy and w/o joint denotes
using two separate models for the two iterative steps.

We further explore the effect of jointly learning of
the first-round prediction and the second-round re-
vising, and learn two abilities separately with two
models. As shown in Table 3, w/o Joint model out-
performs the no-revising model but lags behind the
joint model. This indicates that joint learning the
revising ability may act as data augmentation and
brings more improvements than simple revising.

Efficiency Study Unlike Template-based BART
that queries every n-gram span in the source sen-
tence for each label (with O(n2 ∗m) where n is
the length of the source sentence and m is the size
of the label set) time complexity, our proposed
method queries labels in the label set and directly
generate slot values (with O(n ∗m) time complex-
ity). In theory, our method is much faster than
Template-based BART, especially dealing with
long sentences with sparse slots. To prove this, we
conduct efficiency experiments by calculating the
decoding time of each method on a Titan XP GPU
with batch size as 8, and we set our max generation
length at 40. As shown in Table 4, our method is
about 8 times as fast as the Template-based BART
method, and more than 3 times as fast as theirs with
Iterative Prediction Strategy. During experiments,
we find that as the number of labels increases, the
model does become linearly slower, which may
become limitations. However, the number of label
types is usually smaller than the sentence length

644

Model MIT-Movie MIT-Restaurant

Baseline (Normal Prompt) 408.0 236.0
Ours 51.2 33.2
Ours + Iterative 119.4 71.4

Table 4: Comparison of the decoding time (second).

and much smaller than the number of spans, so
that this growth does not affect the value of our
method in practice. Besides, we find no significant
correlation between the number of labels and our
performance.

5 Related Work

Prompt-based learning Prompt-based learning
approaches have been a broadly discussed topic
since large language models like GPT mod-
els (Brown et al., 2020) are hard to fine-tune in
low-resource scenarios. Early attempts (Schick
and Schütze, 2021a,b) introduce manual prompts
to text classification tasks. For natural language
understanding (NLU) tasks, automatically search-
ing discrete prompts methods are proposed such
as Jiang et al. (2020); Shin et al. (2020); Gao et al.
(2021). Meanwhile, due to the continuity of param-
eters in neural networks, continuous prompts for
both text classification and generation tasks (Li and
Liang, 2021; Liu et al., 2021b; Han et al., 2021)
have been proposed. Unlike sentence-level tasks,
prompting methods are very complicated for slot
tagging and NER tasks. Cui et al. (2021) pro-
poses a template-based method querying every slot
span with each label which is expensive for decod-
ing. Different from them, we introduce an inverse
paradigm for prompting slot tagging tasks. Note
that inverse prompting (Zou et al., 2021) has a sim-
ilar name to our work but is entirely different in
method and task. They aim to generate prompt
templates inversely. Amendable generation (Tian
et al., 2021) share a similar idea of using Iterative
Prediction Strategy to generate and revise dialog
state. By contrast, we focus on a different task for
sequence labeling and first introduce an Iterative
Prediction Strategy to prompting models. There
are also generation-based methods for sequence la-
beling (Yan et al., 2021), which is not a prompting
method, since it re-initializes decoding layers and
learns a generative model from scratch.

Few-shot slot tagging Previous few-shot slot tag-
ging methods focus on metric learning based meth-
ods, which classify tokens by word-label similarity

(Snell et al., 2017; Vinyals et al., 2016). Hou et al.
(2020) leverage label name semantics to get better
label representation and model label dependency in
few-shot settings. Yang and Katiyar (2020) make
a prediction based on the nearest neighbor sample
instead of the nearest label representation. Besides,
some works also explore training a model with ad-
ditional data from non-slot-tagging task (Huang
et al., 2020; Henderson and Vulic, 2021). Hou
et al. (2021) improves few-shot slot tagging perfor-
mance by jointly learning it with intent detection.
Different from directly learning the few-shot slot
tagging model, some researches explore to refor-
mulate the slot tagging into other NLP tasks. Ma
et al. (2021a) reforms slot tagging into a reading
comprehension task. Yu et al. (2021) treats slot
tagging as a retrieval task, Coope et al. (2020) uses
span extracting task to extract slot and predict cor-
responding label and Cui et al. (2021) leverages
prompts for few-shot NER. Different from those
methods above, we are the first to reformulate the
slot tagging task into a prompt-based generation
task.

