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Abstract

In this paper, we explore the capacity of a
language model-based method for grammat-
ical error detection in detail. We first show
that 5 to 10% of training data are enough
for a BERT-based error detection method to
achieve performance equivalent to what a non-
language model-based method can achieve with
the full training data; recall improves much
faster with respect to training data size in the
BERT-based method than in the non-language
model method. This suggests that (i) the BERT-
based method should have a good knowledge of
the grammar required to recognize certain types
of error and that (ii) it can transform the knowl-
edge into error detection rules by fine-tuning
with few training samples, which explains its
high generalization ability in grammatical error
detection. We further show with pseudo error
data that it actually exhibits such nice proper-
ties in learning rules for recognizing various
types of error. Finally, based on these findings,
we discuss a cost-effective method for detecting
grammatical errors with feedback comments
explaining relevant grammatical rules to learn-
ers.

1 Introduction

Recent studies have shown that masked language
models pre-trained on a large corpus (hereafter,
simply language models) achieve tremendous im-
provements over a wide variety of natural language
processing tasks with fine-tuning. These results
suggest that they are also effective in recognizing
erroneous words and phrases, the task known as
grammatical error detection. There has been, how-
ever, much less work on this aspect of grammatical
error detection than in other tasks. One can argue
that since language models are trained on language
data produced by native speakers of a language
(specifically, English in this paper), they might not

work well on the target language data produced
by non-native speakers of that language. In other
words, English language models do not know at
all about grammatical errors made by non-native
speakers. Even apart from grammatical errors,
the target language is different from the canon-
ical English, meaning that it contains unnatural
phrases and characteristic language usages that na-
tive speakers do not normally use, as Nagata and
Whittaker (2013) demonstrate. These differences
might affect performance of language model-based
methods in grammatical error detection.

Actually, researchers have reported on perfor-
mance of language models on grammatical error
detection and correction. Cheng and Duan (2020)
and Kaneko and Komachi (2019) have shown that
BERT (Devlin et al., 2019)-based methods improve
grammatical error detection performance in Chi-
nese and English, respectively. Kaneko et al. (2020)
and Didenko and Shaptala (2019) have shown a
similar tendency in grammatical error correction.
While these studies empirically prove the effective-
ness of language models in grammatical error detec-
tion and correction, the questions of why and where
language models benefit error detection/correction
methods are left unanswered.

In this paper, we explore this aspect of language
models in grammatical error detection to better an-
swer the research questions. We first show that a
BERT-based method incredibly quickly learns to
recognize various types of error as summarized in
Figure 1; it achieves only with 5 to 10% of train-
ing data an F1.0 that a non-language model-based
method can achieve with the full training data (the
details will be described in Sect. 4). This implies
that the BERT-based method (i) should have a good
knowledge of the grammar required to recognize
certain types of error and (ii) can transform it into
error detection rules by fine-tuning with very few
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Figure 1: Detection Performance in Relation with Training Size (FCE).

training samples. Following this, we further show
with real and pseudo error data why and where it
gains in error detection, revealing the insights of
language model-based methods. For instance, we
show that the BERT-based method trained on few
instances of a transitive verb with a preposition
(e.g., *discuss about) can detect the same type of
error in other verbs (e.g., *approach to and *attend
in). Finally, based on these findings, we discuss
a cost-effective method for detecting grammatical
errors with feedback comments explaining relevant
grammatical rules to learners.

2 Related Work

Rei (2017) shows it is useful for neural error de-
tection models to introduce a secondary language
model objective together with the main error de-
tection objective. Rei and Yannakoudakis (2017)
compare several other auxiliary training objectives
including Part-Of-Speech (POS) tagging and error
type identification and find that the language model
objective is the most effective. This line of work
suggests that grammatical error detection benefits
from language modeling, although these studies
use BiLSTM-based language models instead of
masked language models trained on a large corpus.