6 Conclusion

In this paper, to liberate the prompting methods
from the burdensome prediction of slot-tagging
tasks, we introduce a novel inverse prediction man-
ner to prompting methods of slot-tagging, which
significantly improves both the efficiency and accu-
racy. To further improve performance, we propose
an Iterative Prediction Strategy for learning, which
enables the prompting model to consider depen-
dency between labels and refine prediction. Ex-
tensive experiments verify the effectiveness of the
proposed method in various few-shot settings, indi-
cating inverse prediction is a better fit for prompt-
ing of slot tagging task.

Acknowledgments

We are grateful for the helpful comments and sug-
gestions from the anonymous reviewers. This work
was supported by the National Key R&D Program
of China via grant 2020AAA0106501 and the Na-
tional Natural Science Foundation of China (NSFC)
via grant 61976072 and 62176078.

Ethics Section

We analyze the limitations of the proposed method
in both efficiency and effectiveness aspects, and
the proposed method has no obvious potential risks.

645

All the scientific artifacts used/created are prop-
erly cited/licensed, and the usage is consistent with
their intended use. This paper does not collect new
datasets, nor does the data used contain sensitive
information.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. 2020. Language models are few-shot
learners. In Advances in Neural Information Processing
Systems, volume 33, pages 1877–1901. Curran Asso-
ciates, Inc.

Sam Coope, Tyler Farghly, Daniela Gerz, Ivan Vulic,
and Matthew Henderson. 2020. Span-convert: Few-shot
span extraction for dialog with pretrained conversational
representations. In Proc. of the ACL, pages 107–121.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, Maël Primet, and Joseph Dureau.
2018. Snips voice platform: an embedded spoken lan-
guage understanding system for private-by-design voice
interfaces. CoRR, abs/1805.10190.

Leyang Cui, Yu Wu, Jian Liu, Sen Yang, and Yue
Zhang. 2021. Template-based named entity recogni-
tion using BART. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021, pages
1835–1845, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of deep
bidirectional transformers for language understanding.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, Minneapo-
lis, Minnesota. Association for Computational Linguis-
tics.

Alexander Fritzler, Varvara Logacheva, and Maksim
Kretov. 2019. Few-shot classification in named entity
recognition task. Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021. Mak-
ing pre-trained language models better few-shot learners.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 3816–3830,
Online. Association for Computational Linguistics.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and
Maosong Sun. 2021. Ptr: Prompt tuning with rules for
text classification.

Matthew Henderson and Ivan Vulic. 2021. Convex:
Data-efficient and few-shot slot labeling. In Proceed-
ings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, NAACL-HLT,
pages 3375–3389.

Yutai Hou, Wanxiang Che, Yongkui Lai, Zhihan Zhou,
Yijia Liu, Han Liu, and Ting Liu. 2020. Few-shot slot
tagging with collapsed dependency transfer and label-
enhanced task-adaptive projection network. In Proc. of
ACL, pages 1381–1393. Association for Computational
Linguistics.

Yutai Hou, Yongkui Lai, Cheng Chen, Wanxiang Che,
and Ting Liu. 2021. Learning to bridge metric spaces:
Few-shot joint learning of intent detection and slot fill-
ing. In Findings of the ACL, pages 3190–3200.

Jiaxin Huang, Chunyuan Li, Krishan Subudhi, Damien
Jose, Shobana Balakrishnan, Weizhu Chen, Baolin Peng,
Jianfeng Gao, and Jiawei Han. 2020. Few-shot named
entity recognition: A comprehensive study. arXiv
preprint arXiv:2012.14978.

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language models
know? Transactions of the Association for Computa-
tional Linguistics, 8:423–438.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising sequence-to-sequence pre-training for natu-
ral language generation, translation, and comprehension.
In Proc. of the ACL, pages 7871–7880.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021a. What makes
good in-context examples for gpt-3? arXiv preprint
arXiv:2101.06804.

Jingjing Liu, Panupong Pasupat, Yining Wang, Scott
Cyphers, and Jim Glass. 2013. Query understanding
enhanced by hierarchical parsing structures. In 2013
IEEE Workshop on Automatic Speech Recognition and
Understanding, pages 72–77. IEEE.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. GPT
understands, too. CoRR, abs/2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692.

Jianqiang Ma, Zeyu Yan, Chang Li, and Yang Zhang.

646

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2021.findings-acl.161
https://doi.org/10.18653/v1/2021.findings-acl.161
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3297280.3297378
https://doi.org/10.1145/3297280.3297378
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
http://arxiv.org/abs/2105.11259
http://arxiv.org/abs/2105.11259
https://doi.org/10.18653/v1/2021.naacl-main.264
https://doi.org/10.18653/v1/2021.naacl-main.264
https://doi.org/10.18653/v1/2020.acl-main.128
https://doi.org/10.18653/v1/2020.acl-main.128
https://doi.org/10.18653/v1/2020.acl-main.128
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/2103.10385

2021a. Frustratingly simple few-shot slot tagging. In
Findings of the ACL, pages 1028–1033.