As mentioned in Sect. 1, several researchers
have applied masked language models including
BERT to grammatical error detection and correc-
tion. Cheng and Duan (2020) and Kaneko and
Komachi (2019) show that error detection methods
gain in recall and precision with the use of lan-
guage models. Bell et al. (2019) use BERT-based
contextual embeddings for grammatical error detec-
tion and compare it with other types of contextual
embedding. They show the BERT-based contex-

tual embeddings are effective in almost all error
types provided by ERRANT (Bryant et al., 2017)
although BERT is not fine-tuned in their study.
Yuan et al. (2021) compare BERT, XLNet (Yang
et al., 2019), ELECTRA (Clark et al., 2020) in
grammatical error detection to show their effective-
ness in grammatical error detection1. Kaneko et al.
(2020) and Didenko and Shaptala (2019) also show
performance improvements in grammatical error
correction. To strengthen the findings of these pre-
vious studies, we will explore why and where error
detection methods benefit from language models,
revealing their generalization ability, in the follow-
ing sections.

There has been a long history of studies that
investigate the linguistic knowledge of language
models including the work by Li et al. (2021); Et-
tinger (2020); Warstadt et al. (2020) to name a few.
A popular approach is to test whether a language
model assigns higher likelihood to the appropriate
word than an inappropriate one, given context. The
linguistic knowledge to be explored ranges from
syntactic/semantic knowledge to common sense.
These studies mostly use (i) synthetic test data:
sentences that are generated synthetically by using
a certain kind of template or (ii) perturbed test data:
sentences that are generated by perturbing a natural
corpus. Our work is different from these previous
studies in two points: (i) to our best knowledge,
we examine linguistic phenomena that have never
been explored before in the conventional studies
(e.g., subjects marked with a preposition and errors
involving the usages of transitive and intransitive
verbs); (ii) we use a real learner corpus with real

1ELECTRA is not a language model. It however contains
an architecture similar to that of a language model.
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errors as our test data.
Mita and Yanaka (2021) examine if an encoder-

decoder neural network for grammatical error cor-
rection (not BERT-based) can learn the knowl-
edge of grammar through the task of grammati-
cal error correction. They target five error types:
subject-verb agreement, verb form, word order, ad-
jective/adverb comparison, noun number. They use
both synthetic and real learner data. They report a
negative answer to the research question except for
word order errors. They also report that their model
learns the knowledge to detect the target errors in
their synthetic data. However, there is still room for
debate in this argument because error positions tend
to be rather obvious in their synthetic data (e.g., ad-
jective forms erroneously used as adverbs almost
always appear at the end of a sentence). Our study
expands and deepens their findings for a wider va-
riety of error types that are much more difficult to
detect (in that it requires a much wider range of
linguistic knowledge including POS, lexical, and
syntactic knowledge).

3 Data and Methods

3.1 Real and Pseudo Error Data
In this paper, we use two kinds of data: real and
pseudo data. Real data are error-annotated learner
corpora while pseudo error data are automatically
generated by perturbing a native English corpus.

For the real data, we use four English learner
corpora: the First Certificate of English error
detection dataset (FCE) (Yannakoudakis et al.,
2011); NUS Corpus of Learner English (NU-
CLE) (Dahlmeier et al., 2013); BEA-2019 shared
task dataset (BEA) (Bryant et al., 2019); the In-
ternational Corpus Network of Asian Learners of
English with feedback comments (ICNALE) (Na-

gata et al., 2020). We use the data splits provided
by the creator except for ICNALE where we ran-
domly split the essays into training, development,
and test sets in the ratios of 85%, 7.5%, and 7.5%,
respectively. Table 1 shows their statistics2.

ICNALE provides information about errors in
preposition use and their corresponding feedback
comments. We use it to investigate in detail why
and where language model-based methods gain an
advantage. Their essay topics are controlled; they
are written on either (a) It is important for college
students to have a part-time job. or (b) Smoking
should be completely banned at all the restaurants
in the country., which hereafter will be referred to
as PART-TIME JOB and SMOKING, respectively.
Each essay is manually annotated with errors in
preposition use and their corresponding feedback
comments. For example, the major errors in the
corpus include deverbal prepositions (e.g., *include
→ including), intransitive verbs with a direct object
(e.g., *agree it→ agree with it), a verb phrase used
as a noun phrase (*Learn English is difficult. → To
learn/Learning English is difficult.), and compari-
son between a phrase and a clause (e.g., *because
an error→ because of an error); see the work (Na-
gata et al., 2020) for the details.

To investigate the relationship between the num-
ber of training sentences and detection perfor-
mance, we randomly sample 100, 300, 500, 1,000,
3,000, 5,000, 10,000, and all sentences, resulting
in eight sets of training data for each corpus3. Note
that these training, development, and test sets con-

2The data development is still ongoing in the work (Nagata,
2019). For this work, we used data that had not been open to
the public yet from the developer.

3In the sub-corpora A and C in BEA, only seven sets are
used because they consist of less than 10,000 sentences.

Split Training Development Test
Statistics sents tokens errors sents tokens errors sents tokens errors
FCE 27,380 435,768 41,277 2,129 33,720 3,335 2,581 40,498 4,374
ICNALE
PART-TIME JOB 12,163 205,355 2,439 1,129 18,276 244 1,042 17,192 222
SMOKING 12,312 201,304 2,342 1,160 18,242 230 1,023 17,318 212
BEA
A 9,244 160,818 24,520 1,014 17,417 2,566 1,014 18,106 2,801
B 11,410 207,252 20,580 1,261 22,435 2,261 1,261 22,806 2,362
C 9,410 179,156 8,649 1,020 19,035 990 1,020 20,392 1,052
NUCLE 16,969 433,787 38,723 2,120 54,799 4,019 2,120 56,804 4,406

Table 1: Statistics on Real Datasets.
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tain error-free sentences.
For the pseudo error data, we use the 1998-2000

New York Times in the AQUAINT Corpus of En-
glish News Text (Graff, 2002) as a base corpus.
We automatically generate erroneous sentences by
injecting errors into them (one error per sentence).
We first obtain chunks and parses by using spaCy4.
Here, we only use sentences whose lengths are
longer than three tokens and shorter than 26 to
obtain reliable chunks and parses. We then add,
remove, or replace a word in the sentences based
on the analyses.

While we target all errors labeled as errors in the
real data, we only target the following five error
types in the pseudo error data:

Prepositional infinitive: to-infinitive with other
prepositions than to.
(e.g., a book to read→ *a book for read)

Subject verb: Verb phrases used as a subject
(e.g., *Learn English is difficult.)

Preposition + subject: Subjects used with a
preposition
(e.g., *In the restaurant serves good food.)

Transitive verb + preposition: Transitive verbs
used with a preposition
(e.g., *We discussed about it.)

Intransitive verb + object: Intransitive verbs tak-
ing a direct object
(e.g., *We agree it.)

These five error types are selected with the fol-
lowing two criteria: (i) they are major errors in
ICNALE; (ii) we can write a software program to
generate pseudo errors based on chunks and parses.
For example, we can find the subject of a sentence
from its parse and then can add a randomly-chosen
preposition before the subject noun phrase (e.g.,
The restaurant serves good food. → *In the restau-
rant serves good food.). We randomly choose one
of the following five prepositions: at, about, to,
in, and with for addition and replacement; an ex-
ception is that we only use for for “Prepositional
infinitive” (e.g., a book to read → *a book for
read), which often appears in ICNALE. Similarly,
we can extract pairs of a verb and its direct object
from parses and then can add one of the prepo-
sitions before the direct object noun phrase as in
discuss the matter → *discuss about the matter.
We select the following transitive verbs as our tar-
gets: in training/development data: answer, attend,

4https://spacy.io/

discuss, inhabit, mention, oppose, and resemble;
in test data: approach, consider, enter, marry,
obey, reach, visit. Similarly, we select the fol-
lowing intransitive verbs: in training/development
data: agree, belong, disagree, and relate; in test
data: apply, graduate, listen, specialize, worry. It
should be emphasized that there is no overlap of
the target transitive/intransitive verbs in the train-
ing/development and test data.

From the resulting pseudo error data, we ran-
domly sample 2k(1 ≤ k ≤ 10) sentences for each
error type, resulting in ten sets of training data (e.g.,
when k = 1, the set comprises two instances of
each error type, ten instances in total). We use these
training sets to estimate the relationship between
the number of training sentences and detection per-
formance. For a validation set, we randomly sam-
ple 200 sentences for each error type. Similarly,
we use a test set consisting of 200 sentences ran-
domly sampled for each error type plus another
200 error-free sentences. The validation and test
sets are fixed regardless of the training data.