Ruotian Ma, Xin Zhou, Tao Gui, Yiding Tan, Qi Zhang,
and Xuanjing Huang. 2021b. Template-free prompt
tuning for few-shot NER. CoRR, abs/2109.13532.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional LSTM-CNNs-CRF.
In Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational LinguisticsACL, pages 1064–
1074. Proc. of the ACL.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessingEMNLP, pages 1532–1543.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Timo Schick and Hinrich Schütze. 2021a. Exploiting
cloze-questions for few-shot text classification and nat-
ural language inference. In Proceedings of the 16th
Conference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
255–269, Online. Association for Computational Lin-
guistics.

Timo Schick and Hinrich Schütze. 2021b. It’s not just
size that matters: Small language models are also few-
shot learners. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
pages 2339–2352, Online. Association for Computa-
tional Linguistics.

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Trans. Signal
Process., 45(11):2673–2681.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Auto-
prompt: Eliciting knowledge from language models
with automatically generated prompts. arXiv preprint
arXiv:2010.15980.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017.
Prototypical networks for few-shot learning. In Ad-
vances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc.

Xin Tian, Liankai Huang, Yingzhan Lin, Siqi Bao,
Huang He, Yunyi Yang, Hua Wu, Fan Wang, and Shuqi
Sun. 2021. Amendable generation for dialogue state
tracking. CoRR, abs/2110.15659.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray
Kavukcuoglu, and Daan Wierstra. 2016. Matching net-
works for one shot learning. In Proc. of NIPS, pages
3630–3638.

Yaqing Wang, Quanming Yao, James T. Kwok, and
Lionel M. Ni. 2020. Generalizing from a few examples:

A survey on few-shot learning. ACM Comput. Surv.,
53(3):63:1–63:34.

Sam Wiseman and Karl Stratos. 2019. Label-agnostic
sequence labeling by copying nearest neighbors. In Pro-
ceedings of the 57th Annual Meeting of the Association
for Computational LinguisticsACL, pages 5363–5369.

Hang Yan, Tao Gui, Junqi Dai, Qipeng Guo, Zheng
Zhang, and Xipeng Qiu. 2021. A unified generative
framework for various NER subtasks. In Proc. of the
ACL/IJCNLP, pages 5808–5822. Association for Com-
putational Linguistics.

Yi Yang and Arzoo Katiyar. 2020. Simple and effec-
tive few-shot named entity recognition with structured
nearest neighbor learning. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 6365–6375, Online. Asso-
ciation for Computational Linguistics.

Dian Yu, Luheng He, Yuan Zhang, Xinya Du, Panupong
Pasupat, and Qi Li. 2021. Few-shot intent classification
and slot filling with retrieved examples. In Proc. of the
NAACL, pages 734–749.

Tony Z Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. arXiv
preprint arXiv:2102.09690.

Morteza Ziyadi, Yuting Sun, Abhishek Goswami, Jade
Huang, and Weizhu Chen. 2020. Example-based named
entity recognition. CoRR, abs/2008.10570.

Xu Zou, Da Yin, Qingyang Zhong, Hongxia Yang,
Zhilin Yang, and Jie Tang. 2021. Controllable gen-
eration from pre-trained language models via inverse
prompting. In KDD ’21: The 27th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining, Vir-
tual Event, Singapore, August 14-18, 2021, pages 2450–
2460. ACM.

647

https://aclanthology.org/P16-1101
https://aclanthology.org/P16-1101
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.3115/v1/d14-1162
https://aclanthology.org/2021.eacl-main.20
https://aclanthology.org/2021.eacl-main.20
https://aclanthology.org/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://proceedings.neurips.cc/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf
http://arxiv.org/abs/2110.15659
http://arxiv.org/abs/2110.15659
https://doi.org/10.1145/3386252
https://doi.org/10.1145/3386252
https://aclanthology.org/P19-1533
https://aclanthology.org/P19-1533
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2020.emnlp-main.516
https://doi.org/10.18653/v1/2020.emnlp-main.516
https://doi.org/10.18653/v1/2020.emnlp-main.516
https://arxiv.org/abs/2008.10570
https://arxiv.org/abs/2008.10570
https://doi.org/10.1145/3447548.3467418
https://doi.org/10.1145/3447548.3467418
https://doi.org/10.1145/3447548.3467418