3.2 Grammatical Error Detection Methods

This subsection describes the three methods to be
explored and compared. Before looking into them,
let us define grammatical error detection formally.
Grammar error detection can be solved as a token
classification problem5. We will denote a sequence
of words and its length by w1, . . . , wi . . . , wN and
N , respectively. We will denote the corresponding
sequence of labels by l1, . . . , li, . . . , lN where li
corresponds to the label of wi. We assume two
sets of labels: (i) either C or E denoting correct
or erroneous in the real data, respectively; and (ii)
K labels for K error types plus C for correct in
the pseudo error data. Then, grammatical error
detection is defined as a problem of predicting the
optimal label sequence given w1, . . . , wi . . . , wN .

We use neural networks to predict the optimal
label sequence. In this paper, training is repeated
five times with different (but fixed) random seeds.
The reported performance values (i.e., recall, pre-
cision, and F1.0) are averaged over the five runs.
Training epochs are 50 for the real data or ten for
the pseudo error data at the maximum and we adopt

5More generally, it can also be solved as a sequence la-
beling problem using for example CRF. However, Rei (2017)
shows that the grammatical error detection task does not bene-
fit from CRF. We observed the same tendency in our datasets.
Accordingly, we solve it as a token classification problem
(without CRF).
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the epoch achieving the best F1.0 on the develop-
ment set. Other major hyper parameters are shown
in Appendix A.

3.2.1 BERT-based Method
The BERT-based method takes as input a word
sequence w1, . . . , wi . . . , wN and conducts the fol-
lowing procedures:

(1) Subword: convert all wi into their correspond-
ing subwords: s1, . . . , sj . . . , sM . Note that
the total number of all subwords are generally
different from that of all words in the input
word sequence.

(2) Encode: encode all sj into BERT embeddings
bj by:

bj = BERT(sj) (1)

where BERT(·) denotes BERT taking sub-
words as input and outputs their correspond-
ing embedding vectors of h-dimension (specif-
ically, h = 768 for ‘bert-base’) from the
final layer. We use ‘bert-base-uncased’ for
BERT(·).

(3) Token classification: output the optimal la-
bels by:

li = argmax softmax(Wbj) (2)

where W is a k × h weight matrix where k
is either 2 or K + 1 (the number of different
labels). To take care of the difference in the
lengths of the input word sequence and the
corresponding subword sequence, only the
first subword of each word is considered in
prediction.

3.2.2 Methods to Be Compared
For comparison, we select a BiLSTM-based error
detection method. Basically, it follows the above
steps (1) to (3), but uses BiLSTM as an encoder in
place of BERT. Also, the input word sequence is
turned into a sequence of embedding vectors where
each embedding vector consists of the concatena-
tion of the conventional word embedding and a
character-based embedding. The character-based
embedding is obtained by another BiLSTM taking
the characters of each word following the work (Ak-
bik et al., 2018). The concatenated embeddings are
put into the encoder BiLSTM to produce vectors
for prediction in step (3). Specifically, we use the
implementation FLAIR (Akbik et al., 2019). We

will refer to this method for comparison as the
BiLSTM-based method hereafter.

We also investigate how effective the fine-tuning
of BERT is. Namely, the BERT part of the BERT-
based method is fixed during training and only the
output layer is adjusted by the training data. We
will refer to this method as the BERT-based method
without BERT training hereafter.

4 Performance on Real Data

Figure 1 (see the second page) to Figure 3 show
the relationship between the number of training
sentences and F1.0 in FCE6, NUCLE, and BEA
with its corresponding precision-recall curves, re-
spectively. All F1.0 graphs show the high general-
ization ability of the BERT-based method. They
also show that the BERT-based method exhibits a
performance saturation at a very early stage (1,000-
3,000 training sentences). It is worthwhile to point
out the fact that the F1.0 curves for all proficiency
levels (A, B, and C)7 in BEA (Figure 3) exhibit
the same trend as the other corpora although the
absolute performances differ depending on the lev-
els. These results empirically confirm that the high
generation ability of the BERT-based method holds
in various writer populations.

Unlike the BERT-based method, the BiLSTM-
based method improves steadily as the number of
training sentences increases although even with the
full training data, it only achieves an F1.0 that the
BERT-based method can achieve with only 500
or less training sentences. Also, the BERT-based
method without BERT training does not perform
well at all. This is probably because it requires
much more degrees of freedom in terms of the
network parameters to learn rules for detecting a
wide variety of grammatical errors, which have a
certain degree of complexity.

To investigate the results from a different point
of view, let us now consider precision-recall curves

6The best performance of the BERT-based method in
FCE is a recall and precision of 0.455 and 0.628, respec-
tively. These numbers are considerably lower than those of
the state-of-the-art Yuan et al. (2021) report; they show that
the ELECTRA-based method achieves the best recall and pre-
cision of 0.505 and 0.821, respectively (c.f., recall: 0.480,
precision: 0.757 for their BERT-based method). Note that
they use the large models whereas we use the bert-base model,
which should be part of the reason for the performance dif-
ferences. While our results do not achieve the best results,
they explain well why large-scale masked language models
perform well in grammatical error detection.

7The proficiency levels A, B, and C in BEA, which corre-
sponds to those in CEFR, becomes higher in this order.
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Figure 2: Detection Performance in Relation with Training Size (NUCLE).
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Figure 3: Detection Performance in Relation with Training Size (BEA). Essays in BEA are classified into three
categories A, B, and C corresponding to the CEFR levels. The categories are referred to by the labels such as
“A:BERT” and “B:BERT” in the legend.

(the right graphs; the numbers at the edges of
each curve correspond to the numbers of mini-
mum and maximum training sentences and the
plots are lined in minimum to maximum order). All
precision-recall curves show that only the BERT-
based method quickly improves in recall as the
number of training sentences increases while the
BERT-based and BiLSTM-based methods both im-
prove in precision. In other words, only the BERT-
based method learns to recognize various error
types with little exposure to error examples.

Figure 4 shows recalls per detailed error types in
FCE8 where error types are automatically obtained
by using ERRANT. Figure 4 shows that the BERT-
based method quickly achieves a good recall in
SPELL (spelling errors) while the BiLSTM-based

8PUNCT, OTHER and those whose frequency is less than
150 are excluded in Figure 4.

method shows a much milder rise. This is not sur-
prising considering that BERT is trained on large
native corpora. Namely, it virtually has a large
vocabulary list and knows about English spellings
well. More interestingly, it exhibits a performance
saturation at a very early stage (500-3,000 training
sentences) in all errors, resulting in log-like-shape
curves while the BiLSTM-based method improves
rather linearly (except for SPELL). Even more in-
terestingly, it shows a sharp rise in recall in DET
(determiner errors) and NOUN:NUM (errors in
noun number). The notion of noun countability
with POS plays an important role in detecting these
two types of error as in *I am student/countable.
and an evidence/uncountable. This suggests that
BERT contains some kind of knowledge corre-
sponding to noun countability and POS (singu-
lar/plural nouns). More generally, from these, one
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Figure 4: Detection Performance (Recall) per Error Type in Relation with Training Size (FCE).

0 2000 4000 6000 8000 10000 12000
# of #e te ce#

0.0

0.2

0.4

0.6

0.8

1.0

F 1
.0

PART-TIME JOB
BiLSTM
BERT-ba#ed (w/o BERT trai )
BERT-ba#ed (w/ BERT trai )

100

100

12163

100

12163

12163

Figure 5: Detection Performance in Relation with Training Size (ICNALE, in-domain test data).

can expect that it has broad knowledge about lin-
guistic properties, which we will observe presently
in the experiments with ICNALE.

Let us then turn to ICNALE where we only target
errors concerning preposition use (meaning that the
other errors are unmarked and that if other errors
are detected, they are treated as false positives).
Here, we only present performance on PART-TIME
JOB due to the space limitation; the results for
SMOKING exhibit a very similar tendency, which
can be found in Appendix B.

Figure 5 and Figure 6 show performance in
PART-TIME JOB in ICNALE; in Figure 5, all
models are trained on essays on PART-TIME JOB
and tested on (test) essays on the same topic (in-
domain setting) while in Figure 6, they are trained
on SMOKING and tested on PART-TIME JOB
(out-of-domain setting). In both settings, 300 to
500 training sentences are again enough for the
BERT-based method to rival the BiLSTM-based
method with the full training data, which exhibits
again a linear improvement in F1.0. Also, only the
BERT-based method quickly improves in recall.

A closer look at the detection results reveals
that many of the errors require linguistic knowl-
edge including POS, syntactic relations, and lexi-
cal properties such as transitive/intransitive verbs.
For example, “Preposition + subject” errors, which
were introduced in Subsect. 3.1, require the notions
of POS such as verbs and syntactic relations such
as subjects. Similarly, the distinction between tran-
sitive and intransitive verbs play a crucial role in
“transitive verb + preposition” and “intransitive verb
+ object”. The fact that the BERT-based method
can detect these types of errors with a few training
instances suggest that it has an access to grammar-
like knowledge and that it can turn the knowledge
into error detection rules by fine-tuning. We will
explore this in more detail in the following section.

These results also shed light on an important
aspect of the BERT-based method in practice.
Namely, a cost-effective way of developing an er-
ror detection system based on BERT would be to
create a small amount of training sentences (e.g.,
1,000) for each essay topic; according to the above
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Figure 6: Detection Performance in Relation with Training Size: (ICNALE, out-of-domain test data).

figures, the gain would be much smaller after 1,000
training sentences. Of course, the results are only
for a simple BERT-based method. No one knows
how differently the performance curves grow with
different architectures and/or with a much larger
set of training instances. It will be interesting to
investigate these points for future work.

5 Performance on Synthetic Data

In the previous section, we have seen that the BERT-
based method has a much higher generalization
ability in grammatical error detection. To analysis
this phenomenon in detail, we now turn to detection
performance of the BERT-based method on the
pseudo error data. As described in Subsect. 3.1, we
train it on the ten sets of training data (i.e., 2, 4, · · ·,
1024 training sentences for each error type) and test
the trained models on the fixed test set. Doing so,
we estimate the relationship between the number of
training sentences and detection performance for
each error type.

Figure 7 shows the relationship between the size
of training data and F1.0 for each error type where
the size is measured by the number of sentences.
Figure 7 reveals that the BERT-based method al-
ready recognizes some of the target errors at early
stages (even with two or four training sentences).
Performance goes much higher even with eight
training sentences in most of the error types with
an exception of the error type “Intransitive verb
+ object”. For instance, the BERT-based method
recognizes more than half of the “Preposition +
subject” errors with a precision of 0.800 only with
eight training instances. This implies again that
BERT has certain knowledge about the notions of
POS such as verbs and syntactic relations such as
subjects; otherwise, it would be difficult to achieve

0

0.2

0.4

0.6

0.8

1

2 4 8 16 32 64 128 256 512 1024

F
1

.0

Number of training sentences

Intransitive verb + direct object
Subject verb

Prepositional infinitive
Preposition + subject

Transitive verb + preposition

Figure 7: Detection Performance (F1.0) per Error Type
in Relation with Training Size: Synthetic Data.

a similar performance in this type of error consider-
ing that the noun phrase of a subject and its position
in the sentence considerably vary depending on the
target sentence.

The same argument applies to “transitive verb
+ preposition” and “intransitive verb + object”. It
should be emphasized that the BERT-based method
has to detect errors in verbs that never9 appear in
the training data; recall that there is no overlap of
the target transitive/intransitive verbs in the train-
ing and test data. In other words, the BERT-based
method can recognize unseen erroneous combina-
tions, for example, *visited in Atlanta (transitive
verb + preposition type) and *specialized environ-

9Strictly, some of the verbs may appear in the training
sentences for the other error types. However, they never appear
in the erroneous phrases. Also, they do not appear at all when
the training size is small.
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mental litigation (intransitive verb + direct object
error type) after just seeing *mention in, discussed
about and *were related drugs and belongs Lon’s
grandmother. These training and test sentences
have almost nothing in common except that they
are the combinations of transitive/intransitive verbs
and prepositions/objects. Besides, the fact that
correct combinations of other verbs and preposi-
tions/objects often appear in the test data makes
the task even more difficult without the knowledge
of POS and syntactic relations. These findings
support the hypotheses that BERT has linguistic
knowledge and that it can turn the knowledge into
error detection rules by fine-tuning.

6 Exploration for Cost-Effective Error
Detection with Feedback Comments

The findings we have obtained so far bring out
the possibility that one can implement with few
training instances a system that accurately detects
grammatical errors and recognizes their detailed er-
ror types. For example, manually or automatically,
by creating few instances of the erroneous combina-
tion of transitive verbs and prepositions as we saw
in the previous sections (e.g., *discuss about), one
can develop a system detecting the same type of
error in other transitive verbs and prepositions (e.g.,
*attend in it). With the detailed error types, the
system can also output feedback comments to the
user such as Transitive verbs do not take a prepo-
sition. Instead, they take a direct object instead of
just indicating them as preposition errors.

As a pilot study, we trained the BERT-based
method on the pseudo error data and tested it on
the real (learner) data to examine the above pos-
sibility. To achieve it, we manually annotated the
real data with the target five error types based on
the feedback comments available in ICNALE.

Figure 8 shows the results. It reveals that the
BERT-based method trained on the pseudo data
does not perform on the real data as well as on the
pseudo data. Performance growths stop at an early
stage (around eight training sentences). A possible
reason for this is that in the real data, multiple
errors often appear in a sentence. Also, multiple
errors in a sentence can range over multiple types
of error. Besides, the error rate is much lower in
the real data than in the pseudo error data where
one error occurs per sentence except 200 error-free
sentences (although multiple types of error appear
in the whole data set). These conditions make the
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Figure 8: Detection Performance (F1.0) on per Error
Type in Relation with Training Size: Trained on Syn-
thetic Data; Tested on Real Data (PART-TIME JOB and
SMOKING merged).

task much more difficult on the real data, as Flachs
et al. (2019) demonstrate.

Having said that, the results shown in Figure 7
still encourage us to develop language model-based
systems with a small amount of in-domain train-
ing data in order to detect grammatical errors with
detailed error types. One possible way to achieve
it is to sample sentences from unannotated essays
written on the target topic, and then to annotate
them with the specific error types that the devel-
oper wants to give feedbacks to learners. This
will naturally mitigate the problems caused by the
multiple-type multiple error situation and the er-
ror rate difference. One can also manually create
sample error sentences (and their correct versions).

7 Conclusions

In this paper, we have explored the capacity of a
large-scale masked language model to recognize
grammatical errors. Our findings are summarized
in the following three points: (1) Experiments with
the real learner data show that a BERT-based error
detection method has a much higher generalization
ability in grammatical error detection than a non-
language model-based method, and the first per-
formance saturation comes at the point of around
1,000-3,000 training instances; (2) It starts to rec-
ognize the target errors involving a wide variety of
grammatical knowledge with very few instances of
them; (3) The high generalization ability brings out
its potential for developing systems that detect and
explain grammatical errors with very few training
instances.
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A Hyper parameter settings

Table 2 shows major hyper parameters used in the
experiments. Note that when we use the pseudo
error data for training, the number of training sen-
tences can be as small as ten, and we use a rather
small batch of five; otherwise we use 32.

Batch size 5 or 32
Optimization Adam with decoupled weight

decay regularization
Learning rate 5e-5, (0.9, 0.999)

Epsilon 1e-8
Weight decay 1e-2

Table 2: Major Hyper parameters.

B Performance on SMOKING in
ICNALE

Figure 9 and Figure 10 show performance in
SMOKING in ICNALE. We can see the same ten-

dency as in Figures 5 and 6.
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Figure 9: Detection Performance in Relation with Training Size (ICNALE, in-domain test data).
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Figure 10: Detection Performance in Relation with Training Size: (ICNALE, out-of-domain test data).
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